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Inverse design of third-order Dirac exceptional points in photonic crystals
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We propose a novel inverse-design method that enables brute-force discovery of photonic crystal (PhC) struc-
tures with complex spectral degeneracies. As a proof of principle, we demonstrate PhCs exhibiting third-order
Dirac points formed by theaccidentaldegeneracy of modes of monopolar, dipolar, and quadrupolarnature. We
show that under suitable conditions, these modes can coalesce and form a third-order exceptional point (EP3),
leading to diverging Petermann factors. We show that the spontaneous emission (SE) rate of emitters at such
EP3s, related to the local density of states, can be enhancedby a factor of 8 in purely lossy (passive) structures,
with larger enhancements∼

√
n3 possible at exceptional points of higher ordern or in materials with gain.

PACS numbers: Valid PACS appear here

Dirac cones in photonic systems have received much atten-
tion because of their connections to intriguing optical prop-
erties, enabling large-area photonic-crystal (PhC) surface-
emitting lasers [1], zitterbewegung of photons [2], appearance
of zero-index behavior [3, 4], and as precursors to nontriv-
ial topological effects [5–7]. Recent work also showed that
Dirac-point degeneracies can give rise to rings of exceptional
points [8]. An exceptional point (EP) is a singularity in a
non-Hermitian system where two or more eigenvectors and
their corresponding complex eigenvalues coalesce, leading to
a non-diagonalizable, defective Hamiltonian [9, 10]. EPs have
been studied in various physical contexts, most notably lasers
and atomic as well as molecular systems [11, 12]. In recent
decades, interest in EPs has been re-ignited in connection with
non-Hermitian parity-time symmetric systems [13], especially
optical media involving carefully designed gain and loss pro-
files [14–20], where they can lead to intriguing phenomena
such as enhanced spontaneous emission (SE) [21, 22], chi-
ral modes [23], directional transport [24, 25] and anomalous
lasing behavior [26–28]. Also recently, it became possible to
directly observe EPs in photonic crystals (PhC) [8] and opto-
electronic microcavities [29]. Thus far, however, only second-
order EPs (EP2) (where only two modes coalesce) have been
proposed in the context of photonic radiators: in fact, apart
from a few mathematical analyses [30–32] or very recently,
acoustic systems [33], there has been little or no investigation
into appearance of EPs of higher order (where more than two
modes collapse) in complex photonic geometries.

In this letter, we propose a powerful inverse-design method
based on topology optimization that allows automatic discov-
ery of complex photonic structures supporting Dirac points
(DP) formed out of theaccidentaldegeneracy [34] of modes
belonging to different symmetry representations. In particu-
lar, we show that such higher-order DPs can be exploited to
create third-order exceptional points (EP3) along with com-
plex contours of EP2. In addition, we exploit coupled-mode
theory to derive conditions under which such EP3s can exist
and extend recent work [22] to consider the possible enhance-

ments and spectral modifications in the SE rate of emitters.
Specifically, we show that the local density of states at a EP3
can be enhanced 8-fold (in passive systems) and can exhibit
a cubic Lorentzian spectrum under special conditions. More
generally, we find that the enhancement factor∼

√
n3 with in-

creasing EP ordern, whilst even larger enhancements are ex-
pected under gain [22]. Our findings provide the foundations
for future discoveries of complex structures with unusual or
exotic modal properties currently out of the reach of conven-
tional, intuitive design principles.

Dirac cones and Dirac EPs are typically designed by ex-
ploiting degeneracies between modes of different symmetry
representations, often in simple geometries involving cylin-
drical pillars or holes on a square or triangular lattice [3, 35].
These singularities are typically of order two (comprisingtwo
interacting modes) and arise partly out of some underlying lat-
tice symmetry (e.g.C4v or C3v) and through the fine-tuning
of a few geometric parameters [3, 36]. For instance, in Ref.8,
it was recently demonstrated that a Dirac point (DP) at the
Γ point of a PhC withC4v symmetry can give rise to a ring
of EP2s. Such a DP is formed by a degeneracy involving
modes of both monopolar (M) and dipolar (D) nature, which
transform according toA andE representations of theC4v

group [3, 36]. Even though the degeneracy consists of one
monopole and two dipoles, the induced EP is of the second
order, with only the monopole and one of the dipoles collid-
ing, while the coalescence of the dipole partner is prevented
by their symmetry [8]. Below, we show that an EP3 can be
induced by a completely “accidental” third-order degeneracy
(D3) atΓ, involving modes of monopolar (M), dipolar (D) and
quadrupolar (Q) nature arising in a novel, inverse-designed
PhC structure lackingC4v symmetry.

Coupled-mode analysis.—The band structure in the vicin-
ity of such a D3 can be modeled by an approximate Hamilto-
nian of the form [35]:

H =





ω0 vMDkx 0
vMDkx ω0 vQDky

0 vQDky ω0



 (1)
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Here,vij , i, j ∈ {M,D,Q} characterizes the mode mixing
away from theΓ point, to first order ink [35]. Note that the
diagonalization of this Hamiltonian yields a completely real
band structure comprising a Dirac cone and a flat band,

ω = ω0, ω0 ±
√

v2MDk
2
x + v2QDk

2
y (2)

To induce an EP, non-Hermiticity can be introduced by the
addition of a small imaginary perturbation to the Hamiltonian,

H =





ω0 + iγM vMDkx 0
vMDkx ω0 + iγD vQDky

0 vQDky ω0 + iγQ



 (3)

with γ > 0 (< 0) representing a small amount of absorption
(amplification) or radiation. A EP3 is obtained by demand-
ing that the characteristic polynomial of (3) have vanishing
derivatives up to second order,

det (H− ωI) = P (ω) = 0, (4)

P ′(ω) = 0, (5)

P ′′(ω) = 0. (6)

Solving the above equations forω, kx, andky yields the EP3:

ωEP3= ω0 +
i

3
(γM + γD + γQ) (7)

kEP3
x = ± 1

3vMD

√

(γD + γQ − 2γM)
3

3 (γQ − γM)
(8)

kEP3
y = ± 1

3vQD

√

(2γQ − γM − γD)
3

3 (γQ − γM)
(9)

where, any choice of distinctγ leading to realk induces an
EP3. In a lattice withC4v symmetry, this condition cannot be
satisfied, unless the symmetry relating the two dipolar modes
is severely and intentionally broken. Such a design would ne-
cessitate an overlay of spatially varying regions of gain/loss,
a scenario that seems experimentally challenging. In contrast,
we now present a novel design method that can discover PhC
geometries supporting “accidental” and tunable D3s.

Inverse-design method.—We construct an accidental D3 by
employing a large-scale optimization strategy for automati-
cally discovering novel topologies and geometries impossible
to conceive from conventional intuition alone. One such strat-
egy, known as topology optimization (TO), employs power-
ful gradient-based numerical algorithms capable of handling
a very large design space, typically considering every pixel
or voxel as a degree of freedom (DOF) in an extensive 2d or
3d computational domain. Such techniques have been gain-
ing traction and were recently applied to problems involving
linear input/output coupling of light [37–39], cavity Purcell
enhancement [40], and nonlinear frequency conversion [41].
In this work, we apply TO to the problem of inverse-designing
the band structure of a PhC to support spectral DP degenera-
cies and EP singularities.

FIG. 1. Inverse-designed 2d square lattices comprising either low-
index (n = 2, upper left) or high-index (n = 3, lower left) materials
in air (white regions), with periodicitya/λ = 1.05 anda = 0.6/λ,
respectively. Note that both unit cells lackC4v symmetry, but re-
tain C2v symmetry by design. Lower right: band structure of the
low-index (upper) lattice, revealing a Dirac point inducedby the
presence of anaccidentalthird-order degeneracy (D3) of monopolar
(M), dipolar (D), and quadrupolar (Q) modes (upper insets),leading
to linear Dirac dispersion accompanied by a quadratic flat band at
theΓ point. A schematic of the Brillouin zone (BZ) denoting high-
symmetryk points(Y,Γ,X,M) is also shown. Due to the lack of
C4v symmetry, the dispersion along the X and Y directions differ.

Our approach extends the work of Ref.40, which showed
that it is possible to design a structure supporting a resonant
mode at some arbitrary frequency by maximizing the time-

averaged power outputf = −Re
[

∫

J
∗ · E dr

]

emitted from

a time harmonic current sourceJ at the desired frequencyω,
where the electric field responseE is given by the solution of
Maxwell’s equations,∇× 1

µ
∇× E − ω2ǫ(r)E = iωJ [40].

To ensure that the designed resonance has the requisite modal
profile, the currentJ must be judiciously constructed. For
example, to design a transverse magnetic (TM) polarized
monopolar mode (M) at theΓ point of a PhC,J should can be
chosen as a point dipoleJ = δ(r−r0)ez at the centerr0 of the
unit cell. Once the objective functionf is identified, its gradi-
ent with respective toǫ(r) can be calculated by the so-called
adjoint variable method [37, 40] (see the supplement for de-
tails) and then supplied to any large-scale gradient-basedopti-
mization algorithm such as the method of moving asymptotes
(MMA) [ 42]. To design structures supporting multiple modes
at the same frequency with the requisite (M, D, Q) symme-
tries, we seek a maxmin formulation in which one maximizes
the minimum of{fM, fD, fQ}, with currents chosen to ensure
fields with the desired symmetries, discussed in detail in the
supplementary materials [SM].

Our topology optimization framework can be exploited to
design high-order degeneracies with distinct modal properties
in arbitrary material systems and photonic structures. Here,
we use it to demonstrate the appearance of third-order degen-
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FIG. 2. (a) Real and (c) imaginary eigenfrequencies as a function of kx andky in the vicinity of a third order exceptional point (EP3) of the
structure described in Fig.1, located atkEP3 ≈ {7, 1.8} × 10−5 ( 2π

a
) (red dot). The blue contours denote regions of second-orderexceptional

points where two of the three modes coalesce. The plots in (b)and (d) show the corresponding band structures along thek lines marked by
red arrows. (e) Contour plot showing the enhanced Petermannfactor (PF) associated with one of the modes in the vicinity of the EP3, and (e)
corresponding enhancement along the direction shown by thered arrow, for all three modes.

eracies in binary dielectric/air square lattices. Figure1(left)
shows two such structures, involving materials of either low
(n = 2, upper) or high (n = 3, lower) refractive indices (in
air) and periodicitiesa = 1.05 λ and a = 0.6 λ, respec-
tively, whereλ is the design wavelength in vacuum. Note
that such refractive indices are typical for common materi-
als such as silicon nitride, lithium niobate, diamond, silicon,
alumina, or many low and high-index ceramics at optical, mi-
crowave, and terahertz frequencies. We focus our discussion
on the low-index structure, leaving details of the high-index
design to the [SM]. Noticeably, the band structure of the low-
index lattice exhibits a D3 comprising M, D and Q modes at
the Γ point, shown in Fig.1 (lower right). Note that since
the optimized PhC lacksC4v symmetry (but possessesC2v),
there is only one dipolar mode at the designated frequency
and hence, the degeneracy of the three modes is completely
accidental: potential mode mixing and avoided crossings at
theΓ point are prevented by the corresponding mirror sym-
metries. In the vicinity of the tri-modal degeneracy, the band
structure exhibits conical Dirac dispersion accompanied by a
quadratic flat band. While general rules regarding the occur-
rence of Dirac point (DP) dispersion in the vicinity of a modal
degeneracy are well understood from group theoretic consid-
erations, e.g. as arising fromtwo different irreducible repre-
sentations [36], to our knowledge our TO-designed PhC is the
first demonstration of a DP formed bythreedegenerate modes
belonging tothreedifferent representations, namely the A1,
A2 and B1 representations of theC2v group.

Third-order exceptional point.—The third order Dirac de-
generacy of Fig.1 can be straightforwardly linked to an EP3
through the introduction of non-Hermiticity, i.e. material loss,
gain, or open boundaries (radiation). Here, we consider such
an EP3 by introducing a small imaginary part in the dielectric
constant,κ =

√

Im[ǫ] = 0.005, representing intrinsic mate-

rial loss and resulting in small decay rates{γM , γD, γQ}/ω0 ≈
{3.6, 4.3, 4.2}× 10−4. From (8), (9), it follows that there ex-
ists an EP3 atRe[ωEP3] ≈ ω0, Im[ωEP3] ≈ 4 × 10−4(2πc

a
),

kEP3
x ≈ 7 × 10−5 (2π

a
) andkEP3

y ≈ 1.8 × 10−5 (2π
a
) [SM].

Figure2(a) and (c) show the band structure in the vicinity of
the Γ point, along with slices, Fig.2(b) and (d), indicated
by blue arrows, illustrating the coalescence of both the real
and imaginary mode frequencies. Yet another interesting fea-
ture of the dispersion landscape is that, apart from the EP3,
there also exists a contour of EP2 (blue lines), defined by
P (ω; kx, ky) = 0, P ′(ω; kx, ky) = 0, similar to the ring of
EP2 observed in Ref.8.

A defining signature of non-Hermitian systems is that
eigenvectors are no longer orthogonal. Rather, they are bi-
orthogonal [10] in the sense of an unconjugated “inner prod-
uct” between left and right eigenvectors,

(

ΨL
n

)T
ΨR

m = δnm,
defined such thatAΨR = ω2ΨR andATΨL = ω2ΨL, where
A is the Maxwell operator̂ǫ−1(∇+ ik)× 1

µ
(∇+ ik)× under

Bloch boundary conditions at a specifick, ǫ̂ is the diagonal
permittivity tensorǫ(r). At our EP3 , the three eigenmodes
coalesce and become self-orthogonal [16], leading to vanish-
ing inner products

(

ΨL
n

)T
ΨR

n = 0, n ∈ {1, 2, 3}, as charac-
terized by the so-called Petermann factor (PF),

PFn =
||ΨL

n||2||ΨR
n||2

| (ΨL
n)

T
ΨR

m|2
(10)

where||...||2 is the usual L2 norm given by||Ψ||2 = ΨT∗Ψ.
Figure2(e,f) illustrates the divergence of the PF for all three
modes ask → k

EP3. Note that there are also PF divergences
associated with the M, D modes at the EP2 contours.

Local density of states.—The divergence of the Petermann
Factor (PF) in open systems can lead to many important ef-
fects [11, 44]. In particular, the SE rate of emitters in resonant
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FIG. 3. (a) Local density of states (LDOS) at the center of theunit cell of the structure in Fig.1, evaluated at eitherkEP3 ≈ {7, 1.8}×10−5( 2π
a
)

(red curves) ork = {7, 1.8}× 10−2( 2π
a
) ≫ k

EP3 (blue curves). (b) Maximum (8-fold) LDOS enhancement associated with a EP3, computed
via the reduced3 × 3 Hamiltonian model of (3). (c)–(f) LDOS profiles evaluated at eitherωEP3 or at the non-degenerate frequenciesω1, ω2,
andω3, corresponding to the EP3 and far-away points described in (a). Note that the LDOS is evaluated only in air regions since the LDOS
within a lossy medium formally diverges [43].

cavities is traditionally expressed via the PF (a generalization
of the Purcell factor [44]), becoming most pronounced near
EPs where the latter diverges [45]. More rigorously, however,
the SE rate is given by the local density of states (LDOS),
or electromagnetic Green’s function (GF), which though en-
hanced turns out to be finite even at EPs [22]: coalescent
eigenmodes no longer form a complete basis, requiring in-
stead an augmented basis of associated Jordan modes and
hence a different definition of LDOS. Such an expansion was
recently employed in Ref.22 to demonstrate limits to LDOS
at EP2s in both passive and active media; here, we extend
these results to the case of EP3s.

The LDOS at an EP3 can be obtained from the diagonal
elements of the imaginary part of the dyadic GF [SM]:

GEP3 ≈
ΨR

EP3(Φ
L
I )

T

(ω2 − ω2
EP3)

3
+

ΨR
EP3(Φ

L
I )

T +ΦR
I (Ψ

L
EP3)

T

(ω2 − ω2
EP3)

2

+
ΨR

EP3(Φ
L
II )

T +ΦR
I (Φ

L
I )

T +ΦR
II (Ψ

L
EP3)

T

ω2 − ω2
EP3

. (11)

Equation11 involves a complicated sum of cubic, quadratic,
and linear Lorentzian profiles weighted by the outer products
of the only surviving left (right) eigenmodeΨ(L,R)

EP3 and the
two associated Jordan vectorsΦ(L,R)

(I,II) , determined by the third-
order Jordan decomposition of the Maxwell eigenproblem,

AEP3Ψ
R
EP3= ω2

EP3Ψ
R
EP3 (12)

AEP3Φ
R
I = ω2

EP3Φ
R
I +ΨR

EP3 (13)

AEP3Φ
R
II = ω2

EP3Φ
R
II +ΦR

I , (14)

and its associated dual. Equation11 reveals that the LDOS
spectrum∼ −Im

[

Tr
(

G
)]

can vary dramatically depending
on position, frequency, and decay rates.

Figure 3(a) shows the LDOS spectra at the center of the
unit cell r0, evaluated at eitherkEP3 (red curves) or a point
k = {7, 1.8} × 10−2(2π/a) ≫ k

EP3 (blue curves) far away
from the EP3, demonstrating an enhancement factor of≈ 2.33
in this geometry. Even greater enhancements are possible un-
der different loss profiles, i.e.,γM, γD andγQ, as illustrated
by the following analysis based on the reduced Hamiltonian
framework above. In particular, the GF at a given location in

the unit cell can be directly related to the diagonal entriesof
the resolvent ofH, defined asG ≡ (H − ωI)−1. For exam-
ple, the third entry ofG yields the LDOS at points where the
intensity of the quadrupole mode dominates. Consider a sce-
nario in which only the monopole mode has a finite lifetime,
i.e.,γM = γ while γD = γQ = 0. It follows from (3) and (11)
that the LDOS in this case is given by,

− Im{GEP3[3, 3]} ≈ −2γ2

27

γ̄3 − 3γ̄(Re[ωEP3]− ω)2

(Re[ωEP3]− ω)2 + γ̄2]3

+
γ

3

γ̄2 − (Re[ωEP3]− ω)2

[(Re[ωEP3]− ω)2 + γ̄2]2
− γ̄

(Re[ωEP3]− ω)2 + γ̄2
,

(15)

whereγ̄ ≡ γ/3. Moreover, the peak LDOS atω = Re[ωEP3]
is found to be8/γ, corresponding to an 8-fold enhancement
relative to the peak LDOS far away from the EP3. Such an
enhancement is illustrated in Fig.3(b), which also reveals the
highly non-Lorentzian spectrum associated with this EP3.

It is possible to exploit a simple sum rule, namely that
the spectrally integrated LDOS is a constant [46], to pre-
dict the maximum enhancement possible for an EP of arbi-
trary ordern. In particular, the integrated LDOS of an order-

n Lorentzian of the formLn(ω) = γ2n−1cn
[(ω−Re[ωEPn])2+γ2]n is

Sn(ω) =
∫

dω Ln(ω) =
cn

√
πΓ[n−

1
2 ]

Γ[n] , whereΓ is the gamma
function. It follows from the sum rule thatnS1(ω) = Sn(ω)

and, consequently, thatcn/c1 =
√
πΓ[n+1]

Γ[n−
1
2 ]

∼
√
n3 for large

n ≫ 1. In the case of an EP3, the maximum enhancement
c3/c1 = 8, which is realized in the scenario discussed above.

Concluding remarks.—The inverse-design approach de-
scribed above is a powerful, general-purpose tool for engi-
neering complex and unusual photonic properties, such as
spectral degeneracies, leading to unconventional structures
that arguably could not have been conceived by intuition
alone. Although fabrication of the resulting “bar-code” struc-
tures may prove challenging at visible wavelengths using cur-
rently available technologies, future experimental realizations
are entirely feasible in the far-infrared to microwave regimes,
where complex features can be straightforwardly fabricated
in polymers and ceramics with the aid of computerized ma-
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chining, 3D printing, laser cutting, additive manufacturing, or
two-photon lithography [47–49]. Furthermore, while our pre-
dictions offer a proof of principle based on a particular PhC
platform, the same inverse-design techniques can be applied
to consider higher-order EPs as well as other topologies, in-
cluding localized cavities. Our ongoing work in this regard
includes application of TO to problems related to the design
of chiral modes, photonic Weyl points, topological insulators,
and omnidirectional Dirac-cone, zero-index meta-materials.
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SUPPLEMENTARY MATERIALS

TOPOLOGY OPTIMIZATION

A typical topology optimization problem in photonics goes
as follows. The objective is to maximize or minimize a given
objective functionf subject to certain constraintsg over a set
of free variables or degrees of freedom (DOF):

max/minf(ǭα) (16)

g(ǭα) ≤ 0 (17)

0 ≤ ǭα ≤ 1 (18)

where the DOF are the normalized dielectric constantsǭα ∈
[0, 1] assigned to each pixel or voxel (indexedα) in a speci-
fied volume. Note that, in general, the indexα denote Carte-
sian components{αx, αy, αz}, such that in a finite-difference
grid, ǭα = ǭ(rα) = ǭ(αx∆x, αy∆y, αz∆z). Depending
on the choice of background (bg) and structural materials,
ǭα is mapped onto position-dependent dielectric constant via
ǫα = (ǫ− ǫbg) ǭα + ǫbg. Since we are interested in fabricat-
able structures, we primarily focus on binary dielectrics by
avoiding intermediate values of̄ǫ. The binarity of the sys-
tem can be enforced by penalizing the objective function or
utilizing a variety of filter and regularization methods [37].
Typically, starting from a random initial guess or completely
uniform space, the technique discovers complex structuresau-
tomatically with the aid of powerful algorithms such as the
method of moving asymptotes (MMA) [42], which typically
require gradient information of the objective and constraint
functions, i.e., ∂f

∂ǭα
, ∂g

∂ǭα
. For an electromagnetic problem,

f andg are typically functions of the electricE or magnetic
H fields integrated over some region, which are in turn solu-
tions of Maxwell’s equations under some incident current or
field. In what follows, we exploit direct solution of the local
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FIG. 4. Left: Schematic showing the design region (top-right quadrant) for topology optimization (TO) of a photonic crystal (PhC) unit cell
at theΓ point. The design region is extended by mirror reflections tothe remaining quadrants of the unit cell. Right: The position of a point
source (bright red dot) as well as choice of even (e) or odd (o) boundary conditions which determine the nodal structure of the resulting modes.

Maxwell’s equations (a partial differential equation),

∇× 1

µ
∇×E− ǫ(r)ω2

E = iωJ, (19)

to obtain the steady-stateE(r;ω) in response to incident
currentsJ(r, ω) at frequencyω. While solution of (19) is
straightforward and commonplace, the key to making op-
timization problems tractable is to obtain a fast-converging
and computationally efficient adjoint formulation of the prob-
lem [37]. Within the scope of TO, this requires efficient calcu-
lations of the gradients∂f

∂ǭα
, ∂g

∂ǭα
at every pixelα, which we

perform by exploiting the powerful adjoint-variable method
(AVM), described in [37]. Essentially, instead of having to
calculate the ∂f

∂ǭ(r) for every spatial pointr, AVM offers the
gradient over the entire optimization region at the cost of asin-
gle (additional) solution of Maxwell’s equation, and is there-
fore key to the tractability of the optimization process.

LDOS FORMULATION

Recent work [40] considered topology optimization of the
cavity Purcell factor by exploiting the concept of local den-
sity of states (LDOS). In particular, the equivalence between
the LDOS and power radiated by apoint dipole can be ex-
ploited to reduce Purcell-factor maximization problems toa
series of small scattering calculations. The objective function

is chosen asmaxǭ f (ǭ(r);ω) = −Re
[

∫

dr J
∗ · E

]

, where

J = δ (r− r0) êj. The gradient field∂f
∂ǭ

is given by [40]

∂f

∂ǭ(r)
= Re

[

iω(ǫ− ǫbg)E ·E
]

(20)

A key realization in [40] is that instead of maximizing the
LDOS at a single discrete frequencyω, a better-posed problem
is that of maximizing the frequency-averagedf in the vicinity
of ω, denoted by〈f〉 =

∫

dω′ W(ω′;ω,Γ)f(ω′), whereW is
some weight function defined over a specified bandwidthΓ.
Using contour integration techniques, the frequency integral
can be conveniently replaced by a single evaluation off at a

complex frequencyω + iΓ [40]. For a fixedΓ, the frequency
average effectively forces the algorithm to favor minimizing
V over maximizingQ; the latter can be enhanced over the
course of the optimization by gradually winding downΓ [40].
A major merit of this formulation is that it features a math-
ematically well-posed objective as opposed to a direct maxi-
mization of the cavity Purcell factorQ

V
, allowing rapid conver-

gence into extremal solutions. Here, we note that the LDOS
formulation offers a natural elegant tool for the inverse design
of any kind of resonant mode, not just the localized cavity
modes considered in [40]. In particular, it can be successfully
applied for the inverse design of extended Bloch modes in a
periodic medium for an arbitrary choice of Bloch wave vector
k. Although this work has focused on Bloch modes at theΓ
point, we have found that the algorithm can be employed with
similar ease to design photonic spectra atk 6= 0.

A simple extension of the optimization formula from a
single-mode problem to the inverse design of a multi-mode
degeneracy is to maximize the minimum of a collection of
LDOSs corresponding to differentJ’s at the exact same fre-
quencyω. Here, the objective assumes the form of a so-

called maximin problem: maxǭ(r)minn

{

f(ω;Jn)
}

, which

requires solvingseparatescattering problems for the distinct
sourcesJn at the same frequencyω. In practice, we replace
the maximin objective with an equivalent formulation [37]:
max t, subject tot− fn ≤ 0.

DESIGN OF AN ACCIDENTAL THIRD-ORDER DIRAC
DEGENERACY AT THE Γ POINT

To design a third order Dirac degeneracy (D3), we maxi-

mize the minimum of
{

fM, fD, fQ

}

at theΓ point, where

M, D and Q denote monopolar, dipolar and quadrupolar trans-
verse magnetic (TM) modes (ẑ×E = 0). For easier computa-
tions, we imposeC2v symmetry with mirror planes at the cen-
ter of the unit cell. Note that the mirror planes are also essen-
tial for classifying modes by their even or odd transformation
properties. In group theoretic language, the eigenmodes of



8

the PhC atΓ point transform according to distinct irreducible
representations; specifically, M, D and Q modes belong to
threedistinct irreducible representations A1, A2 and B1 of the
groupC2v. In effect, the degrees of freedom (DOF) are re-
stricted to one quadrant of the unit cell whereas the unique
nodal structures of M, D and Q are enforced by a careful
choice of boundary conditions as well as a judicious position-
ing of the point sourcesJ, as shown in Fig.4. Under these set-
tings, the optimization converges approximately within 500 it-
erations, taking less than two hours. During optimization,we
also impose filter and penalization constraints [37] in order to
avoid intermediateǫ values.

Figure 5 shows two binary structures obtained by appli-
cation of the aforementioned optimization technique and ex-
hibiting the desired three-mode degeneracy to within0.01%
of the designated frequencies,ω0 = 2πc/a, wherea is the
lattice constant. While the details of the low-index struc-
ture [Fig.5(a)] are described in the main text, here we focus
on the high-index design [Fig.5(b)], whose refractive index
n = 3.07 and perioda = 0.6 λ. Noticeably, the high-index
design possesses highly connected features (few isolated com-
ponents) and should, therefore, be more readily fabricatable
by conventional methods. For instance, the dielectric constant
of alumina ceramics is≈ 9.4 at 10 GHz, paving the way for
fabrication and characterization of such a structure basedon
standard high-precision computerized machining of suitable
alumina samples at microwave frequencies. The band struc-
ture of the high-index design exhibits a D3 of M, D and Q
modes Fig.5(b). Assuming lossIm[ǫ] = 0.02 uniformly dis-
tributed throughout the dielectric material, leading to decay
rates{γM, γD, γQ}/ω0 ≈ {9.83, 9.73, 9.78} × 10−4, we find
that the EP3 occurs atkEP3 = {4.5, 2.9} × 10−6(2π/a) and
results in a Petermann factor≈ 108.

DESIGN OF A THIRD-ORDER EXCEPTIONAL POINT

In order to better understand the dispersion properties of the
TO-designed PhC as well as to determine the existence of an
EP3, we can approximate the band structure near theΓ point
in terms of the degenerate modes atΓ, leading to an eigen-
problemHψ = ω2ψ based on the3× 3 Hamiltonian [35]:

H =





ω2
0 pMDkx 0

p∗MDkx ω2
0 pQDky

0 p∗QDky ω2
0



 (21)

Note that under the approximationω2
0 − ω2 ≈ 2ω0(ω0 − ω)

and substitutionpij = 2ω0vij , one is led to the simplified
Hamiltonian (considered in the main text):

H =





ω0 vMDkx 0
v∗MDkx ω0 vQDky

0 v∗QDky ω0



 (22)

Although (22) is easier to work with for deriving closed-form
analytical expressions, to achieve better accuracy our predic-
tions in the main text and discussion below are based on (21).

The introduction of a smallIm[ǫ] yields the following non-
Hermitian Hamiltonian:

H′ =





(ω0 + iγM)2 p′MDkx 0
−p′MDkx (ω0 + iγD)

2 p′QDky
0 −p′QDky (ω0 + iγQ)

2



 (23)

Note that for sufficiently smallIm[ǫ], p′ij ≈ pij and−p′ij ≈
p∗ij and that the form of (23) maintains reciprocity since
HT(k) = H(−k). For simplicity of notation, we will drop
the prime with the understanding that any reference toH from
here on refers to (23). The mode-mixing parameterspij can
be computed from overlap integrals between the degenerate
modes at theΓ point [35]. In particular, in the case of the low-
index design (n = 2, see main text) where we have chosen
Im[ǫ] = 0.005, we obtainγ/ω0 ∼ 10−3, pMD ≈ 5.9i/(2π)
andpQD ≈ 5.5i/(2π). With these parameters in hand, we can
determine the location of the EP3 by numerically solving (4)–
(6) in the main text, resulting in the aforementioned values of
kEP3
x ≈ 7× 10−5 (2π

λ
) andkEP3

y ≈ 1.8× 10−5 (2π
λ
).

While the topology-optimized binary design exhibits a tri-
modal degeneracy to an accuracy of. 0.01%, we find that
in order to access the EP3, further fine-tuning is necessary
as is generally the case for parameter-sensitive exceptional
points [8, 22]. In particular, for a fixedωQ = ω0, small
deviations from some critical frequenciesωc

M andωc
D intro-

duces a small imaginary part tokEP3. Figure6 quantifies the
magnitude ofIm[kEP3] as a function of two bandgap param-
etersδωM andδωD, defined such thatωM = ω0 + δωM and
ωD = ω0+ δωD. As observed, the imaginary part ofkEP3 van-
ishes whenδωM = δωc

M ∼ −10−7 andδωD = δωc
D ∼ −10−9,

signaling the appearance of a EP3 on the realk plane. While
there are many post-fabrication fine-tuning techniques (such
as oxidation, thermal, free-carrier, or laser tuning), in our nu-
merical experiment, we simply fine-tune a few strategic pixels
in the PhC design to varyωM andωD while keepingωQ fixed,
repeatedly solving the full Maxwell eigenproblems until the
Petermann Factor∼ 109.

GREEN’S FUNCTION AT A THIRD-ORDER EP

Non-orthogonalityof the modes in open resonators can lead
to significantly enhanced spontaneous emission rates [44].
This effect becomes most pronounced near exceptional
points [45], where the modes become self-orthogonal. The
figure of merit for computing spontaneous emission rates is
the local density of states (LDOS), which is proportional to
the imaginary part of the Green’s function (GF) [50]. Near
non-degenerate resonances, the GF can be expressed using the
standard modal expansion formula [51]:

G =
∑

i

1

ω2 − ω2
i

· Ψ
R
i (Ψ

L
i )

T

(ΨL
i )

TΨR
i

. (24)

The right eigenvectorsΨR
i and eigenvaluesωi are outgoing so-

lutions of Maxwell’s equations or, more explicitly, satisfy the
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FIG. 5. Detailed images of inverse-designed PhC unit cells comprising either (a) low-index (n = 2) or (b) high-index (n = 3.07) dielectric
materials in air, and supporting third-order Dirac degeneracies. Black/white represent dielectric/air regions. Thelattice constants of the cells
area = 1.05 λ anda = 0.6 λ, respectively, whereλ denotes the design wavelength. Each pixel has dimensions≈ 0.003× 0.003a2. (c) Band
structure of the high-index structure, demonstrating the conical, Dirac dispersion around a tri-modal Dirac degeneracy, involving monopolar
(M), dipolar (D), and quadrupolar (Q) modes, at theΓ point.
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eigenvalue problem:AΨR
i = ω2

iΨ
R
i . Here,A is Maxwell’s

operatorε−1∇ × ∇× and ε is the dielectric permittivity.
Left eigemodes are eigenvectors of the transposed operator
ATΨL

i = ω2
iΨ

L
i , whereAT ≡ ∇ × ∇ × ε−1. The deriva-

tion of (24) relies on the assumption that the set of eigenvec-
tors ofA spans the Hilbert space, which breaks down at EPs
due to the coalescence of both the eigenvalues and eigenvec-
tors. In what follows, we derive an eigenvalue expansion for-
mula for the GF that is valid at third-order exceptional points
(EP3). Our derivation follows three main steps (as in [22]):
First, we use perturbation theory to express the eigenvalues
ωi and eigenmodesΨL

i near the EP in terms of the degenerate
eigenvalue and Jordan-chain vectors and an associated pertur-
bative parameter. We then substitute these expressions into
(24). Lastly, we take the limit as one approaches the EP.

Let the Maxwell operatorA(p) be a parameter-dependent
operator supporting a EP3 atp = 0. The Jordan chain vectors

of AEP3≡ A(0) satisfy the relations [52, 53]:

AEP3Ψ
R
EP3= ω2

EP3Ψ
R
EP3 (25)

AEP3Φ
R
I = ω2

EP3Φ
R
I +ΨR

EP3 (26)

AEP3Φ
R
II = ω2

EP3Φ
R
II +ΦR

I , (27)

with the duals obtained by lettingA → AT andR → L,
leading to the following orthogonality relations:

(ΨL
EP3)

TΨR
EP3= 0

(ΦL
I )

TΨR
EP3= (ΨL

EP3)
TΦR

I = 0

(ΨL
EP3)

T )ΦR
II = (ΦL

II )
TΨR

EP3= (ΦL
I )

TΦR
I (28)

In order to uniquely define the above chain vectors, we choose
the additional normalization conditions:

(ΨL
EP3)

TΦR
II = (ΦL

II )
TΨR

EP3= (ΦL
I )

TΦR
I = 1

(ΦL
II )

TΦR
I = (ΦL

I )
TΦR

II0 = 0

(ΦL
II )

TΦR
II = 0. (29)
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When the LDOS is dominated by three non-degenerate res-
onances, one can approximate the full GF via (24) by keeping
only three terms in the sum. (This requires that the three res-
onancesωi be spectrally separated from the rest of the eigen-
values and thatG be evaluated atω ≈ Re[ωi]). Near the EP,
A(p) can can be written as [22]:

A(p) = AEP3+ pA1 + p2A2 + . . . , (30)

from which it follows that the eigenvalues and eigenvectorsof
A(p) can be expanded in Puiseux series [54],

ω2
i = ω2

EP3+ p
1

3ω2
1 + p

2

3ω2
2 + p ω2

3 + p
4

3ω2
4 . . . (31)

Ψi = ΨR
EP3+ p

1

3Ψ1 + p
2

3Ψ2 + pΨ3 + p
4

3Ψ4 . . . (32)

reducing to the eigenvalues and eigenvectors ofAEP3 in the
limit p → 0. (Note that one can write similar expressions for
the left eigenvectors.) Using Eqs. (30-32) and taking the limit
asp → 0, we arrive at (11) in the main text, describing the
GF at a EP3. Note that in order to obtain the correct limit, one
needs to keep terms up toO(p

5

3 ) in Eqs. (30-32).


