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We propose a novel inverse-design method that enablesfoneediscovery of photonic crystal (PhC) struc-
tures with complex spectral degeneracies. As a proof otjpi®, we demonstrate PhCs exhibiting third-order
Dirac points formed by thaccidentaldegeneracy of modes of monopolar, dipolar, and quadrupakare. We
show that under suitable conditions, these modes can ceadesl form a third-order exceptional point (EP3),
leading to diverging Petermann factors. We show that thatspeous emission (SE) rate of emitters at such
EP3s, related to the local density of states, can be enhdmycadactor of 8 in purely lossy (passive) structures,
with larger enhancements v/n3 possible at exceptional points of higher ordeor in materials with gain.

PACS numbers: Valid PACS appear here

Dirac cones in photonic systems have received much atterments and spectral modifications in the SE rate of emitters.
tion because of their connections to intriguing opticalppro Specifically, we show that the local density of states at a EP3
erties, enabling large-area photonic-crystal (PhC) serfa can be enhanced 8-fold (in passive systems) and can exhibit
emitting lasers]], zitterbewegung of photon&], appearance a cubic Lorentzian spectrum under special conditions. More
of zero-index behaviord 4], and as precursors to nontriv- generally, we find that the enhancement fastov/n? with in-
ial topological effects$-7]. Recent work also showed that creasing EP ordet, whilst even larger enhancements are ex-
Dirac-point degeneracies can give rise to rings of exceptio pected under gair2p]. Our findings provide the foundations
points B]. An exceptional point (EP) is a singularity in a for future discoveries of complex structures with unusual o
non-Hermitian system where two or more eigenvectors an@xotic modal properties currently out of the reach of corven
their corresponding complex eigenvalues coalesce, lgadin tional, intuitive design principles.

a non-diagonalizable, defective Hamiltoni&10]. EPs have Dirac cones and Dirac EPs are typically designed by ex-
been studied in various physical contexts, most notabréas ploiting degeneracies between modes of different symmetry
and atomic as well as molecular systerh4 [12]. In recent representations, often in simple geometries involvingneyl
decades, interest in EPs has been re-ignited in connectilon w drical pillars or holes on a square or triangular latti8e3s|.
non-Hermitian parity-time symmetric systemig], especially  These singularities are typically of order two (comprisiwg
optical media involving carefully designed gain and loss-pr interacting modes) and arise partly out of some underhatg |
files [14-20], where they can lead to intriguing phenomenatice symmetry (e.gCy, or Cs,) and through the fine-tuning
such as enhanced spontaneous emission (8E)2P], chi-  of a few geometric parameter3 B6]. For instance, in ReB,
ral modes 23], directional transportgd4, 25 and anomalous it was recently demonstrated that a Dirac point (DP) at the
lasing behaviorZ6-28]. Also recently, it became possible to T" point of a PhC withCy,, symmetry can give rise to a ring
directly observe EPs in photonic crystals (Ph8))dnd opto- of EP2s. Such a DP is formed by a degeneracy involving
electronic microcavitie9]. Thus far, however, only second- modes of both monopolar (M) and dipolar (D) nature, which
order EPs (EP2) (where only two modes coalesce) have bedransform according tol and £ representations of thé'y,
proposed in the context of photonic radiators: in fact, apargroup [3, 36. Even though the degeneracy consists of one
from a few mathematical analyse30F32] or very recently, monopole and two dipoles, the induced EP is of the second
acoustic systemsp], there has been little or no investigation order, with only the monopole and one of the dipoles collid-
into appearance of EPs of higher order (where more than twimg, while the coalescence of the dipole partner is prevkente
modes collapse) in complex photonic geometries. by their symmetry §]. Below, we show that an EP3 can be
induced by a completely “accidental” third-order degengra

In this letter, we propose a powerful inverse-design metho@D3) atT", involving modes of monopolar (M), dipolar (D) and
based on topology optimization that allows automatic disco guadrupolar (Q) nature arising in a novel, inverse-designe
ery of complex photonic structures supporting Dirac pointsPhC structure lacking'y, symmetry.

(DP) formed out of thexccidentaldegeneracyd4] of modes Coupled-mode analysis.Fhe band structure in the vicin-

belonging to different symmetry representations. In parti ity of such a D3 can be modeled by an approximate Hamilto-
lar, we show that such higher-order DPs can be exploited t@jan of the form B5):

create third-order exceptional points (EP3) along with eom

plex contours of EP2. In addition, we exploit coupled-mode wo  umpky 0

theory to derive conditions under which such EP3s can exist H = |vmpks wo vqDky (1)
and extend recent worRp] to consider the possible enhance- 0 wvooky wo
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Here,v;;, i,j € {M,D,Q} characterizes the mode mixing
away from thel point, to first order irk [35. Note that the
diagonalization of this Hamiltonian yields a completelplre
band structure comprising a Dirac cone and a flat band,

w = wo, wo T \/vpk2 + vgpk2

(@)

To induce an EP, non-Hermiticity can be introduced by thg

addition of a small imaginary perturbation to the Hamiltmi

wo +iym UMDz 0
H=| wvwoks wo+iyp vopky 3
0 ’UQDky wo + Z")/Q

with v > 0 (< 0) representing a small amount of absorption

Y

kal2n

(amplification) or radiation. A EP3 is obtained by demand-

ing that the characteristic polynomial a8)(have vanishing
derivatives up to second order,

det (H — wl) = P(w) =0, 4)
P'(w) =0, (5)
P"(w)=0. (6)

Solving the above equations for k,, andk, yields the EP3:

7
wEP = wy + 3 (M +70 +7%0) 7
pers_ 4 1 (o0 29m)° (8)
‘ 3ump 3(1Q —m)
LEP3 _ 1 (2’YQ — ™M — ’YD)3 (9)
Y 3vQp 3 (@ —m)

where, any choice of distinet leading to reak induces an
EP3. In a lattice withCy,, symmetry, this condition cannot be

FIG. 1. Inverse-designed 2d square lattices comprisirtgeelbw-
index (» = 2, upper left) or high-index/{ = 3, lower left) materials
in air (white regions), with periodicity,/A = 1.05 anda = 0.6/,
respectively. Note that both unit cells lack,, symmetry, but re-
tain C2, symmetry by design. Lower right: band structure of the
low-index (upper) lattice, revealing a Dirac point indudeyl the
presence of aaccidentalthird-order degeneracy (D3) of monopolar
(M), dipolar (D), and quadrupolar (Q) modes (upper insé¢s)ding
to linear Dirac dispersion accompanied by a quadratic flatlbet
theI point. A schematic of the Brillouin zone (BZ) denoting high-
symmetryk points(Y,I", X, M) is also shown. Due to the lack of
Cu, Symmetry, the dispersion along the X and Y directions differ

Our approach extends the work of Réf, which showed
that it is possible to design a structure supporting a ragona
mode at some arbitrary frequency by maximizing the time-
averaged power outpyt= —Re| [ J* - E dr| emitted from

a time harmonic current sourdeat the desired frequency,
where the electric field responEeis given by the solution of

satisfied, unless the symmetry relating the two dipolar modeMaxwell’s equationsy x %V x E — w?e(r)E = iwJ [40].
is severely and intentionally broken. Such a design would neTo ensure that the designed resonance has the requisité moda

cessitate an overlay of spatially varying regions of gass|
a scenario that seems experimentally challenging. In asttr

profile, the currentl] must be judiciously constructed. For
example, to design a transverse magnetic (TM) polarized

we now present a novel design method that can discover Phi@onopolar mode (M) at thE point of a PhCJ should can be

geometries supporting “accidental” and tunable D3s.
Inverse-design method.We construct an accidental D3 by
employing a large-scale optimization strategy for autémat
cally discovering novel topologies and geometries impnesi
to conceive from conventional intuition alone. One suchtstr

chosen as a point dipole= §(r—r)e. at the center, of the
unit cell. Once the objective functiohis identified, its gradi-
ent with respective te(r) can be calculated by the so-called
adjoint variable method3[7, 40] (see the supplement for de-
tails) and then supplied to any large-scale gradient-bagtd

egy, known as topology optimization (TO), employs power-mization algorithm such as the method of moving asymptotes
ful gradient-based numerical algorithms capable of haigdli (MMA) [ 42]. To design structures supporting multiple modes
a very large design space, typically considering everylpixeat the same frequency with the requisite (M, D, Q) symme-
or voxel as a degree of freedom (DOF) in an extensive 2d ofries, we seek a maxmin formulation in which one maximizes
3d computational domain. Such techniques have been gaithe minimum of{ fu, fo, fo}, with currents chosen to ensure
ing traction and were recently applied to problems invaivin fields with the desired symmetries, discussed in detail én th
linear input/output coupling of light37-39], cavity Purcell ~ supplementary materials [SM].

enhancemen#[d], and nonlinear frequency conversiofi]. Our topology optimization framework can be exploited to
In this work, we apply TO to the problem of inverse-designingdesign high-order degeneracies with distinct modal progrer
the band structure of a PhC to support spectral DP degeneran arbitrary material systems and photonic structures.eHer
cies and EP singularities. we use it to demonstrate the appearance of third-order degen
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FIG. 2. (a) Real and (c) imaginary eigenfrequencies as difimof k, andk, in the vicinity of a third order exceptional point (EP3) okth
structure described in Fig, located ak™3~ {7,1.8} x 10~° (27”) (red dot). The blue contours denote regions of second-extmptional

points where two of the three modes coalesce. The plots iar{t)d) show the corresponding band structures along tivees marked by
red arrows. (e) Contour plot showing the enhanced Peterfaator (PF) associated with one of the modes in the vicinithe EP3, and (e)
corresponding enhancement along the direction shown byetharrow, for all three modes.

eracies in binary dielectric/air square lattices. Figiffieft) rial loss and resulting in small decay rafeg, o, 7o }/wo =~
shows two such structures, involving materials of either lo {3.6,4.3,4.2} x 10~*. From @), (9), it follows that there ex-

(n = 2, upper) or high{ = 3, lower) refractive indices (in ists an EP3 aRe[wepd ~ wo, Im[wepg ~ 4 x 107%(2£¢),

air) and periodicities: = 1.05 A anda = 0.6 A, respec- kEP3 ~ 7 x 1075 (22) and k5™ ~ 1.8 x 107° (22) [SM].
tively, where \ is the design wavelength in vacuum. Note Figure2(a) and (c) show the band structure in the vicinity of
that such refractive indices are typical for common materithe I" point, along with slices, Fig2(b) and (d), indicated
als such as silicon nitride, lithium niobate, diamondcsiti, by blue arrows, illustrating the coalescence of both thé rea
alumina, or many low and high-index ceramics at optical, mi-and imaginary mode frequencies. Yet another interestiag fe
crowave, and terahertz frequencies. We focus our disaussidure of the dispersion landscape is that, apart from the EP3,
on the low-index structure, leaving details of the higherd there also exists a contour of EP2 (blue lines), defined by
design to the [SM]. Noticeably, the band structure of the-low P(w; k,, k) = 0, P'(w;ky, k,) = 0, similar to the ring of
index lattice exhibits a D3 comprising M, D and Q modes atEP2 observed in Re8.

theI" point, shown in Fig.l (lower right). Note that since A defining signature of non-Hermitian systems is that
the optimized PhC lack§y, symmetry (but possessés,), eigenvectors are no longer orthogonal. Rather, they are bi-
there is only one dipolar mode at the designated frequencgrthogonal LQ] in the sense of an unconjugated “inner prod-
and hence, the degeneracy of the three modes is completalgt” between left and right eigenvecto(sIJ;)T TR = 6,
accidental potential mode mixing and avoided crossings atdefined such thattUR = w2¥R and ATUL = w2WL, where
the " point are prevented by the corresponding mirror sym-4 is the Maxwell operatot! (V +ik) x 1(V +ik)x under
metries. In the vicinity of the tri-modal degeneracy, thada Bloch boundary conditions at a speciﬁé ¢ is the diagona]
structure exhibits conical Dirac dispersion accompanied b permittivity tensore(r). At our EP3 , the three eigenmodes
quadratic flat band. While general rules regarding the eccurcoalesce and become self-orthogorid] | leading to vanish-
rence of Dirac point (DP) dispersion in the vicinity of a mbda ing inner products(\IJ,Ll)T WR = 0, n € {1,2,3}, as charac-
deggneracy are WeI.I l_mderstood _from group the_oretlc considgrized by the so-called Petermann factor (PF),

erations, e.g. as arising frotwo different irreducible repre-

sentations36], to our knowledge our TO-designed PhC is the [[WL| 2] wR|2

first demonstration of a DP formed liyreedegenerate modes n = W (10)
belonging tothree different representations, namely the,A " m

A2 and B, representations of th€;, group. where||...||? is the usual k norm given by||¥|]? = U,

Third-order exceptional point.—Fhe third order Dirac de- Figure2(e,f) illustrates the divergence of the PF for all three
generacy of Figl can be straightforwardly linked to an EP3 modes ak — k572 Note that there are also PF divergences
through the introduction of non-Hermiticity, i.e. matét@ss,  associated with the M, D modes at the EP2 contours.
gain, or open boundaries (radiation). Here, we considdr suc Local density of states.-Fhe divergence of the Petermann
an EP3 by introducing a small imaginary part in the dielectri Factor (PF) in open systems can lead to many important ef-
constantx = /Im[e] = 0.005, representing intrinsic mate- fects [L1, 44]. In particular, the SE rate of emitters in resonant
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FIG. 3. (a) Local density of states (LDOS) at the center otutiecell of the structure in Figl, evaluated at eith«="* ~ {7,1.8} x 107° (%)
(red curves) ok = {7,1.8} x 10 (2%) >> k" (blue curves). (b) Maximum (8-fold) LDOS enhancement aisged with a EP3, computed
via the reduce@d x 3 Hamiltonian model of §). (c)—(f) LDOS profiles evaluated at eitheeps or at the non-degenerate frequencigs ws,
andws, corresponding to the EP3 and far-away points described)inNote that the LDOS is evaluated only in air regions siheeltDOS
within a lossy medium formally divergedJ).

cavities is traditionally expressed via the PF (a geneatiim  the unit cell can be directly related to the diagonal entoies

of the Purcell factor44]), becoming most pronounced near the resolvent of, defined as7 = (H — wl)~!. For exam-
EPs where the latter divergetd]. More rigorously, however, ple, the third entry of7 yields the LDOS at points where the
the SE rate is given by the local density of states (LDOS)jntensity of the quadrupole mode dominates. Consider a sce-
or electromagnetic Green’s function (GF), which though en-nario in which only the monopole mode has a finite lifetime,
hanced turns out to be finite even at ER&]] coalescent i.e.,y = v while yp = vq = 0. It follows from (3) and (L1)
eigenmodes no longer form a complete basis, requiring inthat the LDOS in this case is given by,

stead an augmented basis of associated Jordan modes and

hence a different definition of LDOS. Such an expansion was Tm{Gepd3, 3]} ~ _2_72 73 — 37(Re[wepg — w)?

recently employed in ReR2to demonstrate limits to LDOS ’ 27 (Refwepg — w)? + 72

ar: EP2s inI both hpassive a;néjpgctive media; here, we extend ! 72 — (Re|wepg — w)? - 5
these results to the case o s. _ 3 [(Refwerd — w)2 + 722 (Re[wepg — w)2 + 72
The LDOS at an EP3 can be obtained from the diagonal (15)

elements of the imaginary part of the dyadic GF [SM]:
wherey = /3. Moreover, the peak LDOS at = Re[wepg

G 0 VRN T UR(@H)T + dR(WLpy) T is found to bes/~, corresponding to an 8-fold enhancement
BP3 (W2 — W) (W? — w2py)? relative to the peak LDOS far away from the EP3. Such an
TR (O5)T + OR(OH)T + OR(WLpy)” enhancement is illustrated in Fig(b), which also reveals the
+ —EPS I L] ID_EPS _ (11)  highly non-Lorentzian spectrum associated with this EP3.

2,2 : ) _ i
wT T WERs It is possible to exploit a simple sum rule, namely that

Equationl11 involves a complicated sum of cubic, quadratic,the spectrally integrated LDOS is a constad6][ to pre-

and linear Lorentzian profiles weighted by the outer prosluctdict the maximum enhancement possible for an EP of arbi-
of the only surviving left (right) eigenmod&®:Y and the ~trary ordern. In particular, the integrated LDOS of an order-

271716’”

two associated Jordan vectdr§, determined by the third- 7 Lorentzian of the forml, (w) = o—repeire 19
y . 1
order Jordan decomposition of the Maxwell eigenproblem, Sn(w) = [dw Ln(w) = cn\/?[;[g—ﬂ, wherer s the gamma
Appa¥Ros = wipalBos (12)  function. It follows from the sum rule thatS; (w) = S, (w)
_ VAllntl] /o3
Appa®R = w2pdR + UR,, (13) and, consequently, that, /¢; = m]— n3 for large
Aepa®R = wEp @R + oF, (14) n > 1. Inthe case of an EP3, the maximum enhancement

c3/c1 = 8, which is realized in the scenario discussed above.
and its associated dual. Equatibh reveals that the LDOS Concluding remarks.—The inverse-design approach de-
spectrum~ —Im [Tr(G)} can vary dramatically depending scribed above is a powerful, general-purpose tool for engi-
on position, frequency, and decay rates. neering complex and unusual photonic properties, such as

Figure 3(a) shows the LDOS spectra at the center of thespectral degeneracies, leading to unconventional stestu

unit cell ry, evaluated at eitheék®"3 (red curves) or a point that arguably could not have been conceived by intuition
k = {7,1.8} x 1072(27/a) > kEP3 (blue curves) far away alone. Although fabrication of the resulting “bar-code’tst
from the EP3, demonstrating an enhancementfacter®83  tures may prove challenging at visible wavelengths usimg cu
in this geometry. Even greater enhancements are possible urently available technologies, future experimental zzdions
der different loss profiles, i.ejw, vp andyq, as illustrated  are entirely feasible in the far-infrared to microwave rnegs,
by the following analysis based on the reduced Hamiltoniarwhere complex features can be straightforwardly fabritate
framework above. In particular, the GF at a given location inin polymers and ceramics with the aid of computerized ma-



chining, 3D printing, laser cutting, additive manufactgy;j or
two-photon lithography47-49]. Furthermore, while our pre-

dictions offer a proof of principle based on a particular Phcl14]
platform, the same inverse-design techniques can be dpplie
to consider higher-order EPs as well as other topologies, in

cluding localized cavities. Our ongoing work in this regard [15

includes application of TO to problems related to the design

of chiral modes, photonic Weyl points, topological insatat
and omnidirectional Dirac-cone, zero-index meta-mal®ria
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FIG. 4. Left: Schematic showing the design region (topriginadrant) for topology optimization (TO) of a photonic stal (PhC) unit cell
at thel” point. The design region is extended by mirror reflectiontheoremaining quadrants of the unit cell. Right: The positid a point
source (bright red dot) as well as choice of ev€rof odd @) boundary conditions which determine the nodal structéitberesulting modes.

Maxwell’s equations (a partial differential equation), complex frequency + ¢I" [40]. For a fixedI', the frequency
1 average effectively forces the algorithm to favor minimgi
V x =V xE— ¢r)w’E =iw], (19) V over maximizingQ); the latter can be enhanced over the
7

course of the optimization by gradually winding dowf4qQ].

currentsJ (r,w) at frequencyw. While solution of (9) is ~ ematically well-posed objective as opposed to a direct maxi
straightforward and commonplace, the key to making opMmization of the cavity Purcell factd?, allowing rapid conver-
timization problems tractable is to obtain a fast-conweggi 9€nce into extremal solutions. Here, we note that the LDOS
and computationally efficient adjoint formulation of theopr ~ formulation offers a natural elegant tool for the inverssige
lem [37]. Within the scope of TO, this requires efficient calcu- Of any kind of resonant mode, not just the localized cavity
lations of the gradient% 65_9 at every pixeky, which we ~ modes considered idf). In particular, it can be successfully
[ €a ! . . . :

(AVM), described in B7]. Essentially, instead of having to Periodic medium for an arbitrary choice of Bloch wave vector
calculate the ?(f) for every spatial point, AVM offers the k- Although this work has focused on Bloch modes atlthe

gradient over the entire optimization region at the costsiha ~ PCiNnt, we have found that the algorithm can be employed with

gle (additional) solution of Maxwell's equation, and is there- Similar ease to design photonic spectr& at 0.

fore key to the tractability of the optimization process. A simple extension of the optimization formula from a
single-mode problem to the inverse design of a multi-mode

degeneracy is to maximize the minimum of a collection of
LDOSFORMULATION LDOSs corresponding to differedts at the exact same fre-
quencyw. Here, the objective assumes the form of a so-

Recent work 40] considered topology optimization of the called maximin problem: maxg(r)minn{f(w; Jn)}, which
cavity Purcell factor by exploiting the concept of local den requires solvingeparatescattering problems for the distinct

sity of states (LDOS). In particular, the equivalence bemve sources],, at the same frequency. In practice, we replace

the LDOS and power radiated bymint dipole can be ex-  the maximin objective with an equivalent formulatio®[:
ploited to reduce Purcell-factor maximization problemsito .x ¢, subject tot — f,, < 0.

series of small scattering calculations. The objectivefiom
is chosen asnax: f (€(r);w) = —Re{fdr J* - E} where

J =6 (r —r0) &,. The gradient field is given by J0] DESIGN OF AN ACCIDENTAL THIRD-ORDER DIRAC
g DEGENERACY AT THE I POINT
of

Oe(r) To design a third order Dirac degeneracy (D3), we maxi-

A key realization in £0] is that instead of maximizing the Mize the minimum Of{fM, Jo, fQ} at theT" point, where
LDOS atasingle discrete frequencya better-posed problem M, D and Q denote monopolar, dipolar and quadrupolar trans-
is that of maximizing the frequency-averageth the vicinity ~ verse magnetic (TM) modes$ & E = 0). For easier computa-

of w, denoted by(f) = [ dw’ W(w';w,T) f(w’), whereWis  tions, we impos€, symmetry with mirror planes at the cen-
some weight function defined over a specified bandwidth ter of the unit cell. Note that the mirror planes are alsomsse
Using contour integration techniques, the frequency iateg tial for classifying modes by their even or odd transformati
can be conveniently replaced by a single evaluatioffi af a  properties. In group theoretic language, the eigenmodes of

= Re [iw(e — g E - E} (20)
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the PhC al" point transform according to distinct irreducible  The introduction of a smalim[e] yields the following non-
representations; specifically, M, D and Q modes belong tddermitian Hamiltonian:
threedistinctirreducible representations AA; and B, of the .o ,
groupCy,. In effect, the degrees of freedom (DOF) are re- , (wo Jf M) pMD.k”” 9 , 0
stricted to one quadrant of the unit cell whereas the unique H o= ~Poks (o Jf ) pQDky 9 (23)
nodal structures of M, D and Q are enforced by a careful 0 —Pooky  (wo +i7Q)
choice of boundary conditions as well as a judicious pasitio
ing of the point source$, as shown in Figd. Under these set-
tings, the optimization converges approximately withi® &0
erations, taking less than two hours. During optimizatiee,
also impose filter and penalization constrail¥g in order to
avoid intermediate values.

Figure 5 shows two binary structures obtained by appli-
cation of the aforementioned optimization technique and ex
hibiting the desired three-mode degeneracy to within %

of the designated frequencies; = 2mc/a, wherea is the andpop ~ 5.5i/(2m). With these parameters in hand, we can

IattlceF.cogstant. \éVh|Ie.tt)h((ej Qetﬁlls Of. the IovI\'/]-lndex Sftruc'determine the location of the EP3 by numerically solvifijg-(
ture [Fig. 5(a)] are described in the main text, here we Ocus(6) in the main text, resulting in the aforementioned values of

on the high-index design [Fidh(b)], whose refractive index FEP3 & 7 % 10=5 (25) andkEP3 & 1.8 x 105 (25)
= i = [ z A Sy SAT .
"= 3.07 and penoqla = 0.6 A. Noticeably, the h'gh index While the topology-optimized binary design exhibits a tri-
design possesses highly connected features (feyv |solap&d € modal degeneracy to an accuracy<9f0.01%, we find that
Eonents) arld slhoulcri], gherlgfor.e, be morﬁ r%"?ldl'ly fab”dmabin order to access the EP3, further fine-tuning is necessary
yconv_ent|0na m_et 00dS. or Instance, t ede ectriceons ¢ js generally the case for parameter-sensitive exception
of alumina ceramics isz 9.4 at 10 GHz, paving the way for points B, 22]. In particular, for a fixedwo = wo, smal
fabrication and characterization of such a structure based deviatior;s from some criticé\I frequencies, andwc' intro-
stand_ard high-precisioln computerized mgchining of sletab duces a small imaginary part keps Figure6 quantDifies the
alumina sam.ples., at microwave frgq_uenues. The band Stru?ﬁagnitude offtm[kepg as a function of two bandgap param-
ture of the high-index design exhibits a D3 of M, D and Q etersdwy andowp, defined such thaty = wo + dwy and
modes Fig5(b). Assuming losgm[e] = 0.02 uniformly dis- _ 5 A' b d thei . i i
tributed throughout the dielectric material, leading tecale wp = wo + dwp. As observed, the imaginary partlafes van

rates{ Ly ~ {0.83.9.73,0.78) x 104, we find 5SS Whemww = dwjy ~ —10"T andjuwp = duwp ~ 10 %,
M, 10, 7Q) /L0 7 1563, % 1S, & ' signaling the appearance of a EP3 on the keplane. While
that the EP3 occurs &gpz = {4.5,2.9} x 1075(27/a) and ignaling pp pla i

its in a Pet tacter 108 there are many post-fabrication fine-tuning techniquesh(su

resufts ina Fetermann fac ’ as oxidation, thermal, free-carrier, or laser tuning), um ou-
merical experiment, we simply fine-tune a few strategic Igixe
repeatedly solving the full Maxwell eigenproblems untik th

9
In order to better understand the dispersion propertidssof t Petermann Factor 10°.

TO-designed PhC as well as to determine the existence of an
EP3, we can apprOXimate the band structure nea‘f‘ttleint GREEN’SEUNCTION AT A THIRD-ORDER EP
in terms of the degenerate moded atleading to an eigen-
problem#+y) = w21 based on thd8 x 3 Hamiltonian B5]:

Note that for sufficiently smallml[e], p;; ~ p;; and—p}; =~

p;; and that the form of 43) maintains reciprocity since
H'(k) = H(—k). For simplicity of notation, we will drop

the prime with the understanding that any referenck foom

here on refers to23). The mode-mixing parameteps; can

be computed from overlap integrals between the degenerate
modes at th&' point [35]. In particular, in the case of the low-
index design#{ = 2, see main text) where we have chosen
Im[e] = 0.005, we obtainy/wy ~ 1073, pwp ~ 5.9i/(27)

Non-orthogonality of the modes in open resonators can lead

w2  pwok: O to significantly enhanced spontaneous emission ratds [
H=|pipks: w3 popky (21)  This effect becomes most pronounced near exceptional
0 pooky Wi points 45, where the modes become self-orthogonal. The

figure of merit for computing spontaneous emission rates is
Note that under the approximatiasf — w? ~ 2wo(wo —w)  the local density of states (LDOS), which is proportional to
and substitutiorp;; = 2wov;;, one is led to the simplified  the jmaginary part of the Green’s function (GE0[. Near
Hamiltonian (considered in the main text): non-degenerate resonances, the GF can be expressed esing th

wo  wwpks O standard modal expansion formu]:

H = ’UIT/ID km wo ’UQDky (22) 1 \I/R(\IJIT)T
0 vipky wo G= Z T TR (24)
Although 22) is easier to work with for deriving closed-form

analytical expressions, to achieve better accuracy owipre The right eigenvector&R and eigenvalues; are outgoing so-
tions in the main text and discussion below are base@n (  lutions of Maxwell's equations or, more explicitly, satighe
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FIG. 5. Detailed images of inverse-designed PhC unit celfsprising either (a) low-index«( = 2) or (b) high-index £ = 3.07) dielectric
materials in air, and supporting third-order Dirac degenis. Black/white represent dielectric/air regions. Tetgce constants of the cells
area = 1.05 A anda = 0.6 ), respectively, whera denotes the design wavelength. Each pixel has dimensidh803 x 0.003a>. (c) Band
structure of the high-index structure, demonstrating th@aal, Dirac dispersion around a tri-modal Dirac degetgravolving monopolar
(M), dipolar (D), and quadrupolar (Q) modes, at thpoint.
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FIG. 6. Left: Imaginary part okE"® as a function of gap paramet&oy, with dwp fixed at the critical valuéwS. Note the approximately
linear scaling olm[kF"¥ ~ dww away from the critical point. The inset magnifies the vigirf dwy,, the critical gap value at whichn [k5"3)
vanishes. Right: Same as left but exploring variationuaf whendwu is fixed atdwy.

eigenvalue problemAUR = w2WR, Here, A is Maxwell's  of Agpz = A(0) satisfy the relations52, 53:

operatore~'V x Vx and ¢ is the dielectric permittivity.

Left eigemodes are eigenvectors of the transposed operator AepaVEps = wipa¥ips (25)
Ty — 2yl T — —1 R

A vy = w vy, whereA" =V XV xe The depva- Agps®R = wZps®R + TR, (26)

tion of (24) relies on the assumption that the set of eigenvec- Ao dR — w2 DR 1 BR 27

tors of A spans the Hilbert space, which breaks down at EPs epsdy; = wipsly + 01, (27)

due to the coalescence of both the eigenvalues and eigenvec- . . T

tors. In what follows, we derive an eigenvalue expansion for}’v'tz.thetdltjr?lsf cilbta[ned k;)r: Iettlngi_t—> IAt' an.dR - L

mula for the GF that is valid at third-order exceptional fisin cading fo the foflowing orthogonalily refations.

(EP3). Our derivation follows three main steps (as2d]):

; : ; (‘I’EPS)T‘I’Epsz 0
First, we use perturbation theory to express the eigensalue

w; and eigenmode®’ near the EP in terms of the degenerate (®F) " WEps= (VEpg) 'O =0

eigenvalue and Jordan-chain vectors and an associaten-pert (\y'EPS)T)q)lFf — (@h)T\yE% — (q>|L)T<p|R (28)
bative parameter. We then substitute these expressiams int

(24). Lastly, we take the limit as one approaches the EP. In order to uniquely define the above chain vectors, we choose

the additional normalization conditions:

(Vepg " Off = ()" UEps = (&) O =1
(@) = (&) "0 =0

Let the Maxwell operatord(p) be a parameter-dependent
p () p p (@) af — . 29)

operator supporting a EP3at= 0. The Jordan chain vectors
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When the LDOS is dominated by three non-degenerate reseducing to the eigenvalues and eigenvectorsigifs in the
onances, one can approximate the full GF %é) py keeping  limit p — 0. (Note that one can write similar expressions for
only three terms in the sum. (This requires that the three reghe left eigenvectors.) Using EqQ&G32) and taking the limit
onancesy; be spectrally separated from the rest of the eigenasp — 0, we arrive at {1) in the main text, describing the
values and thafi be evaluated ab ~ Re[w;]). Near the EP, GF ata EP3. Note that in order to obtain the correct limit, one
A(p) can can be written a2f]: needs to keep terms up @J(pg) in Egs. B0-32).

A(p) = Agps+ pA1 + p*As + ..., (30)

from which it follows that the eigenvalues and eigenvectdrs
A(p) can be expanded in Puiseux serig4][

w? = wipgtpiwd +piwd +pwd+piwd...  (31)
U, = URost ps Uy + piWy +pUs+p3ly... (32



