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Abstract – Community structure is essential for social communications, where individuals 

belonging to the same community are much more actively interacting and communicating with 

each other than those in different communities within the human society. Naming game, on the 

other hand, is a social communication model that simulates the process of learning a name of an 

object within a community of humans, where the individuals can generally reach global consensus 

asymptotically through iterative pair-wise conversations. The underlying network indicates the 

relationships among the individuals. In this paper, three typical topologies, namely random-graph, 

small-world and scale-free networks, are employed, which are embedded with the 

multi-local-world community structure, to study the naming game. Simulations show that 1) the 

convergence process to global consensus is getting slower as the community structure becomes 

more prominent, and eventually might fail; 2) if the inter-community connections are sufficiently 

dense, neither the number nor the size of the communities affects the convergence process; and 3) 

for different topologies with the same average node-degree, local clustering of individuals obstruct 

or prohibit global consensus to take place. The results reveal the role of local communities in a 

global naming game in social network studies. 

Key words – Naming game; Multi-local-world networks; Social community; Evolutionary game 

1 Introduction 

Individuals (or agents) employed in a naming game (NG) [1,2] are connected by a certain 

communication network. The network represents the relationships among involving agents, on 

which two agents can communicate directly with each other only if they are directly connected on 
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the network. Isolated agent is not allowed in the underlying network, which is not participating the 

game and hence can be removed, thus information can be propagated to every agent so that the 

whole population may eventually reach global consensus (i.e., convergence), in the sense that 

every agent keeps one and only one identical name to describe the object to be named. The 

convergence of NG may be observed via numerical simulations [1-3], proved theoretically [4], or 

verified empirically by humans-participated experiments [5]. As to the underlying communication 

network, the random-graph [6], small-world [7] and scale-free [8] networks are the most widely 

used ones for naming games [9-16], which will also be employed in the present study.  

Naming game

(iteratively pair-wise 

communications)

Input:

1) agents

2) underlying network

3) external lexicon

4) an object

Output:

1)  consented agents

 

Figure 1 The framework of a minimal naming game.  

Figure 1 shows the flowchart of a minimal NG, where minimal means that the model is defined 

with only the fundamental ingredients of the real-world lexicon propagation phenomenology. More 

complicated models can be further developed, if desired, based on this minimal version. The input 

of minimal NG includes: 1) a population of agents with empty memory, but each agent has infinite 

capacity of memory; 2) a connected underlying network indicating the relationships among the 

agents; 3) an infinite (or large enough) external lexicon which specifies a large number of different 

names; 4) an object (entity, idea, convention, or event, etc.) to be named by the population. The 

output is a population of consented agents, where every agent has one and only one identical name 

for the object in his memory. The convergence process will be recorded for analysis, in terms of 

e.g. the number of total names and the number of different names in the population, as well as the 

success rate. The changes with any input item will cause different converging features; for 

example, the case when all agents have a limited memory size [3]. 

 

Figure 2 An example of one time step during pair-wise communication (two situations 

in total). The first situation is a failure or learning phase, where the hearer does not know 

the name apple before the speaker uttered it, so the hearer learns and keeps apple in his 

memory. The second is a success or local consensus, where the hearer has the 

speaker-uttered name melon in memory, so, as a result they both clear out all names except 
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keeping the name melon. 

At each time step of the minimal NG, a pair of connected agents is randomly selected from the 

population, to be speaker and hearer respectively. If the object is unknown to the speaker, meaning 

that the speaker has no name in his memory to describe the object, then he will randomly pick a 

name from the external lexicon (which is equivalent to randomly invent a new name within the 

certain number of words in the lexicon), and then utters the name to the hearer. When the object is 

already known to the speaker, namely the speaker has one or several names in his memory, he will 

randomly pick a name from the memory and then utter it. After the hearer receives the name, he 

will search over his memory to see if he has the same name stored therein: if not, then he will store 

it into the memory; but if yes, then the hearer and the speaker reach consensus, so they both clear 

up all the names while keeping this common name in their respective memory. An example 

illustrating one time step of the pair-wise communication is given in Figure 2. This pair-wise 

success is referred to as local consensus hereafter. Such a pair-wise transmitting and receiving (or 

teaching and learning) process will continue to iterate until eventually the entire population of 

agents reach consensus, referred to as global consensus, meaning that all the agents agree to 

describe the object by the same name.  

Each node of the underlying network represents an agent in NG, while each edge means that 

the two connected nodes can communicated to each other directly, in either pair-wise [9-16] or 

group-wise [17-19] communication setting. The number of connections of a node is referred to as 

its degree. The heterogeneity of social networks can generally be reflected by the scale-free 

networks [8,10,11], where a few agents have much larger degrees than most agents that have very 

small degrees. On the other hand, human communications are community-based, in the sense that 

people belonging to the same community are much more actively interacting and communicating 

with each other than those in different communities. Recall that the multi-local-world (MLW) 

model [20,21] is a kind of scale-free network, capable of capturing the essential features of many 

real-world networks with community structures. The degree distribution of the MLW network is 

neither in a completely exponential form nor in a completely power-law form, but is somewhere 

between them. 

In particular, the MLW model shows good performance on capturing basic features of the 

Internet at the autonomous system (AS) level [22]. It is quite well known that human social 

networks also have AS-like structures. Therefore, it is quite reasonable to study a naming game of 

a population on an MLW communication network where a local world is a community formed not 

only by natural barriers such as mountains, rivers and oceans, but also by folkways, dialect and 
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cultures. In this paper, therefore, naming game is studied under an MLW network framework, with 

three typical topologies of human communication networks, namely random-graph, small-world 

and scale-free networks, respectively.  

Naming game is well-known to be simulation-based due to its large-scale and 

intrinsic-complexity nature. Most of the previous studies on NG show a feature of eventual 

convergence, even with small learning errors in communications [23]. It is observed that a 

population of 𝑁 nodes requires 𝑂(𝑁1.5) iterations to reach global consensus on fully-connected 

networks [12]. As for random-graph, small-world and scale-free networks, the order is 𝑂(𝑁1.4) 

[10,12,17]. However, it is observed in [2,24] that, when networks have prominent community 

structures, global consensus may be obstructed or even fail. But if a certain number of committed 

agents can be introduced in, global convergence can be regained [2], where a committed agent is 

one that has one and only one fixed name, who insists in his own name persistently. In [24], a 

differential equation method was employed to explain the non-convergence phenomenon in a 

bi-community network. In the present paper here, the effects on convergence is studied by varying 

the number and size of the local communities, and the focus is on the relationship of 

inter-connections and intra-connections as well as the clustering degree of the underlying networks. 

It can be observed from Figure 4 that the convergence time on MLW exceeds 𝑁1.9 (𝑁 = 1000, 

𝑁1.9 = 5.01 × 105), meaning that when naming game is performed on an MLW network, the 

situation is quite different from those on other networks studied previously [10,12,17]. 

The main contributions of this study include the following findings: 1) the convergence 

process to global consensus is becoming slower as the community structure within a network 

becomes more prominent, and eventually might fail, where a prominent community structure 

means that the ratio of inter-community connections and intra-community connections is small; 2) 

if the inter-community connections are sufficiently dense, neither the number nor the size of the 

communities affects the convergence process; and 3) for different topologies with the same 

average node-degree, local clustering of individuals obstruct or prohibit global consensus to take 

place. The simulation results reveal the role of local communities in a global naming game in 

social networks. 

The rest of the paper is organized as follows. In Section 2, the multi-local-world model is 

introduced, followed by extensive simulation results with analysis in Section 3. Finally, Section 4 

concludes the investigation. 
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2 The Multi-local-world Networks 

Here and throughout, all random operations (e.g., random generation, selection, addition or 

deletion) follow a uniform distribution. 

The algorithm for generating an MLW network [21] with 𝑁 nodes can be summarized as 

follows. 

The initialization starts with 𝑁𝐿𝑊 isolated local-worlds. Within each local-world, there are 

𝑚0 nodes connected by 𝑒0 edges. At each time step, a value 𝑟 (𝑟 ∈ (0,1)) is generated at random. 

a. If 0 < 𝑟 < 𝑝1, perform addition of a new local-world of 𝑚0 nodes connected by 𝑒0 

edges, which is added to the existing network. 

b. If 𝑝1 ≤ 𝑟 < 𝑝2, perform addition of a new node to a randomly selected local-world 

𝐿𝑊 by preferential attachment: the new node is added to the selected local-world, establishing in 

𝑒1 new connections (edges). The new node is connected to 𝑒1 nodes existing in the local-world 

according to the following preferential probability: 

𝛱(𝑘𝑖) =
𝑘𝑖+𝛼

∑ (𝑘𝑗+𝛼)𝑗∈𝐿𝑊
         (1) 

where 𝑘𝑖 is the degree of node 𝑖 within the local-world 𝐿𝑊 and 𝛼 is a tunable parameter. 

c. If 𝑝2 ≤ 𝑟 < 𝑝3, perform addition of edges within a randomly selected local-world 𝐿𝑊: 

𝑒2 edges are added to this LW. For each new edge, one end is connected to a randomly picked 

node within the 𝐿𝑊, while the other end is connected to a node selected also from the same LW 

according to a probability 𝛱(𝑘𝑖) given by Eq. (1). This process repeats 𝑒2 times. 

d. If 𝑝3 ≤ 𝑟 < 𝑝4, perform deletion of edges within a randomly selected local-world LW: 

𝑒3 edges are deleted from LW. The purpose is to remove more edges that connect to small-degree 

nodes. To do so, randomly select a node from 𝐿𝑊. Remove the edges of this node one by one, 

according to the following probability where 𝑘𝑖 is the degree of the node at the other end of the 

edge:  

𝛱′(𝑘𝑖) =
1

𝑁𝐿𝑊−1
∙ (1 − 𝛱(𝑘𝑖))       (2) 

where 𝑁𝐿𝑊 is the number of nodes within the 𝐿𝑊 and 𝛱(𝑘𝑖) is given by Eq. (1). This process 

repeats 𝑒3  times. 

e. If 𝑝4 ≤ 𝑟 < 1, perform addition of edges among local-worlds: 𝑒4 edges are added to 

https://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications
https://doi.org/10.1016/j.physa.2017.11.094


This paper has been published in Physica A: Statistical Mechanics and its Applications, 492:1741–1752 

(2018) https://doi.org/10.1016/j.physa.2017.11.094 

6 

 

connect different local-worlds. First, two different local-worlds are picked at random. Then, one 

node is selected within each local-world according to the probability given by Eq. (1). An edge is 

finally added between these two nodes. This process repeats 𝑒4 times. 

The initial number of nodes is 𝑁𝐿𝑊 ∙ 𝑚0  and the termination number is 0mNN LW 

(typically, much larger). The generation algorithm stops when totally 𝑁  nodes have been 

generated into the network. 

Note that throughout the above process, the generation of repeated connections, self-loops and 

isolated nodes should be avoided or removed. The detailed generating algorithm of MLW networks 

as well as the calculation of its degree distribution can be found in [21]. As shown above, there are 

totally eleven tunable parameters, among which only two parameters are of interest in the present 

paper, i.e., the number of local-worlds 𝑁𝐿𝑊 and the initial number 𝑚0 of nodes within each 

local-world.  

According to [24], it is hard for a population to reach globally consensus if the underlying 

network has multiple communities. The underlying network used in [24] is a combination of 

several scale-free networks, where the combination is generated by a reversed preferential 

attachment probability. Specifically, the intra-connections within each community are based on a 

preferential attachment probability given by Eq. (1), while the inter-connections between 

communities are generated according the following preferential attachment probability: 

𝛱(𝑘𝑖) =
1/𝑘𝑖+𝛼

∑ (1/𝑘𝑗+𝛼)𝑗∈𝐿𝑊
         (3) 

Only bi-community and tri-community networks are studied in [24]. In a bi-/tri-community 

network, all the inter-community links are actually connecting to the other one/two communities. 

In this case, one community may either converge locally or be distracted by another community, 

which could be considered as a single source of interference, or two. However, on an MLW 

network, there are many sources of interference affecting the local convergence of each community, 

and as a result the situation is much more intrinsic and complicated. 

In this paper, the MLW model introduced above will be employed, in which both the number 

𝑁𝐿𝑊 and the initial size 𝑚0 are tunable parameters. By simply adjusting these two parameters, 

the NG can be performed on a set of more generalized networks with multiple communities, more 

realistic to represent the real human society and language development therein. 
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(a) An example when 𝑁 = 104,  

𝑁𝐿𝑊 = 16, 𝑚0 = 5 

(b) An example when 𝑁 = 100, 

𝑁𝐿𝑊 = 4,  𝑚0 = 20 

Figure 3 Two examples of multi-local-world network. The red squares represent the 

initial nodes assigned to the initial local-worlds, while the red dots with blue rims are the 

nodes being added afterwards. Since 𝑒0 = 𝑚0 ∙ (𝑚0 − 1)/2, all the local-worlds are 

fully-connected initially, and some edges may be removed by operation d with the 

probability of 0.04 as indicated in Table 1. 

3 Results and Analysis 

The minimal NG is studied on MLW networks for it simulates the Internet as well as many social 

networks realistically. There are mainly eleven parameters, among which we are interest in only 

two, i.e., the number of local-worlds 𝑁𝐿𝑊 and the initial number 𝑚0 of nodes within each 

local-world. The other nine out of eleven parameters are fixed, as set in [21], which are 𝑝1, 𝑝2, 

𝑝3 , 𝑝4 , 𝑒0 , 𝑒1 , 𝑒2 , 𝑒3 , and 𝑒4 . Their values are presented in Table 1, along with their 

correspondence or meanings of such parameter settings. All the initial local-worlds are 

fully-connected, so the parameter 𝑒0 = 𝑚0 ∙ (𝑚0 − 1)/2, some of links will be removed by 

operation d yet some will be added back by operation c. Other than 𝑁𝐿𝑊 and 𝑚0, a change on the 

rest nine parameters leads to nothing but different forms of the underlying MLW network, e.g., 

changing 𝑝3 will alter the probability of adding back links within some local-worlds. 

Next, denote the number of individuals (population size) by 𝑁, which satisfies 𝑁 > 𝑁𝐿𝑊 ∙ 𝑚0 

otherwise there will be only 𝑁𝐿𝑊 isolated local-worlds, so the network is not connected [21]. 

Introduce a new parameter 𝜌  (0 < 𝜌 < 1 ), as the rate of initially assigned nodes in the 

local-worlds: when 𝜌 = 0, there is no local-world and the network degenerates to a scale-free one 

since every node is added by a preferential attachment; when 𝜌 = 1, it generates several isolated 

local-worlds without any additional nodes or edges. The purpose of introducing 𝜌 is to change the 
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above inequality to be equality: 

𝜌 ∙ 𝑁 = 𝑁𝐿𝑊 ∙ 𝑚0         (4) 

Table 1 Parameter values and their correspondence or meanings 

Parameter Setting Meaning 

𝑝1 = 0 Operation a (addition of new local-worlds) is not performed 

𝑝2 = 0.28 
Operation b (addition of a new node to a local-world) is performed 

with probability 0.28 

𝑝3 = 0.39 
Operation c (addition of edges within a local-world) is performed 

with probability 0.11 (= 0.39 − 0.28) 

𝑝4 = 0.43 

Operation d (deletion of edges within a local-world) is performed 

with probability 0.04 (= 0.43 − 0.39); meanwhile, operation e 

(addition of edges among local-worlds) is performed with probability 

0.57 (= 1.00 − 0.43) 

𝑒0 = 𝑚0 ∙ (𝑚0 − 1)/2 
Initially, local-worlds are isolated but in each of them the nodes are 

fully-connected 

𝑒1 = 𝑒2 = 𝑒3 = 𝑒4 = 2 
At each time step, when operations b, c, and d are performed, the 

number of edges added or deleted is 2 

 

The comparing simulation is carried out by varying 𝜌, 𝑚0, and 𝑁𝐿𝑊. Convergence time will 

be used as the measure, which refers to the number of time steps when global convergence is 

reached. In the following comparisons, 1) 𝜌 is fixed and the convergence time affected by the 

dynamics of the number and size of local-worlds is examined; 2) the convergence time is studied 

when the rate 𝜌  is varying, with fixed values of 𝑚0  and 𝑁𝐿𝑊 ; and 3) the convergence 

progresses of MLW networks built on three typical models are compared; i.e., random-graph (RG) 

[6], small-world (SW) [7] and scale-free (SF) [8] networks.  

The population size is set and fixed to 𝑁 = 1000, and the cases when the population size is 

500 and 1500 are studied in the supplementary information (SI) [25]. The maximum number of 

iteration is set to 107 and data are collected from 30 independent runs and then averaged. Here, 

107 iterations are empirically large enough for this study. Also, denote the number of different 

names at time step 𝑡 by 𝑁𝑑𝑖𝑓𝑓(𝑡). Simulation shows that 

1 ≤ 𝑁𝑑𝑖𝑓𝑓(107) ≤ 𝑁𝐿𝑊        (5) 

When 𝑁𝑑𝑖𝑓𝑓(107) = 1, it has reached global convergence, while when 1 < 𝑁𝑑𝑖𝑓𝑓(107) ≤

𝑁𝐿𝑊, it means the local-worlds have converged to different names, respectively, as can be seen in 

Table 2. In addition, with a long time period 𝜏 ≫ 0, one has that 

𝑁𝑑𝑖𝑓𝑓(107 − 𝜏) = 𝑁𝑑𝑖𝑓𝑓(107)       (6) 
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which means that the number of different words is not changed during a long time. Note also that 

𝑁𝑑𝑖𝑓𝑓 is monotonically non-increasing in this converging (or converged) stage. The parameter 𝜏 

represents the length of the stagnation that one can observe from, e.g., the curves in Figures 7 and 

8. Empirically, by observing a long time period of 𝜏 ≫ 0, the convergence process makes no more 

progress; thus, one may consider it as sufficiently well converged. Considering the conditions 

shown in Eqs. (5) and (6) together, by setting the maximum number of iteration to 107, one can 

see that the population has converged sufficiently well.  

Table 2 The number of total words at iteration 107 comparing to the number of 

local-worlds. As 𝑚0 is set to 26 different values, the number of local-worlds is calculated 

by 𝑁𝐿𝑊 = ⌊𝜌𝑁/𝑚0⌋ . It can be seen that the parameter setting that always yields 

convergence (in 30 independent runs) corresponds to 𝑁𝑑𝑖𝑓𝑓(107) = 1 ; otherwise, 

𝑁𝑑𝑖𝑓𝑓(107) > 1 . Putting together all the cases, one has 1 ≤ 𝑁𝑑𝑖𝑓𝑓(107) ≤ 𝑁𝐿𝑊 ; 

especially, when 𝑚0 ≥ 30 , 𝑁𝑑𝑖𝑓𝑓(107)  is approaching 𝑁𝐿𝑊 , meaning that every 

local-world converges to one different name. 

𝑚0 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝜌
= 0.5 

𝑁𝑑𝑖𝑓𝑓(107) 1 1 1 1 1 1 1 1 1 1 1 1 1 

𝑁𝐿𝑊 166 125 100 83 71 62 55 50 45 41 38 35 33 

𝜌
= 0.7 

𝑁𝑑𝑖𝑓𝑓(107) 1.1 1 1 1 1 1 1 1 1 1 1 1 1.4 

𝑁𝐿𝑊 233 175 140 116 100 87 77 70 63 58 53 50 46 

 

𝑚0 16 17 18 19 20 30 40 50 60 70 80 90 100 

𝜌
= 0.5 

𝑁𝑑𝑖𝑓𝑓(107) 1 1 1 3.2 5.7 15.0 11.7 9.7 7.9 6.9 5.8 4.9 4.9 

𝑁𝐿𝑊 31 29 27 26 25 16 12 10 8 7 6 5 5 

𝜌
= 0.7 

𝑁𝑑𝑖𝑓𝑓(107) 1.5 7.9 11.7 22.4 25.4 22.8 17.0 13.9 11.0 10.0 8.0 6.9 7.0 

𝑁𝐿𝑊 43 41 38 36 35 23 17 14 11 10 8 7 7 

3.1 Convergence time vs the number and size of local-worlds 

The number 𝑚0 of initial nodes of each local-world are set to 26 different values: varying from 3 

to 19 with an increment 1, and from 20 to 100 with an increment 10, to have different scenarios. 

The rate of initially assigned nodes is set to 𝜌 = 0.5 and 0.7, respectively, as shown in Figures 4(a) 

and (b). It can be seen from Figure 4 that relatively small sizes of communities, despite a large 

number of communities, do not hinder global convergence. Since nodes are sufficiently connected 

inside and outside various communities, prominent intra-community connections, on the one hand 

facilitate local consensus, but on the other hand make the global convergence more difficult, 

especially when some other communities had already converged or almost converged to different 

words respectively. For reference, the ratio of inter-links versus intra-links for each node is plotted 

in Figure 4. Since the population size is fixed to be 1000, as 𝑚0 increases the ratio becomes 

smaller. 
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In the box plot shown in Figure 4, the blue box indicates that the central 50% data lie in this 

section; the red bar is the median value of all 30 datasets; the upper and lower black bars are the 

greatest and least values, excluding outliers which are represented by the red pluses. 

 
(a) 𝜌 = 0.5 

 
(b) 𝜌 = 0.7 

Figure 4 The box plot of the convergence time vs the initial nodes in each local-world, 

𝑚0, with (a) 𝜌 = 0.5 and (b) 𝜌 = 0.7. The number of local-worlds can be calculated by 

Eq. (4), and since it should be an integer, 𝑁𝐿𝑊 = ⌊𝜌𝑁/𝑚0⌋, where ⌊𝑥⌋ is the largest 

integer less than or equal to 𝑥. The mean value of convergence time in both figures is 

concave: it first slightly decreases when 𝑚0 increases from 3 to 5, and then increases as 

𝑚0 continues to increase. When 𝑚0 = 4 and 5, it converges in the fastest speeds in both 

cases. In (a), when 𝑚0 = 19 , it starts to show non-converged behaviors, and the 

according mean ratio of inter-connection versus intra-connection is 0.0081. As for (b), 

when 𝑚0 = 15, it starts to show non-converged behaviors, and the according mean ratio 

is 0.0087. 

Table 3 shows the mean ratio of inter-connection versus intra-connection per node, when the 

population starts to show occasionally non-converged behaviors. The cases of 0.4 ≤ 𝜌 ≤ 0.7is 

studied here, because when 𝜌 is very small (𝜌 ≤ 0.3), the initial community structure is unclear, 

and actually it generates a preferential attached network rather than an MWL. In contrast, when 𝜌 
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is greater than 0.8 , the generated network may be disconnected due to the lack of 

inter-connections. The 𝑅̅  values are calculated by the averaged ratio of the number of 

inter-connections divided by the number of intra-connections within each community, and then 

divided by the number of nodes within the same community. For example, in Figure 5(b), the 

nodes 𝑛1, 𝑛2, 𝑛3 and 𝑛4 cluster to become a community, which has 6 intra-connections and 1 

inter-connection, thus the ratio for each node of this community is (1/6)/4 = 0.0417. The 𝑅̅ 

value is the mean value of the ratios over all the communities within the underlying network. 

Table 3 The mean ratio (𝑅̅) of inter-connection versus intra-connection per node, when 

the population starts to show occasionally non-converged behaviors. Here, 𝑚0
𝑚𝑖𝑛 is the 

minimum value of 𝑚0  when the population starts to become non-converged. When 

𝑚0 = 𝑚0
𝑚𝑖𝑛 − 1, it is always converged, e.g., the cases of 𝜌 = 0.5 and 𝜌 = 0.7 can also 

be observed from Figure 4 where, when 𝑚0 = 19 and 15 respectively, it starts to show 

non-converged behaviors. Moreover, 𝑁𝐿𝑊 = ⌊𝜌𝑁/𝑚0⌋  and 𝑅̅  is the mean ratio of 

inter-connection versus intra-connection for each node, averaged from 30 independent 

runs, and 𝑆𝑡𝑑 is the standard deviation. 

 𝑚0
𝑚𝑖𝑛  𝑁𝐿𝑊 𝑅̅ 𝑆𝑡𝑑 

𝜌 = 0.4 20 20 0.0084 4.63 × 10−4 

𝜌 = 0.5 19 26 0.0081 3.83 × 10−4 

𝜌 = 0.6 17 35 0.0084 4.09 × 10−4 

𝜌 = 0.7 15 46 0.0087 6.07 × 10−4 

 

Now, examine Table 3 more closely. First, as the 𝜌  value increases, the 𝑚0
𝑚𝑖𝑛  value 

decreases, meaning that when more nodes are initially allocated in the communities, these nodes 

should be more sparsely distributed in different small communities, rather than gathering in just a 

few large communities; otherwise, the global convergence may be hindered. Second, the ratio (𝑅̅) 

of inter-link versus intra-links stays relatively stable in different cases, meaning that on average 

such values give an approximate lower bound to sufficiently many inter-community connections 

towards global convergence. 

Table 4 shows the average degrees, average path lengths and average clustering coefficients of 

all the generated MLW networks. It shows that as 𝑚0 increases, both the average degree and 

average clustering coefficient increase, while the average path length decreases. This means that, 

on average, when 𝑚0 increases, the networks are better connected, yet more clustered. Better 

connections (greater average degree and shorter average path length) facilitate convergence in NG 

[17,18], while local clustering and forming communities hinder convergence. At the extreme, one 

can assume that any sub-network in a fully-connected network is a local community. In this case, 

both intra-community and inter-community connections are maximized, thus there is no barrier 

existing amongst the communities in a fully-connected network. Barriers preventing communities 
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from global convergence are formed only if the intra-community connections are strong while the 

inter-community connections are weak. 

Table 4 The feature statistics of all the multi-local-world networks in simulation. Here, 

〈𝑘〉 is the average degree, 〈𝑝𝑙〉 is the average path length and 〈𝑐𝑐〉 is the average 

clustering coefficient. As 𝑚0  increases, both 〈𝑘〉  and 〈𝑐𝑐〉  increase, while 〈𝑝𝑙〉 
decreases.  

𝑚0 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝜌 = 0.5 

〈𝑘〉 6.09 6.82 7.24 7.58 8.09 8.56 9.20 9.54 9.95 10.42 11.05 11.80 11.97 

〈𝑝𝑙〉 3.98 3.81 3.74 3.70 3.66 3.61 3.56 3.53 3.52 3.49 3.46 3.37 3.42 

〈𝑐𝑐〉 0.33 0.35 0.36 0.40 0.42 0.43 0.44 0.49 0.52 0.52 0.53 0.52 0.57 

𝜌 = 0.7 

〈𝑘〉 4.37 5.42 5.98 6.72 7.26 8.01 8.57 9.41 10.01 10.61 11.66 12.09 12.78 

〈𝑝𝑙〉 5.21 4.56 4.48 4.24 4.23 4.08 4.02 3.90 3.87 3.84 3.64 3.70 3.63 

〈𝑐𝑐〉 0.41 0.41 0.47 0.51 0.55 0.57 0.61 0.62 0.65 0.68 0.66 0.70 0.72 

 

𝑚0 16 17 18 19 20 30 40 50 60 70 80 90 100 

𝜌 = 0.5 

〈𝑘〉 12.55 13.06 13.04 13.91 14.56 19.00 23.78 29.78 33.64 39.00 43.34 45.94 54.61 

〈𝑝𝑙〉 3.38 3.35 3.40 3.33 3.31 3.17 3.07 2.96 2.92 2.87 2.84 2.84 2.77 

〈𝑐𝑐〉 0.58 0.60 0.61 0.64 0.65 0.73 0.78 0.79 0.82 0.86 0.86 0.86 0.90 

𝜌 = 0.7 

〈𝑘〉 13.48 14.19 14.83 15.61 16.43 22.91 29.80 37.18 42.32 51.39 54.36 59.83 72.41 

〈𝑝𝑙〉 3.58 3.56 3.49 3.42 3.42 3.29 3.14 3.09 2.97 2.91 2.79 2.75 2.72 

〈𝑐𝑐〉 0.72 0.74 0.75 0.74 0.77 0.84 0.86 0.90 0.89 0.93 0.91 0.92 0.94 

 

n2

n3 n1 no

 

n2

n4 n1 no

n3

 

n2

n4 n1 no

n3

n5 n6

 

(a) 3-node community (b) 4-node community (c) 6-node community 

Figure 5 An example illustrating intra-community and inter-community connections. 

Here, 𝑛𝑜  is a node outside a community. The ratio of intra-connections vs 

inter-connections is: (a) 3:1; (b) 6:1; and (c) 15:1.  

Figure 5 shows an example illustrating how the intra-connections become stronger when the 

community size increases. As can be seen from the figure, the ratio of intra-connections vs 

inter-connections is getting smaller as the community size is getting larger (see Figure 5(a) 3:1, 

Figure 5(b) 6:1, and Figure 5(c) 15:1). If one wishes to keep the ratio constant, e.g., 3:1, then for a 

4-node community there should be 2 nodes being connected externally, while for a 6-node 

community the number of inter-connections should be 5. Note that the number of inter-community 

connections is fixed. The inter-connections are generated during the addition of 𝑁 ∙ (1 − 𝜌) nodes, 

repeatedly by randomly selecting operations from a to e (defined in Section 2). As shown in Figure 

5, if the number of inter-community connection is fixed, while the size of fully-connected 

community is growing, then the number of external connections is becoming insufficient for 

convergence. 
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In a nutshell, the inter-community connections of MLW networks should be kept constant, and 

the number and size of communities should be changed (reducing the number of communities and 

enlarging the size of each community), so that intra-community connections are getting stronger. 

As a result, as intra-connections increase, while inter-connections are kept constant, the 

convergence process will be slowed down and eventually failed. This explains more clearly the 

incremental convergence time shown in Figure 4. 

3.2 Convergence time vs the rate of initially assigned nodes 

In this section, both the number and size of local-worlds are fixed, while the rate 𝜌 of initially 

assigned nodes is varied from 0.1 to 0.9. As can be seen from Figure 6, a common pattern is that, 

when 𝜌 is small enough (i.e., 𝜌 ≤ 0.6 in Figure 6(a); 𝜌 ≤ 0.5 in Figure 6(b); 𝜌 ≤ 0.3 in 

Figure 6(c)), different values of 𝜌 do not affect the convergence time at all. Note that the 

inter-community connections are generated during the addition of 𝑁 ∙ (1 − 𝜌) nodes. When 𝜌 is 

small enough for certain networks, this means that the inter-community connections are substantial 

and probably sufficient already to achieve global convergence. 

As 𝜌 continues to increase, 𝑁 ∙ (1 − 𝜌) deceases, thus the inter-community connections are 

reducing and become insufficient if 𝜌 reaches certain large values (i.e., when 𝜌 > 0.6 in Figure 

6(a); 𝜌 > 0.5 in Figure 6(b); 𝜌 > 0.3 in Figure 6(c)). Denote the threshold value by 𝜌𝑡ℎ. Then, 

when 𝜌 ≤ 𝜌𝑡ℎ, the convergence time is not affected by 𝜌, while when 𝜌 > 𝜌𝑡ℎ, the convergence 

time increases drastically as 𝜌  increases. As can be seen from Figure 6, as 𝑚0  increases 

(𝑚0 = {4, 10, 18}), 𝜌𝑡ℎ decreases (𝜌𝑡ℎ = {0.6, 0.5, 0.3}). This phenomenon can also be observed 

when the population size is 500 and 1500, respectively [25]. This phenomenon can be explained 

by the example shown in Figure 5, where the number of intra-community connections is (𝑚0
2

). 

This means that when 𝑚0 is small, the number of intra-community connections is relatively small, 

so that the required inter-community connections become fewer, thus 𝜌 does not affect the 

convergence time, until that number becomes relatively large. In contrast, when 𝑚0 is large, the 

number of intra-community connections is relatively large, thus even 𝜌 is relatively small, the 

convergence time is clearly affected, due to the large number requirement of inter-community 

connections. 
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(a) Initial nodes per local-world, 𝑚0 = 4 (b) Initial nodes per local-world, 𝑚0 = 10 

 
(c) Initial nodes per local-world, 𝑚0 = 18 

Figure 6 The box plot of the convergence time vs the rate 𝜌 of initially assigned nodes. 

The number of initial nodes in each local-world 𝑚0 is set to 4, 10, and 18, respectively, 

the number of local-worlds is calculated by 𝑁𝐿𝑊 = ⌊𝜌𝑁/𝑚0⌋. In each figure, as 𝜌 is 

varied from 0.1 to 0.9, the convergence time shows oscillations slightly prior to a 

prominent ascending progress.  

3.3 Convergence process 

The convergence progress of MLW networks are compared on three typical topology networks, i.e., 

random-graph (RG) [6], small-world (SW) [7] and scale-free (SF) [8] networks. The comparison is 

implemented by the convergence progress in terms of the number of total words, the number of 

different words and the success rate. For fairness and also for convenience, four sets of data are 

chosen, with 𝑚0= 10, 20, 30 and 100, on which the average degrees of the MLW networks are 

9.41, 16.43, 22.91, 72.41, respectively. These data values are used as the connecting probabilities, 

exactly for generating RG networks and approximately for generating SW and SF networks. The 

feature statistics of the generated networks are summarized in Table 5, together with the statistics 

of the MLW for reference. 
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Table 5 The feature statistics of the four networks. Here, 〈𝑘〉 is the average degree, 

〈𝑝𝑙〉 is the average path length and 〈𝑐𝑐〉 is the average clustering coefficient. The data for 

MLW is collected from experiments in Section 3.1, while those for the RG, SW and SF 

networks are generated using the 〈𝑘〉 values of MLW for reference. As a result, the four 

types of networks have very similar 〈𝑘〉 values. 

Reference 
〈𝑘〉 

 

〈𝑝𝑙〉 

 

〈𝑐𝑐〉 
MLW RG SW SF MLW RG SW SF MLW RG SW SF 

𝑚0 = 10 9.41 9.51 10.00 9.96 3.90 3.32 3.86 2.95 0.62 0.01 0.35 0.05 

𝑚0 = 20 16.43 16.54 16.00 15.92 3.42 2.75 3.21 2.67 0.77 0.02 0.38 0.06 

𝑚0 = 30 22.91 22.95 22.00 21.85 3.29 2.55 2.84 2.50 0.84 0.02 0.38 0.07 

𝑚0 = 100 72.41 72.36 72.00 70.63 2.72 1.93 2.04 1.95 0.94 0.07 0.39 0.16 

 

As shown in Table 5, four types of networks have very similar values of average degrees. 

However, MLW has the longest average path length and the highest clustering coefficient values. 

SW is with the second longest average path length and the second highest clustering coefficient 

values. Both RG and SF have smaller values on these two features. 

In Figures 7, 8 and 9, the four cases of different parameter settings are: (a) 〈𝑘〉 ≈ 9.41, (b) 

〈𝑘〉 ≈ 16.43, (c) 〈𝑘〉 ≈ 22.91, and (d) 〈𝑘〉 ≈ 72.41, and these four types of networks of the same 

(or similar) average degree are compared in the same figure for clarity.  

In Figure 7, the four sub-figures in the figure share two common phenomena: 1) the population 

with underlying network RG converges the fastest, followed by SF, SW, and MLW. MLW only 

converges in the case in Figure 7(a), but does not converge in the cases shown in Figures 7(b), (c), 

and (d); 2) the curves with underlying network RG has the highest peak, followed by SF and SW, 

and MLW holds the lowest. As also shown in Table 5, RG has the smallest clustering coefficient 

values, followed by SF and SW, and MLW has the greatest, meaning that MLW has strongest 

tendency in clustering and forming communities than the other three networks. SW has relatively 

strong tendency in clustering. This leads to the following two observations: 1) in the early stage, 

individuals within communities reach convergence easily and quickly, as can be seen from Figure 

9, where the larger the clustering coefficient is, the faster the success rate value increases, in the 

early stage; also in Figure 7, the number of total words decreases fast in the early stage, when there 

is a prominent community structure; 2) in the late stage, the inter-community convergence process 

is delayed or even prevented by the multi-community structure. This can be further summarized as 

follows: given the same average degree, the less clustered network has a convergence curve with a 

higher peak and sharper decline; while the more clustered network has a flatter curve with a lower 

peak. 

Note that when the underlying network is a tree (with average degree 2 −
2

𝑁
 and clustering 

coefficient zero) or a globally-fully-connected network (with average degree 𝑁 − 1  and 
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clustering coefficient one), these two extreme cases are not investigated in the above simulations 

because, in these two special cases, for a given the average degree value the clustering coefficient 

cannot be adjusted. 

 

  
(a) 〈𝑘〉 ≈ 9.41 (b) 〈𝑘〉 ≈ 16.43 

  
(c) 〈𝑘〉 ≈ 22.91 (d) 〈𝑘〉 ≈ 72.41 

Figure 7 Comparison of the convergence processes in terms of the number of total 

words. In each figure, RG (blue plus) curve has the highest peak and the fastest speed to 

reach convergence, while MLW (red circle) has the lowest peak and it converges gradually. 

The curves of SW (black star) and SF (green triangle) behave between the curves of RG 

and MLW. 
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(a) 〈𝑘〉 ≈ 9.41 (b) 〈𝑘〉 ≈ 16.42 

  
(c) 〈𝑘〉 ≈ 22.91 (d) 〈𝑘〉 ≈ 72.41 

Figure 8 Comparison of the convergence processes in terms of the number of different 

words. Differing from what are shown in Figure 7, the peaks of all four curves in each 

sub-figure are similar to each other. Similarly to Figure 7, the rank of convergence speeds 

is: RG (blue plus) converges the fastest; SW (black star) ranks the second, followed by SF 

(green triangle); MLW (red circle) converges the slowest. 

In Figure 8, although the ranking of the convergence is exactly the same as what is shown in 

Figure 7, the peaks of the curves are similar to each other. This is because not only the lexicon but 

also the game rules are identical for all types of underlying networks, namely, if the picked speaker 

has nothing in his memory then he randomly picks a name from the external lexicon.  

Figure 9 shows the success rate. It is obvious that when a network has a small clustering 

coefficient value, its success rate curve is generally smooth. However, for SW and MLW networks, 

high clustering coefficient values generate very rough success rate curves. For SW, although rough, 

the success rate can eventually reach 1.0; but for MLW, if the population does not converge as 

shown in Figures 7 and 8, the success rate cannot reach 1.0. This is because, in the late stage: 1) 

individuals in intra-communities have already reached convergence, so that the success rate of 

intra-communication is as high as one, and 2) individuals in inter-communities have converged to 

generally different names, so that the success rate of inter-communication is likely to be as low as 

https://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications
https://doi.org/10.1016/j.physa.2017.11.094


This paper has been published in Physica A: Statistical Mechanics and its Applications, 492:1741–1752 

(2018) https://doi.org/10.1016/j.physa.2017.11.094 

18 

 

zero. As a result, the curves are fluctuating and visually fuzzy. 

 

  
(a) 〈𝑘〉 ≈ 9.41 (b) 〈𝑘〉 ≈ 16.42 

  
(c) 〈𝑘〉 ≈ 22.91 (d) 〈𝑘〉 ≈ 72.41 

Figure 9 Comparison of the convergence processes in terms of the success rate. The 

curves of RG and SW are simple, while the other two are fluctuating. In particular, the 

curves of MLW are visually fuzzy and do not eventually reach value 1, in all sub-figures 

(b), (c) and (d). 

3.4 Discussions 

Consider a real-life situation that there are two types of local communities: one located in a suburb 

of a metropolis (denoted by 𝐿𝑊𝑚), and the other is a primitive tribe (denoted by 𝐿𝑊𝑝). The 𝐿𝑊𝑚 

has many connections to the metropolis (as well as the world outside 𝐿𝑊𝑚) such as road paths, 

telephone systems and the Internet, while an 𝐿𝑊𝑝 has probably only one trail to go outside 

without any other communicating connections. Within both communities, people know each other 

therefore they have direct communications. 

Considering the above scenario, the first and second experimental studies show that if the size 

of a community is relatively small, no matter it is an 𝐿𝑊𝑚 or 𝐿𝑊𝑝, information can be easily 
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delivered to each individual within the community, so that they are affected by the outside world 

(and finally reach global consensus). However, if the community size is big, a large number of 

external links are required. Otherwise, many individuals cannot receive information from outside, 

and hence the community (e.g., an 𝐿𝑊𝑝 of large size) can only reach local convergence, rather 

than global convergence. 

The third experiment shows that, given a fixed number of average degree say five, namely on 

average each people has five friends to communicate. If people prefer communicating with local 

friends, then local communities are formed and so global consensus is hindered. In contrast, global 

consensus requires people to have sufficient chance to communicate globally. 

4 Conclusions 

In this paper, naming game (NG) is implemented by employing the multi-local-world (MLW) 

model, together with three typical topologies, namely random-graph, small-world and scale-free 

networks, as the underlying framework for communications. The underlying networks play an 

important role in NG, which indicate the relationships among different individuals, since 

connections are the precondition for pair-wise communications. As found in this study, community 

structures are essential for social communications, for which the MLW model used as the 

underlying network is more practical than the other commonly used network topologies.  

The simulation is implemented to study the effects of the number and size of local-worlds in 

different NG networks, with or without communities, and the results are compared against several 

key parameters. Simulation results suggest that: 1) sufficiently many inter-community connections 

are crucial for the convergence; thus, given constant inter-connections, when intra-connections 

increase, meaning that the inter-connections are relatively weakened, the convergence process will 

be slowed down and eventually failed; 2) for sufficiently many inter-community connections, both 

the number and the size of communities do not affect the convergence at all; and 3) given the same 

average degree for different underlying network topologies, different clustering degrees will 

distinctively affect the convergence, which also change the shapes of the convergence curves.  

The results of this investigation reveal the essential role of communities in NG on various 

complex networks, which shed new lights onto a better understanding of the human language 

development, social opinion forming and evolution, and even rumor epidemics alike. 
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Abstract 

This supplementary document further examines the scaling property of the population size 

(denoted by 𝑁) of 500 and 1500, respectively. Convergence time is used as the measure, which 

means the time steps needed to reach global convergence. The comparing simulation is carried out 

by varying parameters 𝜌, 𝑚0 and 𝑁𝐿𝑊. In the following comparison: 1) 𝜌 = 0.7 is fixed and 

the convergence time affected by the dynamics of the number and size of the local-worlds is 

investigated; 2) the convergence time is studied when the rate 𝜌 of the initial assigned nodes is 

varied, while 𝑚0  and 𝑁𝐿𝑊  are all fixed; and 3) the convergence progresses of the 

multi-local-world (MLW) networks with the three typical models, namely random-graph (RG), 

small-world (SW) and scale-free (SF) networks, are compared.  
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1 Convergence time vs the number and size of local-worlds 

 
(a) 𝑁 = 500 

 
(b) 𝑁 = 1500 

Figure 1 The box plot of the convergence time vs the number 𝒎𝟎 of initial nodes in each 

local-world, with (a) 𝑵 = 𝟓𝟎𝟎 and (b) 𝑵 = 𝟏𝟓𝟎𝟎. In both cases, 𝜌 = 0.7. The number of 

local-worlds is calculated by Eq. (4) in the paper, i.e., 𝑁𝐿𝑊 = ⌊𝜌𝑁/𝑚0⌋, where ⌊𝑥⌋ is to the 

largest integer less than or equal to 𝑥. In (a), 𝑁 = 500, the mean value of the convergence time 

seemingly does not change as 𝑚0 increases from 3 to 5, but it can be clearly observed that the 

maximum number of outliers (red plus) becomes smaller when 𝑚0 increases from 3 to 5. In (b), 

𝑁 = 1500, both the mean value (red bar) and the maximum number of outliers (red plus) decrease 

when 𝑚0 increases from 3 to 5, and then increases as 𝑚0 continues to increase. Both box plots 

show a similar feature as that in the paper, where 𝑁 = 1000: the overall convergence time firstly 

decreases as 𝑚0 increases from 3 to 5, and then increases when 𝑚0 > 6. 
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2 Convergence time vs the rate of initially assigned nodes 

  
(a) 𝑁 =  500, 𝑚0 = 4 (d) 𝑁 =  1500, 𝑚0 = 4 

  
(b) 𝑁 =  500, 𝑚0 = 10 (e) 𝑁 =  1500, 𝑚0 = 10 

  
(c) 𝑁 =  500, 𝑚0 = 18 (f) 𝑁 =  1500, 𝑚0 = 18 

Figure 2 The box plot of the convergence time vs the rate 𝝆 of the initially assigned nodes. 

The number 𝑚0 of initial nodes in each local-world is set to 4, 10, and 18, respectively; the 

number of local-worlds is calculated by 𝑁𝐿𝑊 = ⌊𝜌𝑁/𝑚0⌋. In sub-figures (a), (b), (d), (e) and (f), 

𝜌 is varied from 0.1 to 0.9, while in sub-figures (c), 𝜌 is varied from 0.2 to 0.9, to show different 

scenarios. The data for the case of  𝜌 = 0.1  is missing because when 𝜌 = 0.1 , 𝑁𝐿𝑊 =
⌊𝜌𝑁/𝑚0⌋ = ⌊0.7 ∗ 500/18⌋ = 2, but both 𝑁𝐿𝑊 and 𝑚0 are supposed to be greater than or equal 

to 3. A common feature is that, when 𝜌 is small enough (i.e., 𝜌 ≤ 0.7 in sub-figures (a) and (d); 

𝜌 ≤ 0.6 in (b); 𝜌 ≤ 0.3 in (c); 𝜌 ≤ 0.5 in (e); and 𝜌 ≤ 0.2 in (f)), the different values of 𝜌 do 

not affect the convergence time at all. However, when 𝜌 becomes greater than these values, the 
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convergence time increases substantially. 

3 Convergence processes 

Table 6 The feature statistics of the four networks, when 𝑵 = 𝟓𝟎𝟎 . Here, 〈𝑘〉  is the 

average degree, 〈𝑝𝑙〉  is the average path length and 〈𝑐𝑐〉  is the average clustering 

coefficient. The data for MLW is collected from experiments in Section 1, while those for 

RG, SW and SF networks are generated using the 〈𝑘〉 values of MLW for reference. As a 

result, the four types of networks have very similar 〈𝑘〉 values. 

Reference 
〈𝑘〉 

 

〈𝑝𝑙〉 

 

〈𝑐𝑐〉 
MLW RG SW SF MLW RG SW SF MLW RG SW SF 

𝑚0 = 10 9.40 9.40 10.00 9.92 3.52 3.01 3.43 2.76 0.63 0.02 0.34 0.08 

𝑚0 = 20 15.85 15.84 16.00 15.83 3.19 2.56 2.84 2.46 0.78 0.03 0.36 0.10 

𝑚0 = 30 22.30 22.33 22.00 21.72 3.00 2.31 2.59 2.28 0.82 0.04 0.38 0.12 

𝑚0 = 50 37.43 37.42 38.00 37.19 2.70 1.98 2.20 2.01 0.88 0.08 0.40 0.17 

Table 7 The feature statistics of the four networks when 𝑵 = 𝟏𝟓𝟎𝟎.  

Reference 
〈𝑘〉 

 

〈𝑝𝑙〉 

 

〈𝑐𝑐〉 
MLW RG SW SF MLW RG SW SF MLW RG SW SF 

𝑚0 = 10 9.22 9.05 10.00 9.98 4.25 3.57 4.07 3.12 0.64 0.01 0.33 0.03 

𝑚0 = 20 16.10 15.75 16.00 15.94 3.69 2.92 3.40 2.77 0.78 0.01 0.37 0.05 

𝑚0 = 30 23.36 23.39 22.00 21.91 3.38 2.67 3.02 2.61 0.84 0.02 0.39 0.05 

𝑚0 = 50 37.35 37.23 38.00 37.73 3.22 2.36 2.64 2.30 0.90 0.02 0.38 0.08 

 

In the following, Figures 3 and 6 show the convergence processes in terms of the number of total 

words, Figures 4 and 7 show the convergence processes in terms of the number of different words, 

and Figures 5 and 8 show the convergence processes of the success rate, with 𝑁 = 500 and 

𝑁 = 1500, respectively. There are totally 24 sub-figures, and all these sub-figures show the same 

phenomenon that the blue plus (RG) converges the fastest, followed by the green triangles (SW), 

and the black stars (SF) ranks the third, and the red circles (MLW) always converge the slowest. 

This result supports the conclusions summarized in the paper. 
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(a) 〈𝑘〉 ≈ 9.40 (b) 〈𝑘〉 ≈ 15.85 

  

(c) 〈𝑘〉 ≈ 22.30 (d) 〈𝑘〉 ≈ 37.43 

Figure 3 Comparison of the convergence processes in terms of the number of total words 

(𝑵 = 𝟓𝟎𝟎). 
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(a) 〈𝑘〉 ≈ 9.40 (b) 〈𝑘〉 ≈ 15.85 

  

(c) 〈𝑘〉 ≈ 22.30 (d) 〈𝑘〉 ≈ 37.43 

Figure 4 Comparison of the convergence processes in terms of the number of different 

words (𝑵 = 𝟓𝟎𝟎). 
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(a) 〈𝑘〉 ≈ 9.40 (b) 〈𝑘〉 ≈ 15.85 

  

(c) 〈𝑘〉 ≈ 22.30 (d) 〈𝑘〉 ≈ 37.43 

Figure 5 Comparison of the convergence processes in terms of the success rate (𝑵 = 𝟓𝟎𝟎). 
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(a) 〈𝑘〉 ≈ 9.22 (b) 〈𝑘〉 ≈ 16.10 

  

(c) 〈𝑘〉 ≈ 23.36 (d) 〈𝑘〉 ≈ 37.35 

Figure 6 Comparison of the convergence processes in terms of the number of total words 

(𝑵 = 𝟏𝟓𝟎𝟎). 
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(a) 〈𝑘〉 ≈ 9.22 (b) 〈𝑘〉 ≈ 16.10 

  

(c) 〈𝑘〉 ≈ 23.36 (d) 〈𝑘〉 ≈ 37.35 

Figure 7 Comparison of the convergence processes in terms of the number of different 

words (𝑵 = 𝟏𝟓𝟎𝟎). 
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(a) 〈𝑘〉 ≈ 9.22 (b) 〈𝑘〉 ≈ 16.10 

  

(c) 〈𝑘〉 ≈ 23.36 (d) 〈𝑘〉 ≈ 37.35 

Figure 8 Comparison of the convergence processes in terms of the success rate (𝑵 = 𝟏𝟓𝟎𝟎). 
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