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Abstract

It is commonly understood that the Yang-Mills non-Abelian gauge fields is
the natural generalization of the well known Abelian gauge group symmetry
U(1) in the electrodynamics. Taking into account that the problems of the
localization and divergences in QFT are not solved in the framework of the
Standard Model (SM), I proposed a different approach to the quantum theory
of the single self-interacting electron. In connection with this theory, I would
like attract the attention to the state-dependent gauge transformations U(1)×
U(N − 1) associated with the Jacobi vector fields of the geodesic variations
in the complex projective Hilbert space CP (N − 1) of the unlocated quantum
states (UQS’s).

PASC: 03.65 Pm, 03.65 Ca

1 Introduction

The extension of U(1) gauge symmetry up to U(1) × SU(2) in the SM was very
successful. Nevertheless, even in the framework of the SM this symmetry leads to the
artificial technical problems like anomalies [1]. Furthermore, there is a requirement
of the mathematically correct proof of the existence of such gauge fields in 4D with
a mass gap [2]. Roughly speaking, the formulation of the Millennium problem in
Yang-Mills gauge fields with a mass gap reflects the hopes of the mathematician and
physicist majority. These are based on the standard picture of the Universe: pseudo-
rimannianan 4D spacetime in vicinity of stars with the pseudo-Euclidian limits from
the cosmic to the sub-nuclear distances. To my mind, this program is intrinsically
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contradictable since such a model of the spacetime cannot serve as the fundamental
element of the quantum field dynamics. New primordial elements are needed even
in the theory of the single self-interacting quantum electron [4, 5, 3]. I think that
we should follow the ideas of Einstein and Schrödinger in quantum physics as well
as ideas of von Staudt in the projective geometry; namely: deleting the accent on
the observation in quantum physics as well as deleting the metric relations in the
projective geometry. Some aspects of such approach will be discussed in the present
work.

The theory of a single self-interacting quantum object should solve problems left
outside of the standard QFT and SM. This theory, being established, should solve
the old problem of the rest mass and the correct form-factor of the surrounding
electromagnetic-like “field-shell”. Therefore, free Dirac’s electron and the free EM
field may be treated as some “border configurations” for some unified “intermediate”
self-interacting field. Geometrically, the non-normalizable plane wave solutions of the
Maxwell and Dirac equations take the place of the indefinitely remote points of the
Hilbert state space. Formally, these solution are ordinary points in the projective
Hilbert state space CP (∞). There is some argument helping reduce the infinite
dimension to small finite number.

Analysis of the foundations of quantum theory and relativity shows that it is im-
possible to use macroscopic primordial elements like material points (particles), solid
scales and isochronises clocks trying to build consistent quantum theory. Even space-
time cannot save its independent and a priori structure [5]. Therefore the unification
of relativity and quantum principles may be formalized only in terms of new primor-
dial elements. I proposed to use unlocated quantum states (UQS’s), local dynamical
variables (LDV’s) corresponding pure quantum degrees of freedom as such primordial
elements and the geometric classification of their motions [30, 26, 28, 4, 5, 3]. So,
the rays of the UQS’s will be used instead of material points (particles) and the com-
plex projective Hilbert state space CP (N − 1) where these states are moving under
the action of the unitary group SU(N) will be used instead of the spacetime motion.
Thereby, the distance between bodies will be replaced by the distance between unlocated
quantum states [5, 3]. The parameter τ which I called the “quantum proper time” is
the measure (in seconds) of the distance between unlocated quantum states concern
omnipresent spin, charge, hypercharge, etc.

The self-interacting field configuration of quantum electron will be originated
in CP (3) [4, 5]. This field was taken in the form of the classical electromagnetic
interaction term giving the rate of the unlocated quantum state (UQS) variation
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dπi

dτ
= c

h̄
P µ(x)Φiµ(π). It is assumed that one does not have a priori given spacetime

environment but that the vector field of the lump-like potential of energy-momentum
P µ(x) taking the role of the placeholder in the dynamical spacetime (DST) [4, 5, 3].
The coefficient functions Φiµ(π) of the SU(4) generators corresponding to γ-matrices
of Dirac [29, 30, 5] take the place of non-Abelian spin/charge fields.

The decisive step from the quantum description in existing spacetime to the dy-
namics of UQS’s in CP (N−1) and the future lift in the frame fibre bundle where local
DST arises in the section, leads to new symmetry and new conservation law. Namely,
affine parallel transport of the “proper” momentum of UQS pi = dπi

dτ
is treated now

as quantum inertia law [5, 3]. Therefore, the motion of UQS along a geodesic in
CP (N − 1) is the simplest and fundamental motion to be represented by the non-
linear field dynamics in DST realizing the “inverse representation”. The system of
four quasi-linear PDE’s describing P µ(x) distribution in the state-dependent Lorentz
frame is too complicated and its general solution is unknown but some particular so-
lution has been found [3]. In attempt to find the evident form of P µ(x) I made some
special assumption about the equation for arbitrary scalar function of the interval
f(s2). This function leads to the scalar potential P 0(x) oscillating between Coulomb
and quantum potentials

P 0 = mc2
1 + J1(

αct√
2

√
1− β2)

e
√
1− β2

, (1.1)

which may be rewritten for the electron energy as follows:

E = eP 0 =
mc2√
1− β2

+
e2

re

J1(
αct√
2

√
1− β2)

√
1− β2

, (1.2)

where α = e2

h̄c
, re =

e2

mc2
, β = r

ct
. If one compares this solution with the total radial

force

f̄ rQ(ρ) + f̄ rV (ρ) =
2

ρ3
− 2

ρ2
(1.3)

(10.3.7) of Yang [7] one sees that two envelops of the maxima and the minima of this
oscillating solution are similar to the quantum and Coulomb forces. This means that
the stationary repulsive Coulomb potential and the attractive quantum force (playing
the role of the “Poincaré strength”) may be treated as the stationary approximations
to the oscillating self-potential generated by the motion of the spin/charge degrees
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of freedom. However, the arbitrary assumption that the scalar field f(s2) obeys the
“Lorentz-radial” form of the Klein-Gordon equation, insists us to find more firm
foundations for studying the energy-momentum distribution.

The variation of the functional vector field pi gives some equation for unified
self-interacting field. The independent element of the variation is a whole extremal
(the geodesic in CP (3) currying the unified field configuration), neither spacetime
coordinates of the bare point-wise electron nor free EM potentials since these objects
simply do not exist in this problem.

The most simple variations of the geodesic motions of the spin/charge QDF’s is
the geodesic variations. These variations have been described by the Jacobi equations
which may have the Hamiltonian form for the so-called “secondary Hamiltonian” and
“secondary extremals” in terms of Young [9]. Solutions of the Jacobi equations in
CP (N − 1) are well known [10] and may be associated with the isotropy group
H = U(1)× U(N − 1) taking the place of the gauge group in the new quantum field
dynamics (QFD).

It worse while to recall that such mathematical objects as “Jacobi magnetic field”,
“Sasakian magnetic field” and “Kähler magnetic field” are widely investigated by T.
Adachi and coauthors [11, 12]. These objects were introduced as a generalization of
the 2-form associated with the classical magnetic field. The quantum dynamics of
UQS’s in the CP (N − 1) being mapped into the frame fiber bundle by the structure
group H = U(1) × U(N − 1) leads to new field quasi-linear PDE’s. Some their
properties will be represented in this work.

2 Intrinsic unification of relativity and quantum

principles. New primordial elements. The quan-

tum principle of inertia

I will discuss initially the attempt of the unification of relativity and quantum prin-
ciples undertaken by Yang in the framework of so-called Complex Mechanics (CM)
[7]. There is some inconsistency in the relativistic CM proposed by Yang. His at-
tempt to establish the peaceful coexistence between relativity and quantum physics
can be accepted with serious reservations. Indeed, let me return to the derivation
of the Klein-Gordon equation (12.2.15) under the assumption (12.2.12) (I will use
the (xx.yy.zz) form of numeration of formulas according to [7]). Yang uses coor-
dinates qα(τ) as coordinates of movable material points obey Hamilton equations
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controlling by an external potential and the IQP. Hence, he treats the Hamilton
equations (12.2.16) and (12.2.20a), (12.2.20b) as equations of characteristics for the
Klein-Gordon equation (12.2.15). But only straight lines (12.2.20a) serve as charac-
teristics of the ordinary linear Klein-Gordon equation.

Strictly speaking neither Klien-Gordon equation nor modified non-linear Klien-
Gordon equation discussed below are not the Hamilton-Jacobi equation since the last
one should be of the first order in partial derivatives [13, 14] and the Hamiltonian
should be state-independent. In the case of state-dependent Hamiltonian (12.2.18)
that literally reads as follows

H(p(τ),Ψ(q(τ))) =
h̄2

2m0Ψ
{[−(

∂Ψ

c∂t
)2 + (

∂Ψ

∂x
)2 + (

∂Ψ

∂y
)2 + (

∂Ψ

∂z
)2](1 +

1

Ψ
)

+
1

Ψ
✷Ψ} (2.1)

one has more complicated picture. Namely, the formal derivation of the Hamilton-
Jacobi equation reads as a non-linear Klien-Gordon and the Hamilton equations can-
not be treated as the characteristics equations for 1-jets system. In order to see it
one should rewrite the action (12.2.12) in the form

S(τ,Ψ(qα(τ))) = W (Ψ(qα(τ)))−H0τ (2.2)

if one takes into account the substitution (12.2.14)

W (Ψ(qα(τ))) = −ih̄ lnΨ(qα(τ)). (2.3)

This means that the Hamiltonian is state-dependent and the speed of the action
variation (energy) is dynamical (not stationary). Then, using the chain rule one has

∂S

∂τ
=
∂W

∂Ψ

∂Ψ

∂qα
dqα

dτ
−H0 =

∂W

∂Ψ

∂Ψ

∂qα
dqα

dτ
− m0c

2

2
(2.4)

and, therefore, we have following nonlinear equation

✷Ψ+ 2ih̄m0
∇µΨ

Ψ
ẋµ +m2

0c
2Ψ = 0 (2.5)

instead of the ordinary linear Klein-Gordon equation (12.2.15) since state-dependent
Hamiltonian definitely could not lead to a linear wave equation. In this case im-
possible to find separable solution of this modified Klein-Gordon equation in Yang’s
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manner Ψ(t, x, y, z) = T (t)X(x)Y (y)Z(z). Therefore, all successive procedure is for-
mal for ad hoc choice of the entanglement with different wights of eigen-states of the
ordinary Klein-Gordon equation.

Generally, state-dependent Hamiltonian of Yang H(p(τ),Ψ(q(τ))) through the
intrinsic quantum potential (IQP) leads to more general kind of the field equations
than quasi-linear first order PDE’s [13, 14].

One of the most controversial result is the “corrected” formula (12.5.4) of Einstein
for the kinetic energy of the relativistic particle

E = ± mc2
√

1− v2

c2

√

1− 2Q

mc2
(2.6)

This formula has been obtained from the expression (12.5.3)

v2

c2
=
ẋ2 + ẏ2 + ż2

c2
=
h̄2

p20
(k21 + k22 + k23) =

k20 −m2
0c

4

E2
. (2.7)

where the last equality is incorrect. It can be seen since E = cp0 and, hence,

h̄2

p20
(k21 + k22 + k23) =

h̄2c2

E2
(k21 + k22 + k23)

=
c2

E2
(p21 + p22 + p23). (2.8)

The last term was equalized by Yang as follows

c2

E2
(p21 + p22 + p23) =

k20 −m2
0c

4

E2
. (2.9)

However, the both equality c2(p21 + p22 + p23) = k20 − m2
0c

4 = const and the “new
conservation law” E2+2m0c

2Q = k20 = const (12.4.20), contradict to special relativity
whereas experiments with pions, at least in the scattering regime, strongly support the
Einstein’s dispersion law. All written above means that the superposition (entangled)
state (12.4.1) cannot serve as a model of the real quantum particle. But one may
note that even ordinary Klein-Gordon equation faces with serious difficulties of the
physical interpretation [8].

Complicated motion of the model “free” quantum particle under the action of the
quantum potential in the CM [7] is of course not a new phenomenon in physics. The
most known is so-called Zitterbewegung found by Schrödinger during investigation
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of the Dirac equation for a free electron [15]. These effects have a different nature
but both of them pose the problem of the quantum inertial motion. Is such mo-
tion does exist or not? If yes, then the geometric counterpart for quantum inertial
motion should be changed. Indeed, in Newton/ Einstein mechanics inertial motion
of the material point geometrically expressed by the straight line in the Euclidian
space/ Minkowski spacetime. In general relativity indefinitely small mass moves
along geodesic line in the Riemannian spacetime. Obviously, it is not of our case.
Say, in the case of free Dirac’s electron momentum is a constant since its operator
commutes with the Hamiltonian but a velocity is an oscillating value. We cannot,
therefore, appeal to straight line in spacetime as a geometric counterpart of the free
electron motion. The situation in the CM even more complicated since momentum
of the free point-wise quantum particle generally is not a constant. Therefore, one
should find some different geometric i.e. invariant counterpart for inertial quantum
motion. Such invariants do exist but they are not connected directly to spacetime
[28, 4].

It is worse while to recall that Einstein sharply posed the question about the phys-
ical status of the spacetime [16]. The answer on this deep question is not clear up
to now. The genesis of such concept is however well known. The class of the inertial
systems contains (by a convention) the one unique inertial system - the system of
distant stars. Then, on the abstract mathematical level arose a “physical space” -
the linear space with appropriate vector operations on forces, momenta, velocities,
etc. General relativity and new astronomical observations concerning accelerated ex-
pansion of Universe show that all these constructions are only a good approximation,
at best.

I seriously use the one of the main idea of Einstein about Gauss reference frame
modeled by a deformable “mollusc” [16]. But instead of the classical deformable body
I use deformable quantum state since it has a clear geometric and group mechanism
of the conservation and breakdown of the unitary symmetry.

The Galileo-Newton inertia principle tacitly assumes that there is some absolute
global reference frame associated with the system of distant stars. This point of view
looks as absolutely necessary for the classical formulation of the inertial principle
itself. This fundamental principle has been formulated, say, “externally”, i.e. as
if one looks on some massive body perfectly isolated from the Universe. In such
approach only “mechanical” state of relative motion of the body has been taken
into account. Einstein, however, clearly understood the logical inconsistence of the
classical formulation of the inertia principle: “The weakness of the principle of

inertia lies in this, that it involves an argument in a circle: a mass moves
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without acceleration if it is sufficiently far from other bodies; we know that

it is sufficiently far from other bodies only by the fact that it moves without

acceleration” [17]. This argument may be repeated with striking force being applied
to such non-localizable objects as plane waves of free particles since for such objects
the “sufficiently far” distance does not defined. The sharp contradiction with classical
formulation of the inertia principle gives QCD with the phenomenon of the asymptotic
freedom of quarks. These massive objects directly break our classical understanding
of inertia principle due to a new reality of the strong interaction if of course these
objects are something more realistic then mathematical concepts of the theoretical
scheme. This means that inertial motion is relative in a good approximation for
ideally isolated bodies. But already the Newton’s example of rotating bucket with
water shows that there is an absolute motion since the water has a concave shape
in any reference frame. Here we are very close to different - “internal” formulation
of the inertia principle and, probably, to understanding of the quantum nature of
inertial mass. Namely, the “absolute motion” should be turned towards not outward,
to distant stars, but inward – to the state of deformable body.

In fact one should take into account that a force not only change the inertial
character of its motion: motion with the constant velocity transforms to accelerated
motion; moreover – the body deforms. Two aspects of the force action - accelera-
tion relative inertial reference frame and deformation of the body are very important
already on the classical level as it has been shown by Newton’s bucket rotation. In
quantum physics internal state and its deformation esquires an imperative charac-
ter: since the second aspect of the force action – a body deformation leads to the
change of the body state. In fact it is already a different body, with different tem-
perature, etc., [4]. According to physical intuition one has in the case of the inertial
motion an opposite situation – the internal state of the body does not change, i.e.
body is self-identical during inertial motion. It is tacitly assumed that all classical
objects (frequently represented by material points) are self-identical and they can
not disappear because of the energy-momentum conservation law. The inertia law
of Galileo-Newton ascertains this self-conservation “externally”. This means that
objectively physical state of body (temporary in somewhat indefinite sense) does not
depend on the choice of the inertial reference frame. One may accept this statement
as an “internal” formulation of the inertial law for the quantum state that should be
of course formulated mathematically. We put here some plausible reasonings leading
to such a formulation.

Interaction generally leads to the absolute change (deformation) of the quantum
state [29] since the quantum state is the state of motion. Thereby, deformable un-
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located quantum state replaces the deformable body of the classical physics and the
group classification of its motion gives the natural geometric counterpart for quantum
interaction or self-interaction. Such approach leads to essentially new epistemology
of the quantum theory: existence instead of observation is the main element of the
new quantum paradigm.

We will distinguish the “total quantum state” |Ψ(x, P, π) > in fiber bundle over
CP (N − 1) and the internal unlocated quantum state (π1, ..., πN−1) of pure QDF
in the base manifold CP (N − 1). This construction is similar to very interesting
approach of Marlow [18] with obvious reservations in physical interpretation of the
mathematical formalism. An existence of a quantum object means some stability of
so-called “total quantum state”. The complex analysis developed by Yang gives the
consistent tools for the stability expression. One may note, that stabilization of the
“total quantum state” may be achieved due to the internal dynamics of the QDF.
Hence, coordinates (π1, ..., πN−1) of the flexible internal quantum state play the role
of the “shape” coordinates like it is in the flexible n-body gauge theory [19].

Pure unlocated quantum states represented by the rays (points of complex pro-
jective Hilbert space CP (N − 1)) will be used thereafter as fundamental physical
concept instead of “material point”. It is assumed that quantum lumps (resem-
bling Einstein’s mollusc [16]) obtained as solutions of some fundamental quantum
non-linear relativistic wave equations will describe real relativistic quantum particles.
Two simple observations may serve as the basis of the intrinsic unification of relativity
and quantum principles.

The first observation concerns interference of quantum amplitudes (“total quan-
tum states” |Ψ(x, P, π) >) in a fixed quantum setup.

A. The linear interference of quantum amplitudes shows the symmetries relative
space-time transformations of whole setup. This interference has been studied in
“standard” quantum theory. Such symmetries reflects, say, the first order of relativity :
the physics is same if any complete setup subject (kinematical, not dynamical!) shifts,
rotations, boosts as whole in single Minkowski spacetime. According to our notes,
to the transformations given above, one should add a freely falling quantum setup in
gravitation field of a star.

The second observation concerns a dynamical “deformation” of some quantum
setup.

B. If one dynamically changes the setup configuration or its “environment”, then
the amplitude of an event will be generally changed [20]. Nevertheless there is a
different type of tacitly assumed symmetry that may be formulated on the intuitive
level as the invariance of physical properties of “quantum particles”, i.e. the invari-
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ance of their quantum numbers like mass, spin, charge, etc., relative variation of
quantum amplitudes. Such symmetry requires more general kind of state-dependent
gauge transformations than typically used in gauge theories. Physically it means that
properties of, say, electrons are the same in two different setups S1 and S2.

One may postulate that the invariant content of this physical properties may be
kept if one makes the infinitesimal variation of some “flexible quantum setup” reached
by small variation of some fields by adjustment of tuning devices. This principle being
applied to quantum system in pure quantum state was called the “super-relativity
principle”.

There is an essential technical approach capable to connect super-relativity and
the quantum inertia law. Namely, a new concept of the local dynamical variable
(LDV) [26] should be introduced for the realization of infinitesimal variation of a
“flexible quantum setup”. Our construction is naturally connected with the geomet-
ric phases [20] but we seek the local conservation laws for LDV’s in the state space
CP (N − 1). Following note is very important. In quantum physics the practical
necessity requires so-called “the second particle” [21] playing the role of the external
reference frame in the spacetime. Despite of the statement of authors, such envi-
ronment is not a “quantum mechanical” but the classical too. Nevertheless, if one
treats the concept of unlocated quantum state as an objective property and follows
its continuous unitary evolution then it is possible to refer the “present” state to the
infinitesimally close “previous” state in the Cartan spirit. Thereby, the concept of
the deformable quantum state, LDV’s and flexible reference frame rid us from the
necessity in such external reference frame as the “the second particle” [5].

3 Functional Prespacetime and Dynamical space-

time

Does electron use CGS in the calculations of the interaction energy? How one may
build spacetime geometry with help only quantum tools? What kind of the physical
placeholder should be used? In classical physics one may use idealized material points,
solid scale and a clock, but in quantum physics these are not appropriate tools. If
one has only single stable quantum particle like electron, how one should build some
local spacetime geometry at least in its vicinity?

In the absence of the classical solid scales, four components of the vector field
of the proper energy-momentum P µ = ( h̄ω

c
, h̄~k) will be used. This means that the
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period T and the wave length λ of the oscillations associating with an electron’s
field are identified with flexible (state-dependent) scales in the DST. Notice, one
may connect with any quantum particle sever natural state-dependent scales of the
spacetime distance. If a mass M is treated as an ersatz of the internal quantum
motions then in the ultra-relativistic limit of the de Broglie wavelength LdB = h̄

Mv

is the Compton wavelength LC = h̄
Mc

. On the other hand, a self-field hypothesis

of a charged particle leads to the so-called “classical radius” r0 = e2

Mc2
. Their ratio

gives the fine structure constant α = r0
LC

= e2

h̄c
which is universal in the sense of

independence on the lepton’s mass. Dynamic behavior of the fundamental leptons
is however quite different: electron is stable but muon and tauon are not. There is
some deep reason for such difference. It looks like stable and unstable modes of some
fundamental field dynamics.

The quantum field theory of a single self-interacting particle requires a new con-
struction of the state space instead of the Fock space. I will introduce two new
construction: functional prespacetime (FPST) and dynamical spacetime (DST). The
representation of the QDF’s dynamics along geodesic in CP (N−1) should be realized
in FPST by the field dynamics of the energy-momentum P µ(x) in the DST.

Since we do not have the “second particle” [21] as an external reference frame,
one may use only infinitesimally close “previous” unlocated quantum state in the
sense of Cartan. Thereby, it is natural to take the energy-momentum field P µ(x) as
a lump-like placeholder in dynamical spacetime (DST). The UQS deviation is simply
the distance in the Fubini-Study metric in CP (N−1) (see below) but the calculation
of the energy-momentum field P µ(x) variation is complicated. This variation has a
“mechanical” part and electromagnetic-like potential generated by the motion of the
spin/charge QDF.

The distance between two UQS’s in CP (N − 1) may be measured by the interval
in the Fubibi-Study metric dS2

F.−S. = Gik∗dπ
idπk∗. Then the speed of the interval

variation is given by the equation

(
dSF.−S.

dτ
)2 = Gik∗

dπi

dτ

dπk∗

dτ
=
c2

h̄2
Gik∗(Φ

i
µP

µ)(Φk∗ν P
ν∗) (3.1)

relative “quantum proper time” τ where energy-momentum vector field P µ(x) obeys
field equations that will be derived later. If one takes the equation for geodesic

traversing with the constant speed g =
√

|f 1|2 + |f 2|2 + |f 3|2

π1 =
f 1

g
tan gτ, π2 =

f 2

g
tan gτ, π3 =

f 3

g
tan gτ (3.2)
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then the velocity has the components

dπ1

dτ
= v1 = f 1(1 + tan2 gτ),

dπi

dτ
= v2 = f 2(1 + tan2 gτ),

dπi

dτ
= v3 = f 3(1 + tan2 gτ),(3.3)

such as

(
dSF.−S.

dτ
)2 = Gik∗

dπi

dτ

dπk∗

dτ
= g2. (3.4)

The motion along the geodesic in CP (N − 1) with a variable speed (frequency)
requires the variable energy-momentum field in order to support such a “stationary”
inertial regime.

The geodesic flow in the projective Hilbert space will be generated by the La-
grangian L(x, P, π) = Gik∗

dπ1

dτ
dπk∗

dτ
. This is the base of the dynamical picture of the

self-interacting electron, then the canonical momentum is as follows

pj =
∂L

∂(dπ
j

dτ
)
= Gik∗δ

i
j

dπk∗

dτ
= Gjk∗

dπk∗

dτ

pj∗ =
∂L

∂(dπ
j∗

dτ
)
= Gik∗δ

k∗
j∗

dπi

dτ
= Gij∗

dπi

dτ
. (3.5)

Therefore

pj∗ = Gj∗sGsk∗

dπk∗

dτ
= δ

j∗
k∗

dπk∗

dτ
=
dπj∗

dτ
, (3.6)

and pi = dπi

dτ
.

The canonical self-energy momentum pi of the relativistic electron will be ex-
pressed by the contraction of unknown proper 4-potential P µ = pµ − e

c
Aµ and the

coefficient functions Φiµ of the SU(4) generators

~γµ = Φiµ
∂

∂πi
+ c.c. (3.7)

forming the state-dependent tetrad in the functional prespacetime (FPST) that con-
nected with spin/charge dynamics in CP (3)

pi =
dπi

dτ
=
c

h̄
P µ(x)Φiµ(π). (3.8)
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The connection of this FPST manifold with the dark matter concept is the problem
of the future investigations. Such internal quantum spin/charge dynamics cannot be
directly connected with the spacetime dynamics of electron since the first one assumes
dynamics relative quantum proper time τ that measures of the CP (3) distance be-
tween unlocated (in spacetime) quantum states πi

′

= πi + dπi and πi along geodesic
so that

dπi

dτ
= c(

pµ

h̄
− eAµ

h̄c
)Φiµ

= c(
pµ

h̄
− e2κµ

h̄c
)Φiµ = c(κµ(0) − ακ

µ
(1))Φ

i
µ

= (Ωµ(0) − αΩµ(1))Φ
i
µ, (3.9)

whereas the spacetime dynamics of electron connected with motion of the “field shell”
wrapping spin/charge degrees of freedom in local dynamical spacetime (DST). Here
κµ denotes the 4-field of the “wave vector” with physical dimension m−1 decomposed
in the series in the fine structure constant α = e2

h̄c
.

The variation of the energy-momentum of the self-field revealed due to the sep-
aration of the “Lorentz reference frame motion” from the internal motion of QDF
gives the propagation of the quantum particle. The measure of “propagation”
will be defined by the distribution of the proper energy-momentum of the self-field
P = P µeµ = ( h̄ω

c
e0 + h̄~ke~x) where local frame in DST eµ = ∂

∂xµ
will be treated as an

accelerated “observer”. Therefore, the covariant derivative

P ν
;µ =

∂P ν

∂xµ
+ ΓνµλP

λ (3.10)

arises during the infinitesimal Lorentz frame transformations where it is assumed
that the state-dependent metric tensor gµν generated by the internal motions of the
spin/charge QDF may be represented up to the terms of the O(|xα|2) as follows:

g00 = 1 + 2aαx
α,

g0γ = 2ǫγαβx
αωβ,

gαβ = −δαβ , (α, β, γ = 1, 2, 3). (3.11)

The general coordinate invariance do not considered in this paper since the spacetime
curvature is the second order effect [24] in comparison with Coriolis contribution to
the pseudo-metric [19] in boosted and rotated state dependent “Lorentz” reference
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frame. The affine connection in this “quantum Lorentz reference frame” is as follows:

Γµν0 = −Ωµν = −











0 a1 a2 a3
a1 0 −ω3 ω2

a2 ω3 0 −ω1

a3 −ω2 ω1 0











, (3.12)

or in the components

Γ0
00 = Γ000 = 0,

Γ0
j0 = −Γ0j0 = +Γj00 = +Γj00 = aj,

Γjk0 = Γjl0 = −ωiǫ0ijk (3.13)

[24].
There is the natural geometric approach concerning conditions of the invariance

and deformation of UQS’s in terms of the CP (N − 1) dynamics [29, 5, 3]. But
this dynamics requires the “inverse representation” of CP (3) motions by the field
of energy-momentum propagation in DST due to the separation of the “quantum
Lorentz transformations” of the energy-momentum, i.e. the introduction of the hori-
zontal and vertical components of the kinetic energy. The vertical component arises
from the “Lorentz” transformations of the coordinates xµ and the momentum P µ,
whereas the horizontal component arises due to the motion of the spin/charge de-
grees of freedom.

The symbolic picture of the FPST and DST in the sections of the frame fiber
bundle is depicted in Fig.1.

Generally, the process of a measurement in physics has to be associated with the
comparison process of some dynamical variable with corresponding scale. Newtonian
physics established invariant character of a measurement in the sense of its indepen-
dence on the choice of inertial reference frame (IRF). This assumption was formulated
as the inertia principle of Galileo-Newton.

Einstein, taking into account the finite speed of light and its invariance relative
choice of the IRF found that result of the distant measurement depend on the choice of
the IRF, i.e. so-called relativistic kinematics and dynamics replaced absolute charac-
ter of a measurement of Newtonian mechanics. Meanwhile, general relativity already
renders global spacetime coordinates in fact in physically senseless values.

Quantum theory brings a new kind of “relativity” – dependence of the result of
a measurement on the apparatus used for the measurement. This kind of relativity
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Figure 1: The symbolic picture of the frame fiber bundle over CP (3). The trans-
formation of the geodesic to geodesic is lifted in this fiber bundle. The sections are
given by the choice of the gauge that defines the local “orientation” of the dynamical
spacetime relative the functional prespacetime. Two field configurations in one of the
section are shown.

is so radical that the indeterministic paradigm and even agnostic philosophy takes
over the habitant deterministic character of predictions in exact sciences. Deep dif-
ficulties in the “standard” QFT almost insist to try to find new invariants, in fact
a new quantum geometry based on the intrinsic properties of quantum states of the
elementary particles [29]. The most principle difference between the “standard” QFT
and the real situation in quantum physics is as follows.

Main experimental method of the investigation in high energy physics is scatter-
ing accelerated quantum particles. However all attempts to rich deep zone of the
quantum particle with help of the outer “probe” particles leads to creation of new
particles as a consequence of new quantum degrees of freedom de-freezing. But stable
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quantum particles and even unstable particles demonstrate temporal classical behav-
ior in relatively weak external fields. Therefore their own field structure “sweeps” all
zone occupied by the quantum particle without dramatic multiple particle creations.
Therefore, it is reasonable to assume that (internal) quantum degrees of freedom of
quantum particle forming unlocated quantum state may be “wrapped” in the “field
shell” that distributed in DST. The general idea is that the local DST arises in a
cross-section of the frame fiber bundle due to the state-dependent Lorentz frame em-
bedding. Thereby, we would like to save ordinary spacetime four dimension and local
Lorenzian character of the metric.

The new principle of “super-relativity”, i.e. relativity to the choice of any conceiv-
able quantum setup seems to be correct, since pure quantum degrees of freedom like
charge, spin, hypercharge, etc. are anywhere the same [5]. This principle makes accent
on the objective invariant nature of the unlocated (omnipresent) quantum vacuum
states of motion and operates with the notion of “existence” instead of “observation”.
Namely, existence associated with the stability of self-interaction dynamics expressed
in the terms of quantum state itself without any reference to external apparatus. Ge-
ometry of the projective Hilbert space takes the place of the fundamental geometry
where gauge dynamics of the quantum degrees of freedom defines the basic properties
of the “elementary” quantum particles. The habitant global omnipresent spacetime
should be replaced by the specific section of the fiber bundle over CP (N − 1). In
the framework of the affine gauge dynamics the term “existence” esquires the exact
mathematical sense in relation to the stability of quasi-linear PDE’s solutions.

The separation of the spacetime coordinates from pure quantum degrees of free-
dom may be associated with state-dependent Lorentz transformations of the proper
energy-momentum. This fact leads to the new construction of the dynamical space-
time. Namely, the spacetime distance occurs as a result of unholonomy of the state
space of the unlocated quantum degrees of freedom. In this picture the global space-
time coordinates have no physical meaning at all (at least in the framework of the
single particle problem). Only local coordinates relative state-dependent Lorentz ref-
erence frames may be defined due to more or less complicated operational procedure.
This procedure is based on the introduction of the local state-dependent Lorentz
reference frame eµ = ∂

∂xµ
of “observer”.

The dynamical spacetime (DST) is pure local construction built for description
of energy-momentum distribution which I called the “field-shell” of the quantum
particles. This spacetime is non-distinguishable from state-dependent Lorentz frame
and moves together with it in a cross-section of the principle fiber bundle over CP (N−
1). There are two times in this theory. One time is the ordinary Einstein’s time in
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the DST. The second one is the “quantum proper time” that serves as a measure
of the distance between two quantum states in the base state manifold CP (N − 1)
expressed in seconds. I will use anywhere symbol “t” for the Einstein time and the
symbol “τ” for the quantum proper time.

4 Hamiltonian vector field for the self-interacting

electron

The standard approach of the quantum theory is to take some classical Hamilton
function and to “quantize” it. If one starts, however, from the internal QDF’s one
does not have the classical analogy. Dirac already undertook some attempt to derive
the relativistic equation for a fermion with two additional internal degrees of freedom
[22] besides the spin and the electric charge. These two degrees of freedom where
modeled by two harmonic oscillators. It turns out that such a model cannot describe
some physical particles since their self-potential is trivial.

The relativistic electron of Dirac has spin/charge degrees of freedom decoded in
γ-matrices. I proposed more “soft” model of the non-local electron where γ-matrices
were replaced by the continuous complex vector fields on the CP (3) of the SU(4)
generators corresponding to γ-matrices [4]. Thereby, the spin/charge QDF’s were
“dissolved” into three complex projective coordinates (π1, π2, π3). The operator of
the energy-momentum in CP (3)

~P = iP µ(x)Φiµ(π)
∂

∂πi
+ c.c. = iP µ(x)~γµ(π) + c.c. (4.1)

was used instead of the Dirac’s operator of the energy-momentum

p̂ = γ̂µpµ = ih̄γ̂µ
∂

∂xµ
(4.2)

that acts in the direct product S = C4×HD. Here HD means the Hilbert space where
defined four differentiable functions ψm. Such direct product seems to be too “stiff”
and we try to find more flexible construction of the energy-momentum operator.
Namely, more reasonable to work in the fibre bundle and only in a some section it
is possible to have local splitting into “horizontal=internal” and “vertical=external”
contribution of the energy. In such a case the mass is not a free phenomenological
parameter but a state-dependent functional of the state. Then the energy of the total
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quantum state |Ψ(x, P, π) > of the single quantum electron is the sum of velocities of
the action (phase) variations from one UQS to another under the self-conservation
of the electron.

Quantum inertia law in the case of inertial motion of the non-local quantum
electron may be formulated as the conservation of its internal momentum of unlocated
quantum state pi = dπi

dτ
[4, 5, 3]. Thereby, the conservation law of the momentum

vector field in CP (3) during inertial evolution will be expressed by the affine parallel
transport in both spaces: the momentum pi in CP (3) with the affine connection (...)
and the energy-momentum P µ(x) in the local DST, where coefficients of the affine
connection in the accelerated “quantum Lorentz reference frame” where given above
(3.13).

The problem of the construction of the Hamiltonian vector field for relativistic
self-interacting lump-like electron may be treated as an opposite to the Aharonov-
Anandan projection problem [23] of the Hilbert space trajectories onto the close curve
in the CP (N − 1). First of all, however, one needs to clarify the Aharonov-Anandan
statement about the “Hamiltonian independence” of the distance in CP (N−1). This
“proof” is incorrect since the Hamiltonian from the “infinite number of Hamiltonians
which would evolve the state along a given curve C in P” should be path-dependent.
The short phrase of authors means a lot of things:

1). There is some path C in CP (N − 1) as a function of the parameter τ such
that C : [0, π] → (π1(τ), ..., πN−1(τ)).

2). In some variable basis {|0(t) >, |1(t) >, ..., |a(t) >, ..., |(N − 1)(t) >} in the
Hilbert space H one has for some curve

|ψ(t, τ) >=
N−1
∑

0

ψa(τ)|a(t) >

= ψ0|0(t) > +π1(τ)ψ0|1(t) > +, ...,+πN−1(τ)ψ0|(N − 1)(t) > . (4.3)

3). The Hamiltonian which should be found is the path-dependent functional
operator (functional vector field)H = H(t, C) = H(t, π1(τ), ..., πN−1(τ)).

4). Projection of Aharonov-Anandan means that for a different Hamiltonian H1 =
H(t, C)1 = H1(t, π

1(τ), ..., πN−1(τ)) one has the different solution |φ(t) > in the
Hilbert space H, but the components of these solutions obey following equalities

π1(τ) = ψ1(τ)
ψ0 = φ1(τ)

φ0
, ..., πN−1 = ψN−1(τ)

ψ0 = φN−1(τ)
φ0

.

Hence, there is only the trivial difference between two solutions: |φ >=

(φ0ψ0

ψ0 , φ
0ψ

1(τ)
ψ0 , ..., φ0ψ

N−1(τ)
ψ0 ) = φ0

ψ0 |ψ > that is possible only if two Hamiltonians are
proportional.
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The class of the proportional Hamiltonians that provide the “transport of the state
along a given curve C in P” in such a formulation of the problem is really infinite but
the statement about the independence of the measure s on such a Hamiltonian is in-
correct. One may see it, say, from the formula (15) in [23] of the “quantum-mechanical
clock” motion. The formula s = 2η√

3h̄

√
J2 + Jt clearly shows the dependence of s on

the energy η which may variate from Hamiltonian to Hamiltonian. However, the
distance in P = CP (N − 1) where a given curve lies, is definitely independent on
the choice of any Hamiltonian! Furthermore, in this example it is unclear what is
the projection line in P. The statement of the authors is merely: “the clock is not
moving along a geodesic”. For us it is interesting the opposite problem: to find at
least one Hamiltonian from this indefinite class for a given curve in P, i.e. one needs
to lift dynamics along closed geodesic in P = CP (N − 1) into the frame fiber bun-
dle. Namely, one needs to find the Hamiltonian providing such kind of the spacetime
field dynamics that the Hilbert space trajectory (the solution of the “Schrödinger
equation”, see below) will be projected onto a closed geodesic of CP (N − 1).

The velocity of the total |Ψ(xµ, P µ, πi) > variation is given by the linear “super-
Dirac” equation

i{h̄V µ
Q

∂|Ψ >

∂xµ
+ h̄[−V µ

QΓ
ν
µλP

λ − c

h̄
(
∂Φnµ(π)

∂πn

+ΓmmnΦ
n
µ(π))P

νP µ]
∂|Ψ >

∂P ν

+cP µΦiµ(π)
∂|Ψ >

∂πi
+ c.c.} = m(x, P, π)c2|Ψ > (4.4)

that equivalent to the “Schrödinger equation”

ih̄
d|Ψ >

dτ
= ~H(x, P, π)|Ψ >

= ~U |Ψ > +~T |Ψ >= m(x, P, π)c2|Ψ > (4.5)

for the single total state function |Ψ(xµ, P µ, πi) > of self-interacting quantum electron
“cum location” moving in DST like a free material point with the rest dynamical mass
m(x, P, π) and continuous spin/charge variable (π1, π2, π3).

One may treat the functional Hamiltonian vector field ~H(x, P, π) as an inertia
operator whose action may be gauge invariantly divided on the horizontal and the
vertical components. The vertical component generated by the “gradients” of the
total wave function |Ψ > in xµ and P µ due to quantum Lorentz transformations.

|Vv >= ~U |Ψ >= h̄(
dxµ

dτ

∂|Ψ >

∂xµ
+
dP µ

dτ

∂|Ψ >

∂P µ
). (4.6)
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The linear operator of the kinetic energy

~T = h̄pi
∂

∂πi
+ c.c. = h̄

dπi

dτ

∂

∂πi
+ c.c.

= cP µ(x)Φiµ(π)
∂

∂πi
+ c.c. = cP µ(x)~γµ (4.7)

is similar to the Dirac operator T̂ = cγ̂µp
µ = cγ̂µ

∂
∂xµ

that generates the horizontal
part of the kinetic energy

|Vh >= ~T |Ψ >= h̄
dπi

dτ

∂|Ψ >

∂πi
+ c.c.

= cP µ(x)Φiµ(π)
∂|Ψ >

∂πi
+ c.c. (4.8)

This operator is the tangent vector field to CP (3) arising from the self-interaction
term. This has been used in order to determinate the inertial (dynamical) mass and
an additional potential terms. Let me return in connection with this problem to the
field equations in the short form

Ωµνx
ν ∂P

σ

∂xµ
− ΩσνP

ν = 0 (4.9)

where Ωµν is the matrix (3.12) whose elements are the state-dependent boosts and
rotations of the co-moving Lorentz reference frame

aα = cLα
h̄−

√

h̄2 + 4P 0h̄(L1x+ L2y + L3z)

2h̄(L1x+ L2y + L3z)

ωα =
cǫβαγLβP

γ

h̄(1 + a1x+a2y+a3z
c

)
. (4.10)

[3]. The partial solution

P µ(x) = C1x
µ + C2f(xµx

µ)xµ + C3g(xµx
µ)Ωµνx

ν (4.11)

has been recently found if the state-dependent (through the spin/charge current
Lµ(π)) Ωµν and gµν obey following non-covariant conditions playing the role of the
gauge restrictions on the coordinates

∂Ωµν
∂xλ

xν = 0,
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∂gµν

∂xλ
= Γµ,νλ + Γν,µλ = 0. (4.12)

The energy component P 0(x) may be found separately from the spatial components
P α(x). Namely, from the first algebraic equation of (4.10) one has

(P 0(x)− f(x)x0)2 == g2(x)
c2

4
(1−

√

1 +
4P 0(xL1 + yL2 + zL3)

h̄
)2, (4.13)

where it was assumed that the constants C1, C2, C3 were absorbed by the redefined
functions f(x) = C1 + C2f(xµx

µ), g(x) = C3g(xµx
µ). One of the four solutions is as

follows

P 0(x) =
cg(x)

2
+ x0f(x) +

c2g2(x)(xL1 + yL2 + zL3)

2h̄

+

√

(4f(x)x0c2g2(x) + 2h̄c3g3(x))(xL1 + yL2 + zL3) + ...+ h̄2c2g2(x)

2h̄
, (4.14)

where the intermediate terms were omitted. In this expression one should put g(x) =
2m(x)c in order to have ordinary relativistic decomposition of P 0(x) = mc2 + ....
Three other solutions are similar to the ordinary Dirac states as follows: |+mc2, ↑>
and |−mc2, ↑>, |−mc2, ↓>. The spatial components of the energy-momentum P α(x)
may be found from the linear non-homogeneous system

(1 + A1)P
1 + 0 +B1P

3 = R1,

B2P
1 + (1 + A2)P

2 + 0 = R2,

0 +B3P
2 + (1 + A3)P

3 = R3, (4.15)

where

Aα =
g(x)ǫαβγx

βLγ

h̄(1 + a1x+a2y+a3z
c

)
,

Bα = − g(x)ǫαβγx
γLβ

h̄(1 + a1x+a2y+a3z
c

)
,

Rα = xαf(x). (4.16)

Thereby, one has

P 1(x) =
R1(1 + A2 + A3) + A2A3R1 +B1B3R2 − A2B1R3 −B1R3

1 + A1 + A2 + A3 + A1A2 + A1A3 + A2A3 + A1A2A3 +B1B2B3
,
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P 2(x) =
R2(1 + A1 + A3) + A1A3R2 +B1B2R3 − A3B2R1 −B2R1

1 + A1 + A2 + A3 + A1A2 + A1A3 + A2A3 + A1A2A3 +B1B2B3

,

P 3(x) =
R3(1 + A1 + A2) + A1A2R3 +B2B3R1 − A1B3R3 −B3R2

1 + A1 + A2 + A3 + A1A2 + A1A3 + A2A3 + A1A2A3 +B1B2B3

. (4.17)

The trivial solutions of (4.9) with constant f(x) = c1, g(x) = c2 are regular at the
origin and they are formally possible but these solutions are physically unacceptable
because of the divergences on the infinity. The definition of cut-off free functions
f(x), g(x) due to the restrictions (4.12) will be discussed elsewhere.

We discussed up to now only single electron as a dynamical process along geodesic
γ1. Second electron may be represented similarly as a dynamical process along
geodesic γ2. Two tangent vector fields of the geodesic flows may be transformed
one to another by the isotropy group H = U(1) × (U − 1) of some UQS since it
acts on the symmetric, homogeneous, totally geodesic state space CP (N−1) playing
the role of the base manifold. One-parameter evolution of UQS’s in the projective
Hilbert space CP (N −1) assumes the lift of this dynamics in the “field frame” P µ(x)
fiber bundle under the action of the structure group H = U(1) × U(N − 1). The
potential part of the P µ(x) field may be associated with the gauge field connecting
two electrons where the second electron playing the role of the “second particle” in
the DST. These fields naturally relate to the Jacobi fields.

5 The gauge fields of Jacobi

As far as we know the gauge and matter fields have common quantum dynamical vari-
ables corresponding to the internal quantum degrees of freedom, e.g. spin, charge,
color, etc. One may assume that just UQS’s of motions in CP (N − 1) comprise
“UQS’s vacuum” and its excitations are concentrated lump-like solutions of the field
equations corresponding quantum self-interacting particles. From this point of view,
equations of pure EM fields and the Dirac equations for free electrons serve merely
as equations for 4D “boundary” field configurations for unknown equations of the
lump-like excitations of the UQS’s vacuum. Since just in the vicinity of an electron
the linear QED should be improved, I will use the “intermediate” expression for the
self-interaction energy which is a convolution of the energy-momentum cP µ(x) to
be found, and the dimensionless spin/charge non-Abelian current vector field Φiµ(π)
which is known [5]. Then the variation of this functional vector field (i.e. operator,
not functional!) should give some equation for unified self-interacting field. The most
simple variations of the geodesic motions of the spin/charge QDF’s is the geodesic
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variations. These variation locally have been described by the Jacobi equations which
may have the Hamiltonian form for the so-called “secondary Hamiltonian” and “sec-
ondary extremals” in terms of Young [9].

These transformations rotate geodesics passing some fixed point in CP (N − 1) as
whole. The infinitesimal geodesic variations may be described by the Jacobi equation

δ2JA

δσ2
+RA

BCD

dXB

dσ

dXC

dσ
JD = 0, (5.1)

where real coordinates XA with the indexes A,B,C,D = 1, 2, ..., 2(N − 1) are such
that πj = X2j−1 + iX2j .

I will use without essential loss of generality the partial geodesic γ0 : ~π(σ) =
(tanωτ, 0, ..., 0), ω = arctan λ0

σ0
that connects two points of CP (N − 1) ~π(0) = (0, ..., 0)

and ~π(σ0) = (λ0, ..., 0). The basis ξ
i
(k) parallel to the given geodesic γ0 may be chosen

as follows:

ξ1(1) =
c0

cos2 ωτ
, ξi(1) = 0, (i = 2, 3, ..., N − 1),

ξi(k) = 0, (i 6= k), ξi(k) =
c0

cosωτ
(i = k). (5.2)

In such a basis the general form of the Jacobi field may be represented

JA = N0f
BξA(B) + (N1τ +N2)v

BξA(B) (5.3)

where the term N0f
BξA(B) = N0 sinωτξ

A
(B) is the normal Jacobi field.

The geodesic rotation generates the gauge field in the DST and in opposite, the
influence of the external gauge field leads to the geodesic variation. Two close ve-
locities in CP (3) may serve as a boundary conditions and they should be agreed in
order to define so-called “the field of the generator” (operator of the UQS momentum
(3.8)) of the variational problem for the geodesic family in CP (3). I try to get the
evident form of the energy-momentum P µ(x) as the consequence of this agreement.
Such agreement may be expressed by the simplest physical equation of motion

∇γ̇ γ̇ = J, or

δpi

δτ
= J i. (5.4)

This is the obvious generalization of the

∇γ̇ γ̇ = 0, (5.5)
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describing the inertial motion discussed above.
I will analyze the new equations (5.4) in attempt to separate the schedule of the

UQS evolution in τ along some CP (3) geodesic from the geodesic line itself. This
means that we should find some motion with variable frequency i.e. a trajectory defin-
ing by some Hamiltonian vector field. The Jacobi field (the normal plus longitudinal
parts) has following components

J1 = N0
tanωτ

cosωτ
+ (N1τ +N2)p

1;

J2 = N0 tanωτ + (N1τ +N2)p
2;

J3 = N0 tanωτ + (N1τ +N2)p
3. (5.6)

Therefore one has three equations for the UQS’s momentum pi = dπi

dτ

dp1

dτ
− sin(2ωτ)(p1)2 −N0

tanωτ

cosωτ
− (N1τ +N2)p

1 = 0;

dp2

dτ
− sin(2ωτ)

2
p1p2 −N0 tanωτ − (N1τ +N2)p

2 = 0;

dp3

dτ
− sin(2ωτ)

2
p1p3 −N0 tanωτ − (N1τ +N2)p

3 = 0. (5.7)

Some fundamental analytical solutions of these equations is as follows.
1. “Free” solutions for the non-deformed geodesic motion (N0 = N1 = N2 = 0)

p1 =
ω

cos2 ωτ + C1ω
;

p2 =
C2√

cos 2ωτ + 1 + 2C1ω
;

p3 =
C3√

cos 2ωτ + 1 + 2C1ω
. (5.8)

2. “Longitudinal mode I” solutions (N0 = N1 = 0, N2 6= 0)

p1 =
(N2

2 + 4ω2)eN2τ

2ω cos(2ωτ)eN2τ −N2 sin(2ωτ)eN2τ + C1(N2
2 + 4ω2)

; (5.9)

the analytic solutions for p2, p3 are not achievable.
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3. “Longitudinal mode II” (N0 = 0, N1 < 0, N2 6= 0)

p1 =
4
√
N1e

−
N1τ

2

2
+N2τ

√
2πi[e

(N2+2iω)
2N1 erf(N1τ−N2−2iω√

2N1
)− e

(N2−2iω)
2N1 erf(N1τ−N2+2iω√

2N1
)] + 4C

√
N1

;(5.10)

the analytic solutions for p2, p3 are not achievable.
4. “Normal mode” (N0 6= 0, N1 = N2 = 0)

p1 =
N

D
,

N = −
√
− cosωτ [ω2I(1,

√

−8 cosωτ

ω2
) + CK(1,

√

−8 cosωτ

ω2
)];

D = cosωτ(−Cω
√
− cosωτK(1,

√

−8 cosωτ

ω2
) +

√
2C cosωτK(0,

√

−8 cosωτ

ω2
)

−ω3
√
− cosωτI(1,

√

−8 cosωτ

ω2
)− ω2 cosωτ

√
2I(0,

√

−8 cosωτ

ω2
));(5.11)

the analytic solutions for p2, p3 are not achievable. These functions put definite
restrictions on P µ(x). This will be discussed in a future article.

6 Conclusion

The attempt of the intrinsic unification of the quantum and the relativity principles
has been discussed. The gauge potential P µ(x) being expressed in terms of “quan-
tum Lorentz” transformations was generated by changes in UQS under condition
of vanishing the covariant derivative of the proper momentum pi of the UQS, i.e.
the affine parallel transport in CP (3). Convention of the attaching the “quantum
Lorentz” frame to the deformable UQS is a gauge convention. Then a change of the
convention we shall regard as a gauge transformation.

The non-Abelian character of the gauge field was originated by the geometry of
the spin/charge motion of the Dirac electron along geodesics of CP (3). The velocity
of the simplest deformations of such a motion are properly defined by the Jacobi
equations. The definition of the free functions f(x), g(x) including in the form-factor
of the quantum electron is postponed for a future work.
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