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Asymptotic analysis of threshold models for social networks

Andrea Garulli, Antonio Giannitrapani

Abstract

A class of dynamic threshold models is proposed, for describing the upset of collective actions in social networks.

The agents of the network have to decide whether to undertakea certain action or not. They make their decision by

comparing the activity level of their neighbors with a time-varying threshold, evolving according to a time-invariant

opinion dynamic model. Key features of the model are a parameter representing the degree of self-confidence of the

agents, and the mechanism adopted by the agents to evaluate the activity level of their neighbors. The case in which a

radical agent, initially eager to undertake the action, interacts with a group of ordinary agents, is considered. The main

contribution of the paper is the complete analytic characterization of the asymptotic behaviors of the network, for

three different graph topologies. The asymptotic activitypatterns are determined as a function of the self-confidence

parameter and of the initial threshold of the ordinary agents.

I. I NTRODUCTION

A key problem in social sciences is that of understanding thecomplex relationships between the attitude of

individuals and their collective behavior. The main challenge in this context is posed by modeling and analyzing

the way in which the evolution of the individuals’ opinions affects their will of undertaking or not a certain action.

In fact, it is widely recognized that this underlying mechanism is at the basis of crucial phenomena, such as the

spread of behaviors and the arising of collective actions within social networks [1], [2], [3].

Opinion dynamics is a well established research topic in thesocial science research field, which is receiving

increasing attention from the control community (see, e.g., the recent survey [4]). Starting from the celebrated

DeGroot model [5] and the numerous variations on it, a large body of literature has been developed in which the

emphasis has been initially placed on the widely investigated consensus problem, which has an impact also on

several other key problems in the control field (see [6], [7],[8] and references therein). In recent years, researchers

have concentrated their attention on models which present aricher variety of possible dynamic patterns, in order to

describe the multiplicity of phenomena observed in social networks. Notable research lines along this path are the

works on the Hegselmann-Krause model [9], [10], [11], the studies on the spread of misinformation [12], [13], the

analysis of networks with stubborn agents [14], [15], [16] and the introduction of models including antagonistic

interactions [17].

Using opinion dynamics models to predict behaviors of groups of individuals is a key problem in social psychology

[18]. The problem is that to link the evolution of the individuals’ opinion to their inclination about undertaking a
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certain action. In this respect, the simplest approach assumes the existence of a threshold, so that the individual

becomes “active” whenever its opinion exceeds the threshold. This leads to the formulation of a so-calledthreshold

model.

Threshold models have been first introduced in [19]; since then, they have been employed to explain the collective

behavior of a community of individuals in many different contexts: typical examples are the spread of technological

innovations among large portions of the population; the attitude of masses towards new trends in popular culture;

political phenomena such as riots, strikes, and so on. In this context, threshold models are well suited to predict the

occurrence of cascade effects, i.e. the possibility that a behavior adopted by a small number of influential agents

will propagate to a large part of the network [20]. In [21], threshold models are adopted to analyze how innovations

spread into a network starting from a set of promoters. Such amodel has been later generalized in [22] to account

for the possibility for a member of the network to abandon a previously adopted innovation. Moreover the effect

of the presence of a group of agents which maintain the innovation for a finite time despite the behavior of their

neighbors is analyzed.

In [23], a threshold model has been adopted to describe the mechanisms underlying the formation of a collective

action taking place during political unrest or social revolutions. In particular, the aim is to determine whether a

radical agent is able to eventually persuade all the individuals of a network to engage in the demonstration: this

occurs when the activity level of the individual’s neighbors exceeds a certain threshold, which in turn evolves

dynamically according to a classical DeGroot opinion model. The author uses this approach to analyze the effect

of media interruption during the 2011 Egyptian revolution.Properties of this model have been studied in [24].

In this paper, starting from the model proposed in [23], [24], a more general class of threshold models is proposed

and analyzed. The main novelty is the introduction of a parameter which represents the relative confidence level

that an agent has on her own opinion, with respect to that of her neighbors. This provides a new degree of freedom,

which allows one to characterize the behavior of conservative networks, with respect to groups of individuals more

inclined to change their attitude. Another feature of the proposed model is the use of two different mechanisms for

deciding whether an agent becomes active or not. Similarly to what is assumed in [20], [22], [24], a non progressive

model is adopted, meaning that each agent can change its actions multiple times, by comparing her current opinion

with an indicator of the average activity level of her neighbors. In the proposed model, such an indicator can be

either the fraction of active neighbors (as in [24]), or a weighted average of the number of active neighbors which

takes into account the self-confidence of each agent. The considered model can be also seen as an extension of

the framework adopted in global games [25], [26], [27], in which the agents make a decision upon undertaking

an action according to a similar threshold-based mechanism, but once they have made their decision they do not

change anymore their activity status.

The main contribution of the paper is the analysis of the asymptotic behavior of the network for different graph

topologies. In particular, the complete analytic characterization of the asymptotic activity pattern of the network is

determined for three topologies: the complete graph, the star graph and the ring graph. A wide variety of collective

limiting behaviors is observed and its relationship with the self-confidence parameter and the chosen decision
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mechanism is highlighted. A preliminary version of this work has been presented in [28]. This paper extends

previous results to the case of star and ring graphs.

The paper is organized as follows. In Section II, the considered class of threshold models is introduced, together

with the two different decision schemes. The analytic results on the network asymptotic behaviors are presented

in Sections III, IV and V, for the cases of complete, star and ring graph topologies, respectively. Results from

numerical simulations carried out for a real ego network arereported in Section VI. Concluding remarks and future

developments are provided in Section VII.

II. PROBLEM FORMULATION

A network of n agents is described by an undirected graphG = (V , E), whereV denotes the vertex set and

E ⊆ V × V is the edge set. Two agentsi and j areneighborsif (i, j) ∈ E . Let Ni denote the set of neighbors of

agenti andni be its cardinality. In this work, an agent is always considered a neighbor of itself, i.e.(i, i) ∈ E for

all i, and the network topology is assumed to be time-invariant.

In order to model the agents’ behavior, two variables are associated to agenti: the thresholdθi(t) ∈ [0, 1] and

the action ai(t) ∈ {0, 1}. The variableai discriminates whether theith agent is undertaking a certain action at

time t (ai(t) = 1) or not (ai(t) = 0). The thresholdθi(t) is used to model the attitude of theith agent towards the

possibility of becoming active. Depending on the context, it may represent the agent’s opinion on a certain topic,

or its intention to participate in some collective movement.

The agent behavior is described by the time evolution of the threshold and the action variables. At each time

step, an agent updates its threshold to a weighted average ofits neighbors’ threshold

θi(t+ 1) =
∑

j∈Ni

fijθj(t), i = 1, . . . , n, (1)

where the weights are such that0 < fij < 1 and
∑

h fih = 1, ∀i, j. Notice that (1) is the classic De Groot model,

which has been widely employed in the literature on consensus and opinion dynamics [5].

Besides updating the threshold, each agent computes the activity level of its neighbors as

pi(t+ 1) =
∑

j∈Ni

gijaj(t), i = 1, . . . , n, (2)

where0 < gij < 1 and
∑

h gih = 1, ∀i, j. The action value of each agent is obtained by comparing the activity

level pi(t) with the thresholdθi(t), according to

ai(t) =







1 if pi(t) ≥ θi(t)

0 else
, i = 1, . . . , n. (3)

By settingfij = gij = 0 wheneverj 6∈ Ni, equation (1) can be rewritten in matrix form asθ(t+ 1) = Fθ(t) and

(2) becomes

p(t+ 1) = Ga(t), (4)
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whereθ = [θ1, . . . , θn]
′, a = [ai, . . . , an]

′, p = [p1, . . . , pn]
′, andF andG are matrices whoseij-th entries arefij

andgij , respectively. By introducing the function

φ(x) =







1 if x ≥ 0,

0 else,

and exploiting (3),(4), one gets

θ(t+ 1) = Fθ(t), (5)

a(t+ 1) = φ(Ga(t)− Fθ(t)), (6)

where the functionφ(·) is to be intended componentwise.

In this work, the entries of matrixF are chosen as

fij =







β
β+ni−1 if i = j,

1
β+ni−1 if j ∈ Ni, j 6= i,

0 else,

(7)

whereβ > 0 is the relative weight each agent assigns to its current threshold value compared to that of its neighbors.

In other words,β can be interpreted as therelative confidencethat each agent has on its own opinion, with respect

to that of the other members of the network. Two different ways of computing the neighbors’ activity level are

considered:

a) Weighted Activity Level (WAL): in this settingG = F , i.e. the same relative weight is adopted both for

computing the activity level of the neighbors and for weighting the neighbors’ threshold;

b) Uniform Activity Level (UAL): in this scenario

gij =







1
ni

if j ∈ Ni,

0 else,

so thatpi(t+ 1) in (2) represents the fraction of neighbors of agenti that are active at timet.

Notice that in the UAL scenario each agent decides whether tobecome active or not by just “counting” the number

of active neighbors. Conversely, in the WAL scenario an agent weights in a different way the fact that its neighbors

are active with respect to its own activity status. This is consistent with the idea that a self-confident individual,

weighting its own opinionβ times that of its neighbors, will also consider in a different way its own behavior with

respect to that of its neighbors.

Remark 1. If β = 1, one hasfij = gij = 1
ni

, ∀i, ∀j ∈ Ni, and hence there is no difference between the two

considered scenarios. The threshold update rule(5) consists in computing the average of the neighbors’ thresholds,

and the activity level(4) is equal to the fraction of active neighbors. Notice that in this special case, the setting

considered in [24] is recovered.
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The objective of this this work is to study the asymptotic behavior of the nonlinear system (5),(6), when the

network initially contains oneradical agent (herafter labeled with index 1) andn− 1 ordinary agents. The radical

agent is keen on undertaking an action and would like to convince the other agents to do the same: to this aim,

at time t = 0 its threshold is equal to zero and its activity variable is equal to 1. The ordinary agents are initially

inactive and their threshold is equal toτ , with 0 < τ < 1. This corresponds to the initial condition

θ(0) = [0, τ, . . . , τ ]′, a(0) = [1, 0, . . . , 0]′. (8)

Loosely speaking,τ represents the initial reluctance of the ordinary agents towards the action put forth by the

radical one. The problem addressed in the paper is to determine the asymptotic value of the action vector

a∞ = lim
t→+∞

a(t)

under the initial condition (8), as a function of the initialreluctance of ordinary agentsτ and of the relative

confidence parameterβ. It is easy to check thatae = 0 andae = 1 (where1 denotes a vector whose entries are

all equal to 1) are always equilibria for system (6), irrespectively of the weighting matricesF andG1. However,

several other equilibria may arise, which do depend on the topology of the interconnection network and on the

values ofβ andτ . In the next sections, three different topologies will be analysed in detail.

III. C OMPLETE GRAPH

Let the graphG be complete, i.e.,(i, j) ∈ E , for all i, j. The threshold evolution is characterized by the following

results.

Lemma 1. Consider the dynamic model(5), with F chosen as in(7). If the interconnection graph is complete and

θ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1, then

θ1(t) =
n− 1

n
τ
(
1− λt

c

)
, (9)

θi(t) =
n− 1

n
τ

(

1 +
1

n− 1
λt
c

)

, i = 2, . . . , n, (10)

whereλc =
β − 1

β + n− 1
.

Proof: When the graph is complete, from (7) one gets

F =
β

β + n− 1
In +

1

β + n− 1
(11

′ − In)

=
β − 1

β + n− 1
In +

n

β + n− 1

11
′

n

=
11

′

n
+

β − 1

β + n− 1

(

In − 11
′

n

)

.

1With a slight abuse of notation, we assume that whenp = 0, thena = 0, even ifθ = 0. We do not modify the definition ofφ in this sense,

to keep notation simple.
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Then, it is easy to check that, for everyt ≥ 0, one has

F t =
11

′

n
+

(
β − 1

β + n− 1

)t (

In − 11
′

n

)

.

For the initial conditionθ(0) = [0, τ, . . . , τ ]′ one gets

θ(t) = F tθ(0)

=
n− 1

n
τ 1 +

(
β − 1

β + n− 1

)t (

θ(0)− n− 1

n
τ1

)

from which (9)-(10) immediately follow.

Corollary 1. Consider the dynamic model(5), with the weights chosen as in(7). If the interconnection graph is

complete andθ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1, then

lim
t→∞

θ(t) =
n− 1

n
τ1. (11)

Moreover, ifβ > 1, then

θ1(t+ 1) > θ1(t), (12)

θi(t+ 1) < θi(t), i = 2, . . . , n, (13)

for all t ≥ 0.

A. Weighted activity level

Let us consider the WAL setting first, i.e.,

G = F =
β

β + n− 1
In +

1

β + n− 1
(11

′ − In). (14)

Define the functions ofβ:

γ1(β) =
n

n− 1

1

β + n− 1
, (15)

γ2(β) =
n

n− 1

β

β + n− 1
, (16)

γ3(β) =
1

β + n− 2
. (17)

Such functions are shown in Figures 1-2 forn = 5 andn = 20, respectively. The following result holds.

Theorem 1. System(5),(6), with G = F given by(14) and initial condition(8), exhibits the following asymptotic

behaviors.

i) For β > 1,

- if τ < γ1(β), thena∞ = 1;

- if τ > γ2(β), thena∞ = 0;

- if γ1(β) ≤ τ ≤ γ2(β), thena(t) = a(0), ∀t ≥ 1.
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ii) For β ≤ 1, if τ ≤ γ3(β), thena∞ = 1; otherwisea∞ = 0.

Proof: According to Lemma 1, one hasθ2(t) = θ3(t) = · · · = θn(t), ∀t ≥ 0. Since from (8) it also holds

a2(0) = a3(0) = · · · = an(0), this clearly impliesa2(t) = a3(t) = · · · = an(t), ∀t ≥ 0. Hence, in the sequel we

will refer only to θ2(t) anda2(t).

i) Given the initial condition (8), from Lemma 1 one has

θ1(1) =
n− 1

β + n− 1
τ, (18)

θ2(1) =
β + n− 2

β + n− 1
τ. (19)

Being p(1) = Ga(0), one gets

p1(1) =
β

β + n− 1
,

p2(1) =
1

β + n− 1
,

and hencea(1) = 1 if and only if the following conditions are satisfied

β ≥ (n− 1)τ, (20)

1 ≥ (β + n− 2) τ. (21)

Similarly, when both conditions (20)-(21) are violated, one hasa(1) = 0. When 1
β+n−2 < τ ≤ β

n−1 , one has

a(1) = a(0). If β > 1, due to Corollary 1 one has thatθ1(t) is increasing, whileθ2(t) is decreasing. Therefore,

one will havea(t) = a(0) andp(t) = p(0) until eitherp1(t) < θ1(t) or p2(t) ≥ θ2(t). From (11), both conditions

will never occur if the following inequalities hold

β

β + n− 1
≥ n− 1

n
τ, (22)

1

β + n− 1
≤ n− 1

n
τ, (23)

which correspond toγ1(β) ≤ τ ≤ γ2(β). If τ > γ2(β), (22) does not hold: therefore,p1(t) < θ1(t) for somet

and hencea∞ = 0. Similarly, if τ < γ1(β), (23) does not hold, thus leading toa∞ = 1.

ii) From (20)-(21) we have thata(1) = 1 if and only if τ ≤ min
{

β
n−1 ,

1
β+n−2

}

, while a(1) = 0 if and only if

τ > max
{

β
n−1 ,

1
β+n−2

}

. Sinceβ ≤ 1 implies β
n−1 ≤ 1

β+n−2 it remains to discuss the case in which

β

n− 1
< τ ≤ 1

β + n− 2
, (24)

which, according to the above discussion, leads toa(1) = [0, 1, . . . , 1]′. Hencep(2) = Ga(1) is such that

p1(2) =
n− 1

β + n− 1
,

p2(2) =
β + n− 2

β + n− 1
.
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Fig. 1. Complete graph, WAL setting,n = 5.

Being from Lemma 1

θ1(2) =
n− 1

n
τ
(
1− λ2

c

)
,

θ2(2) =
n− 1

n
τ

(

1 +
1

n− 1
λ2
c

)

,

through long but straightforward calculations it is possible to verify that, under the assumptions (24), one has

p1(2) ≥ θ1(2), p2(2) ≥ θ2(2).

Therefore,a(2) = 1 and one can conclude thata∞ = 1 for everyτ ≤ 1
β+n−2 = γ3(β).

A byproduct of the proof of Theorem 1 is the characterizationof the cases for which the asymptotic behavior is

reached in one step.

Corollary 2. System(5),(6), with G = F given by(14) and initial condition(8). satisfies

- a(t) = 1 for all t ≥ 1, if and only if τ ≤ min
{

β
n−1 , γ3(β)

}

;

- a(t) = 0 for all t ≥ 1, if and only if τ > max
{

β
n−1 , γ3(β)

}

.

Theorem 1 gives the complete characterization of the asymptotic behavior of system (5),(6), with initial condition

(8). Notice that there are three possible asymptotic activity profiles: i) all the agents become active; ii) all the agents

become inactive; iii) the situation remains always the sameas in the initial condition (i.e., agent 1 is active and

all the others are inactive). From the proof of Theorem 1 it isapparent that the asymptotic valuea∞ is always

reached in a finite number of steps. However, it is not possibile to give an a priori upper bound to such a number,
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Fig. 2. Complete graph, WAL setting,n = 20.

which can be arbitrarily high. For example, ifn = 5, τ = 0.99 andβ = 15, one has thata(t) = 0 only for t ≥ 19.

Similarly, if n = 5, τ = 0.01 andβ = 118, one has thata(t) = 1 only for t ≥ 56.

Figures 1 and 2 show the asymptotic behaviors achieved for different values ofβ (relative confidence parameter)

andτ (initial threshold of the ordinary agents), in the cases of5 and20 agents, respectively. The different regions

correspond to:a∞ = 1 (red); a∞ = 0 (green);a(t) = a(0), ∀t (light blue). The dashed curves represent the

functionsγi(β) defined in (15)-(17). Notice that these curves intersect atβ = 1. It can be observed that forn = 20

the curvesγ1(τ) andγ3(τ) are almost indistinguishable. As expected, the area in which all the agents end up to

be inactive grows withn, while the region in which all the agents become active tendsto shrink, as well as that

in which the initial conditiona(0) is maintained indefinitely.

B. Uniform activity level

Now, let us consider setting UAL. When the interconnection graph is complete, this means that

G =
11

′

n
, (25)

andF is given by (14). Let us define the function

η(β) =
β + n− 1

n(β + n− 2)
.

Then, the following result holds.
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Theorem 2. System(5),(6), with F defined as in(14), G given by(25) and initial condition(8), has the following

asymptotic behaviors:

i) For β > 1,

- if τ < 1
n−1 , thena∞ = 1;

- if τ > 1
n−1 , thena∞ = 0;

- if τ = 1
n−1 , thena(t) = a(0), ∀t ≥ 1.

ii) For β ≤ 1, if τ ≤ η(β), thena∞ = 1; otherwisea∞ = 0.

Proof: i) By following the same reasoning as in the proof of Theorem 1, one gets (18)-(19) and, beingG

given by (25),p1(1) = p2(1) =
1
n

. Hence,a(1) = 1 if and only if the following conditions are satisfied

1

n
≥ n− 1

β + n− 1
τ,

1

n
≥ β + n− 2

β + n− 1
τ,

while a(1) = 0 if and only if both conditions are violated. Whenβ+n−1
n(β+n−2) < τ ≤ β+n−1

n(n−1) , one hasa(1) = a(0).

Notice that this can occur only ifβ > 1, which means that (12)-(13) in Corollary 1 hold. Hence,a(t) = a(0) until

either p1(t) < θ1(t) or p2(t) ≥ θ2(t), are verified. Sincep(t + 1) = Ga(t) = 1
n
1, these conditions correspond

respectively to

1

n
<

n− 1

n
τ
(
1− λt

c

)
, (26)

1

n
≥ n− 1

n
τ

(

1 +
1

n− 1
λt
c

)

, (27)

whereλc =
β−1

β+n−1 as in Lemma 1. Being0 < λc < 1, (26)-(27) lead respectively to

λt
c < 1− 1

(n− 1)τ
,

λt
c ≤

1

τ
− n+ 1 .

Hence, one eventually getsa(t) = 0, for somet, whenever

1− 1

(n− 1)τ
>

1

τ
− n+ 1,

which corresponds toτ > 1
n−1 . Conversely, ifτ < 1

n−1 , (27) will occur before (26), thus leading toa(t) = 1.

Finally, for τ = 1
n−1 , (26)-(27) are never satisfied and thereforea(t) = a(0) indefinitely.

ii) Let β ≤ 1. Similarly to the proof of item ii) in Theorem 1, it is possible to show that if

β + n− 1

n(n− 1)
< τ ≤ β + n− 1

n(β + n− 2)

one getsa(1) = [0, 1, . . . , 1]′ and, after long but straightforward manipulations,

p1(2) ≥ θ1(2), p2(2) ≥ θ2(2).

Therefore,a(2) = 1 and hencea∞ = 1 for everyτ ≤ β+n−1
n(β+n−2) = η(β).
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Fig. 3. Complete graph, UAL setting,n = 5.

Corollary 3. System(5),(6), with F defined as in(14), G given by(25) and initial condition(8), satisfies

- a(t) = 1 for all t ≥ 1, if and only if τ ≤ min
{

β+n−1
n(n−1) , η(β)

}

;

- a(t) = 0 for all t ≥ 1, if and only if τ > max
{

β+n−1
n(n−1) , η(β)

}

.

Figures 3 and 4 show the curveη(β) in the τ −β plane (dashed), along with the horizontal lineτ = 1
n−1 (solid),

for n = 5 andn = 20 respectively. Notice that in the latter case, the two lines are almost coincident. Also in this

setting, the area in which all the agents end up to be inactivegrows withn (notice the scale onτ ), while the region

in which all the agents become active tends to shrink.

It is worth observing that whenβ = 1, matrix G is the same in both the WAL and the UAL setting, so that

conditions in Theorems 1 and 2 coincide. In this case, the scenario addressed in [24] is recovered. In particular,

from Corollaries 2 and 3 it turns out that only two situationsoccur: eithera(1) = 1 if τ ≤ 1
n−1 , or a(1) = 0

otherwise. Hence, the steady state behavior is always achieved in one step. The introduction of the parameterβ,

accounting for the relative confidence of each agent on its own opinion, has significantly enriched the picture of

possible asymptotic behaviors of the system. Forβ > 1, three new different situations appear in the WAL setting:

all the agents eventually become active; all the agents eventually become inactive; the initial situation is maintained

indefinitely. Asβ increases, the latter situation occurs for a larger range ofvalues of the initial thresholdτ . This

corresponds to the fact that in a network whose agents are more self-confident, it is more difficult to persuade them

to change their status. Conversely, forβ < 1, this behavior disappears and either1 is reached (in one or two steps)

or all the agents become inactive in one step.
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Another interesting observation concerns the differencesbetween the WAL and UAL scenarios. The same five

behaviors described above for the WAL setting, are present also in setting UAL, but the condition in whicha(t) =

a(0), ∀t, occurs only ifτ is exactly equal to 1
n−1 , which is clearly a singular condition.

IV. STAR GRAPH

In this section we analyze the asymptotic behavior of system(5),(6) when the graph has a star structure, as

depicted in Figure 5. In the star graph, the radical agent (i = 1) is the center of the graph, while the remaining

n− 1 ordinary agents are connected only to the radical. This leads to a matrixF of the form

F =














β
β+n−1

1
β+n−1 . . . . . . 1

β+n−1

1
β+1

β
β+1 0 . . . 0

... 0
. . . 0

...
...

. . . 0

1
β+1 0 . . . . . . β

β+1














(28)
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We consider scenarios WAL and UAL, defined as in Section III. While in the formerG = F , in the latter one has

G =














1
n

1
n

. . . . . . 1
n

1
2

1
2 0 . . . 0

... 0
. . . 0

...
...

. . . 0

1
2 0 . . . . . . 1

2














(29)

Let us define

r =
(n− 1)(β + 1)

β + n− 1
, (30)

λs =
β(2β + n)

(β + 1)(β + n− 1)
− 1. (31)

The following technical results are instrumental to the asymptotic analysis of the star graph interconnection.

Lemma 2. Consider the dynamic model(5), with matrixF given by(28). If θ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1, then

θ1(t) =
r

1 + r
τ
(
1− λt

s

)
, (32)

θi(t) =
r

1 + r
τ

(

1 +
1

r
λt
s

)

, i = 2, . . . , n, (33)

wherer andλs are given by(30) and (31), respectively.

Proof: Let us first observe that, due to the structure ofF in (28), one has that system (5) with the initial

conditionθ(0) = [0, τ, . . . , τ ]′ satisfiesθ2(t) = θ3(t) = · · · = θn(t), ∀t ≥ 0. This implies that one can analyze the
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behavior ofθ(t) by considering the two-dimensional system

θ1(t+ 1) =
β

β + n− 1
θ1(t) +

n− 1

β + n− 1
θ2(t)

θ2(t+ 1) =
1

β + 1
θ1(t) +

β

β + 1
θ2(t).

It is easy to check that the eigenvalues of such system are1 andλs in (31). Moreover, (32)-(33) readily follow

from the system response to the initial conditionθ(0).

Corollary 4. Consider the dynamic model(5), with matrixF given by(28). If θ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1,

then

lim
t→∞

θ(t) =
r

1 + r
τ 1. (34)

Moreover, ifβ >
√
n− 1, thenλs > 0 and

θ1(t+ 1) > θ1(t),

θi(t+ 1) < θi(t), i = 2, . . . , n,

for all t ≥ 0.

A. Weighted activity level

Let us first, consider the WAL setting, i.e.,G = F as in (28). Define the functions ofβ:

δ1(β) =
nβ + 2(n− 1)

(n− 1)(β + 1)2
, (35)

δ2(β) =
β(β + 1)

(β + n− 1)
δ1(β), (36)

δ3(β) = β δ1(β). (37)

Such functions are shown in Figures 6-7 forn = 5 andn = 20, respectively. The following result holds.

Theorem 3. System(5),(6), with G = F given by(28) and initial condition(8), exhibits the following asymptotic

behaviors.

i) For β >
√
n− 1,

- if τ < δ1(β), thena∞ = 1;

- if τ > δ2(β), thena∞ = 0;

- if δ1(β) ≤ τ ≤ δ2(β), thena(t) = a(0), ∀t ≥ 1.

ii) For 1 ≤ β ≤
√
n− 1, if

⌈

logλ2
s

1

λs

(
1

τ

r + 1

β + 1
− r

)⌉

≥
⌈

logλ2
s

(
β

τ

r + 1

β + 1
− r

)⌉

(38)

thena∞ = 1. Otherwise,a∞ = 0.

iii) For β < 1,
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Fig. 6. Star graph, WAL setting,n = 5.

- if τ ≤ δ3(β), thena∞ = 1;

- if τ > δ1(β), thena∞ = 0;

- if δ3(β) < τ ≤ δ1(β), thena(t) oscillates indefinitely between[1, 0, . . . , 0]′ and [0, 1, . . . , 1]′.

Proof: By using the same argument as in Lemma 2, one hasθ2(t) = θ3(t) = · · · = θn(t), and, beinga(0) as

in (8), alsoa2(t) = a3(t) = · · · = an(t), ∀t ≥ 0. Hence, in the sequel we will refer only toθ2(t) anda2(t).

i) Sincep(1) = Ga(0), one has

p1(1) =
β

β + n− 1
,

p2(1) =
1

β + 1
.

Thereforea(1) = 1 if and only if the following conditions are satisfied

β

β + n− 1
≥ θ1(1) =

n− 1

β + n− 1
τ, (39)

1

β + 1
≥ θ2(1) =

β

β + 1
τ, (40)

which are equivalent to

τ ≤ min

{
1

β
,

β

n− 1

}

.

Conversely,a(1) = 0 if and only if

τ > max

{
1

β
,

β

n− 1

}

.



16

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

β

τ

δ1(β)

δ2(β)
δ3(β)

Fig. 7. Star graph, WAL setting,n = 20.

Clearly, if 1
β
< τ ≤ β

n−1 , one hasa(1) = a(0). This can occur only ifβ >
√
n− 1. Then, according to Corollary

4, one has thatθ1(t) is monotonically increasing, whileθ2(t) is decreasing. Therefore, one will havea(t) = a(0)

until eitherp1(t) < θ1(t) or p2(t) ≥ θ2(t). From (34) and (30), both conditions will never occur if the following

inequalities hold

β

β + n− 1
≥ (n− 1)(β + 1)

nβ + 2(n− 1)
τ, (41)

1

β + 1
≤ (n− 1)(β + 1)

nβ + 2(n− 1)
τ, (42)

which correspond toδ1(β) ≤ τ ≤ δ2(β). If (42) is violated, i.e.τ < δ1(β), one eventually hasa(t̄) = 1 for some

t̄. Similarly, if (41) is violated, i.e.τ > δ2(β), one will havea(t̄) = 0 for somet̄.

ii) Let 1 ≤ β ≤
√
n− 1. From the discussion in item i), it remains to analyze the situation in which β

n−1 < τ ≤ 1
β

.

By comparing with (39)-(40), this assumption impliesa1(1) = 0, a2(1) = 1 andp(2) = Ga(1) so that

p1(2) =
n− 1

β + n− 1
,

p2(2) =
β

β + 1
.

Through straightforward manipulations, it is easy to show that for all β ≤
√
n− 1 it holds

θ1(2) =

(
β(n− 1)

(β + n− 1)2
+

β(n− 1)

(β + n− 1)(β + 1)

)

τ <
n− 1

β + n− 1
(43)

which leads toa1(2) = 1. On the other hand, ifθ2(2) >
β

β+1 , one will havea2(2) = 0 and hencea(2) = a(0).
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Being−1 < λs ≤ 0 (see Corollary 4), from (43) and the violation of the inequality in (39), one has

β

β + n− 1
< θ1(t) <

n− 1

β + n− 1

for all t ≥ 1. This means thata(t) will keep oscillating between[1, 0, . . . , 0]′ and [0, 1, . . . , 1]′, until one of the

following conditions is violated

θ2(t) >
β

β + 1
for event; (44)

θ2(t) ≤
1

β + 1
for odd t. (45)

Sinceβ ≥ 1 and θ2(t) converges, it is apparent that both conditions cannot hold indefinitely: therefore,a(t) will

eventually be equal either to1 or to 0, depending on which condition is violated first. By using (33), it is easy to

show that (44) is violated fort = 2k if

k ≥
⌈

logλ2
s

(
β

τ

r + 1

β + 1
− r

)⌉

while (45) is violated fort = 2k + 1 if

k ≥
⌈

logλ2
s

1

λs

(
1

τ

r + 1

β + 1
− r

)⌉

which leads to condition (38).

iii) If β < 1, by following the same reasoning as in the previous item, onehas that (44) and (45) can hold

simultaneously for allt, provided that

β

β + 1
< lim

t→+∞
θ2(t) ≤

1

β + 1
. (46)

By using (34), this corresponds to

δ3(β) < τ ≤ δ1(β).

Conversely, if the leftmost inequality in (46) is violated one hasa∞ = 1, while violation of the rightmost

inequality in (46) leads toa∞ = 0.

The next Corollary, which stems directly from the proof of Theorem 3, singles out the cases in which the

asymptotic behavior is achieved in one step.

Corollary 5. System(5),(6), with G = F given by(28) and initial condition(8), satisfies

- a(t) = 1 for all t ≥ 1, if and only if τ ≤ min
{

1
β
, β
n−1

}

;

- a(t) = 0 for all t ≥ 1, if and only if τ > max
{

1
β
, β
n−1

}

.

Figures 6-7 show the asymptotic behaviors achieved in scenario WAL for different values ofβ (relative confidence

parameter) andτ (initial threshold of the ordinary agents), in the cases of5 and20 agents, respectively. The different

regions correspond to:a∞ = 1 (red); a∞ = 0 (green);a(t) = a(0), ∀t (light blue); a(t) switching between

[1 0 . . . 0]′ and [0 1 . . . 1]′ (blue). The dashed curves represent the functionsδi(β) defined in (35)-(37). Notice
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Fig. 8. A detail of the boundary defined by condition (38), forn = 20.

that δ1(β) andδ2(β) intersect atβ =
√
n− 1, while δ1(β) andδ3(β) intersect atβ = 1: these are the values that

distinguish the three different asymptotic scenarios described by Theorem 3.

It is worth remarking the particular structure of the boundary defined by (38), which separates the regions in

which a∞ = 1 anda∞ = 0, when1 ≤ β ≤
√
n− 1. It can be observed that this curve changes its slope an infinite

number of times in any intervalβ ∈ (1, 1+ ǫ), with ǫ arbitrarily small. A detail of this behavior is shown in Figure

8, for n = 20.

B. Uniform activity level

In the UAL setting with the star graph interconnection, one hasF as in (28) andG given by (29). Letr andλs

be given by (30)-(31), and define the function ofβ:

µ(β) =
nβ + 2(n− 1)

2(n− 1)(β + 1)
. (47)

Before proving the main result, let us introduce the following technical lemma.

Lemma 3. Let n ≥ 2 and 0 < β <
√
n− 1. Then,

β + n− 1

n(n− 1)
<

β + 1

2β
.

Proof: One has

β + n− 1

n(n− 1)
<

√
n− 1 + n− 1

n(n− 1)
=

1 +
√
n− 1

n
√
n− 1

≤ 1 +
√
n− 1

2
√
n− 1

<
β + 1

2β
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Fig. 9. Star graph, UAL setting,n = 5.

where the latter inequality comes from the fact thatβ+1
2β is a strictly decreasing function ofβ in the interval

0 < β <
√
n− 1.

Theorem 4. System(5),(6), with F andG given by(28) and (29), respectively, and initial condition(8), exhibits

the following asymptotic behaviors.

i) For β ≥
√
n− 1, if

⌈

logλs

(

1− r + 1

r n τ

)⌉

≥
⌈

logλs

(
1 + r

2τ
− r

)⌉

(48)

thena∞ = 1. Otherwise,a∞ = 0.

ii) For β <
√
n− 1,

- if τ < µ(β), thena∞ = 1;

- if τ > µ(β), thena∞ = 0;

- if τ = µ(β), thena(t) oscillates indefinitely between[1, 0, . . . , 0]′ and [0, 1, . . . , 1]′.

Proof: As in Theorem 3, it holdsθ2(t) = θ3(t) = · · · = θn(t) and a2(t) = a3(t) = · · · = an(t), ∀t ≥ 0.

Hence, we can refer only toθ2(t) anda2(t).

i) Being p(1) = Ga(0), one hasp1(1) = 1
n

and p2(1) = 1
2 . Thereforea(1) = 1 if and only if the following
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Fig. 10. Star graph, UAL setting,n = 20.

conditions are satisfied

1

n
≥ θ1(1) =

n− 1

β + n− 1
τ,

1

2
≥ θ2(1) =

β

β + 1
τ,

which are equivalent to

τ ≤ min

{
β + n− 1

n(n− 1)
,
β + 1

2β

}

.

Conversely,a(1) = 0 if and only if

τ > max

{
β + n− 1

n(n− 1)
,
β + 1

2β

}

.

If β+1
2β < τ ≤ β+n−1

n(n−1) , one hasa(1) = a(0). Notice that, due to Lemma 3, such aτ exists only ifβ ≥
√
n− 1.

Hence, according to Corollary 4, the thresholdsθ1(t) and θ2(t) are, respectively, monotonically increasing and

decreasing. Therefore, one will havea(t) = a(0) until eitherp1(t) < θ1(t) or p2(t) ≥ θ2(t), which, according to

(32)-(33), correspond to

1

n
<

r

1 + r
τ
(
1− λt

s

)
, (49)

1

2
≥ 1

1 + r
τ
(
r + λt

s

)
, (50)
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wherer andλs are given by (30) and (31). Through straightforward manipulations, (49)-(50) lead respectively to

t ≥ t0 ,

⌈

logλs

(

1− r + 1

r n τ

)⌉

,

t ≥ t1 ,

⌈

logλs

(
1 + r

2τ
− r

)⌉

.

Clearly, if t0 > t1 one hasa∞ = 1, while if t0 < t1, a∞ = 0. In case thatt0 = t1, one getsa(t0) = a(t1) =

[0 1 1 . . . 1]′, which leads top1(t0+1) = n−1
n

andp2(t0+1) = 1
2 . Sinceθ2(t) is decreasing,θ2(t0+1) < θ2(1) ≤ 1

2 .

On the other handθ1(t) is increasing and hence

θ1(t0 + 1) < lim
t→+∞

θ1(t) =
r

1 + r
τ =

(n− 1)(β + 1)

nβ + 2(n− 1)
τ ≤ n− 1

n
(51)

where it is easy to show that the latter inequality holds for all n ≥ 2, being τ ≤ 1. Hencea(t0 + 1) = 1 and

a∞ = 1. This proves condition (48).

ii) Let β <
√
n− 1. Then, due to Lemma 3,β+n−1

n(n−1) < β+1
2β . Therefore, following the reasoning in item i),a(1)

cannot be equal toa(0). In particular,a(t) will keep oscillating between[1, 0, . . . , 0]′ and [0, 1, . . . , 1]′ if the

following conditions are satisfied

θ1(t) >
1

n
, θ2(t) ≤

1

2
for odd t; (52)

θ1(t) ≤
n− 1

n
, θ2(t) >

1

2
for event. (53)

Corollary 4 states that bothθ1(t) and θ2(t) converge asymptotically to r
1+r

τ . Moreover, due to (32),θ1(t) is

increasing for all event. Thanks to (51), one can conclude that the first condition in (53) will hold indefinitely. On

the other hand, the second condition in (52) will be eventually violated if and only if

r

1 + r
τ >

1

2

which corresponds toτ > µ(β). This leads toa∞ = 0. Conversely, ifτ < µ(β), either the first condition in

(52) or the second condition in (53) will eventually be violated, thus leading toa∞ = 1. Finally, whenτ =

µ(β), all conditions (52)-(53) will hold indefinitely, thus leading to oscillations ofa(t) between[1, 0, . . . , 0]′ and

[0, 1, . . . , 1]′.

Corollary 6. System(5),(6), with F andG given by(28) and (29), respectively, and initial condition(8), satisfies

- a(t) = 1 for all t ≥ 1, if and only if τ ≤ min
{

β+n−1
n(n−1) ,

β+1
2β

}

;

- a(t) = 0 for all t ≥ 1, if and only if τ > max
{

β+n−1
n(n−1) ,

β+1
2β

}

.

Figures 9-10 show the asymptotic behaviors achieved in scenario UAL for different values ofβ andτ , for n = 5

andn = 20, respectively. Colors have the same meaning as in Figures 6-7. The dashed line represents the function

µ(β) defined in (47), while the solid line corresponds to condition (48) .

As for the complete graph, also for the star graph it can be observed that the WAL scenario shows a wider

variety of asymptotic behaviors with respect to the UAL scenario. In particular, in the latter the initial activity

patterna(0) is never maintained indefinitely and the persistent oscillations forβ < 1 occur only under the singular
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conditionτ = µ(β) (while in the WAL scenario they show up for the entire range ofτ values). Notice that these

oscillations are due to the shyness of the agents, which are less confident in their own opinion than in that of their

neighbors, thus leading to persistent switchings between activity and inactivity. Moreover, it can be shown that in

the UAL scenario, one hasa∞ = 1 wheneverτ ≤ 1
2 , irrespectively of the number of agentsn and of the confidence

parameterβ. Conversely, in the WAL scenario, the region in whicha∞ = 1 tends to shrink as eithern or β grow.

V. RING GRAPH

In this section we analyze the asymptotic behavior of system(5)-(6) when the graph has a ring structure. In the

ring graph, agenti has as neighbors agentsi − 1 and i + 1, with the conventionn + 1 = 1 (see Figure 11). We

still assume that agent 1 is a radical while the others are ordinary, and we analyze the asymptotic behavior of the

system starting from the initial condition (8). The matrixF is now given by

F =


















β
β+2

1
β+2 0 . . . 0 1

β+2

1
β+2

β
β+2

1
β+2 0 . . . 0

0 1
β+2

. . .
. . . . . .

...
...

. . .
. . .

. . .
...

0
. . .

. . . 1
β+2

1
β+2 0 . . . . . . 1

β+2
β

β+2


















(54)
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while matrixG in scenario UAL is

G =


















1
3

1
3 0 . . . 0 1

3

1
3

1
3

1
3 0 . . . 0

0 1
3

. . .
. . . . . .

...
...

. . .
. . .

. . .
...

0
. . .

. . . 1
3

1
3 0 . . . . . . 1

3
1
3


















(55)

In order to simplify the treatment, hereafter only the case in whichn is odd (i.e., the number of ordinary agents

is even) will be considered. Moreover, leth = n−1
2 . The following technical result, relying on the propertiesof

circulant matrices [29], provides the analytic expressionfor the threshold evolution according to equation (5).

Lemma 4. Consider the dynamic model(5), with matrixF given by(54), θ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1 and

oddn. Then,

θ(t) =
n− 1

n
τ1 − τ

h∑

k=1

(λk)
tvk, (56)

where

λk =
1

β + 2

(

β + 2 cos

(

k
2π

n

))

, (57)

vk =
2

n

[

1 cos

(

k
2π

n

)

. . . cos

(

(n− 1)k
2π

n

)]′
, (58)

for k = 1, . . . , h, andh = n−1
2 .

Proof: Matrix F in (54) is a circulant matrix, i.e. it has the form

F =











f0 f1 f2 . . . fn−1

fn−1 f0 f1 . . . fn−2

...
...

...
. . .

...

f1 f2 f3 . . . f0











,

wheref0 = β
β+2 , f1 = fn−1 = 1

β+2 andfi = 0, for i 6= 0, 1, n−1. The eignevalues and eigenvectors of a circulant

matrix can be computed analytically (e.g., see [29]). Letωk = ek
2π

n
j , wherej =

√
−1. The eigenvalues ofF are

given by

λk =

n−1∑

i=0

fiω
i
k =

1

β + 2

(

β + 2 cos

(

k
2π

n

))

, k = 0, . . . , n− 1.

The eigenvectors ofF are given by

uk =
1√
n
[1 ωk . . . ωn−1

k ]′, k = 0, . . . , n− 1. (59)

and form an orthonormal basis. A circulant matrix can alwaysbe diagonalized. LetU = [u0 u1 . . . un−1], then

F = UΛU∗, whereΛ = diag(λ0, . . . , λn−1) andU∗ is the conjugate transpose ofU (Th. 3.2.1 in [29]). Observing
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that λ0 = 1, λk = λn−k, k = 1, . . . , h, andu0 = 1√
n
1, the evolution of the thresholdsθ(t) can be written as

θ(t) = UΛtU∗θ(0) =
n− 1

n
τ1 +

h∑

k=1

λt
k(uku

∗
k + un−ku

∗
n−k)θ(0)

=
n− 1

n
τ1 − τ√

n

h∑

k=1

λt
k(uk + un−k),

where the last equality comes fromu∗
kθ(0) = − τ√

n
, sinceu∗

k1 = 0, k = 1, . . . , n − 1. The thesis (56) easily

follows by noting that the entries ofuk in (59) are such thatωl
k + ωl

n−k = 2 cos
(
l 2π
n

)
, for l = 0, . . . , n− 1 and

k = 1, . . . , h.

From (56) and (58) it can be checked thatθi+1(t) = θn−i+1(t), for i = 1, . . . , h and for allt. Hence, due to the

structure of matricesF andG resulting from the ring interconnection, one will have alsoai+1(t) = an−i+1(t) and

pi+1(t) = pn−i+1(t), for i = 1, . . . , h. The following lemma gives other useful properties that will be instrumental

to proving the main result.

Lemma 5. Consider the same assumptions as in Lemma 4 and letβ ≥ 1. Then for allt ≥ 1 the following statements

hold

i) θi(t) ≤ θi+1(t), for i = 1, . . . , h;

ii) θi(t− 1) ≤ θi+1(t), for i = 1, . . . , h.

Proof: i) By (8), the statement is true att = 0. Now, let the statement hold at timet. Then, recalling that

θh+1(t) = θh+2(t) for all t, one has fori = 2, . . . , h

θi+1(t+ 1)− θi(t+ 1) =
1

β + 2
θi(t) +

β

β + 2
θi+1(t) +

1

β + 2
θi+2(t)

−
(

1

β + 2
θi−1(t) +

β

β + 2
θi(t) +

1

β + 2
θi+1(t)

)

≥ 0,

while, beingβ ≥ 1,

θ2(t+ 1)− θ1(t+ 1) =
1

β + 2
θ1(t) +

β

β + 2
θ2(t) +

1

β + 2
θ3(t)−

β

β + 2
θ1(t)

− 2

β + 2
θ2(t) ≥ β − 1

β + 2
(θ2(t)− θ1(t)) ≥ 0.

Therefore, the claim holds by induction.

ii) By applying the result in item i), for alli = 1, . . . , h, one has

θi+1(t) =
1

β + 2
θi(t− 1) +

β

β + 2
θi+1(t− 1) +

1

β + 2
θi+2(t− 1)

≥
(

1

β + 2
+

β

β + 2
+

1

β + 2

)

θi(t− 1) = θi(t− 1).

A. Weighted activity level

Now, we are ready to characterize the asymptotic behavior inthe WAL scenario, for the ring graph interconnection.

In order to streamline the presentation, only the caseβ ≥ 1 will be treated.
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Fig. 12. Ring graph, WAL setting,n = 5.

Theorem 5. Let E be a ring graph,F = G given by(54) as in the WAL setting,n odd andβ ≥ 1. Define

qj(β) = inf
t

{

n− 1

n
− 2

n

h∑

k=1

(λk)
t cos

(

jk
2π

n

)}

, j = 1, . . . , h, (60)

q0(β) =
n− 1

nβ
(61)

whereλk is given by(57), and set~ = ⌊h
2 ⌋. Then, system(5),(6), with initial condition (8), exhibits the following

asymptotic behaviors:

i) If τ ≤ n
n−1

1
(β+2) , thena∞ = 1.

ii) If
1

(β + 2)qj+1(β)
≤ τ ≤ 1

(β + 2)qj(β)
, (62)

for somej ∈ {0, 1, . . . , ~}, thena∞ = αj , given by

αj =
[
1 . . . 1
︸ ︷︷ ︸

0 . . . 0 1 . . . 1
︸ ︷︷ ︸

]′
, j = 1, . . . , ~.

j + 1 j
(63)

iii) If τ > max
{

1
(β+2)q0(β)

, 1
(β+2)q1(β)

}

, thena∞ = 0.

Proof: Before proving the single items, let us show by induction that pi(t) ≥ pi+1(t), for i = 1, . . . , h and

for all t ≥ 0. Being

p(0) =

[
β

β + 2

1

β + 2
0 . . . 0

1

β + 2

]′
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Fig. 13. Ring graph, WAL setting,n = 21.

andβ ≥ 1, the statement is true att = 0. Let pi(t) ≥ pi+1(t), i = 1, . . . , h, at timet. Then, beingθi(t) ≤ θi+1(t)

according to item i) in Lemma 5, one has thata(t) = αj in (63) for somej, which in turn gives

p(t+ 1) = Gαj =
[
1 . . . 1
︸ ︷︷ ︸

β+1
β+2

1
β+2 0 . . . 0

︸ ︷︷ ︸
1

β+2
β+1
β+2 1 . . . 1

︸ ︷︷ ︸

]′

j n− 2j − 3 j − 1
(64)

and hencepi(t+ 1) ≥ pi+1(t+ 1), i = 1, . . . , h.

i) According to the previous discussion,a(t) is either equal to1 or 0, or it takes valuesαj in (63), which then

lead top(t+ 1) as in (64). Beinglim→+∞ θ(t) = n−1
n

τ , if n−1
n

τ < 1
β+2 , one has that eventuallya(t) will switch

from αj−1 to αj , for all j = 1, . . . , h, thus leading toa∞ = αh = 1.

ii) Let j ∈ {1, 2, . . . , ~}. From (56) and (60), one gets

inf
t
θj+1(t) = τ qj(β).

Through some tedious manipulations, it is possible to show that the infimum in (60) is equal ton−1
n

for j =

~+ 1, . . . , h, and it is approached asymptotically ast grows to infinity. Conversely, forj = 1, . . . , ~, the infimum

satisfiesqj(β) < n−1
n

and is attained at some finitet∗j . Moreover, beingθj+1(t) = τ for all t ≤ j−1, one obviously

has thatt∗j ≥ j. By following the same reasoning as in item i), the switch from αj to αj+1 will never occur if

τ qj(β) >
1

β+2 . Now, let (62) hold. From the rightmost inequality, by applying item ii) in Lemma 5, one gets

1

β + 2
≥ θj+1(t

∗
j ) ≥ θj(t

∗
j − 1) ≥ · · · ≥ θ2(t

∗
j − j + 1).
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Being t∗j ≥ j, one hast∗j − j + 1 ≥ 1. Hence, all the thresholdsθi, i = 2, . . . , j will take a value below 1
β+2 in

successive times, thus guaranteeing that all the switchings fromαi−1 to αi will eventually occur. This proves that

condition (62) leads toa∞ = αj .

iii) If τ > 1
(β+2)q1(β)

, one has that the switching froma(0) = α0 to α1 never occurs. In such a case, one gets

p(t) = Ga(0) =

[
β

β + 2

1

β + 2
0 . . . 0

1

β + 2

]′

anda(t) = α0 indefinitely, unlesslimt→+∞ θ1(t) >
β

β+2 , for somet. The latter condition corresponds ton−1
n

τ >

β
β+2 , i.e., τ > 1

(β+2)q0(β)
.

Figures 12-13 show the asymptotic behaviors achieved in scenario WAL for different values ofβ and τ , in

the cases of 5 and 21 agents, respectively. The different regions correspond to:a∞ = 1 (red); a∞ = 0 (green);

a(t) = a(0), ∀t (light blue);a∞ = αj (different shades of yellow). In particular, for the casen = 5 only a∞ = α1

is present, while forn = 21 one can observe five regions corresponding toa∞ = αj , j = 1, . . . , 5, the lightest (and

largest) one corresponding toα1. The dashed curves represent the boundaries defined by Theorem 5 as functions

of τ andβ.

In Figure 13, it can be noticed that the regions in whicha∞ = αj tend to shrink asj grows, while they approach

the region in whicha∞ = 1. Moreover, these regions also shrink asβ grows. On the other hand, their number

increases with the number of agents, being proportional ton
4 . Apart from these regions, the other asymptotic patterns

are the same as for the star graph, but the region in whicha∞ = a(0) is much larger in the ring network, while

those in which0 or 1 are achieved are significantly reduced (compare, e.g., Figures 7 and 13).

B. Uniform activity level

Let us consider the UAL setting. The asymptotic behavior forβ ≥ 1 is described by the next result.

Theorem 6. Let E be a ring graph,F and G given by(54) and (55), respectively,n odd andβ ≥ 1. Let the

functionsqj(β), j = 1, . . . , h, be defined as in(60). Then, system(5),(6), with initial condition (8), exhibits the

following asymptotic behaviors:

i) If τ ≤ n
3(n−1) , thena∞ = 1.

ii) If
1

3qj+1(β)
≤ τ ≤ 1

3qj(β)
,

for somej ∈ {1, 2, . . . , ~}, thena∞ = αj , given by(63).

iii) If τ > n−1
3n , thena∞ = 0.

Proof: By adopting the same argument as in the proof of Theorem 5, it can be shown thata(t) can take only

the values1, 0, or αj in (63). In the latter case, one gets

p(t+ 1) = Gαj =
[
1 . . . 1
︸ ︷︷ ︸

2
3

1
3 0 . . . 0

︸ ︷︷ ︸
1
3

2
3 1 . . . 1

︸ ︷︷ ︸

]′
.

j n− 2j − 3 j − 1
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Fig. 14. Ring graph, UAL setting,n = 5.

Then, item i) and item ii) forj = 1, . . . , ~ can be proven by following the same reasoning as in the proof of

Theorem 5.

Concerning item iii), let us first observe that ifτ > 1
3q1(β)

, the switching froma(0) = α0 to α1 never occurs. Being

p(1) = Gα0 =

[
1

3

1

3
0 . . . 0

1

3

]′

and q1(β) <
n

n−1 , one hasτ n−1
n

> 1
3 and hencelimt→+∞ θ1(t) >

1
3 . This means that eventually one will have

θ1(t) > p1(t) and thereforea∞ = 0.

Figures 14-15 show the asymptotic behaviors achieved in scenario UAL for different values ofβ and τ , for

n = 5 andn = 21, respectively. Colors have the same meaning as in Figures 12-13. The range ofτ is reduced

to highlight the presence of the regions in whicha∞ = αj . The dashed line represents the boundaries defined by

Theorem 6 as function ofτ andβ.

According to Theorem 6, in the UAL scenario it never occurs that a∞ = a(0), i.e., the initial condition cannot

be maintained indefinitely. Once again, this is a major difference with respect to what happens in the WAL setting

(compare Figures 14-15 with Figures 12-13). Moreover, a larger value of the self-confidence parameterβ enlarges

the gap between the extreme asymptotic behaviorsa∞ = 1 anda∞ = 0 in the WAL scenario, while this is not the

case in the UAL case.

By comparing the results obtained in the two considered scenarios, it can be concluded that the choice of the

matrix G plays a key role in defining the pattern of asymptotic behaviors in all the interconnection topologies

considered in the paper.
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VI. EXPERIMENTAL RESULTS WITH EGO NETWORKS

In this section, we evaluate to what extent the analytic results presented so far, and obtained in the case of simple

graph topologies, apply to more realistic social networks.To this end, we have carried out extensive simulations

on a real ego network and observed how the asymptotic behaviors depend on the model parameters.

The test network used in this study is extracted from the dataset described in [30], consisting of ten ego networks

taken from Facebook. The network selected hasn = 53 nodes, including the ego node, and 198 edges, resulting in

an average degree of 7.47 edges per node (see Fig. 16). The highest degree node is clearly the ego node, which,

by definition, is connected to all the other nodes. The node with the second highest degree has 19 incident edges,

whereas 10 nodes are connected to the ego node only. Dynamic system (5),(6) has been simulated with such an

ego network constituting the underlying communication infrastructure. The WAL setting has been considered, i.e.

F = G is assumed in throughout this section, with the entries ofF given by (7). Different combinations of the

initial thresholdτ and the self-confidence weightβ have been simulated. Parameterτ ranges from 0.01 to 0.99,

whereasβ varies from 0.1 to 20.

In the first scenario considered, the ego node is the only agent initially active. The fraction number of final

active agents, as a function ofτ andβ, is shown in Fig. 17. Among the graphs studied in Sec. III-V, the network

topology more similar to the ego network under consideration is clearly the star network. Although a non negligible

number of additional edges between the non-central nodes are now present, the asymptotic behaviors of the system

are very similar to those analytically derived in Sec. 3 (e.g., compare Fig. 7 to Fig. 17). For large values of the
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Fig. 16. Ego network used for simulation, includingn = 53 nodes and 198 edges (the red node is the ego node).
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Fig. 17. Final fraction of radical agents when the only initial radical agent is placed at the ego node.

self-confidence weight, i.e. forβ >
√
n− 1 ≃ 7.21, the asymptotic behavior of the test network is in very good
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Fig. 18. Final fraction of radical agents, averaged over 100different initial conditions, for different initial fractions ξ of radical agents.

agreement with that predicted by Theorem 3 (point (i)), witha∞ switching from1 to a(0) to 0 as τ crosses the

functionsδ1(β) andδ2(β) (see Fig. 17). For smaller values ofβ a richer variety of asymptotic behaviors are now

observed. In contrast to what happens for a truly star network, in this case 13 different values ofa∞ are found.

Notice, however, that three stationary asymptotic behaviors predicted by Theorem 3, namelya∞ ∈ {0, a(0), 1},

cover more than 95% of the simulation runs.

A second set of simulations has been carried out to analyze how the presence of more than one initial radical

agent modifies the final distribution of active agents. To this end, the simulations have been initialized to a number

of radicals equal to round(ξn), whereξ denotes the fraction of initial radical agents. The identity of the initial

radicals (i.e., the node where initial radicals are placed within the network) may have an impact on their ability
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to persuade a larger number of neighbors. Intuitively, morecentral or more connected nodes (in a sense, more

“popular” agents) are able to mobilize a higher number of individuals. To mitigate such an effect, simulation results

are averaged over 100 different randomly generated identities of the initially active agents. For consistency with

the theoretical analysis, the ego node is always initially active. The final fraction of active agents is reported in

Fig. 18, for four different values ofξ ranging from 0.05 to 0.30. It can be noticed that the smaller the number of

initial radicals, the sharper the transition between regions corresponding to different asymptotic behaviors. Although

somehow blurred by the averaging process, separating curves similar to those shown in Fig. 8 can be observed.

For values ofβ close to one, the transition between the regions with all active and all inactive final agents is very

irregular and spiked. This suggests that the fractal boundary found in Theorem 3 (point (ii)), and shown in Fig. 8,

is revealing of a phenomenon which can be experienced also inactual ego networks.

VII. C ONCLUSIONS

This paper has presented a class of dynamic threshold modelswhich can be used to analyze collective actions in

social networks. The main feature of this model class is thatthe threshold is time-varying, as it evolves according

to a dynamic opinion model. This leads to the generation of complex transient dynamics, in which each agent can

change her mind multiple times about undertaking the actionor not, and in some cases can even lead to steady

oscillating behaviors. The asymptotic activity pattern ofthe network clearly depends not only on the graph topology,

but also on the level of self-confidence of the agents. Moreover, a crucial role is played by the selected mechanism

for the computation of the neighbors’ activity level, whichdetermines how the agents decide to become active or

not.

The analytic results obtained so far support the thesis proposed in [23], and based on empirical evidence, according

to which “in the presence of a risk-averse majority and a radical minority, adding more links among the majority

does not necessarily help mobilization.”By looking at the regions corresponding to all agents becoming eventually

active (e.g., red regions in Figs. 2, 7 and 13), it can be clearly seen that achieveing full mobilization in a highly

connected network (e.g., a complete graph) can be harder than doing it in a less connected topology (e.g., star and

ring graphs).

There are many interesting developments that can be foreseen for the proposed model class. First of all, in this

study only simple graph structures have been considered. This has allowed us to derive analytic results providing

a complete characterization of the asymptotic behaviors for such networks. Despite the basic structure of the

considered networks, the obtained results shed light on thepotentiality of the model, and provide useful insights on

the behavior of more complex structures, such as ego networks, as confirmed by numerical simulation. Other studies

may concern the case in which more radical agents are presentin the network, or the presence of groups of ordinary

agents having different initial thresholds (e.g., modeling two parties with different initial opinions about the action

to be undertaken). The influence of the position of the radical agents within the network should also be investigated.

Another extension of the model consists in defining groups ofagents with different self-confidence levels, in order

to analyze which types of dynamics arises between confident and hesitant agents. Alternative opinion dynamics
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models can also be considered for the threshold evolution, by adopting either time-varying or even state-dependent

weights, like in the Hegselmann-Krause model [9]. Finally,it is worth remarking that the framework considered in

this work is deterministic, but stochastic versions can be formulated. For example, the self-confidence parameter

might be a random variable, thus accounting for variabilityin the agents’ self-confidence, or the network topology

itself can be stochastic, which is common in the social learning literature [31].
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