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Abstract. Lurking is a complex user-behavioral phenomenon that oc-
curs in all large-scale online communities and social networks. It gen-
erally refers to the behavior characterizing users that benefit from the
information produced by others in the community without actively con-
tributing back to the production of social content. The amount and
evolution of lurkers may strongly affect an online social environment,
therefore understanding the lurking dynamics and identifying strategies
to curb this trend are relevant problems. In this regard, we introduce
the Lurker Game, i.e., a model for analyzing the transitions from a lurk-
ing to a non-lurking (i.e., active) user role, and vice versa, in terms of
evolutionary game theory. We evaluate the proposed Lurker Game by
arranging agents on complex networks and analyzing the system evolu-
tion, seeking relations between the network topology and the final equi-
librium of the game. Results suggest that the Lurker Game is suitable
to model the lurking dynamics, showing how the adoption of rewarding
mechanisms combined with the modeling of hypothetical heterogeneity
of users’ interests may lead users in an online community towards a
cooperative behavior.

1. Introduction

Most members of online communities and social networks do not actively
contribute to the shared online space, i.e., they only consume (e.g., read,
watch) information without sharing their knowledge or expressing their opin-
ion. These users are commonly defined as lurkers, since they remain quite
unnoticed while benefiting from others’ information or services. Remarkably,
lurkers feel themselves as community members, and should not be trivially
regarded as totally inactive users, i.e., registered users who do not use their
account to join the online community.

The characterization of lurking in online communities has been a contro-
versial issue from a social science and computer-human interaction perspec-
tive [9]. One common perception of lurking is related to the infrequency of
active participation to the community life [24], while other definitions refer
to legitimate peripheral participation [17], individual information strategy
of microlearning [16], and knowledge sharing barriers [5]. In general, in the
realm of online social networks (OSNs), neutral or even positive views of
the presence of lurkers have normally supplanted negative views. The silent
presence of lurkers can indeed be seen as harmless as it reflects a subjective
reticence (rather than malicious motivations) to contribute to the commu-
nity wisdom [24]. Moreover, lurking can be expected or even encouraged
because it allows newcomers to learn the netiquette before they might de-
cide to provide a valuable contribution over time. On the other hand, if
users are worried that their private information may be revealed or their
security may be threatened by posting, they may decide to lurk to protect
themselves.
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Lurkers hold great potential in terms of social capital, because they ac-
quire knowledge from the OSN; further, they might decide to use this knowl-
edge in order to form their own opinions, although these will never or rarely
be unveiled to the community. Within this view, it is highly desirable to
delurk such users, i.e., to apply a mix of strategies aimed at encouraging
lurkers to return their acquired social capital, through a more active partic-
ipation to the community life. As a matter of fact, even though a massive
presence of lurkers is typical in a large-scale social environment, too many
lurkers would impair the virality of the online community, which instead
needs to be sustained over time with fresh ideas and initiatives. Social sci-
ence and human-computer interaction research studies have addressed the
delurking problem mainly focusing on the conceptualization of the strate-
gies to adopt, such as [27]: reward-based external stimuli (e.g., badges [3]),
providing encouragement information, improvement of the usability of the
online platform, and guidance from elders/master users to help lurkers be-
come familiar with the system as quickly as possible. However, given the
variety of influencing factors that drive online participation, developing a
computational approach to turn lurkers into active members of an OSN is
an emerging yet challenging problem, regardless of the delurking strategy
adopted.

Contributions. Our intuition in this work is that the behavioral dy-
namics underlying the transition from a lurking to non-lurking (i.e., active)
user role, and vice versa, can suitably be modeled via an evolutionary game
theory approach [21, 33, 23, 22, 15]. We define the Lurker Game, in which
active users are regarded as cooperators and lurkers as defectors. Coopera-
tors contribute to the system by adding information represented by “virtual
coins” to a common pool, while defectors do not contribute. The total
amount of virtual coins in the common pool increases according to two key
aspects: (i) the collective effort of cooperators and (ii) the different impact
that information naturally has on each agent, depending on her/his prefer-
ences. Our Lurker Game employs a Fermi-like function [29] to model the
transition probability from one agent strategy to another. Having consid-
ered the importance of rewarding mechanisms [29, 30, 4] towards an ordered
phase of cooperation (i.e., delurking), we also introduce a prize structure
for promoting cooperation. We evaluate the Lurker Game on random graph
models that resemble the complexity of real-world OSNs, focusing on the
effect that the network topology may have on the final equilibrium of the
game. This work represents, to the best of our knowledge, the first attempt
for quantitatively understanding lurking and delurking dynamics in OSNs
via the evolutionary game theory.

The remainder of the paper is organized as follows. Section 2 introduces
the Lurker Game on complex networks. Section 3 shows results of numerical
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simulations, and Section 4 provides a discussion on main experimental find-
ings. Related works are discussed in Section 5, finally Section 6 concludes
the paper.

2. The Lurker Game

User-generated communications and social content produced in an OSN
represent a rich source of knowledge whose value can, in principle, be in-
creased by collective efforts. Within this view, evolutionary games provide
a powerful tool to model the dynamics of OSNs [1, 26, 10].

Our aim in this work is the definition of a novel game, named Lurker
Game, to analyze the dynamics of OSN populations, by focusing on the
two main roles played by network members: active contributors and lurkers.
The former are regarded as contributors, whereas the latter as defectors.
Information generated by contributors is expressed in terms of virtual coin
(vc), which is assumed to be unitary by default. Note that we adopt the
term information with its more general meaning, which includes any type
of social content produced in an OSN (i.e., posts, comments, preferences,
etc.).

Our Lurker Game entails important aspects in cooperator-defector games.
The collective effort is represented by a synergy factor r (r > 0), which is
usually adopted in public goods games (PGGs) [29, 30], and used to grant
groups of cooperators. However, Lurker Game has two main differences from
classic PGG. First, due to its nature, the “public goods” in our game (i.e.,
information generated by contributors) is not divided but rather equally
shared among all users of a group. Second, we observe that information
may acquire a different value for each individual (e.g., one may contribute
by writing posts on politics but it is not interested in reading about music);
to model this heterogeneity of user interests and preferences, we introduce
a further parameter, denoted by ν, ranging in (0, 1], such that the common
pool of virtual coins, shared in the OSN environment, is diversified by means
of ν.

2.1. Basic Dynamics. Given a set of N agents, the dynamics of Lurker
Game unfolds in discrete time steps and is defined as follows. At each
time step, agents have to put into the common pool a virtual coin if they
take the role of cooperators, otherwise (i.e., they are lurkers) do nothing.
The accumulated amount of virtual coins is increased by r and ν, and then
equally shared among all agents. The payoff equations in Lurker Game are
defined as follows:

(1)

{
πc = rν

∑Nc

1 vc− vc
πd = rν

∑Nc

1 vc

with N c number of cooperators, r synergy factor, and ν representing the
heterogeneity of interests of users. Due to its evolutionary nature, Lurker
Game allows agents to change their strategy [33], i.e., from cooperation to
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defection and vice versa. In particular, when considering two agents at a
time, we adopt a Fermi-like function to implement a transition probability
from one strategy to another. Given two agents x and y, this probability is
defined as:

(2) W (sx → sy) =

(
1 + exp

[
πy − πx

K

])−1

where sx and sy denote the strategies of the players x and y, respectively,
πx and πy denote their respective payoff, and K indicates uncertainty in
adopting a strategy. By setting K = 0.5, we implement a rational and meri-
tocratic approach during the strategy revision phase [29]. Like in the PGG,
behaving as defectors is much more convenient than behaving as cooperators
and the Nash equilibrium of Lurker Game corresponds to defection.

2.2. Mean Field Analysis. We perform a mean field analysis [8] of Lurker
Game, in order to investigate if the Nash equilibrium corresponds to the final
ordered phase. Hence, we assume that the population is composed of only
one big community and every agent interacts with all the others. Under this
assumption, the evolution of a population with N agents is described by the
following set of equations [14]:

(3)


dρc(t)
dt = pc · ρc(t) · ρd(t)− pd · ρd(t) · ρc(t)

dρd(t)
dt = pd · ρd(t) · ρc(t)− pc · ρc(t) · ρd(t)

ρc(t) + ρd(t) = 1

with ρc(t) and ρd(t) densities of cooperators and defectors, pc(t) probability
that cooperators prevail, and pd(t) probability that defectors prevail. These
probabilities are computed according to the payoffs obtained, at each time
step, by cooperators and defectors as defined in Eq. 6. Therefore, we have to
consider the difference between the payoffs accumulated by the two agents
randomly chosen at each time step. If we denote with x a cooperator and
with y a defector, the probability pc corresponds to W (x → y), so we con-

sider the difference π(d) − π(c). While, pd corresponds to W (y → x), then
we consider πc − πd. Few algebraic steps lead to the following solutions:

(4)

{
πd − πc = rνNρc − rνNρc + 1 = 1

πc − πd = rνNρc − 1− rνNρc = −1

By substituting results of Eq. 4 in Eq. 2, one obtains pc ∼ 0.12 and pd ∼ 0.88.
Remarkably, the mean field approach to Lurker Game leads to dynamics
completely independent both from r and ν. Given the values computed in
Eq. 4, the solution of the system in Eq. 3 confirms the expected result, i.e.,
defection prevails according to the Nash equilibrium.

2.3. Rewarding Mechanisms. The above result leads us to focus on re-
warding mechanisms to drive a population towards an ordered phase of
cooperation. Therefore, we introduce a variation in the basic formulation of
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Algorithm 1 Lurker Game

Require: A population of N agents, where N c are cooperators and Nd are
defectors (N = N c +Nd).
The synergy factor r > 0.
The user preference coefficient ν ∈ (0, 1].
A network topology G that models the connectivity of the N agents,
otherwise agents are fully connected to each other (mean field).

1: repeat
2: Compute the payoff of cooperators and defectors, according to Eq. 5
3: Randomly select two agents x and y (with different strategies) s.t.
x, y are linked w.r.t. G

4: Agent y takes the strategy of agent x according to Eq. 2
5: until all agents have the same behavior (Nash equilibrium)

Lurker Game by introducing a prize structure for promoting cooperation.
This impacts on the payoff equation of cooperators, whereby the set of payoff
equations is modified as follows:

(5)

{
πc = rν

∑Nc

1 vc− vc+ Φ(∆tc)

πd = rν
∑Nc

1 vc

with Φ(∆tc) rewarding function that allows cooperators to receive a further
amount of virtual coins. This function takes in input ∆tc, i.e., the amount
of time each agent behaves as a cooperator. The prize structure S grants
cooperative agents at a fixed rate, i.e., every k time steps: S : ∆tc =
{k, k, . . . , k}. This way, each prize consists of an amount of vc equal to that
paid by a cooperator over time (between two achieved prizes). We define
the prize function as follows:

(6) Φ(∆tc) =

{
∆tc · vc if ∆tc ∈ S
0 if ∆tc 6∈ S

Analogously to the basic dynamics of Lurker Game, after every iteration
agents undergo a strategy revision phase based on Eq. 2. Algorithm 1
sketches the main steps performed in Lurker Game.

2.4. Lurker Game on Networks. Since social networks constitute the
natural environment to observe the phenomenon of lurking, we also study
the Lurker Game on complex networks. Following the lead of previous
studies on evolutionary games (e.g., [18, 10, 28, 21, 34, 15]), we focus our
attention on two relevant models: Barabasi-Albert model [6] (hereinafter
BA) and Watts-Strogatz [35] model (hereinafter WS). Since the topological
properties of networks generated by both considered models (i.e., BA and
WS) are well-known (see, e.g., [7]), all outcomes of the proposed model can
be analyzed seeking relations with the considered topology.
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Note that when agents are arranged on networks, the dynamics of the
game are different from those adopted in the mean field case, which in topo-
logical terms, can be viewed as a fully-connected network. Adopting complex
networks, only few agents are considered at each iteration. In particular,
at each time step two randomly chosen agents play Lurker Game with all
groups of belonging. Therefore, the accumulated payoffs are computed for
each group and the final prize is assigned only to cooperative agents that
played the game. Next, as previously discussed, the x-th agent tries to
enforce its strategy to the y-th agent with probability defined in Eq. 2.

Memoryless and memory-aware payoff. We introduce a further as-
pect of the proposed model, related to the way agents manage their accumu-
lated payoffs. We distinguish between two scenarios of payoff accumulation,
namely memoryless and memory-aware.

The memoryless case entails that every time two agents are selected to
play Lurker Game with their groups, they reset their accumulated payoff.
Therefore, when computing the transition probability of Eq. 2, they consider
only the payoff accumulated during the present time step. Instead, the
memory-aware case entails agents save their payoff over time. Note that
while the memory-aware case is closer to a real scenario (e.g., online users
may accumulate several badges over time), the memoryless case avoids noise
effects in numerical simulations that can emerge in Eq. 2 for large payoffs.

We investigate both cases, by introducing a cutoff in the difference be-
tween the payoffs of the two considered agents (i.e., x and y). In doing so,
for large payoffs, the Fermi function behaves like a simple rule with only
two possible results: 1 and 0, i.e., 1 if the payoff of the x-th agent is greater
than that of the y-th, and 0 otherwise. Thus, the interesting granularity, in
terms of transition probabilities, introduced by the Fermi function is lost in
the memory-aware case, after few time steps.

It is also relevant to observe that a similar problem may arise when dealing
with scale-free networks since, even in the memoryless case, nodes with high
degree (i.e., hubs) can accumulate at each iteration a very high payoff. As
a result, we expect that simulations performed on scale-free networks in the
memoryless case yield outcomes similar to those achieved by the memory-
aware case, at least by considering the same topology (i.e., scale-free in both
cases).

Identifying critical parameters Numerical simulations will be primar-
ily devoted to the identification of critical values of k and ν, i.e., the step
adopted in the prize structure S and the variety of information (or users’
interests) in the social network, respectively. These values together with the
final equilibrium achieved in both networks, provide a useful indicator for
studying the dynamics of Lurker Game and for comparing different network
topologies. Remarkably, we are dealing with a disordered system [11, 13, 14],
in terms of states (i.e., cooperators and defectors), having only two possible
equilibria: one characterized by the prevalence of one species (i.e., coopera-
tors or defectors) and one characterized by a coexistence of both species at
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(a) (b) (c)

Figure 1. Evaluation networks: (a) WS with β = 0.0, (b)
WS with β = 0.5, (c) BA.

Table 1. Structural properties of evaluation networks.

network model avg. path length diameter clust. coeff.

WS β = 0.0 625.38 1250 0.500
WS β = 0.3 7.89 14 0.165
WS β = 0.5 6.99 12 0.054
WS β = 0.8 6.67 11 0.005
BA 4.85 9 0.002

equilibrium. The former corresponds to a ferromagnetic phase, whereas the
latter to a paramagnetic phase [13]. Thus, both the Nash equilibrium and
its opposite case correspond to the ferromagnetic phase. The paramagnetic
phase has been observed in games like the PGG, obtained by tuning the
synergy factor and without adopting rewarding mechanisms [29].

3. Results

Experimental setting. We evaluated Lurker Game by arranging
agents on different networks, generated according to the BA and WS mod-
els. The former generates scale-free networks, i.e., networks characterized
by the presence of nodes with a very high degree, defined hubs. The WS
model generates different kinds of networks by tuning a rewiring parameter,
β, which ranges within [0, 1]. In particular, β = 0 yields a regular ring lattice
topology, intermediate values of β yield small-world-networks (characterized
by relatively low average path lengths and high clustering coefficients), while
completely random networks are obtained for high values of β. In this work,
we considered the following values: β = {0.0, 0.3, 0.5, 0.8}. Figure 1 shows
a pictorial representation of each kind of networks, whereas Table 1 reports
some of their structural properties (achieved with 5000 nodes).

Numerical simulations were performed with N = 5000 agents, with an
equal initial density of cooperators and defectors (i.e., ρc(0) = ρd(0) = 0.5),
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(a) (b)

Figure 2. Possible behaviors of the Lurker Game system.
Time evolution of density of cooperators: (a) cooperators
prevail, (b) defectors prevail. Results correspond to WS
model (β = 0.5) with 5000 agents and k = 2, for ν equal
to (a) 0.5 and (b) 0.3.

and an average degree 〈k〉 = 4. We set the synergy factor r to 2, as we
found that this value does not allow cooperators to survive without reward-
ing mechanisms (see also [29] for a discussion about the critical thresholds
of the synergy factor). Parameter ν was instead varied considering values
from 0 to 1. It is worth noting that for ν = 0.2 the game, in the memoryless
case and without the adoption of rewarding mechanisms, corresponds to the
PGG in networks with the same topology. Simulations were carried out for
a maximum number of time steps equal to 108, then results were averaged
over several different runs.

Evolution of the system. We initially analyzed the density of cooper-
ators over time in all networks. We found three main behaviors: cooperators
vanish (Fig. 2(b)) or prevail (Fig. 2(a)) after a number of time steps, or both
cooperators and defectors coexist over time. This finding clearly indicates
that a population playing the Lurker Game can reach both ordered phases
and disordered phases at equilibrium. In particular, since agent strategies
can be mapped to spins σ ± 1 respectively and, as observed, there are only
two possible equilibria, the evolution of the system can be analyzed in terms
of ferromagnetic phase transitions [20, 8]. Thus, mapping our model to a
spin system allows us to identify the conditions that can lead towards the
different kinds of equilibrium. The relevance of identifying a description
based on the language of phase transitions, lays in the fact that it opens the
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Table 2. Memoryless Agents

network model Critical ν k-range

WS β = 0.0 0.6 [1..5]
WS β = 0.3 0.44 [1..5]
WS β = 0.5 0.42 [1..5]
WS β = 0.8 0.41 [1..5]

BA 0.22 [1..5]

way to further analytical investigations [14] that can potentially lead to get
new insights on the proposed model.

Critical values of ν. We finally analyzed the role of ν. Results are
reported in Table 2 for the memoryless case. For the memory-aware case,
results indicate a more complex scenario, which is discussed next.

4. Discussion

Results of our investigations suggest that our Lurker Game has a rich
behavior, which can be described by considering the main degrees of freedom
of the system: ν, k, network topology and the evolution of payoffs over time.

Results on WS networks. In the memoryless case, for each considered
β, we found a well recognized critical ν. In particular, by increasing β,
cooperators require a smaller ν to prevail. This suggests that, in general,
random topologies support cooperation better than regular ones. It is worth
noting that in all cases critical ν showed a certain robustness towards the
considered k values, i.e., k ∈ [1..5]. In this regard, further investigations
will be devoted to better clarify the relation between ν and k, since we
hypothesize that for high k values defectors may prevail even for ν values
greater than the identified thresholds (see Table 2). On the other hand,
results achieved by memory-aware agents indicate that, in general, critical
ν are smaller than those found in the memory-less case, e.g., for β = 0.0 we
obtained ν ∼ 0.4. However, we found that even for values greater than the
minimal threshold of ν, sometimes defectors may prevail. Before trying to
mind a hypothesis about this behavior, we have to recall that in the memory-
aware case some noise may arise resulting from high payoffs. Moreover, the
memory-aware case may easily promote cooperation than its counterpart
as groups of cooperative agents tend to increase their payoff unboundedly.
Therefore, as a future work, we aim to investigate this aspect of the model.
Also note that a mixed phase (i.e., composed of both species) has been found
for values close to the critical ν.

Results on scale-free networks. When considering the BA model, a
major finding is that cooperators need a smaller ν to prevail than those com-
puted in WS network; specifically, ν = 0.22 and ν ∼ 0.1, in the memory-less
and in the memory-aware case, respectively. Moreover, scale-free networks
in the memory-aware case show an interesting bistable behavior for small
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values of ν. We suggest again that this may result from noise introduced by
the utilization of large payoff in the Fermi function that we faced by adding
a numerical cutoff. It is relevant to note that our results are in accord with
those reported in [25], as stated above, since scale-free networks have been
found to foster cooperation better than other topologies. Also, like for WS
networks, critical ν are robust to variations of k in the considered range.

Overall, the proposed Lurker Game suggests that the adoption of reward-
ing mechanisms combined with the modeling of hypothetical heterogeneity
of users’ interests (ν) may lead a population towards a cooperative behavior.
This supports our initial intuition that Lurker Game is suitable to model
the dynamics of such a complex phenomenon as lurking.

5. Related work

In [31, 32], the authors developed the first computational approach to
lurker mining, focusing on ranking problems. To this purpose, they pro-
posed a topology-driven definition of lurking behavior, based on principles
of overconsumption, authoritativeness of the information received, and non-
authoritativeness of the information produced. Quantitative and qualitative
evaluation results showed how the proposed methods are effective in identi-
fying and ranking lurkers in real-world OSNs.

The same authors also posed a first step toward the definition of delurking
strategies in [12], by proposing a targeted influence maximization problem
under the linear-threshold diffusion model. In this context, a set of previ-
ously identified lurkers is taken as target set of an influence maximization
problem, whose objective function is defined upon the concept of delurk-
ing capital, i.e., the social capital gained by activating lurkers in an online
community.

We can also mention research studies that, though not specifically con-
cerning lurking, addressed related problems in OSNs via a game-theoretic
approach. For instance, Anand et al. [2] defined a Stackelberg game to
maximize the benefit each user gains extending help to other users, hence
to determine the advantages of being altruistic. Some interesting remarks
relate the altruism of users to their level of capabilities, and indicate that
the benefit derived from being altruistic is larger than that reaped by selfish
users or free riders. Malliaros and Vazirgiannis [19] also built upon game
theory to study the property of users’ departure dynamics, i.e., the tendency
of individuals to leave the community.

Our proposed approach in this work differs from all the aforementioned
studies as it represents both a novel computational approach to lurking
and delurking user-behaviors, and a novel application domain in the field of
evolutionary games.
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6. Conclusion

In this work, we brought for the first time evolutionary game theory into
the analysis of lurking behaviors in OSNs. We defined the Lurker Game and
evaluated it through both a mean-field analysis and by arranging agents on
small-world and scale-free networks. Results suggest that Lurker Game is
suitable to model the dynamics of such a complex phenomenon as lurking,
showing a rich behavior depending on the network topology and on the
way agents manage their payoff. Remarkably, Lurker Game allows us to
understand how the adoption of rewarding mechanisms combined with the
modeling of hypothetical heterogeneity of users’ interests may lead a popu-
lation towards a cooperative behavior. Further investigations will be mainly
devoted to better clarify the interrelation between the two model parameters
in Lurker Game, also including analysis over other network topologies and
larger populations.
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