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Including finite-temperature effects from the electronic degrees of freedom in electronic structure
calculations of semiconductors and metals is desired; however, in practice it remains exceedingly
difficult when using zero-temperature methods, since these methods require an explicit evaluation
of multiple excited states in order to account for any finite-temperature effects. Using a Matsub-
ara Green’s function formalism remains a viable alternative, since in this formalism it is easier to
include thermal effects and to connect the dynamic quantities such as the self-energy with static
thermodynamic quantities such as the Helmholtz energy, entropy, and internal energy. However,
despite the promising properties of this formalism, little is know about the multiple solutions of
the non-linear equations present in the self-consistent Matsubara formalism and only a few cases
involving a full Coulomb Hamiltonian were investigated in the past. Here, to shed some light onto
the iterative nature of the Green’s function solutions, we self-consistently evaluate the thermody-
namic quantities for a one-dimensional (1D) hydrogen solid at various interatomic separations and
temperatures using the self-energy approximated to second-order (GF2). At many points in the
phase diagram of this system, multiple phases such as a metal and an insulator exist, and we are
able to determine the most stable phase from the analysis of Helmholtz energies. Additionally, we
show the evolution of the spectrum of 1D boron nitride (BN) to demonstrate that GF2 is capable
of qualitatively describing the temperature effects influencing the size of the band gap.

I. INTRODUCTION

In molecular quantum-chemical calculations of ther-
modymanic properties such as Gibbs energy [1, 2], the
temperature dependent component is usually dominated
by vibrational contributions. This is due to the large
gaps between electronic states, which ensure that the ex-
cited state populations will be negligible. Consequently,
common molecular calculations do not explicitly include
temperature effects on the electronic structure.

However, for materials such as doped semiconduc-
tors [3] the magnitude of the electronic band gap can
be relatively small, or for metals nonexistent altogether,
allowing electronic states other than the ground state
to be accessible at low temperatures. Thus, it is nec-
essary to include temperature effects into the electronic
description. Even though for most materials the vibra-
tional contribution to the specific heat is much larger
than the electronic one, there are cases when the in-
corporation of the electronic contribution is necessary.
The electronic contribution to specific heat is important
for (i) heavy fermion materials at low temperatures [4],
(ii) materials that do not undergo a structural transi-
tion that changes the vibrational contribution, causing
the stability of phases to primarily depend on the rel-
ative electronic contribution to Gibbs energy, (iii) ma-
terials with a structural transition where the difference
between vibrational contributions of the phases is of the
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same order as the difference between electronic contri-
butions [5, 6]. Thus, modern materials calculations can
benefit from computational tools that provide access to
the temperature dependent electronic contribution to the
specific heat, Gibbs energy, entropy, or electronic part of
the partition function.

While in traditional quantum chemical calculations
evaluating the electronic contribution to temperature de-
pendent quantities is certainly not wide spread, a num-
ber of such methods exist, most notably, the finite tem-
perature Hartree-Fock (HF) [7], density functional the-
ory (DFT) [8–11], Møller-Plesset second order perturba-
tion theory (MP2) [12], coupled-cluster (CC) [13–15], and
Lanczos method [16, 17] for finite temperature configura-
tion interaction (CI) calculations. However, these meth-
ods are usually quite difficult to implement and costly to
use since they rely on the modification of the parent zero-
temperature method to the finite temperature formalism
by adapting it to work in the canonical or grand canoni-
cal ensemble. For example, to carry out such calculations
in the CI formalism, one must obtain the excited states
and corresponding Boltzmann factors in order to evalu-
ate the partition function and thermodynamic averages,
making application of finite temperature variants of these
methods quite cumbersome.

Conversely, for the Green’s function formalism the
connection to thermodynamics arises in a straightfor-
ward manner and was derived in numerous books in
the past [18–21]. While this theoretical connection is
well understood, the actual numerical calculations of the
thermodynamic quantities still remain quite challeng-
ing since a fully self-consistent imaginary axis (Matsub-
ara) Green’s function calculation is desired. A non-self-
consistent Green’s function can result in non-unique ther-
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modynamic quantities.

The fully self-consistent Green’s function calculations
are challenging for multiple reasons, such as large imag-
inary time and frequency grids required for convergence
or multiple solutions that can be present due to the non-
linear nature of the equations. It is for reasons such as
these that in recent years calculations that capitalized
on Green’s function language and yield thermodynamic
quantities where mostly done for model systems [22–26].

Here, we would like to stress that while multiple large
scale real axis Green’s function calculations are per-
formed at present for the single shot G0W0, GW0, or
semi-self consistent GW for large realistic systems [27–
33], currently, only a few research groups have managed
to rigorously generalize the self-consistent finite tempera-
ture (imaginary axis) Green’s function formalism to deal
with a general Hamiltonian containing all the realistic in-
teractions [34–39]. Thus, any insight gained from study-
ing even simple periodic systems and analyzing the possi-
ble self-consistent solutions of the Matsubara formalism
remains valuable.

To the best of our knowledge, here, we present the first
application of the fully self-consistent finite temperature
Green’s function formalism to evaluate thermodynamic
quantities and phase stability for a periodic system de-
scribed by a full quantum chemical Hamiltonian. We
demonstrate that Green’s function formalism leads to a
simple calculation of the electronic contribution to the
Helmholtz or Gibbs energy, entropy, grand potential, and
partition function without explicitly performing any ex-
cited state calculations. The presented formalism is exact
at the infinite temperature limit since the perturbative
Green’s function formulation is a perturbation that con-
tains the inverse temperature as small parameter.

This paper is organized as follows. In Sec. II, we intro-
duce the imaginary Green’s function formalism and its
connection to thermodynamics. In Sec. III and IV, we
list properties of the Luttinger-Ward functional which is
our main computational object and we explain its evalu-
ation within a self-consistent Green’s function second-
order (GF2) periodic implementation. In Sec. V, we
present numerical results first for a benchmark molecular
problem and then for two 1D systems: periodic hydrogen
as well as boron nitride. Finally, we form conclusions in
Sec. VI.

II. CONNECTION WITH THERMODYNAMICS

One of the first descriptions of the connection be-
tween the Green’s function formalism and thermodynam-
ics was presented in the book by Abrikosov, Gorkov, and
Dzyaloshinski [21]. Since then multiple texts have ap-
peared that discuss this connection [18, 20, 40]. For an
excellent, detailed derivation, we encourage the reader
to follow Ref. 18; here, we will only mention few basic
Green’s function equations for the sake of completeness.

The one-body Green’s function is defined as

Gji(z1, z2) ≡ Tr[e−βĤ
M
Ĝji(z1,z2)]

Tr[e−βĤM ]
(1)

= 1
i

Tr[τ{e−i
∫
γ dz̄Ĥ(z̄)

d̂j,H(z1)d̂†i,H(z2)}]

Tr[τ{e−i
∫
γ dz̄Ĥ(z̄)}]

,

where d̂j,H(z1) and d̂†i,H(z2) are the second-quantized an-
nihilation and creation operators in the Heisenberg rep-
resentations and β = 1/(kBT ) is the inverse temperature
while T is the actual temperature and kB is the Boltz-
mann constant. This Green’s function, depending on how
the contour γ in the complex plane is closed, can be used
to describe system’s time evolution (when z1 and z2 are
set to the real-time variables), zero temperature phenom-
ena, or equilibrium phenomena at finite temperature.

Here, we are interested in a formalism used to calculate
the initial ensemble average that is applied to systems in
thermodynamic equilibrium at finite temperature. This
approach is called Matsubara formalism or the “finite-
temperature formalism”. For this reason, in the Green’s
function from Eq. 1 we set z1 = t0− iτ1 and z2 = t0− iτ2.
Consequently, the Green’s function

GMji (τ1, τ2) = 1
i

{
θ(τ1 − τ2)

Tr[e(τ1−τ2−β)ĤM d̂je
(τ2−τ1)ĤM d̂†i ]

Tr[e−βĤM ]

± θ(τ2 − τ1)
Tr[e(τ2−τ1−β)ĤM d̂†i e

(τ1−τ2)ĤM d̂j ]

Tr[e−βĤM ]

}
(2)

does not describe any time evolution of the system under
study. Instead, in this Green’s function the initial state of
the system can be the thermodynamic state correspond-
ing to a Hamiltonian, ĤM = Ĥ(t0) − µN̂ , where N̂ is
the particle number operator. Thus, from this Matsub-
ara Green’s function, the initial ensemble average of any

one-body operator Ô =
∑
ij Oij d̂

†
i d̂j , can be evaluated

simply as

O =
Tr[e−βĤ

M

Ô]

Tr[e−βĤM ]
= ±i

∑
ij

OijG
M
ji (τ), (3)

where τ = τ1 − τ2 since the one-body Green’s function
matrix elements depend only on the difference of the
imaginary time variables. Furthermore, the imaginary
time Green’s functionG(τ) can be Fourier transformed to
the imaginary frequency Green’s function G(iωn) where

for fermions the frequency grid is given by ωn = (2n+1)π
β

with n defined here as a positive integer. For simplicity,
in the remainder of this paper, we will drop subscript M
denoting Matsubara Green’s functions since from now on
we will only discuss this finite temperature formalism.

The discussion above shows that at finite temperature
one can get grand canonical ensemble averages of one-
body operators using the Matsubara formalism. How-
ever, let us ask one more question: Can we get a sys-
tem’s static thermodynamic variables such as electronic
Gibbs or Helmholtz energy, internal energy, and elec-
tronic entropy from dynamic (frequency dependent) vari-
ables such as Green’s function and self-energy?
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The thermodynamics of a system can be described by
a thermodynamical potential, such as the grand poten-
tial Ω [18]

Ω =
1

β
{Φ− Tr[ΣG+ ln(Σ−G−1

0 )]}, (4)

where the self-energy Σ = Σ(iωn) describes all the fre-
quency dependent correlational effects present in the sys-
tem and G0 = G0(iωn) is the reference (usually non-
interacting) system’s Green’s function and G = G(iωn)
is the interacting Green’s function. The interacting and
non-interacting Green’s functions are connected through
the Dyson equation, Σ = G−1

0 −G−1. The Φ functional
from Eq. 4 is called the Luttinger-Ward functional[41]
[42] and is defined as

Φ =

∞∑
m=1

1

2m
Tr[
∑
n

Σ(m)(iωn)G(iωn)], (5)

where Σ(m)(iωn) is a self-energy containing all irreducible
and topologically inequivalent diagrams of order m. The
detailed derivation of Eq. 4 is presented in Ref. 18.

Thus, the computational object that provides a con-
nection between the static and dynamic quantities is
the Luttinger-Ward functional. This scalar functional
Φ = Φ̂[G] depends on the Green’s function and has mul-
tiple important properties for Green’s function theory.

III. PROPERTIES OF THE LUTTINGER-WARD
FUNCTIONAL

The formal properties of Luttinger-Ward functional
have been discussed extensively before. The functional
has previously been applied to calculate energies for
atoms and molecules [34, 35], the electron gas [43], as well
as for the Hubbard lattice [23, 24, 44, 45]. In the follow-
ing section, we will only outline some of the most salient
properties of the Luttinger-Ward functional to benefit
the reader.

A. Self-energy as a functional derivative

The self-energy Σ = Σ(iωn) can be obtained as a func-
tional derivative of the Luttinger-Ward functional

β
δΦ̂[G]

δG
= Σ̂[G]. (6)

Here, the self-energy is defined as a functional of Green’s
function that is evaluated independent of the Dyson
equation. Consequently, in the non-interacting limit,
where Σ = 0, it follows that the Luttinger-Ward func-
tional is zero itself, Φ̂[G] = 0.

B. Connection with the grand potential Ω

The grand potential is a number but the mathematical
object defined in Eq. 4 can be viewed more generally as
a functional of Green’s functions Ω[G]. When a Green’s
function is a self-consistent solution of the Dyson equa-

tion then the functional derivative δΩ[G]
δG = 0 since δΦ =

Tr[ΣδG] and δΩ[G] = 1
β {δΦ − Tr[δΣG + ΣδG − GδΣ]}.

Consequently, we can conclude that the functional Ω[G]
at the stationary point is equal to the grand potential.
Having grand potential one gains access to the partition
function (Z) since

Ω = − 1

β
lnZ. (7)

The Helmholtz energy, A = E − TS, where E is the
internal energy and S is the entropy of a system at a
given temperature T , is connected to the grand potential
as A = Ω + µN , where N is the number of electrons in
the system. Thus, knowing the grand potential, we can
easily calculate the electronic entropy as

S =
E − Ω− µN

T
(8)

as long as we have access to the internal energy of a
system. The internal energy at a given temperature T
can be evaluated using the Galitskii-Migdal formula

E =
1

2
Tr [(h+ F ) γ]+

2

β

Nω∑
n

Re
(
Tr[G(iωn)Σ(iωn)]

)
, (9)

where γ is the one-body density matrix, h is the one-body
Hamiltonian, F is the Fock matrix of a system, and Nω is
the size of the imaginary grid. Consequently, having ac-
cess to the Luttinger-Ward functional of a system yields
multiple electronic thermodynamic quantities.

C. Universality

Given two systems A and B at the same phys-
ical temperature T and the same chemical po-
tential µ described by two Hamiltonians ĤA =∑
ij t

A
ija
†
iaj+

∑
ijkl vijkla

†
ia
†
jalak and ĤB =

∑
ij t

B
ija
†
iaj+∑

ijkl vijkla
†
ia
†
jalak such that they have the same two-

body integrals vijkl but different one-body integrals tA 6=
tb the Luttinger-Ward functional is same (universal) for

both of them. Since Φ̂A = Φ̂B , then it must also hold
that Σ̂A(G) = Σ̂B(G). In other words, two systems de-
scribed by different G0 but having the same two-body
interactions are described by the same Luttinger-Ward
functional.
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IV. EVALUATION OF LUTTINGER-WARD
FUNCTIONAL WITHIN GF2

A. Description of the GF2 algorithm

The self-energy, which we evaluate self-consistently in
this work, is computed perturbatively at the second-order
(GF2) level. GF2 is advantageous for many reasons,
namely, among others it behaves qualitatively correct
for moderately strongly correlated systems [36], unlike
methods such as MP2 or CCSD which tend to diverge
in these cases. GF2 has small fractional charge and frac-
tional spin errors [46]. GF2 is carried out self-consistently
on imaginary time τ and imaginary frequency iωn axes
with a computational scaling of O(nτN

5) for molecular
cases, where nτ is a prefactor that depends on the size of
the imaginary time grid and N is the number of orbitals
present in the problem. We build the Green’s function
using the following expression

G(iωn) = [(iωn + µ)S − F − Σ(iωn)]−1 (10)

where F and S are the Fock and overlap matrices in
the atomic orbital (AO) basis, respectively, and µ is the
chemical potential, which guarantees a correct particle
number. To obtain Σ(iωn), we solve the Dyson equation
given as

Σ(iωn) = G0(iωn)−1 −G(iωn)−1 (11)

whereG0(iωn) = [(iωn+µ)S−F ]−1 is the non-interacting
Green’s function while G(iωn) is the interacting Green’s
function since it contains the self-energy. To reduce the
number of necessary grid points, we employ a spline inter-
polation method to evaluate the Green’s function [38] and
Legendre orthogonal polynomials to expand the Σ(τ) ma-
trix [47]. As pointed out previously, this self-consistent
evaluation guarantees that both the Galitskii-Migdal and
Luttinger-Ward energies are stationary with respect to
the Green’s function. For a full discussion of the algo-
rithm and implementation details of GF2, we refer the
reader to Refs. 36 and 46. The main computational ob-
ject in our evaluation is the self-energy in the AO basis,
which can be expressed as

Σij(τ) = −
∑

klmnpq

Gkl(τ)Gmn(τ)Gpq(τ)×

×vikmq(2vljpn − vpjln).

(12)

where vijkl are the two-electron integrals in the AO basis
in the chemist’s notation. Eq. 12 is evaluated in a Leg-
endre polynomial basis [47] to accelerate the calculation.

The details of a periodic GF2 implementation have
been reported in Ref. [37]. The basic differences from the
molecular version include solving the Dyson equation in
k-space via

Gk(iωn) =
[
(iωn + µ)Sk − F k − Σk(iωn)

]−1
(13)

and complicating the real-space self-energy, Σ0g(τ), eval-
uation by additional cell index summations:

Σ0g
ij (τ) = −

∑
g1,...,g6

∑
klmnpq

Gg3g6

k l (τ)Gg1g4
m n (τ)Gg5g2

p q (−τ)×

×v0g1g2g3

i m q k (2vgg4g5g6

j n p l − v
gg6g5g4

j l p n ).

(14)

Σk(iωn) in Eq. 13 and Σ0g(τ) in Eq. 14 are intercon-
vertible via corresponding Fourier transforms from the
k- to real-space and between the imaginary time and
imaginary frequency domains also via Fourier transform.
The self-energy calculation according to Eq. 14 results
in O(N5N4

cellnτ ) formal scaling of the computation cost
with N the number of orbitals in the unit cell and Ncell
the number of real space cells. This is typically a com-
putational bottleneck of the GF2 self-consistency proce-
dure.

The level of self-consistency at which the correlated
Green’s function equation should be iterated can depend
on particular phases present in the phase diagram, such
as Mott (see Ref. [48]). In particular, the non-interacting
Green’s function G0(iωn) build using updated Fock ma-
trix or the correlated Green’s function G(iωn) can re-
enter the evaluation of the self-energy. We observe that
the use of G0(iωn) with the updated Fock matrix in
the self-consistent evaluation of the self-energy is a well-
behaved procedure when the strong correlations and the
Mott phases emerge. The full self-consistent cycle, with
G(iωn) re-entering the evaluation of the self-energy be-
comes ill behaved for these cases and we experienced diffi-
culty converging it. We therefore use the former “partial”
self-consistency (G0(iωn) with the updated Fock matrix
in the self-consistent evaluation of the self-energy) for the
Mott regime. Such scheme is not uncommon in DMFT
type calculations [48].

The expression for the total energy likewise acquires a
cell summation according to Eqs. 13 and 14 in Ref. [37]:

Etot = E1b + E2b (15)

= 1
2

∑
g,i,j γ

0g
ij (2h0gij + [Σ∞]

0g
ij ) +

+ 2
β

∑
g,i,j Re

[∑
nG

0g
ij (iωn)Σ0g

ij (iωn)
]
.

B. Evaluation of the grand potential in the k-space

The evaluation of the Luttinger-Ward functional in
conserving approximations [49] such as the self-consistent
second-order Green’s function (GF2)[36, 46, 47] is quite
straightforward and was originally derived by Luttinger
and Ward [41] as

Φ(2) =
1

4
Tr[
∑
n

Σ(2)(iωn)G(iωn)], (16)
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where Σ(2)(iωn) is the frequency dependent part of
the second-order self-energy. Since both G(iωn) and
Σ(2)(iωn) are readily available from a GF2 calculation,
we are able to easily evaluate all terms of the functional.

The expression for grand potential from Eq. 4 can be
conveniently reformulated as

ΩLW =
1

2
Tr[γΣ∞] + Tr[GΣ]

+Tr[ln{1−GΣ}] + Tr[ln{G−1
0 }].

(17)

An excellent derivation of the above equation is given
in Ref. 35 for molecular systems. However, as we men-
tioned before, for molecular systems the changes due to
the electronic contributions of the Gibbs or Helmholtz
energy are negligible due to the size of the gap.

Here, we list detailed steps that need to be executed
when dealing with crystalline systems where the elec-
tronic effects influencing Helmholtz energy can be signif-
icant. In the periodic implementation, we evaluate the
grand potential per unit cell, Ω00. The overall expression
is given as a sum of all the components

Ω00 = Ω00
Tr[GΣ] + Ω00

Tr[ln{1−GΣ}]

+Ω00
Tr[ln{G−1

0 }]
+ Ω00

1
2 Tr[γΣ∞]

(18)

where we sum the contribution per unit cell for each term
present in Eq. 17. Due to the crystalline symmetry, it is
often more convenient to calculate these quantities in k-
space and transform the resulting quantity to the real
space rather than using an explicit real space represen-
tation of all the quantities involved. All terms in Eq. 18
containing the Green’s function G, or self-energy Σ were
computed in k-space and then Fourier transformed to
real space. For example, to calculate the Ω00

Tr[GΣ] contri-

bution, we can first evaluate the k-dependent quantity

ΩkTr[GΣ] =
2

β

Nω∑
i,j,n

Gk(iωn)ijΣ
k(iωn)ji (19)

where the indices i and j run over all atomic orbitals
in a given k−block. Subsequently, we perform Fourier
transform of ΩkTr[GΣ] to yield the real space Ω00

Tr[GΣ] con-

tribution.
The most cumbersome evaluation is of the term

Ω00
Tr[ln{1−GΣ}], which requires diagonalization of the ma-

trix GkΣk+(GkΣk)†−GkΣk(GkΣk)†, where the matrices
Gk and Σk are understood to be dependent on iωn. Once
the eigenvalues of this matrix, εki , have been computed
for each imaginary frequency point, iωn, we have

ΩkTr[ln{1−GΣ}] =
2

β

Nω∑
n,i

ln{1− εki }, (20)

which can be Fourier transformed to the real space.

To include the contribution from the Fock matrix,
Ω00

Tr[ln{G−1
0 }]

, we calculate

Ωk
Tr[ln{G−1

0 }]
=

{
1
β

∑
i ln(1 + eβ(εki −µ)) + εki , if εki − µ < 0

1
β

∑
i ln(1 + e−β(εki −µ)), otherwise.

(21)
where by analyzing if the term εki −µ is smaller or greater
than zero we account for the cases where the absolute
value of the Fock matrix eigenvalue can be large leading
to numerical problems if only one branch of the above
expression is used. This term accounts for occupation
changes with temperature. For high β values (low values
of the actual temperature T ), the expression reduces to

Ωk
Tr[ln{G−1

0 }]
=
∑
Nocc

εki , (22)

which allows electrons to occupy only the lowest available
state, as is expected at a very low temperature.

We calculate the term Ω00
1
2 Tr[γΣ∞]

directly in the real

space as 1
2Tr[γΣ∞], since in the AO basis, the decay of

both γ which is the density matrix and Σ∞ which is the
frequency independent part of the self-energy is rapid
enough for a relatively few number of cells to assure a
converged value of Ω00

1
2 Tr[γΣ∞]

.

V. RESULTS

A. HF molecule

In this subsection, for a simple molecular example, a
hydrogen fluoride molecule, we provide a calibration of
the thermodynamic quantities such as internal energy E,
Helmholtz energy A, and entropy S, which are evaluated
at the GF2 level and compared to the full configuration
interaction (FCI) calculation. The evaluation of the ther-
modynamic quantities at the FCI level can be done only
for very small molecular examples, such as HF, since such
a system has only 10 electrons and 6 basis functions in
the STO-3G basis, resulting in a small number of pos-
sible configurations necessary to evaluate the FCI grand
potential. Note that to describe a true physical system
at very high temperature we would require a very large
basis set. Here, we use HF as a model molecular system
that is calculated in a minimal basis set solely to en-
able comparison of GF2 with FCI. The full configuration
interaction (FCI) quantities for HF molecule were calcu-
lated previously by Kou and Hirata [50]. In addition, we
show the same system calculated with finite-temperature
at the Hartree-Fock level. We would like to emphasize
that we provide this molecular example as a benchmark
only, in order to compare our method with highly accu-
rate FCI quantum chemical data. Typically electronic
contributions to thermodynamics are not considered for
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molecular systems.

Let us first note that in order to calculate the FCI
partition function and subsequently grand potential in
the grand canonical ensemble, we need to evaluate

ZGC =

2n∑
N=0

∑
Sz

∑
i

〈Φ(N,Sz)
i |exp{−β(Ĥ −µN̂)}|Φ(N,Sz)

i 〉,

(23)

where the Φ
(N,Sz)
i is the FCI wave function with N elec-

trons and Sz quantum number and the number of pos-
sible occupation runs from 0 to 2n, where n is the num-
ber of orbitals. Consequently, we need to explicitly ob-
tain the information about every possible excited state
present in the system with different number of electrons.
Such a task quickly becomes impossible for any larger
systems. In contrast, in Green’s function methods, we
never need to explicitly evaluate any information con-
cerning specific excited states. It is sufficient to evaluate
Eq. 17 and then Eq. 7 to obtain the grand canonical par-
tition function. Thus, even for relatively large systems
such calculations remain feasible.

Results from our calibration are shown in Fig. 1. The
numerical values used in the plots are tabularized in the
Supplemental Information. The detailed description of
the grids on which we evaluate Σ(τ) and G(iωn) can be
found in Ref. [51]. For the hydrogen fluoride molecule the
temperature range is huge due to the size of the Hartree-
Fock HOMO-LUMO gap in this system, which is around
1.0 a.u. corresponding to a temperature of around 3.0×
105 K. Consequently, to make every state accessible to
the electrons in this system, we require extremely high
temperatures, as indicated by our results.

In the very high temperature limit, both finite tem-
perature Hartee-Fock and GF2 yield the internal energy
(E), Helmholtz energy (A), and entropy (S) in excellent
agreement with FCI results. This is of course expected
since at very high temperatures the electronic behavior is
well described by mean field theories. For the intermedi-
ate temperatures, GF2 thermodynamic quantities (E, S,
and A) are closer to FCI than thermodynamic quantities
obtained in finite temperature Hartee-Fock. For this sys-
tem at intermediate temperatures, the GF2 thermody-
namic quantities are always overestimated while the finite
temperature Hartree-Fock always underestimate them in
comparison to FCI. The GF2 and Hartree-Fock entropies
for low temperatures are well recovered and comparable.
As expected, the low temperature GF2 internal energy
is closer to FCI than the one evaluated using finite tem-
perature Hartree-Fock. For our very lowest temperature
(103 K), we recover a small negative entropy. This is a
numerical artifact brought about from the level of con-
vergence of the internal energies (1.0×10−5 a.u.) and the
expression for entropy which requires multiplication by β,
S = β(E −Ω− µN). Thus, the smallest error ≈ 10−5 in
the energy will result in ≈ 10−3 error in the entropy due
to multiplication by β = 100.

B. Periodic calculation of 1D hydrogen

In our previous work, GF2 was implemented for peri-
odic systems and applied to a 1D hydrogen solid [37] in
the mini-Huzinaga [52] basis set. We consider the same
system in this work, where we have used 5,000 Matsubara
frequencies to discretize the Green’s function in the fre-
quency domain, 353 imaginary-time points, and 27 Leg-
endre polynomials. We have found this grid size is suffi-
cient to evaluate energy differences between the systems
at various temperatures. Up to 73 real space unit cells
appear in the self-energy evaluation (Eq. 14).

This system is simple enough to be a test bed for self-
consistent Green’s function theory; however, it displays
a phase diagram that is characteristic of realistic solids.
At different internuclear separations, corresponding to
different pressures, we were able to recover multiple so-
lutions. Although yielding different electronic energies
and different spectra, these solutions can be mathemat-
ical artifacts of the nonlinear self-consistency procedure
present in GF2; however, they can also have physical
meaning corresponding to different solid phases.

To decide which phase is more stable at a given tem-
perature, it is necessary to consider the Helmholtz en-
ergies that we are able to obtain from the Luttinger-
Ward functional for every solution. Previously, for the
inverse temperature of β = 100, at most of the geome-
try points, we have identified two possible phases with
different internal energies, E, that were obtained start-
ing the iterative GF2 procedure either from an insulat-
ing or metallic solution. The results of our investigation
can be found in Fig. 4 of Ref. 37. Currently, to ana-
lyze the stability of the solutions, for a range of inverse
temperatures β = 25, 75, 100, we discuss internal energy
E, Helmholtz energy A, and the entropic contribution
TS to the Helmholtz energy. We also improved our con-
vergence criteria not only converging the internal energy
E = E1b + E2b (as we have done in the previous work)
but also converging both the E1b, E2b, and the Helmholtz
energy separately. This much more stringent procedure
to analyze convergence of GF2 leads us to slightly revised
solutions for the 1D hydrogen solid which we discuss in
the subsequent sections.

The spectra are produced from analytical continua-
tion of the imaginary axis Green’s function G(k, iωn) to
the real axis G(k, ωn) [53]. The spectral weight is pro-
portional to ImG(k, ωn). A 2D color projection of the
spectral function on the (k, ωn) plane can be viewed as
a “correlated band structure” analogous to the conven-
tional band structure within effective one-electron mod-
els such as Hartree–Fock and DFT. As in one-electron
models, zero spectral weight at the Fermi energy ωF is
indicative of a gapped system. The peaks emerging im-
mediately below and above ωF for a given k correspond
to the energies of the highest occupied (HOCO) and low-
est unoccupied (LUCO) crystalline orbitals, respectively.
We should stress, however, that since G(k, ωn) is a many-
body correlated Green’s function, such correspondence is
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FIG. 1. The differences between GF2, finite temperature Hartree-Fock and FCI for the hydrogen fluoride molecule at various
temperatures.

not rigorous and merely serves as a convenient analogy.

1. Short bond length/high pressure

At the interatomic separation of 0.75 Å, we recovered
only one gapless, metallic solution for all the values of in-
verse temperature (β = 25, 75, 100). We established that
starting from two different initial guesses leads in both
cases to two final solutions that were different in internal
energy and Helmoltz energy by less than 10−4 a.u. Con-
sequently, we deemed that we obtained the same metal-
lic solution in both cases. The spectral functions and
spectral projections for this metallic solution at different
values of inverse temperature are shown in Fig. 2. For
all the temperatures examined in this short bond length
regime, the self-energy displays a Fermi liquid character.

In our previous work [37], we observed a small internal
energy difference between the solutions obtained using
different starting point at β = 100. We currently observe
that this difference can be eliminated if we assure that
the convergence criteria are not only fulfilled for the total
energy Etot = E1b + E2b but also both the E1b and E2b

components separately.

2. Intermediate bond length/intermediate pressure

Spectral functions and projections for the 1D hydrogen
solid with an interatomic separation of 1.75 Å are pre-
sented in Fig. 3. We have displayed differences in internal
energy (E), entropy (written as -T∆S), and Helmholtz
energy (A) in Table I. For this system at the inverse
temperatures of β = 100 and 75 we obtained two solu-
tions from two different initial guesses. We are able to
characterize the first solution (“solution 1”) as a band
insulator since the spectral function shows a gap and the
self-energy displays a Fermi liquid profile. The second
solution (“solution 2”) is gapless and therefore a metal.
At an inverse temperature of β = 25, both “solution
1” and “solution 2” obtained from two different starting
guesses have the same spectra and identical Helmholtz

β ∆ E -T ∆ S ∆ A

100 -0.00370 0.10854 0.10484

75 -0.00528 0.09971 0.09443

25 1.36×10−8 -2.94×10−6 -2.93×10−6

TABLE I. Thermodynamic data for a 1D periodic hydrogen
solid with separation R=1.75 Å. The units for β are 1/a.u.
The units for all other quantities are a.u. All values are ob-
tained by subtracting “solution 1” from “solution 2”. ∆ E
=Esol2-Esol1, ∆ A =Asol2-Asol1, ∆ S =Ssol2-Ssol1. Note that
the quantities at β=25 are below the precision of convergence
(1 ×10−5).

energy, indicating that there is only one stable solution
— a single phase. Note that in Fig. 3 for β = 25 both the
spectral functions for “solution 1” and “solution 2” seem
to have different heights; however, it is an illusion since
both spectral functions are plotted with a different z-axis
range. We deem that the Helmholtz energy is identical
for both these solutions at β = 25 since the obtained
differences are below our convergence threshold which is
1× 10−5 a.u.

For two lower temperatures (β = 100 and 75) by com-
paring thermodynamic quantities, we are able to deter-
mine which phase, “solution 1” or “solution 2”, is the
most thermodynamically stable. From the data in Ta-
ble I, we are able to determine that “solution 1” is the
most stable phase from the positive value of ∆A at both
β=100 and β=75. It is also interesting to note, that this
solution is stable due to the entropic factor not due to
the difference in the internal energy.

3. Long bond length/low pressure

Similar to the R=1.75 Å regime, for an interatomic
separation of 2.5 Å at inverse temperatures β = 100 and
75, we recover two solutions from the two different ini-
tial guesses, see Fig. 4. At a high temperature β=25
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FIG. 2. Spectral functions and projections at different inverse temperatures for the metallic solution of 1D periodic hydrogen
solid at R=0.75 Å.

we observe only one solution independent of the initial
guess, and thus only a single phase is present. From the
positive value of ∆A we are able to see that “solution
1” is the most stable phase at β=75 and β=100 (Ta-
ble II). This solution is a band insulator since it has
a Fermi liquid self-energy profile at these temperatures.
The other solution, denoted as “solution 2” at low tem-
perature is metallic and changes into a Mott insulator at
high temperatures. The internuclear distance of R=2.5
Å is close to the region where the phase transition occurs,
thus results obtained from GF2 which is a low order per-
turbation expansion may not be reliable. The low level
perturbation theories such as GF2 are known to be more
accurate deep within a phase and can experience prob-
lems near the phase transition point.

Finally, at an interatomic separation of R=4.0 Å, for
all the temperatures, both initial guesses yield the same
converged GF2 result - a single phase. The spectra as
a function of inverse temperature can be seen in Fig. 5.
This single solution is a Mott insulator as confirmed by
the divergent imaginary part of the self-energy.

4. GF2 phase diagram for 1D hydrogen solid

It is instructive now to collect all the data and con-
struct a simple phase diagram for the 1D hydrogen solid
as a function of inverse temperature β and intermolecular
distance R. We have plotted the phase diagram in Fig. 6.

β ∆ E -T ∆ S ∆ A

100 0.08489 0.16257 0.24746

75 0.07103 0.16155 0.23259

25 6.09×10−8 2.96×10−5 2.97 ×10−5

TABLE II. Thermodynamic data for a 1D periodic hydrogen
solid with separation R=2.5 Å. The units for β are 1/a.u. The
units for all other quantities are a.u. All values are obtained
by subtracting “solution 1” from “solution 2”. ∆ E =Esol2-
Esol1, ∆ A =Asol2-Asol1, ∆ S =Ssol2-Ssol1. Note that the
quantities at β=25 are below or comparable with the precision
of convergence (1 ×10−5).

On this diagram, for these regions where two phases co-
exist, we denoted the most stable phase according to the
Helmholtz energy A by framing its symbol using a black
line.

For the shortest bond length (R=0.75 Å), the 1D hy-
drogen solid remains metallic at all temperatures con-
sidered and only one phase is present. At intermediate
bond lengths (R=1.75, 2.0 Å), multiple phases coexist.
At lower temperatures, we recover both a metal and band
insulator as possible solutions, with the band insulator
being the most stable phase according to the Helmholtz
energies. This is in line with physical intuition that we
should recover an insulator rather than a metal at low
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� = 100 � = 75 � = 25

� = 25� = 75� = 100

sln2-1.75

FIG. 3. Spectral functions and projections at different inverse temperatures for the band insulator (“solution 1”) and the
metallic solution (“solution 2”) of 1D periodic hydrogen solid at R=1.75 Å. Note the difference in scale between “solution 1”
and “solution 2”.

temperature. For R=1.75 Å, at temperatures higher than
β = 50, we recover only the metallic phase.

For R=2.0 Å at high temperature (β = 25), we see
both a metal and a Mott insulator coexisting, with the

Mott insulator being the most stable phase. At lower
temperatures, we see the coexistance of a metallic and
band insulator solution. The Helmholtz energy indicates
that band insulator is the most stable phase.
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FIG. 4. Spectral functions and projections at different inverse temperatures for the band insulator (“solution 1”) and the
metallic solution (“solution 2”) of 1D periodic hydrogen solid at R=2.5 Å.

At a longer bond length of (R=2.5 Å), multiple phases
are still present. As in the cases of intermediate bond
length, we recover both a band insulator and a metal so-
lution, with Helmholtz energy favoring the band solution.
We would like to reiterate that a phase transition occurs

somewhere in this intermediate region, and it is likely
that the results of a second-order perturbation theory
may not be accurate enough. At higher temperatures,
we recover a Mott insulator as the only phase present.

For the largest separation (R=4.0 Å), the system re-
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FIG. 5. Spectral functions and projections at different inverse temperatures for the Mott insulator present in 1D periodic
hydrogen solid at R=4.0 Å.
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FIG. 6. A phase diagram containing all distances and tem-
peratures calculated for a 1D hydrogen solid. Where multiple
phases exist, the most stable phase is outlined in black. β is
inverse temperature in units 1/a.u. and R is the separation
between hydrogens in Å.

mains a Mott insulator at all studied temperatures.

C. Periodic calculation of 1D boron nitride

In this section we present a periodic calculation of 1D
boron nitride (BN) at inverse temperatures β =70, 75,
and 100. The B–N distance is set to 1.445 Å, the bond
length in the corresponding 2D system [54]. For these
calculations we used a modification of the ANO-pVDZ
Gaussian basis set [55] from which, in order to avoid
linear dependencies, we removed the diffuse (below 0.1)
exponents and polarization functions. Larger grids of
30000 Matsubara frequencies and 100 Legendre polyno-
mials were found necessary for an adequate discretization
for the self-energy and Green’s function. The self-energy
is evaluated encompassing 39 cells — as many as needed
for a converged Hartree–Fock exchange.

Shown in Fig. 7 is the spectral projection of the real-
frequency correlated Green’s function at β=100. Using
the analogy previously discussed at the end of Section
V. B, we plot the “highest occupied” and “lowest unoc-
cupied correlated bands” of 1D BN separated by a sizable
gap of approximately 3.5 eV at k=-π. This magnitude of
the band gap is expected based on the properties of its
2D counterpart [54].

Once again, we treat such a simple system as a bench-
mark example and we are interested in the evolution of
the 1D BN band gap as the temperature changes and
influences electronic degrees of freedom. Let us stress
that while an evolution of the spectrum as a function of
temperature is expected, in order to reproduce it reli-
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� = 100

FIG. 7. Spectral projection in the vicinity of the Fermi energy
at β=100 of periodic 1D boron nitride solid. Only the “corre-
lated bands” corresponding to the conventional HOCO’s and
LUCO’s (see Sec. V. B) are displayed. Note that the energy
scale is in eV.

FIG. 8. Periodic 1D boron nitride solid spectrum for the
“correlated HOCO and LUCO” (see Sec. V. B) for several
temperatures at k=−π. The chemical potential was adjusted
for ω = 0 to fall in the middle of the band gap.

ably, the computational procedure must be very robust.
We not only must be able to iteratively converge Green’s
function and self-energy yielding different Green’s func-
tions at different temperatures, we also must continue
the results obtained on the imaginary axis to the real
axis risking that the continuation will obscure the spec-
tral features and the gap temperature dependence will
no longer be visible.

In Fig. 8 we plot the spectrum at k=-π for β=100, 75,
and 70. As expected, with the increase of temperature
(decrease of β) the spectral peaks corresponding to the
bands broaden and the band gap reduces. Note that both
Fig. 7 and 8 use eV as energy units for clarity.

VI. CONCLUSION

While the theory describing the connection between
the Matsubara Green’s function formalism and thermo-
dynamics has been known since the 1960s, few compu-
tational methods are currently capable of employing the
Matsubara formalism for realistic systems. This is due
to its computationally demanding nature that requires
complicated time and frequency grids as well as the it-
erative nature of the equations. Moreover, little is know
about obtaining different solutions corresponding to dif-
ferent phases or non-physical solutions that can appear as
the result of the non-linear procedure used when Green’s
functions are constructed iteratively on the imaginary
axis.

In our last work [37], we have demonstrated one of
the first applications of the fully self-consistent Matsub-
ara Green’s function formalism to a benchmark peri-
odic problem with realistic interactions, that is, a 1D
hydrogen solid. In the current work, we have shown
that it is possible to evaluate temperature dependent
thermodynamic quantities using a self-consistent second-
order Green’s function method. Using the self-consistent
Green’s function and self-energy, we were able to eval-
uate the Luttinger-Ward functional at various tempera-
tures and obtain static thermodynamic quantities such
as Helmholtz energy, internal energy, and entropy. Eval-
uation of these quantities gives us access to the parti-
tion function and any thermodynamic quantity that can
be derived from it. Unlike the FCI case, in GF2 we
do not need to explicitly calculate excited state energies
or Boltzmann factors, making calculation of thermody-
namic quantities for larger systems feasible.

To calibrate the thermodynamic data obtained from
GF2 against FCI, we have illustrated that for a hydro-
gen fluoride molecule at high temperature, we are able to
obtain energies in excellent agreement with finite temper-
ature FCI. In the lower temperature regime, we observed,
as expected, some deviation from the FCI answer but the
overall quality of the results still remained high.

Finally, since the thermodynamic data can be used to
construct phase diagrams, we used a simple 1D hydrogen
solid to investigate possible phases at different temper-
atures and interatomic distances. We obtained different
phases such as a band insulator, Mott insulator, or metal,
and we were able to distinguish which phase is more sta-
ble at various temperatures. Determining the stability is
possible due to our ability to calculate not only the in-
ternal energy but also the entropic contribution at each
temperature. Consequently, based on the difference of
the Helmholtz energy, we are able to determine the most
stable phase for each of the temperature points.

Additionally, we have performed a calculation of 1D
periodic BN solid demonstrating that GF2 can reproduce
the gap deviation as a function of temperature. Thus, for
higher temperatures, we have observed the narrowing of
the electronic bandgap.

While we acknowledge that GF2 is a low order pertur-
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bative method and as such can deliver results that are
inaccurate, we believe that for most weakly and mod-
erately correlated systems such as semiconductors with
small band gaps, it can be used in the future to provide
accurate thermodynamic data and phase diagrams. For
systems where the correlations are strong, GF2 can be
combined with methods such as self-energy embedding
theory (SEET) [39, 56, 57] to provide accurate answers
concerning thermodynamics.

ACKNOWLEDGMENTS

D.Z. and A.R.W. would like to acknowledge a National
Science Foundation (NSF) grant No. CHE-1453894.
A.A.R. acknowledges a Department of Energy (DOE)
grant No. ER16391 and Prof. Emanuel Gull for help-
ful discussions.

VII. APPENDIX: HIGH-FREQUENCY
EXPANSION OF THE GREEN’S FUNCTION
FOR EVALUATING THE LUTTINGER-WARD

FUNCTIONAL

Here, we consider the contribution to the Luttinger-
Ward functional in the high frequency limit. In the Mat-
subara formalism for large frequencies, the Green’s func-
tion and self-energy can be expressed as a series

G(iωn) =
G1

iωn
+

G2

(iωn)2
+O(

1

(iωn)3
), (24)

Σ(iωn) =
Σ1

iωn
+

Σ2

(iωn)2
+O(

1

(iωn)3
). (25)

The coefficients for the Green’s function expansion
for non-orthogonal orbitals with a quantum chemistry
Hamiltonian [58] are given as

G1 = S−1,

G2 = S−1(F − µS)S−1.
(26)

The Σ1 and Σ2 coefficient of the self-energy has a com-
plicated explicit form as demonstrated in Ref. 58 and is
evaluated numerically as

Σ1 = Re (Σ(iωmax)× iωmax)

Σ2 =

(
Σ(iωmax)− Σ1

iωmax

)
× (iωmax)2.

(27)

For the molecular example used in this work, the high
frequency contribution to Tr[GΣ] was evaluated in the
same manner as previously discussed in Ref. 36 and 38.
At the very high temperatures considered for molecular

examples, the high frequency contribution becomes neg-
ligible. However, it is necessary to include at the lower
temperatures considered. The high-frequency contribu-
tion to the ΩkTr[GΣ] term of Eq. 19 can be evaluated in a

way analogous to the molecular case.
To evaluate the high frequency contribution to the log-

arithm term Tr[ln{1−GΣ}] in Eq. 17, we expanded the

logarithm as a Taylor series ln(1 − x) = x − x2

2 + . . . to
yield

ln
(

1− G1Σ1

(iωn)2

)
=

G1Σ1

(iωn)2
+O

( 1

(iωn)3

)
. (28)

We exclude in this expansion all terms that are equal or

smaller in magnitude than O
(

1
(iωn)3

)
. Thus, it is only

necessary practically to evaluate the first term in the ex-
pansion to capture the important contribution from the
high frequency limit. We would like to emphasize that
although we do not present results including the high fre-
quency contribution to the logarithm term Tr[ln{1−GΣ}]
in Eq. 17 for the periodic hydrogen solid, this term was
evaluated and was found to be minuscule compared to
the magnitude of the other energies. However, we would
like stress that it is possible that this contribution may
be substantial for other systems.

VIII. SUPPLEMENTAL INFORMATION



14

Internal Energy (a.u.) Grand Potential (a.u.) Entropy (kB)

T (K) Hartree-Fock GF2 FCI Hartree-Fock GF2 FCI Hartree-Fock GF2 FCI

103 -98.571 -98.588 -98.597 -98.571 -98.585 -99.845 0.0 -0.003 0.0

104 -98.571 -98.588 -98.597 -98.571 -98.621 -99.944 0.0 0.0 0.0

105 -97.944 -98.135 -98.049 -101.021 -103.067 -102.107 3.175 3.566 3.475

106 -96.794 -96.988 -96.945 -150.563 -151.410 -151.244 4.979 4.949 4.958

107 -92.028 -92.057 -92.056 -729.937 -730.100 -730.095 5.348 5.348 5.348

108 -88.483 -88.487 -88.487 -6846.975 -6847.001 -6847.003 5.406 5.406 5.406

TABLE III. FCI, GF2, and finite temperature Hartree-Fock results for the hydrogen fluoride molecule in STO-3G basis. A
higher value of temperature corresponds to a smaller value of β = 1/kBT . Note that the grand potential depends on chemical
potential Ω = E − TS − µN that for gaped system is not uniquely defined. The difference in the FCI, finite temperature
Hartree-Fock, and GF2 for the 104 − 104 K temperatures are the result of this non-uniqueness of the chemical potential. The
Helmholtz energy A = Ω + µN = E − TS, which is the sum of the grand potential and µN term does not suffer from this
non-uniqueness.



15

[1] D. A. McQuarrie and J. D. Simon, Molecular thermody-
namics (University Science Books Sausalito, CA, 1999).

[2] J. W. Ochterski, Gaussian Inc, Pittsburgh, PA , 1 (2000).
[3] J. Y. Tsao, The World of Compound Semiconductors

(Citeseer).
[4] E. G. Moroni, G. Grimvall, and T. Jarlborg, Physical

review letters 76, 2758 (1996).
[5] T.-Q. Yu and M. E. Tuckerman, Physical review letters

107, 015701 (2011).
[6] Q. Zhu, A. G. Shtukenberg, D. J. Carter, T.-Q. Yu,

J. Yang, M. Chen, P. Raiteri, A. R. Oganov, B. Pokroy,
I. Polishchuk, et al., Journal of the American Chemical
Society 138, 4881 (2016).

[7] N. D. Mermin, Annals of Physics 21, 99 (1963).
[8] N. D. Mermin, Physical Review 137, A1441 (1965).
[9] M. Dharma-wardana, arXiv preprint arXiv:1602.04734

(2016).
[10] J. Smith, A. Pribram-Jones, and K. Burke, arXiv

preprint arXiv:1509.03097 (2015).
[11] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. Trickey,

Physical review letters 112, 076403 (2014).
[12] S. Hirata and X. He, The Journal of chemical physics

138, 204112 (2013).
[13] M. Altenbokum, K. Emrich, H. Kümmel, and
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