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The Game-Theoretic Formation of
Interconnections Between Networks

Ebrahim Moradi Shahrivar and Shreyas Sundaram

Abstract

We introduce a network design game where the objective of the players is to design the interconnections
between the nodes of two different networks G1 and G2 in order to maximize certain local utility functions.
In this setting, each player is associated with a node in G1 and has functional dependencies on certain nodes
in G2. We use a distance-based utility for the players in which the goal of each player is to purchase a set
of edges (incident to its associated node) such that the sum of the distances between its associated node and
the nodes it depends on in G2 is minimized. We consider a heterogeneous set of players (i.e., players have
their own costs and benefits for constructing edges). We show that finding a best response of a player in this
game is NP-hard. Despite this, we characterize some properties of the best response actions which are helpful
in determining a Nash equilibrium for certain instances of this game. In particular, we prove existence of pure
Nash equilibria in this game when G2 contains a star subgraph, and provide an algorithm that outputs such an
equilibrium for any set of players. Finally, we show that the price of anarchy in this game can be arbitrarily
large.

Index Terms

Interconnected Networks, Network Design, NP-hardness, Nash Equilibria, Price of Anarchy, Hub-and-
Spoke.

I. INTRODUCTION

There is a growing realization that many large scale networks consist of interconnected subnetworks
[1]–[3]. Examples include coupled energy infrastructure and communication networks [4], cyber-
physical systems [5], and transportation networks (such as the flight networks of different airlines)
[6]. Understanding the structure of large-scale networks and the implications of this structure for
the effective functioning of the network has been the subject of many studies throughout the past
decade [7], [8]. One approach to investigate this problem is through the framework of random graphs
where each subnetwork is drawn from a certain probability distribution [9], [10]. For (single) random
networks, properties such as connectivity, robustness against structural and dynamical failures, and
edge expansion have been widely investigated in the literature [11]–[14], with recent extensions to
interconnected networks [4], [15]–[18].

An alternative perspective on understanding the structure of networks is to view the edges as
being optimally placed (either by a central designer, or by different decision makers) in order to
maximize some given utility function(s) [19]–[22]. The classical literature on optimal network design
has predominantly focused on the construction of a single network [7], [23]. In [24], we proposed a
multi-layer network formation setting in which, given a network G = (V,E), the network designer
aims to find a network G1 = (V,E1) such that distances between nodes that are neighbors in G are
minimized in G1; in this context, networks G and G1 represent different types of relationships between
the set of nodes V . We then exploited this setting to formulate a multi-layer network formation game
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where each layer corresponds to a player that is optimally choosing its edge set in response to the
edge sets of the other players.

In this paper, we consider the game-theoretic formation of edges between two given networks
G1 = (V1, E1) and G2 = (V2, E2) on two different sets of nodes V1 and V2. We assume that there
are dependencies between nodes in V1 and V2, i.e., some of the nodes in V1 require connections to
(or information from) some of the nodes in V2 in order to function. These dependencies are captured
by a bipartite network GI = (V1 ∪ V2, EI) where EI ⊆ V1 × V2, and an edge (vi, vj) ∈ EI indicates
that vi ∈ V1 is dependent on vj ∈ V2. We assume that each node in V1 is a player and builds a set
of edges between itself and nodes in V2 in order to maximize a distance-based utility function. As a
motivating abstraction for this problem, consider a cyber-physical system where G1 is a power network
(with the nodes representing substations) and G2 is a sensor network. Suppose that the sensor nodes
are responsible for gathering critical information (e.g., power usage, line failures, etc.) from different
geographical regions and this information is required by the power stations that supply electricity to
those regions. This setting has been investigated from different perspectives over the past few years [1],
[4], [5], [15], [25]–[27] and our results add to this literature by studying the game-theoretic allocation
of interconnecting edges between the power and sensor networks. We model dependencies between
the substations and sensors (which correspond to nodes in G1 and G2, respectively) by the network
GI . Suppose that neighboring nodes in each network are capable of exchanging information with each
other. The substation operators wish to construct connections to the sensor network in such a way
that they minimize the number of hops required to gather data from their interdependent nodes (where
the number of hops is measured with respect to the connections within G1 and G2 and the edges
constructed between the networks). This leads to an interconnection network design game (INDG)
with distance utilities where the utility of each player (operator) depends on its own set of edges as
well as the set of edges constructed by other players.

The INDG setting also matches the framework studied in [28] for merging two social networks
where the goal is to construct a set of edges between the networks such that the integrated network
has diameter no more than a fixed value. Besides considering a cost for constructing edges and
having a different utility function, the nodes are the decision makers in our setting, whereas [28]
assumes a central network designer. Distance-based utilities have also been used to study computer
networks (where nodes represent the computers and edges are the communication links) [29], [30].
In this case, network GI models the virtual dependencies among the computers in cluster G1 and
cluster G2, indicating the set of pairs of nodes that wish to exchange information. The designed
interconnection network represents the physical communication network between the two clusters. Yet
another application of the INDG with distance utilities arises in studying interconnections between the
transportation networks of two countries. We will elaborate on this example in Section IV.

We start our investigation of the INDG by showing that it is NP-hard to find a best response for
each player. Despite the NP-hardness of the problem, we characterize some useful properties of the
best response which consequently enable us to determine a Nash equilibrium instance for certain
cases of the game. Specifically, we study the existence of Nash equilibria in an INDG with distance
utilities when network G2 has a star subgraph (similar to the “hub-and-spoke” structure seen in various
transportation networks [31], [32] or in sensor networks with fusion centers [33], [34]) and there is full
interdependency between nodes in G1 and G2. We show that this setting possesses a Nash equilibrium
for any set of players with arbitrary benefit functions and edge costs. We partition the set of players into
two sets consisting of high and low edge cost players and show that in any Nash equilibrium, all of the
high-cost players that have a low-cost player in their vicinity “free ride” and choose not to construct
any interconnections to G2. At the end, we provide some insights about our results via a simulation
involving random network models that have been previously used to capture interdependencies between
power and sensor/communication networks [4], [17], [26], [27]. Our simulations suggest that the social
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welfare of the constructed networks is higher when all of the players have equal cost of constructing
edges, compared to the case where they have heterogeneous edge costs.

II. DEFINITIONS

An undirected network (or graph) is denoted by G = (V,E) where V = {v1, v2, . . . , vn} is the set
of nodes (or vertices) and E ⊆ {(vi, vj)|vi, vj ∈ V, vi 6= vj} denotes the set of edges. If there is an
edge between two nodes, they are said to be neighbors. The number of neighbors of a node vi ∈ V
in graph G is called its degree and is denoted by degi(G). A path from node v1 to vk in graph G is a
sequence of distinct nodes v1v2 · · · vk where there is an edge between each pair of consecutive nodes
of the sequence. The length of a path is the number of edges in the sequence. We denote the shortest
distance between nodes vi and vj in graph G by dG(vi, vj). If there is no path from vi to vj , we take
dG(vi, vj) =∞. The diameter of the graph G is maxvi,vj∈V,vi 6=vj dG(vi, vj). A cycle is a path of length
two or more from a node to itself. A graph G′ = (V ′, E ′) is called a subgraph of G = (V,E), denoted
as G′ ⊆ G, if V ′ ⊆ V and E ′ ⊆ E ∩ {V ′ × V ′}. A graph is connected if there is a path from every
node to every other node. A subgraph G′ = (V ′, E ′) of G is a component if G′ is connected and there
are no edges in G between nodes in V ′ and nodes in V \ V ′. A graph G = (V,E) is called bipartite
if there exist two disjoint subsets V1, V2 ⊆ V such that V1 ∪ V2 = V and E ⊆ V1 × V2, i.e., G does
not have any edge with both endpoints in V1 or V2. The set of all possible bipartite graphs with two
partitions V1 and V2 is denoted by GV1×V2 .

III. DISTANCE-BASED UTILITY

Jackson and Wolinsky introduced a canonical problem in network formation which involves distance-
based utilities [7]. In their formulation, each node is a decision maker, and chooses its connections to
other nodes in the network. In any formed network, each node receives a benefit of b(k) from nodes that
are k hops away, where b : {1, 2, · · · , n− 1,∞} → R≥0 is a real-valued, nonincreasing, nonnegative
function (i.e., nodes that are further away provide smaller benefits) and b(∞) = 0. Furthermore,
constructing the edge (vi, vj) incurs a cost of c to both endpoints vi and vj . The total utility that node
vi receives from the constructed network G = (V,E) is

ui(G) =

 ∑
vj∈V :vi 6=vj

b(dG(vi, vj))

− c degi(G). (1)

Thus, the nodes have to compromise between adding more links (which provides a larger benefit
by reducing the distances between nodes) and decreasing the cost by using fewer edges. When b(·)
is a strictly decreasing function, there are only a few different kinds of socially optimal (or efficient)
networks, depending on the relative values of the link costs and connection benefits: the empty network
(for high edge costs), star (for medium edge costs) and the complete network (for low edge costs)
[23].

IV. INTERCONNECTION NETWORK DESIGN GAME

Assume that we are given two arbitrary networks G1 = (V1, E1) and G2 = (V2, E2). In this paper,
we consider a setting in which each node in V1 constructs a set of edges to nodes in V2 such that
some utility function is maximized. This leads to a game with the nodes of G1 as the players.

Definition 1: Consider two arbitrary networks G1 = (V1, E1) and G2 = (V2, E2) with V1 =
{x1, · · · , xn} and V2 = {y1, · · · , ym}. An instance of the interconnection network design game (INDG)
G = (P, (Si)Pi∈P , (Ψi)Pi∈P , G1, G2) has a set of n players P = {P1, P2, · · · , Pn} where player Pi is
associated with node xi ∈ V1 for 1 ≤ i ≤ n. The strategy space of player Pi is Si = 2{xi}×V2 , i.e., all
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possible subsets of edges from xi to nodes in V2. The action of player Pi is an element of Si and is
denoted by Wi, i.e., Wi is a set of edges from xi to a certain subset of V2. By an abuse of notation,
we take B = ∪nj=1Wj to indicate the bipartite graph B = (V1 ∪ V2,∪nj=1Wj). The utility of player Pi

is given by a function Ψi : S1 × S2 × · · · × Sn → R, where the jth argument1 is the action of the jth

player for 1 ≤ j ≤ n.
The characteristics of the game and the optimal strategies for each player will depend on the form

of the utility functions Ψi. In this paper, we consider a modified version of the distance utility function
in (1) as the payoff to the players. Specifically, we assume that there are dependencies between nodes
in the graphs G1 and G2 which is represented by a bipartite network GI = (V1 ∪ V2, EI) with two
partitions V1 and V2 and EI ⊆ V1×V2. Let Ii ⊆ V2, 1 ≤ i ≤ n, denote the set of neighbors of xi ∈ V1
in the network GI . Then the objective of player Pi is to find the optimal set of edges to construct to V2
such that distance between its associated node xi and the set of nodes in Ii is minimized. In addition
to the technological applications that we mentioned in Section I, the INDG can be utilized to model
problems in transportation. For instance consider a modified version of the problem studied in [16]
where we are given the traffic flow between cities of two different countries C1 and C2. Each of these
countries has a domestic transportation service which connects its cities and is modeled by networks
G1 and G2. A city in C1 and a city in C2 are said to be interdependent if the traffic flow between them
is higher than some threshold, and this interdependency is represented by an edge between them in the
network GI . The players of the game correspond to transportation service planners at each node in C1,
who are faced with the problem of finding the optimal set of routes to establish from their associated
city to cities of the country C2 such that distance between the interdependent cities is minimized. It is
clear that the structure of the interconnection between cities inside the countries C1 and C2 (modeled
as G1 and G2) affects the optimal decisions made by the players.

Definition 2: An instance

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI)

of the game in Definition 1 is said to be an interconnection network design game with distance utilities
if the utility function of player Pi, 1 ≤ i ≤ n, with action Wi ∈ Si has the form

Ψi(W1, · · · ,Wn) = ui(∪nj=1Wj|G1, G2, GI) (2)

=

(∑
y∈Ii

bi(dG(xi, y))

)
− ci|Wi|,

where G = (V1 ∪ V2, E1 ∪ E2 ∪ (∪nj=1Wj)).
As we can see in the utility function ui(·), only the distances between node xi and the set of nodes

Ii matter. Furthermore, each player has to pay only for his/her constructed edges. The benefit functions
bi(·) are nonnegative, nonincreasing and satisfy bi(∞) = 0, and all costs ci are positive, and can be
different across players.

We will use W−i to denote the vector of actions of all players except player Pi, and use Ψi(Wi,W−i)
to denote the utility of player Pi with respect to the given vector (W1,W2, . . . ,Wn). Based on the
definition of the game, we say that a vector of actions (W1,W2, . . . ,Wn) is a Nash equilibrium if and
only if Wi ∈ arg maxW∈Si

Ψi(W,W−i) for all i ∈ {1, 2, . . . , n}. In this case, Wi is said to be a best
response action to W−i with respect to the utility function Ψi. For the rest of this paper, whenever we
say INDG, by default we mean an interconnection network design game with distance utilities.

Remark 1: The benefit function bi(·) can be chosen to capture how quickly (in terms of number of
hops) node vi ∈ V1 needs to communicate with its interdependent nodes in V2. For example, consider

1The utility function Ψi is also a function of G1 and G2 which will be omitted from the argument list as long as it is clear from the
context.
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again the cyber-physical system abstraction described in Section I, where the nodes in V1 are power
substations and nodes in V2 are sensors that measure certain quantities of interest. If substation vi ∈ V is
able to tolerate a routing delay of up to k hops from each of the sensors it depends on, but higher routing
delays are useless, then the associated benefit function can be chosen as bi(1) = · · · = bi(k) > 0, and
bi(d) = 0 for d > k. Alternatively, if node vi is able to tolerate any routing delay, but would prefer
shorter delays, bi(·) can be chosen to be an appropriate strictly decreasing function. Our formulation
allows different nodes to have different benefit functions and edge costs, encoding heterogeneity in
the players of the game.

V. CHARACTERISTICS OF THE BEST RESPONSES

In this section, we characterize some important properties of the best response actions for the players.
We start by determining the complexity of finding a best response action for the players in the INDG.

A. Complexity
In order to characterize the complexity of finding the best response actions for the papers, we first

formulate the decision problem corresponding to optimizing the utility (2), as follows.2
Definition 3: Best Response Interconnection (BRI).

INSTANCE: A given instance

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI),

of INDG, a player Pj ∈ P , a joint strategy by all other players W−j = ∪i 6=jWi and a threshold
r ∈ R>0.

QUESTION: Does there exist an action Wj ∈ Sj for the player Pj such that

uj(Wj ∪W−j|G1, G2, GI) =

∑
y∈Ij

bj(dG(xj, y))

− cj|Wj| ≥ r,

where G = (V1 ∪ V2, E1 ∪ E2 ∪Wj ∪W−j)?
We now provide the following theorem showing that finding a best response for the players, given

arbitrary networks G1, G2, GI , and arbitrary non-increasing benefit functions bi(·) and edge costs ci > 0
for the players, is impossible in polynomial-time (unless P = NP).

Theorem 1: The Best Response Interconnection problem is NP-hard.
To prove this theorem, we provide a reduction from the NP-complete Dominating Set Problem [35].

A dominating set of the network Gd = (Vd, Ed) is a subset S ⊆ Vd such that for all u ∈ Vd \S, u has
a neighbor in the set S.

Definition 4: Dominating Set Problem.
INSTANCE: Network Gd = (Vd, Ed) and positive integer k ≤ |Vd|.
QUESTION: Does the network Gd have a dominating set S with |S| ≤ k?

We are now in place to prove Theorem 1.
Proof of Theorem 1: Given an instance of the dominating set problem with Gd = (Vd, Ed) and

k, define an instance of the BRI problem with G1 = (V1, E1), G2 = (V2, E2) and GI = (V1 ∪ V2, EI)
as follows

V1 = {x1}, V2 = Vd, E1 = φ, E2 = Ed, EI = V1 × V2
b1(3) < b1(1)− c1 < b1(2)

r = k(b1(1)− c1) + (|V2| − k)b1(2). (3)

2Decision problems are those with “yes” or “no” answers, and form the basis of the complexity classes P and NP. Since optimization
problems can be solved by repeatedly solving a corresponding decision problem (e.g., by determining whether there is a solution that
provides a utility larger than a certain threshold), showing that the decision problem is NP-hard is sufficient to show NP-hardness of
the optimization problem. We refer to standard textbooks such as [35] for more details and background on complexity theory.
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For example c1 = 2, b1(1) = 4, b1(2) = 3, b1(3) = 1 and b1(k) = 0 for all k ≥ 4 satisfies the above
conditions. In the above instance of the BRI, there is only one node in V1 (with associated player P1),
and this player is fully dependent on all nodes in V2 (i.e., we have I1 = V2 in (2)). Hence, the BRI
problem is to determine whether P1 has an action W1 such that u1(W1|G1, G2, GI) ≥ r.

The above instance of the BRI problem can be constructed in polynomial time. In the rest of the
proof, we show that the answer to the above instance of the BRI problem is “yes” if and only if the
answer to the given instance of the Dominating Set Problem is “yes”.

Suppose that the graph G2 = Gd has a dominating set S ⊂ V2 with |S| ≤ k and thus the answer to
the given instance of the Dominating set problem is “yes”. Then by defining W1 = {(x1, v)|v ∈ S},
the distance between node x1 and any node in V2 is at most 2. Since |W1| ≤ k,

u1(W1|G1, G2, GI) = |W1|(b1(1)− c1) + (|V2| − |W1|)b1(2)

= |W1|(b1(1)− c1) + (|V2| − k)b1(2) + (k − |W1|)b1(2)

≥ |W1|(b1(1)− c1) + (|V2| − k)b1(2) + (k − |W1|)(b1(1)− c1)
= r.

Therefore, the answer to the constructed instance of the BRI problem in (3) is “yes” as well.
Next suppose that the answer to the defined instance of BRI in (3) is “yes”, i.e., there exists a

W1 ∈ S1 such that u1(W1|G1, G2, GI) ≥ r. If there is a node v ∈ V2 such that dG(x1, v) ≥ 3, we can
add the edge (x1, v) to W1; this would increase the benefit of the network by at least b1(1) − b1(3)
and incur a cost of c1. Since b1(1) − b1(3) > c1, this would increase the utility of P1. Thus without
loss of generality we can take the distance between node x1 and any node in V2 to be at most 2 under
the constructed edge set W1.

Consider the set of nodes S ⊆ V2 that are incident to at least one edge in W1, i.e., S = {v ∈
V2|(x1, v) ∈ W1}. All of the nodes in V2 \S are connected to at least one of the nodes in S due to the
assumption that the distance between any node in V2 and node x1 is at most 2. Thus S is a dominating
set of the network G2. On the other hand, the assumption that u1(W1|G1, G2, GI) ≥ r yields

0 ≤ u1(W1|G1, G2, GI)− r
= |W1|(b1(1)− c1) + (|V2| − |W1|)b1(2)− r
= (|W1| − k)(b1(1)− c1) + (k − |W1|)b1(2)

= (|W1| − k)(b1(1)− c1 − b1(2)).

Since b1(1) − c1 < b1(2), we must have that |W1| ≤ k. Hence, |S| = |W1| ≤ k. This means that
network G2 has a dominating set of size less than k. Thus the answer to the given instance of the
Dominating Set Problem is “yes”.

Given that BRI is a NP-hard problem, finding best response actions in the INDG with distance
utilities is nontrivial in general. In the next section, we provide some properties of the best response
actions that will be helpful in characterizing the best responses of the players in certain cases.

B. Properties of the Best Response
Lemma 1: Let Wj be a best response to W−j in the INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI).

Then we have that
1) |Wj| ≤ |Ij|.
2) If bj(1) > bj(2), then |Wj| = |Ij| if and only if Wj = {(xj, y)|y ∈ Ij}.
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Proof: Let G = (V1∪V2, E1∪E2∪Wj ∪W−j). We use contradiction to prove the first statement.
Assume that |Wj| > |Ij|, then

uj(Wj ∪W−j|G1, G2, GI) =

∑
y∈Ij

bj(dG(xj, y))

− cj|Wj|

≤ |Ij|bj(1)− cj|Wj|
< |Ij|(bj(1)− cj)
= uj(W

′
j ∪W−j|G1, G2, GI),

where W ′
j = {(xj, y)|y ∈ Ij}. Thus Wj is not a best response to W−j which is a contradiction to the

assumption of the lemma.
To prove the second statement, note that if Wj = {(xj, y)|y ∈ Ij}, then |Ij| = |Wj|. Thus we only

have to show that when bj(1) > bj(2), if |Ij| = |Wj|, then Wj = {(xj, y)|y ∈ Ij}. Assume by way
of contradiction that there exists y∗ ∈ Ij such that (xj, y

∗) /∈ Wj . This means that dG(xj, y
∗) ≥ 2 and

thus

uj(Wj ∪W−j|G1, G2, GI) < |Ij|bj(1)− cj|Ij|
= uj(W

′
j ∪W−j|G1, G2, GI),

where, again, W ′
j = {(xj, y)|y ∈ Ij}. This is a contradiction and thus we must have {(xj, y)|y ∈ Ij} ⊆

Wj . We also know that |Wj| ≤ |Ij| and therefore, have the required result.
The next lemma characterizes a best response action of the players when the cost of constructing

edges is less than a certain threshold. The proof follows the same reasoning as the proof in [23] for
the formation of (single) networks under low edge costs.

Lemma 2: Let Wj be a best response to W−j in the INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI).

If cj < bj(1) − bj(2), then Wj = {(xj, y)|y ∈ Ij}. Furthermore, if cj = bj(1) − bj(2), then Wj =
{(xj, y)|y ∈ Ij} is a best response action for player Pj .

Proof: Suppose that y∗ ∈ Ij and (xj, y
∗) /∈ Wj . Then bj(dG(xj, y

∗)) ≤ bj(2) where G = (V1 ∪
V2, E1∪E2∪Wj∪W−j). Adding the edge (xj, y

∗) to Wj increases the utility of Wj by at least bj(1)−cj−
bj(2) > 0 which contradicts the assumption that Wj is a best response and thus (xj, y

∗) ∈ Wj . Hence
{(xj, y)|y ∈ Ij} ⊆ Wj . By Lemma 1, we know that |Wj| ≤ |Ij| and therefore, Wj = {(xj, y)|y ∈ Ij}.

For the case that cj = bj(1)− bj(2), note that adding the edge (xj, y
∗) to Wj does not decrease the

utility of Wj and thus as in the above argument, Wj = {(xj, y)|y ∈ Ij} is a best response action for
Pj .

The next result gives an upper-bound on the maximum number of edges that a player Pj with
cj > bj(1)− bj(2) will form in a Nash equilibrium.

Lemma 3: Let Wj be a best response to W−j in the INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI).

If bj(1)− bj(2) < cj , then |Wj| ≤ |D|, where D denotes the smallest dominating set of the network
G2.
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Proof: If |Ij| ≤ |D|, we have the result by the first statement of Lemma 1. Thus consider the case
that |Ij| > |D|. Assume by way of contradiction that |Wj| > |D|. Let G = (V1∪V2, E1∪E2∪Wj∪W−j).
Then

uj(Wj ∪W−j|G1, G2, GI) ≤ |Wj|(bj(1)− cj) + (|Ij| − |Wj|)bj(2)

= |D|(bj(1)− cj) + (|Wj| − |D|)(bj(1)− cj) + (|Ij| − |Wj|)bj(2)

< |D|(bj(1)− cj) + (|Ij| − |D|)bj(2)

= uj(W
′
j ∪W−j|G1, G2, GI),

where W ′
j = {(xj, y)|y ∈ D}. Thus W ′

j produces more utility than Wj for player Pj which is a
contradiction to the assumption that Wj is a best response to W−j .

We will apply Lemma 3 later in Section VI to determine a Nash equilibrium instance of the INDG
when G2 has a star subgraph. The next lemma provides a threshold on the edge costs of the players
in order for them to have nonempty actions.

Lemma 4: Let Wj be a best response to W−j in the INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI).

If cj > bj(1) + (|Ij| − 1)bj(2), then Wj = φ, i.e., it is not beneficial for the player Pj to construct any
edges incident to its associated node xj .

Proof: Assume by way of contradiction that |Wj| ≥ 1. Given G = (V1∪V2, E1∪E2∪Wj ∪W−j),
we have

uj(Wj ∪W−j|G1, G2, GI) ≤ |Wj|(bj(1)− cj) + (|Ij| − |Wj|)bj(2)

= bj(1)− cj + (|Wj| − 1)(bj(1)− cj) + (|Ij| − |Wj|)bj(2)

≤ bj(1)− cj + (|Ij| − 1)bj(2) < 0,

where in the above, we are using the fact that bj(1) − cj < bj(2) by the assumption of the lemma.
Therefore, we must have that |Wj| = 0 which yields the required result.

In the next result, we propose a condition under which a player disregards the network constructed
by another player when considering the best response. We define the R-radius of a player Pi ∈ P
with bi(1)− ci > 0 as the minimum integer Ri > 0 (or ∞) such that bi(1)− ci > bi(Ri + 1).

Lemma 5: Consider two players Pi, Pj ∈ P with R-radii Ri and Rj , respectively. For a given
instance of INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI),

assume that Wi and Wj are best response actions to W−i and W−j , respectively. If dG1(xi, xj) ≥
Ri +Rj − 1, then the actions of the players Pi and Pj are such that shortest paths from nodes xi and
xj to the nodes that they depend on in V2 are node disjoint in G1.

Proof: The idea behind the proof stems from the fact that for any two nodes xi, xj ∈ V1 with
dG1(xi, xj) ≥ Ri +Rj−1, there does not exist any node xk ∈ V1 that simultaneously has distance less
than Ri to xi and less than Rj to xj . To formally prove the lemma, consider {(xi, yi), (xj, yj)} ⊆ EI .
By way of contradiction, assume that the shortest paths from xi to yi and xj to yj intersect at a node
xk ∈ V1. Without loss of generality, let dG1(xi, xk) ≥ Ri. This means that dG(xi, yi) ≥ Ri + 1 where
G = (V1∪V2, E1∪E2∪Wi∪W−i). Now consider W ′

i = Wi∪{(xi, yi)} as a modified action of player
Pi. This new action will increase the utility of player Pi by at least bi(1)− ci− bi(Ri + 1) > 0, which
is a contradiction to the assumption that Wi is a best response to W−i.

The following example illustrates the application of Lemma 5 in determining a Nash equilibrium
of the INDG.

Example 1: Consider networks G1 = (V1, E1) and G2 = (V2, E2) depicted in Fig. 1a with the given
dependency network GI between them (shown by dashed edges). Assume that bi(3) > bi(1)−ci > bi(4)
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for i ∈ {1, 6} which yields R1 = R6 = 3. Nodes x1 and x6 correspond to the players P1 and P6,
respectively. Note that since all of the other nodes xi ∈ V1 \ {x1, x2} have Ii = ∅, their associated
players do not construct any edges in any Nash equilibrium by Lemma 1. Both x1 and x2 are dependent
on all nodes in G2, as illustrated for x1 in Fig. 1b. The distance between nodes x1 and x6 in G1 is

x1

x2

x3

x4

x5

x6

y1y2

y3 y4 y5

y6

G1

G2

(a)

x1

y1y2

y3 y4 y5

y6

G2

(b)

x1

y1y2

y3 y4 y5

y6

G2

(c)

x1

x2

x3

x4

x5

x6

y1y2

y3 y4 y5

y6

G1

G2

(d)

Fig. 1: (a) Networks G1 and G2 with interdependencies shown by dashed edges. (b) Interdependencies of player P1 with
nodes in G2. (c) Best response action of P1 (d) A Nash equilibrium instance.

5 and thus the networks constructed by players P1 and P6 will be such that the shortest paths from
x1 to the nodes in G2 are node disjoint (in G1) from the shortest paths from x6 to the nodes in G2,
by Lemma 5. Fig. 1c demonstrates a best response for player P1. Using the optimal action of P1 and
Lemma 5, we can determine a Nash equilibrium as shown in Fig. 1d.

VI. NASH EQUILIBRIUM OF INDG FOR NETWORKS CONTAINING STAR SUBGRAPHS

With our results on best responses in hand, we now turn our attention to proving the existence of a
Nash equilibrium. While it is challenging to show this for general G1, G2 and GI , we will prove that
the INDG always has a Nash equilibrium when G2 contains a star subgraph,3 and GI = (V1 ∪ V2, EI)
is the complete bipartite network, i.e., EI = V1 × V2. We allow G1 to be arbitrary. Without loss of
generality, let y1 ∈ V2 be a hub node in G2 = (V2, E2), i.e., (y1, y) ∈ E2 ∀y ∈ V2 \ {y1}. As we
illustrate later, the presence of heterogeneous players (captured by individual benefit functions and
edge costs) along with the arbitrary structure of G1 leads to non-trivial interconnection networks in
equilibrium, even under the above assumptions on G2 and GI .

To develop our results, we partition the set of players P into two sets: high-cost players

SH = {Pi ∈ P |bi(1)− bi(2) < ci}, (4)

and low-cost players
SL = {Pi ∈ P |bi(1)− bi(2) ≥ ci}. (5)

Recall that we assumed V1 = {x1, · · · , xn} and V2 = {y1, · · · , ym}. For the rest of this section, we
denote the number of players |P | by |V1| = n and the number of nodes in |V2| by m.

3Such networks can be used to represent, for example, sensor networks that have a fusion center, or transportation networks that have
a “hub-and-spoke” structure [6], [31]–[33].
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We begin our analysis in this section with the following useful corollary of Lemma 2, which
determines a best response action for the low-cost players.

Corollary 1: Assume that Pi ∈ SL. Then Wi = {(xi, y)|y ∈ V2} is a best response action for player
Pi regardless of the actions of the other players.

For the rest of this section, we assume that low-cost players always set their action according to the
best response given by Corollary 1. In the next proposition, we discuss the best responses of high-cost
players when there is a low-cost player in their neighborhood. We define the L-radius of a player
Pi ∈ SH as the maximum nonnegative integer Li such that4

bi(1)− ci + (m− 1)bi(2) ≤ mbi(Li + 1). (6)

Proposition 1: Let Pi be a high-cost player. Suppose that there exists a low-cost player Pj ∈ SL

such that the distance between xj and xi is less than Li + 1 (i.e., dG1(xi, xj) < Li + 1), where Li is
the L-radius of player Pi. Then, if Pj has constructed edges to all nodes in V2, the empty network is
a best response action for player Pi.

Proof: Let Wi denote a best response action of the player Pi ∈ SH with respect to W−i. Node
xi has distance d ≤ Li to xj which is associated with a low-cost player Pj ∈ SL that is connected to
all of the nodes in V2. Now assume that Wi 6= φ. Then we have

Ψi(W1, · · · ,Wn) = ui(∪nj=1Wj|G1, G2, GI)

=

∑
yj∈Ii

bi(dG(xi, yj))

− ci|Wi|

≤ |Wi|(bi(1)− ci) + (m− |Wi|)bi(2) (7)
= bi(1)− ci + (|Wi| − 1)(bi(1)− ci) + (m− |Wi|)bi(2)

≤ bi(1)− ci + (|Wi| − 1)bi(2) + (m− |Wi|)bi(2)

= bi(1)− ci + (m− 1)bi(2)

≤ mbi(Li + 1) ≤ mbi(d+ 1).

Therefore, player Pi can increase its utility by changing its action to be the empty network and
connecting to the nodes it depends on in G2 via edges constructed by the low-cost player Pj .

The above result shows that the existence of a low-cost player in the proximity of a high-cost player
will make the high-cost player a free rider in any Nash equilibrium, i.e., the high-cost player does not
construct any edges, and instead benefits from the low-cost player’s edges.

Remark 2: Note that Corollary 1 and Proposition 1 do not rely on G2 having a star subgraph, and
hold whenever the low-cost players have dependencies on all nodes in G2.

Corollary 2: Assume that Pi ∈ SH . Then for any best response action of the player Pi, node xi is
either connected to only the center of a star subgraph in G2 (e.g., node y1 ∈ V2) or it does not have
any edges.

Proof: Since G2 has a star subgraph, the size of its smallest dominating set is 1 (e.g., the center
of the star, y1). Therefore, by Lemma 3, we must have that |Wi| ≤ 1. Furthermore, the proof of
Lemma 3 shows that with a single edge, Wi = {(xi, y1)} produces the highest possible utility for Pi.
Proposition 1 gives an instance of the situation when Wi = φ.

Although Corollary 2 limits the set of best response actions of a high-cost player to two actions
(namely, connect to a hub in G1 or not), it is not clear whether this game has a pure strategy Nash
equilibrium for any set of players with arbitrary network G1, edge cost ci and benefit function bi(·).

4A player Pi with bi(1)− ci + (m− 1)bi(2) < 0 is defined to have Li =∞, and his/her best response action is always the empty
network by Lemma 4.
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We prove existence of a pure Nash equilibrium in this game by providing an algorithm that outputs
such an equilibrium. To do this, we first define an index ri for each high-cost player Pi ∈ SH , called
the r-radius. The r-radius of player Pi with benefit function bi(·) and edge cost ci is defined as the
maximum nonnegative integer ri such that5

bi(1)− ci+(m− 1)bi(2) ≤ bi(ri + 1) + (m− 1)bi(ri + 2). (8)

Note that by the above definition, Li ≥ ri where Li was defined in (6). For a given r-radius ri, we
define the ri-neighborhood of node xi as

Ni = {xj|Pj ∈ SH and dG1(xi, xj) ≤ ri}. (9)

If a high-cost player Pi has another high-cost player Pj with a single edge to a hub node in V2 such
that xj ∈ Ni, then player Pi is better off with no edge to V2. This statement is also true if Pj is a
low-cost player by Proposition 1 and the fact that ri ≤ Li. The following proposition formally states
these ideas.

Proposition 2: Let Pi be a high-cost player with r-radius ri. Suppose that there exists a player Pj

such that xj is connected to a hub node in V2 and dG1(xi, xj) ≤ ri. Then the empty network is a best
response action for the player Pi with respect to W−i.

The results that we provided in this section enable us to give an algorithm that outputs a Nash
equilibrium instance of the interconnection network design game with distance utilities for an arbitrary
network G1 and arbitrary benefit function and cost of edges.

Theorem 2: Assume that network G2 has a star subgraph and GI is a complete bipartite graph
with partitions V1 and V2. Then the interconnection network design game with distance utilities in
Definition 2 always has a pure strategy Nash equilibrium.

Proof: We prove this theorem by providing an algorithm that outputs a Nash equilibrium instance
of the game given by a set of actions (W1,W2, · · · ,Wn) for the players. The steps of the algorithm
are as follows:

1) Connect nodes associated to the low-cost players to all of the nodes in V2.
2) Take S∞H as the set of all high-cost players with ri =∞ (which includes all of the players with

Li =∞). Set the actions of all players Pi ∈ S∞H to be the empty network, i.e., Wi = ∅.
3) Determine the set SL

H which consists of all high-cost players that have a low-cost player in their
Li-neighborhood where Li denotes the L-radius, i.e.,

SL
H = {Pi ∈ SH |∃Pj ∈ SL such that dG1(xi, xj) ≤ Li}.

Set the actions of these players to be the empty network (by Proposition 1).
4) Let Q ⊆ SH \ (SL

H ∪S∞H ) be the set of players whose actions have not been determined yet. If the
set Q is empty, exit the algorithm. Otherwise, let Pi ∈ Q be the player with the lowest r-radius.
Connect xi (i.e., the node associated to Pi) via a single edge to a central node in G2. Remove
Pi from Q.

5) Set the action of all high-cost players Pj ∈ Q with xi ∈ Nj to the empty network and remove
them from the set Q. Recall that Nj is the rj-neighborhood of player Pj and was defined in (9).

6) Return to step 4.
We now argue that the output of the above algorithm is in fact a Nash equilibrium. Since the actions
of low-cost players are in accordance with Corollary 1, they are best responses to the other actions.
Next, note that if a high cost player Pi ∈ S∞H wants to take a best response action with respect to the
actions of the other players, he/she has to choose the empty network by Lemma 4; this is the action

5A player Pi with bi(1)− ci + (m− 1)bi(2) < 0 is defined to have ri =∞, and his/her best response action is always the empty
network by Lemma 4.
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that our proposed algorithm assigns to these players. The same is true for all high cost players with
a low-cost player in their Li-neighborhood, according to Proposition 1. Thus we only need to prove
optimality of the actions of the remaining players which are determined through steps 4 to 6. Note
that all of the remaining players have ri <∞.

Consider the set SH \ (SL
H ∪ S∞H ) = {Pi1 , · · · , Pit} and assume without loss of generality that

ri1 ≤ ri2 ≤ · · · ≤ rit . Under the algorithm, the action of Pi1 is Wi1 = {(xi1 , y1)}. We know that there
is no low-cost player in the Li1-neighborhood of Pi1 , since Pi1 ∈ SH \ (SL

H ∪ S∞H ). Similarly, there is
no high-cost player in SL

H ∪S∞H with a nonempty action in the Ni1 neighborhood of Pi1 . Now assume
that there exists a player Pij ∈ SH \ (SL

H ∪ S∞H ) with j > 1 and |Wij | = 1. We have to show that
xij /∈ Ni1 , since otherwise the action of player Pi1 will not be optimal. In step 5 of the algorithm, we
set the actions of all players Piq such that xi1 ∈ Niq to the empty network and remove them from the
set Q. Hence, we must have that xi1 /∈ Nij , i.e., dG1(xi1 , xij) > rij ≥ ri1 . Therefore, xij /∈ Ni1 and
thus the action of Pi1 is optimal.

The actions of all players that construct the empty network in step 5 are optimal, by Proposition 2.
Finally, consider any player Pij with |Wij | = 1 and j > 1. We know that xik /∈ Nij for any k < j

with |Wik | = 1; otherwise the action of player Pij would have been set to the empty network in step
5 of the algorithm after assigning the action of player Pik in step 4. Moreover, by a reasoning similar
to the argument for optimality of Pi1’s action, we can show that for any player Pit with t > j and
|Wit| = 1, we have xit /∈ Nij . Therefore, the action of player Pij is a best response.

Thus, each player is playing their best response given the actions of the rest of the players, which
implies that the given vector of actions is a Nash equilibrium.

Remark 3: Note that the algorithm provided in the proof of the above theorem corresponds to
sequential best response dynamics by the players, where they move in the order specified by the
algorithm.

The following example illustrates the steps of the algorithm, and the corresponding Nash equilibrium.
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x7

x8

x9

G1

(a)

y1

y2

y3
y4

y5

y6

y7
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(b)

Fig. 2: (a) Network G1 (b) Network G2.

Example 2: Consider two networks G1 = (V1, E1) and G2 = (V2, E2) depicted in Figures 2a and
2b with complete dependencies between nodes in G1 and G2. Assume that the cost of constructing
edges is equal to 1 for all of the players, i.e., ci = 1, 1 ≤ i ≤ 9. Suppose the benefit functions for the
players take the values given in Table I. Based on these values, player 7 is a low-cost player (since
c7 < b7(1)− b7(2)) and the rest of the players have high edge costs, i.e.,

SL = {P7},
SH = {P1, P2, · · · , P6, P8, P9}.

The corresponding values of the radii ri and Li (given by inequalities (8) and (6), respectively) are
shown in the table. We now follow the algorithm prescribed in the proof of Theorem 2.

1) P7 is the only low-cost player, and thus we connect x7 to all of the nodes in G2, i.e., W7 =
{(x7, yi)|1 ≤ i ≤ 7}.
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bi(1) bi(2) bi(3) bi(4) bi(5) Li ri
P1 1.5 1.3 1.2 1.1 0.2 2 1
P2 1.2 0.8 0.5 0.2 0 1 0
P3 1.1 0.9 0.1 0 0 1 0
P4 0.9 0.8 0.7 0.5 0.2 2 1
P5 1.2 1.1 0.9 0.2 0.1 1 0
P6 1.3 1 0.5 0.4 0.3 1 0
P7 3 1 0.5 0.5 0.4 NA NA
P8 1.2 0.8 0.7 0.5 0.4 1 1
P9 1.2 1.1 1.1 1 0.2 3 2

TABLE I: Benefit function, r-radius and L-radius of the players in Example 2.

2) For each node vi whose distance to the low-cost player x7 is at most Li, we set that player’s action
to be empty. These nodes are given by {P1, P3, P8, P9}, and thus W1 = W3 = W8 = W9 = ∅.

3) The second player has the lowest r-radius among the remaining players and thus we set its action
to W2 = {(x2, y1)}. Since @Pj, j ∈ {4, 5, 6} such that x2 ∈ Nj , we must choose the next player
with the lowest ri. Recall that Nj was defined in (9).

4) Player P5 with r5 = 0 has the lowest r-radius among the remaining players. Thus we set W5 =
{(x5, y1)}. Again since @Pj, j ∈ {4, 6} such that x5 ∈ Nj , we must choose the next player with
the lowest ri.

5) Finally, we choose player P6 with r6 = 0 and set its action to W6 = {(x6, y1)}. Due to the fact
that x6 ∈ N4, we set the action of player P4 to the empty network, i.e., W4 = φ.

Fig. 3 demonstrates the output of the algorithm given in the proof of Theorem 2 when networks G1

and G2 depicted in Fig. 2b are given as input.

x1 x2
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x4

x5

x6

x7

x8 x9

y1

y2
y3

y4
y5

y6

y7

G1

G2

Fig. 3: Networks G1 and G2 with the Nash equilibrium interconnection network Gp connecting them. Network Gp was
produced by the algorithm given in the proof of Theorem 2.

As one can see, the role of the hub nodes is crucial in the structure of the Nash equilibrium
interconnection networks. While low edge cost players connect their associated nodes in G1 to all
of the nodes in the network G2 (and thus themselves become hubs), the remaining high-cost players
either choose (I) the empty network and connect via edges constructed by other players or (II) they
directly connect to the hub node in network G2.

A. Price of Anarchy
The concept of “price of anarchy” (PoA) was introduced in [36] to measure how selfish behavior

of the individual players degrades the efficiency of the output in a non-cooperative game. Given a
strategy W = (W1,W2, . . . ,Wn) taken by the players and T (W ) =

∑n
i=1 ui(Wi ∪W−i|G1, G2, GI) as

the social welfare function, PoA is defined as

PoA =
maxW∈S T (W )

minW∈E T (W )
,
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where S denotes the joint strategy space and E ⊆ S is the set of strategies in Nash equilibrium.
We show via the following example that the PoA can be arbitrarily large in the INDG.
Example 3: Consider two networks G1 = (V1, E1) and G2 = (V2, E2), each containing star subgraphs

centered on nodes x1 ∈ V1 and y1 ∈ V2, respectively, i.e.,

{(x1, xi)|xi ∈ V1 \ {x1}} ⊆ E1

{(y1, yi)|yi ∈ V2 \ {x2}} ⊆ E2.

Suppose that we have full dependencies between nodes in V1 and V2, i.e., GI = (V1 ∪ V2, V1 × V2).
Assume that all of the players Pi, 1 ≤ i ≤ |V1| in the INDG have ci = 2.1, bi(1) = 1 and bi(2) =
bi(3) = 1/(|V2|−1), where |V1| > |V2| > 1. This means that bi(1)−ci+(|V2|−1)bi(2) = −0.1 < 0 for
all of the players Pi ∈ P and thus by Lemma 4, none of the players constructs any edges. Therefore,
the social welfare value is T (W ) = 0 for all strategies in Nash equilibrium.

Now consider the socially optimal interconnection strategy, i.e., the strategy that maximizes T (·).
For the strategy W ? = (W ?

1 ,W
?
2 , . . . ,W

?
n) where W ?

1 = {(x1, y1)} and W ?
i = φ, i 6= 1, we have that

T (W ?) =
n∑

i=1

ui(W
∗
i ∪W ∗

−i|G1, G2, GI)

= b1(1)− c1 + (|V2| − 1)b1(2) +

|V1|∑
j=2

(bj(2) + (|V2| − 1)bj(3))

= −0.1 +
(|V1| − 1)|V2|
|V2| − 1

> 0.

Therefore, the network that maximizes the social welfare function has a nonzero utility and thus PoA
is trivially infinite.

Remark 4: The network GSocOpt = ∪ni=1Wi that maximizes the social utility function T (W ) is called
the socially optimal network. Similar to the proof of the Theorem 1, one can show that finding the
socially optimal network is an NP-hard problem.

Remark 5: When all players have low costs for constructing edges, one can show that the Nash
equilibrium networks are also socially optimal.

VII. SIMULATION AND NUMERICAL ANALYSIS

In this section, we use our algorithm from the previous section to investigate the Nash equilibria
that arise in large interconnected cyber-physical systems consisting of a power network and a sen-
sor/communication network (as described in Section I). Here, we use the same experimental setup as
[26], where networks G1 and G2 have a synthetic scale-free (SF) structure. Such scale-free networks
have also been used to model power and communication networks in many of the other works in this
area [1], [3], [27].

In order to provide comparisons and insights, we also consider the cases that the power network is
an Erdos-Renyi (ER) random network, or a geometric random network. In ER random networks, each
edge is placed independently with a fixed probability [9]. Although ER networks are not typically
representative of real-world networks, they are a common baseline model for studying large scale
networks [9], [23]. Geometric random (GR) networks consist of a set of spatially distributed nodes,
and there is an edge between two nodes if their distance (in some metric) is less than a given threshold
[37].

We consider the case that there are 500 power substations that supply electricity to 5000 regions.
Therefore, there are 500 and 5000 nodes in the power (G1) and the sensor (G2) networks, respectively.
We create a hub node in the sensor network by connecting an arbitrary node in V2 to all of the other
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(a) Scale-Free Network (b) Erdos-Renyi Network (c) Geometric Random Network

Fig. 4: Output of the proposed algorithm in Theorem 2 when the communication network has SF structure and the power
network has (a) SF, (b) ER and (c) GR structure. Note that in order to keep the figures clean and the structures visible,
we have decreased the number of nodes in the power and communication networks to 20 and 50 nodes, respectively.

nodes in V2. Furthermore, we assume that the interdependency network GI is a full bipartite network,
i.e., EI = V1 × V2. We consider the same benefit function for all of the players in the game, i.e.,
bi(·) = b(·) for all 1 ≤ i ≤ 500. In our simulation, we set b(1) = 1.2, b(2) = 0.7, b(3) = 0.6, b(4) =
0.5, b(5) = 0.3, b(6) = 0.2 and b(k) = 0 for k ≥ 7. In order to model the situation that we have a
wide range of players, we choose the cost of constructing edges for the players uniformly at random
between 0.01 and 2500. We set the parameters of the SF, ER and GR networks such that they all have
approximately the same number of edges. We consider three scenarios:

1) The power network is a SF network constructed by preferential attachment [38], with 5 initial
nodes. Each newly added node connects to six existing nodes.

2) The power network is an ER network with edge formation probability of 0.024.
3) The power network is a GR network in which nodes are uniformly distributed in a 2× 2 square,

and the threshold to form an edge is set at a distance of 0.18.
In all of the above cases, we assume that the sensor network has a fixed SF structure constructed
by preferential attachment with 5 initial nodes, and each newly added node connects to one of the
existing nodes. Figure 4 demonstrates the power and sensor networks and the set of Nash equilibrium
interconnection edges between them (we have reduced the number of nodes to keep the structures
visible). These edges are constructed according to the algorithm in the proof of Theorem 2. In Figure
4, there is only one low cost player; by Corollary 1, we know that such players always construct edges
to all of the nodes in G2 and this is independent of the actions of the other players or structures of
the networks G1 and G2. We have summarized some of the salient features of the Nash equilibrium
interconnected networks in Table II. These results are produced by averaging over 100 instances
of the random networks and player edge costs. As the data in the table indicates, the number of
constructed interconnection edges (and the corresponding social welfare and distances between nodes)
is approximately the same in all of the three forms of the power networks, namely SF, ER and GR.
This suggests that for the setting considered here (involving random power networks and uniformly
distributed edge costs across the nodes), the topology of the power network does not significantly
impact the characteristics of the Nash equilibrium interconnection network.

Next, we investigate the impact of heterogeneity in edge costs on the social welfare and the Nash
equilibrium networks. In the previous scenario we assumed that each player’s edge cost was chosen
from a uniform distribution on the interval [0.01, 2500]. Here, we consider the case where the cost of
constructing edges is equal to the mean value of the previous costs, i.e., ci = 1250 for 1 ≤ i ≤ 500.
Given the benefit function for the players specified in the previous scenario, all of the players have
high edge costs (i.e., |SL| = 0). The results are shown in Table III.

As the data in Table III suggests, when players have homogeneous edge costs (equal to the mean
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SF ER GR
|E1| 2970.7 2980.8 2945.1
Diameter of G1 4 4.42 ∞
Total Number of Interconnection Edges Constructed 5106.7 5103.5 5104.7
Interconnection Edges Constructed by High Cost Players 106.7 103.5 104.7
Average Distance Between Interdependent Nodes 4.00 4.00 4.00
Social Welfare of the Interconnected Network 1221790 1222388 1222214

TABLE II: Features exhibited by the interconnected networks formed in 3 different scenarios, based on the algorithm given
in the proof of Theorem 2. These results are produced by averaging over 100 instances of random networks and edge
costs. The GR network is disconnected in some of the instances, which we indicate with an average diameter of ∞.

SF ER GR
|E1| 2970.7 2980.8 2945.1
Diameter of G1 4 4.42 ∞
Interconnection Edges Constructed by High Cost Players 12.7 18.8 30.8
Average Distance Between Interdependent Nodes 3.95 3.92 3.87
Social Welfare of the Interconnected Network 1246825 1245300 1242250

TABLE III: Features exhibited by the interconnected networks formed in 3 different scenarios when all of the players have
the same cost c = 1250 of constructing edges. These results are produced by averaging over 100 instances of random
networks.

of the costs assigned to the players previously), there is a significant decrease in the number of
interconnection edges built by the players. Interestingly, this is accompanied by a decrease in the
average distances between the players and their interdependent nodes (in all of the three different
scenarios), compared to the situation with heterogeneous edge costs considered previously. This leads
to an increase in the social welfare under homogeneous edge costs, as shown by the last rows of
Tables II and III. This phenomenon can be explained via Proposition 2 and the r-radius of the players
(defined in (8)). Specifically, when all players have the same edge cost c = 1250, their corresponding
r-radius is ri = 2 for all 1 ≤ i ≤ 500. If a player Pi (associated with node xi) constructs an edge
to the center of the sensor network G2, by Proposition 2, no player Pj with dG1(xi, xj) ≤ 2 will
construct an interconnection edge. A player Pj with distance dG1(xi, xj) > 2 will construct an edge,
however. Thus, the set of players that construct interconnection edges under homogeneous edge costs
are spaced apart fairly regularly (i.e., every node is at most distance 2 in G1 from a node that has
constructed an edge). In the case of heterogeneous edge costs, however, the distances (in G1) between
nodes that have constructed edges is no longer bounded by 2. Thus, even though there are more nodes
that construct edges (due to relatively low edge costs), the average distance between nodes and their
interdependent nodes increases. This also leads to a decrease in social welfare.

VIII. RELATED NETWORK DESIGN PROBLEMS

There are many instances of network design problems that have been studied in the computer
science and algorithms literature. The interconnection network design problem that we investigated in
this paper has similarities to the Island-Connection (IC) model that was studied in [39] where nodes
(as network designers) have distance-based utilities. In this model, there are clusters of geographically
close nodes (called islands) and it is assumed that the price of intra-island edge construction is less than
that of inter-island edge construction. While the IC model considers a homogeneous set of players,
the INDG model includes the case that players have different cost and benefit functions. Furthermore,
the topologies of networks G1 and G2 (which correspond to islands in the IC model) in INDG are
fixed, whereas in IC the structure of the islands depends on the cost of intra-island edge construction.
When the cost of intra-island and inter-island edge formation are lower than certain thresholds, [39]
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shows that there are complete connections inside the islands. In addition, while the distance between
all pairs of inter-island nodes are taken into account in the IC model, our INDG model allows the
interdependency network GI to characterize the set of important inter-island distances.

Another related work is the best response network problem (BRN) [30], which directly generalizes
the classical distance-utility network formation problem given by (1). Specifically, in BRN, there
is a central network designer with distance-based utility and a set of pairs of nodes that wish to
communicate via short hops. These pairs are encoded as a network G1 = (N,E1), where the presence
of an edge (x1, x2) ∈ E1 indicates that x1 and x2 wish to be close together in the constructed network.
The utility produced by a constructed network G = (N,E) is

u(G|G1) =

 ∑
(vi,vj)∈E1

b(dG(vi, vj))

− c|E|. (10)

The network that maximizes this utility function is called the best response network to G1. In [30],
we showed that finding a best response network with respect to an arbitrary network G1 is NP-hard.
A key difference between BRN and INDG is that in INDG, each node acts as a network designer
(i.e., no central network designer) and builds edges to nodes in a different network. In fact, networks
G1 and G2 in the definition of the INDG problem have no equivalent correspondence in BRN.

IX. CONCLUSION

We introduced the interconnection network design game between two networks G1 and G2. In this
game, there is a heterogeneous (in terms of utility function) set of network designers, each associated
with a node in the network G1. Each node in G1 is dependent on certain nodes in G2, and these
dependencies are captured by a network GI . The utility of the players is defined based on the distance-
utility function where the objective of each player is to build a set of edges from its associated node
to nodes in the network G2 such that distances between its associated node and the nodes it depends
on in G2 are minimized. We showed that finding a best response action of a player is NP-hard.
Nevertheless, we showed certain important properties of the best response networks, which enabled
us to find a Nash equilibrium for certain instances of the game. Finally, we applied our framework to
model the interdependencies between communication and power networks. Our simulations suggest
that the social welfare is larger when players are homogeneous in terms of their edge construction
costs, compared to players with heterogeneous edge costs.

One interesting avenue for future research is to consider other classes of utility functions for the
players. Another important topic for further research on this problem is to address the scenario where
players can build different types of edges (e.g., representing different types of relationships between
the nodes). Defining appropriate utility functions to capture this scenario, along with a characterization
of the resulting Nash equilibria, would be of interest. Finally, proving existence of Nash equilibria
when G2 has an arbitrary structure would be of value.
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