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Abstract—The problem of analyzing the performance of net-
worked agents exchanging evidence in a dynamic network has
recently grown in importance. This problem has relevance in
signal and data fusion network applications and in studying
opinion and consensus dynamics in social networks. Due to
its capability of handling a wider variety of uncertainties and
ambiguities associated with evidence, we use the framework of
Dempster-Shafer (DS) theory to capture the opinion of an agent.
We then examine the consensus among agents in dynamic net-
works in which an agent can utilize either a cautious or receptive
updating strategy. In particular, we examine the case of bounded
confidence updating where an agent exchanges its opinion only
with neighboring nodes possessing ‘similar’ evidence. In a fusion
network, this captures the case in which nodes only update their
state based on evidence consistent with the node’s own evidence.
In opinion dynamics, this captures the notions of Social Judgment
Theory (SJT) in which agents update their opinions only with
other agents possessing opinions closer to their own. Focusing
on the two special DS theoretic cases where an agent state
is modeled as a Dirichlet body of evidence and a probability
mass function (p.m.f.), we utilize results from matrix theory,
graph theory, and networks to prove the existence of consensus
agent states in several time-varying network cases of interest.
For example, we show the existence of a consensus in which a
subset of network nodes achieves a consensus that is adopted
by follower network nodes. Of particular interest is the case of
multiple opinion leaders, where we show that the agents do not
reach a consensus in general, but rather converge to ‘opinion
clusters’. Simulation results are provided to illustrate the main
results.

Index Terms—Consensus, opinion leaders, bounded confidence,
social judgement theory.

I. INTRODUCTION

Motivation. In multi-agent systems like social networks or
a group of mobile robots completing a task, agent behavior is
determined by local interactions between neighboring agents.
In distributed control problems, reaching a consensus state is
often necessary for the agents to achieve a control objective
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[1], [2]. Within the context of distributed sensor fusion, the
agents exchange evidence to eventually have a good estimate
of unknown parameters [3]. Agents in a social network typi-
cally exchange opinions in some manner with their neighbors,
and update their own opinions, possibly resulting in consensus.
The work in [4] discusses models of opinion diffusion among
rational agents and social learning, explaining how opinions
emerge or fail to emerge in contexts of economics and social
sciences. Understanding the conditions under which a group
of agents will reach a possible consensus in a network with
time-varying links is a challenging problem that has recently
garnered much interest.

Previous Work. Previous work within signal processing,
control, and data fusion geared towards analyzing agent con-
sensus formation has mostly modeled an agent state as a real-
valued vector [1]–[3], [5], [6] (see also [7] and references
therein). While such an assumption is useful in the context of
agents achieving consensus on a control vector, or sensing
network agents achieving a consensus signal estimate, the
assumption of a real-valued vector may not necessarily be
always suitable within higher-level fusion, or the analysis of
opinion dynamics in social networks. In higher-level fusion,
agents could reach a consensus assessment regarding a situ-
ation, while in opinion dynamics, agents gravitate to reach a
possible consensus opinion. The inherent uncertainty within
such applications may necessitate a more structured agent
state vector such as a probability mass function (p.m.f.) or an
imprecise probabilisitic formalism, such as Dempster-Shafer
(DS) theory [8].

Agent states/opinions in complex fusion environments and
social networks involve more qualitative and nuanced informa-
tion and hence are associated with higher and a wider variety
of uncertainties. Uncertainty modeling formalisms based on
imprecise probability, such as DS theory, provide a conve-
nient framework for such scenarios. The DS theoretic (DST)
framework stands apart from alternate uncertainty handling
frameworks (such as, fuzzy sets, rough sets, etc.) in that it
bears a close relationship to the probabilistic framework [9].
DST models converge to and/or can be converted to p.m.f.
models in limiting cases, thus allowing for a swift general-
ization of legacy techniques. Moreover, DST models provide
a more intuitive and convenient approach for handling the
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types of uncertainties and the nuances that are characteristic of
agent states and opinions in complex fusion environments and
social networks [7], [10]. For example. complete ignorance
can be captured via the ‘vacuous’ model and lack of evidence
can be captured by allowing evidential support for non-
singleton propositions (see Section II). For the variety of data
imperfection types that DST models can conveniently capture,
see Table 1 in [11]. However, much of the work on opinion
dynamics in social networks has focused on modeling the
agent states as either scalar real numbers, or a vector of real
numbers [12], e.g., see the Hegselmann-Krause (HK) model
[13], [14] and the Deffuant-Weisbuch (DW) model [15], [16].

In our recent work [7], [17], we utilized the DST framework
to address consensus formation in asynchronous dynamic/ad-
hoc networks with applications to high-level fusion networks,
and opinion dynamics in social networks. By utilizing DS
theory, the methods by which an agent models an opinion
and updates its opinion are now equipped with a powerful
mechanism for grappling with the uncertainty inherent in
the problem, whether in the form of vague agent opinions,
or imprecise data in a fusion network (e.g., vague witness
statements). In [7], we presented the foundations of ana-
lyzing opinion dynamics and revision of agent state beliefs
in asynchronous dynamic/ad-hoc, demonstrating conditions
under which consensus is achieved.

Our more recent work in [17] utilized ideas from psy-
chology, namely Social Judgment Theory (SJT) [18], which
examines the basic psychological processes underlying the
expression of attitudes and their modifiability through com-
munication. In particular, in [17], we specifically used the
notion of bounded confidence which stems from the concept of
latitude of acceptance in SJT. In a social network, agents may
only communicate and exchange opinions with their neighbors
who have similar opinions on a particular topic. In other
words, an agent may be willing to update its opinion with
the neighboring agent’s opinion only if the ‘distance’ to that
opinion is within a certain bound of confidence. The opinion
exchange models in the HK and DW models account for
these bounded confidence notions. The work in [19] addresses
statistical estimation of the bound of confidence. In [20] agents
are treated as Bayesian decision-makers and Bayes’ risk error
has been used to estimate the bounds. The bounded confidence
assumption is also useful within high-level fusion networks to
capture situations where agents may only exchange evidence
with agents that have states similar to their own and perhaps
avoiding the use of faulty outlier sensors/agents.

Contributions. As in [7], [17], this present work of ours on
agent consensus formation in dynamic networks is formulated
within the DST framework. This allows us to embrace a wider
variety of uncertainties and nuances that are more representa-
tive of agent states/opinions in complex fusion networks and
social networks.

Taking this DST setting as a springboard, for the main
contributions of this work, we focus on two special cases of
DST agent opinion models, viz., opinions modeled as a p.m.f.
and a Dirichlet body of evidence (which allows one to retain
DS theory’s ability to capture complete ignorance with only
a slight increase in computational complexity) [21]. Utilizing

results from matrix theory, graph theory, and networks, we
provide a thorough theoretical analysis of the conditions for
consensus formation among a group of agents residing within
a dynamic network (i.e., the network connectivity graph is
dynamic, so that links can appear, or disappear, meaning that
the agents may not have the same neighbors at each time
instant). Of particular value are the following:

(1) Each agent may employ either cautious or recep-
tive opinion update strategies, which essentially determines
whether the agent acts as an opinion ‘leader’ or an opinion
‘follower.’

(2) The agents employ bounded confidence notions so that
an agent exchanges and updates its state/opinion with only
those neighbors whose opinions are similar (as measured by
a suitable norm) to its own opinion.

(3) The notion of opinion dynamic chains and corresponding
results being presented in this work capture network topolo-
gies, and conditions under which, where one or two groups
of agents interact with another group of agents to drive them
toward a consensus opinion or opinion clusters.

(4) Focusing on the two cases of p.m.f. and DST Dirichlet
agent opinion models, the behavior of the network in the pres-
ence of multiple opinion leaders is explored. The analytical
results require significantly less restrictive assumptions than
those in [17], which, to the authors’ knowledge, is the only
other work that deals with multiple opinion leaders.

(5) These general analytical results are then used to study
how opinion leaders interact with opinion followers. In par-
ticular, it is shown that the arrival at a consensus opinion or
opinion clusters is dependent on the the number of opinion
leaders present and the agents’ bounds of confidence.

(6) Several cases of interest in both opinion dynamics and
fusion domains are studied. This includes the the leader-
follower problem [22] where a subset of the networked agents
achieve an opinion cluster which is then followed and adopted
by the remaining agents.

(7) Finally, experimental evaluations are carried out to
explore whether these results on p.m.f. and Dirichlet agent
opinions apply to and are valid for agent opinions represented
via general DST models.

As elaborated upon earlier, DST framework offers a more
intuitive and convenient avenue to capture the types of uncer-
tainties and the nuances associated with agent opinions. This
current work and the results regarding p.m.f. and Dirichlet
agent opinions constitute an important step toward understand-
ing how agents whose states/opinions are captured via more
general DST models behave in terms consensus and opinion
cluster formation.

Organization of Paper. The paper is organized as fol-
lows: Section II covers basic background material. Section III
presents our opinion update model with the conditional update
equation (CUE) as the governing equation. Our main theoret-
ical contribution on opinion dynamic chains driven by one
group (1-ODC) and opinion dynamic chains driven by two
groups (2-ODC) are in Section IV where we focus on two
special cases of the DST agent opinion model: Section IV-A
deals with agent opinions captured via p.m.f.s which would
appeal to readers with background knowledge in probabilistic
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opinion representation; Section IV-B deals with DST Dirichlet
agent opinions. Section V provides experimental validation of
our results, including their applicability in scenarios where
agent opinions are captured via more general DST models.

II. PRELIMINARIES

We use N and R to denote the integers and reals, re-
spectively. Subscript (�)≥0 attached to these are their non-
negative counterparts; R[0,1] denotes the reals taking val-
ues in [0, 1]. The superscripts (�)N and (�)M×N denote N -
sized vector and (M × N)-sized matrix counterparts. For
X = {Xij} ∈ RM×N , ‖X‖ denotes its ∞-norm, i.e.,
‖X‖ = maxi∈1,M

∑N
j=1 |Xij |. We use X > 0 and X ≥ 0 to

denote a matrix/vector with positive and non-negative entries,
respectively. A matrix whose entries are all 0 s (and is of
compatible size) is denoted by 0; an N -element vector whose
elements are all 1 s is denoted by 1N .

We use |Θ| to denote the cardinality of set Θ.
Relevant Notions from DS Theory. In DS theory, the frame

of discernment (FoD) refers to the set Θ = {θ1, · · · , θM}
consisting of the mutually exclusive and exhaustive ‘singleton’
propositions θi [8]. A singleton proposition θi ∈ Θ represents
the lowest level of discernible information; |Θ| = M is the
number of independent singleton propositions in the FoD Θ.
The power set of the FoD, 2Θ = {A : A ⊆ Θ}, denotes all the
possible subsets of Θ. For A ⊆ Θ, A denotes all singletons
in Θ that are not in A.

Basic Belief Assignment (BBA). A basic belief assignment
(BBA) or mass assignment is a mapping m(·) : 2Θ 7→ [0, 1]
such that

∑
A⊆Θm(A) = 1 and m(∅) = 0. The BBA

measures the “support” assigned to proposition A ⊆ Θ.
Propositions that receive non-zero mass are referred to as focal
elements. The set of focal elements is the core F . The triplet
E = {Θ,F ,m} is referred to as the body of evidence (BoE).
The mass vector corresponding to the BoE E is

m = [m(∅),m(θ1), . . . ,m(θM ),m(θ1θ2), . . . ,m(θ1θM ),

m(θ1θ2θ3), . . . ,m(θ1θ2θM ), . . . ,m(Θ)] ∈ R2M

[0,1]. (1)

Note that, masses are assigned to all propositions in 2Θ. DS
theory captures the notion of ignorance by allowing composite
(i.e., non-singleton) propositions to be focal elements, e.g., the
mass assignment m(θiθj) > 0 represents ignorance or lack
of evidence to differentiate between the singletons θi and θj .
The vacuous BBA which Θ as its only focal element (so that
m(Θ) = 1) captures complete ignorance.

Belief and Plausibility. Given a BoE, E ≡ {Θ,F ,m}, the
belief Bl : 2Θ 7→ [0, 1], defined as Bl(A) =

∑
B⊆Am(B),

represents the total support committed to A without also being
committed to its complement A. The plausibility Pl : 2Θ 7→
[0, 1], defined as Pl(A) = 1−Bl(A), corresponds to the total
belief that does not contradict A. The uncertainty of A is
Un(A) = [Bl(A),Pl(A)]. We also use the notation F̂ = {A ⊆
Θ : Bl(A) > 0}.

A BoE is called Bayesian if each focal element is a single-
ton. For a Bayesian BoE, the BBA, belief, and plausibility, all
reduce to the same probability (i.e., p.m.f.) assignment. The
expressive power that the DST framework wields a high cost:

For a given FoD Θ, where |Θ| = M , a DST model allocates
2M−2 mass assignments; only M−1 probability assignments
are required for a p.m.f. Much advances have been made for
the purpose of mitigating the associated computational burden
[23]–[25]. A special DST model which retains the ability to
capture complete ignorance with only a slight increase in
computational complexity is the Dirichlet BoE (so named
because of its close relationship with Dirichlet probability
distributions [21]). The singletons {θi} and Θ constitute the
only focal elements of a Dirichlet BoE, thus requiring only
M mass assignments.

DST Conditionals. Of the various notions of DST condi-
tionals that abound in the literature, the Fagin-Halpern (FH)
conditional offers a unique probabilistic interpretation and
constitutes a natural transition to the Bayesian conditional
notion [9], [25]. The extensive study in [26] identifies sev-
eral attractive properties of the FH conditionals including its
equivalence to other popular notions of DST conditionals.

Definition 1 (FH Conditionals). For the BoE E = {Θ,F ,m}
and A ⊆ Θ s.t. A ∈ F̂ , the conditional belief Bl(B|A) : 2Θ 7→
[0, 1] and the conditional plausibility Pl(B|A) : 2Θ 7→ [0, 1]
of B given A are, respectively,

Bl(B|A) = Bl(A ∩B)/[Bl(A ∩B) + Pl(A ∩B)];

Pl(B|A) = Pl(A ∩B)/[Pl(A ∩B) + Bl(A ∩B)].

The conditional core theorem [25] can be utilized to directly
identify the conditional focal elements to improve computa-
tional performance when applying FH conditionals.

DST Distance Measure. In our work, we need a distance
measure which captures the closeness between DST BoEs.
Among possible alternatives that have appeared in the litera-
ture, we use the DST distance measure in [27], [28].

Definition 2 (Distance Between BoEs). [27] The distance
between the two agent BoEs Ei = {Θ,Fi,mi} and Ej =
{Θ,Fj ,mj} is

‖Ei − Ej‖J =
[
0.5 (mi −mj)

T

D (mi −mj)
]1/2

∈ R[0,1],

where mi,mj ∈ R2M

≥0 are the mass vectors associated with the
BoEs Ei and Ej , respectively; D = {dmn} ∈ R2M×2M

≥0 , with
dmn = |Am∩An|/|Am∪An|, Am, An ⊆ Θ, with |∅∩∅|/|∅∪
∅| ≡ 0.

Relevant Notions from Graph Theory. [29] We use Gk =
(V,Ek) to denote a directed graph at discrete-time (DT) instant
k ∈ N≥0. Here, eij ∈ Ek represents a unidirectional edge
from node Vj ∈ V to node Vi ∈ V . We use Ak to identify the
(N ×N) adjacency matrix associated with Ek.

Consider the directed graph Gk = (V,Ek). The out-
component of vertex Vi ∈ V is the set of vertices (including
vertex Vi itself) reachable via directed paths from vertex Vi.
The in-component of vertex Vi ∈ V is the set of vertices
(including vertex Vi itself) from which vertex Vi is reachable
via directed paths.

Relevant Notions from Stochastic Matrix Theory. We say
that X ∈ RN×N

[0,1] is stochastic if
∑N

j=1Xij = 1, ∀i ∈ 1, N

and ‖X‖ = 1; we say that X ∈ RN×N
[0,1] is sub-stochastic if
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∑N
j=1Xij ≤ 1, ∀i ∈ 1, N , and ∃ i ∈ 1, N s.t.

∑N
j=1Xij < 1.

Stochastic/sub-stochastic matrices and the limiting behavior of
their products play a critical role in our work.

III. DST MODELING OF OPINION DYNAMICS

In the work that follows, we consider N agents embedded
in the directed graph Gk = (V,Ek). Here, for i ∈ 1, N ,
the node Vi ∈ V in Gk represents the i-th agent and the
directed edge eij ∈ Ek represents an unidirectional informa-
tion exchange link from the j-th agent to the i-th agent (i.e.,
the i-th agent can receive information from the j-th agent).
Unless otherwise mentioned, the opinion of the i-th agent at
time instant k ∈ N≥0 is taken to be captured via the BoE
Ei,k = {Θ,Fi,k,mi(·)k}, i ∈ 1, N . We assume that the agent
opinion BoEs are associated with the identical FoD Θ.

Definition 3 (Opinion Profile). Consider the agent BoEs
Ei,k = {Θ,Fi,k,mi(·)k}, i ∈ 1, N, k ∈ N≥0. The opinion
profile of B ⊆ Θ at k ∈ R≥0 is

πππ(B)k = [m1(B)k, . . . ,mN (B)]T ∈ RN
[0,1],

with πππ(B)0 ∈ RN
[0,1] denoting its initial state.

A. Bounded Confidence

For each agent, define the following sets of neighborhood
agents at time instant k:

Ni,k =
{
Vj ∈ V : j ∈ 1, N, and eij ∈ Ek

}
;

Ni,k(εi) = {Vj ∈ Ni,k : ‖Ei,k − Ej,k‖J ≤ εi} , (2)

where ‖ · ‖J refers to the distance measure in Definition 2
(while any valid norm applicable for DST BoEs could be
used); εi ≥ 0 is the latitude of acceptance or bound of
confidence associated with the i-th agent. So, Ni,k(εi) denotes
the neighbors of the i-th agent at time k left after ‘pruning’
the links subjected to the bound of confidence requirement.
With εεε = [ε1, . . . , εN ]T , let

G†k(εεε) = (V,E†k(εεε)), (3)

where E†k(εεε) = {eij ∈ Ek : ‖Ei,k − Ej,k‖J ≤ εi}.
The bounded confidence process of updating an agent’s

opinion is as follows [5], [12]: the i-th agent updates its BoE
Ei in response to the opinion BoE Ej of its neighbor, the j-th
agent, only if j ∈ Ni(εi). In [15], the threshold εi is referred
to as an openness character. Another interpretation views εi
as an uncertainty, i.e., if the i-th agent possesses an opinion
with some degree of uncertainty εi, then it ignores the views
of those neighbor agents who fall outside its uncertainty range.

B. Opinion Updating and Consensus Formation

Opinion Updating. In what follows, we will use S to
identify the indices corresponding to a subset of the agents
in V , i.e., S ⊆ {1, 2, . . . , N} s.t. Vi, ∀i ∈ S, identifies a
subset of agents in V . To proceed, we adopt the following

Definition 4 (Opinion Clusters, Consensus). Let Ei,k, i ∈
1, N, k ∈ N≥0, denote the opinions of N agents embed-
ded within the network Gk = (V,Ek), where each agent

repeatedly updates its state by iterative opinion exchange. Let
S ⊆ {1, 2, . . . , N} identify a subset of the agents in V .

(i) Suppose limk→∞ ‖Ei,k − Ej,k‖J = 0, ∀i, j ∈ S (or
equivalently, limk→∞ Ei,k ≡ E∗, ∀i ∈ S) and suppose
limk→∞ Ei,k 6= E∗, ∀i ∈ 1, N \ S. Then, the agents in S
are said to form an opinion cluster.

(ii) The agents are said to reach a consensus if S = V , i.e.,
all the agents in V form a single opinion cluster.

Henceforth, our results will only be stated with the forma-
tion of a consensus in mind (e.g., see Lemma 1). Due to (ii)
above, these results can easily be reformulated so that they
pertain to the formation of opinion clusters.

In our work, we assume that each agent updates its opinion
in accordance with the conditional update equation (CUE):

Definition 5 (Conditional Update Equation (CUE)). [7], [30],
[31] Suppose the i-th agent updates its opinion Ei by taking
into account its neighboring agents j ∈ Ni,k(εi), where
εi > 0 is the i-th agent’s bound of confidence. The CUE-
based updated opinion of the i-th agent is

Bli(B)k+1 = αi,kBli(B)k+
∑

j∈Ii,k\i

∑
A∈F̂j,k

βij(A)kBlj(B|A)k.

Here, the index set Ii,k identifies the agents in Ni,k(εi); the
CUE parameters αi,k, βij(·)k ∈ R[0,1] satisfy

αi,k +
∑

j∈Ii,k\i

∑
A∈F̂j,k

βij(A)k = 1.

The above CUE can also be expressed directly in terms
of DST mass values. Alternately, the updated mass values
can be computed from the updated belief values. Note that,
with agents utilizing CUE-based opinion updating, the edge
‘weights’ along both directions of an edge are not equal in
general because the CUE weights βij(·) and βji(·) are not
necessarily the same. It is for this reason that we treat the
underlying graph Gk as directed.

The work in [7], [30], [31] also provides various strategies
for selecting the CUE parameters. Of particular importance
are two particular strategies:

Definition 6 (Receptive and Cautious Update Strategies).
Consider the i-th agent updating its opinion Ei according to
the CUE-based update in Definition 5.

(i) The i-th agent is said to employ receptive updating if
βi,j(A)k ∝ mj(A)k, and receptively updating agents are
referred to as opinion leaders.

(ii) The i-th agent is said to employ cautious updating
if βij(A)k ∝ mi(A)k, and cautiously updating agents are
referred to as opinion followers.

Receptive updating ‘weighs’ the incoming evidence accord-
ing to the support each focal element receives from the incom-
ing BoEs. This has an interesting Bayesian interpretation: it
reduces to a weighted average of the p.m.f.s of the BoEs.
Cautious updating ‘weighs’ the incoming evidence according
to the support each focal elements receives from the BoE being
updated. We consider three cases:
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(1) No Opinion Leaders: This is the most common scenario
that appears in the literature [12], [14], [15]. Here, all agents
are receptively updating and no opinion leaders are present.

(2) Single Opinion Leader: Here, all agents employ recep-
tive updating except one opinion leader. This is the scenario
considered in typical leader-follower models [6], and the
recent work in [7]).

(3) Multiple Opinion Leaders: Here, there are multiple
cautiously updating opinion leaders, generally with different
initial opinions. To our knowledge, this case has not been
addressed prior to the work in [17] which was based on
the work in [13], [32]. It provides sufficient conditions for
consensus/cluster formation under certain strong assumptions
(e.g., the agent opinions can be ordered in what is referred to
as an εεε-chain). We will relax such assumptions by utilizing
properties of products of stochastic/sub-stochastic matrices.

IV. OPINION DYNAMIC CHAINS WITH OPINION LEADERS

While the DST framework provides a powerful tool for
grappling with the types of uncertainties and nuanced infor-
mation prevalent in complex fusion and social networks, the
expressive power inherent in DST models levy a high compu-
tational burden. A Dirichlet BoE [21] is a special type of DST
BoE which retains DS theory’s ability to capture complete
ignorance with only a slight increase in computational effort.

With our DST opinion model in place, we now focus on
probabilistic (i.e., p.m.f.) and DST Dirichlet agent opinions.

A. Probabilisitic Agent Opinions

With the DST BoEs Ei,k, i ∈ 1, N, k ∈ N≥0, possessing
only singleton focal elements, we have probabilistic agent
opinions. In this case, the CUE-based opinion update in
Definition 5 reduces to the DT dynamic system

πππ(θp)k+1 = Wk πππ(θp)k, p ∈ 1,M, (4)

where πππ(�)k ∈ RN
[0,1], Wk = {wij,k} ∈ RN×N

[0,1] is row-
stochastic [33]. When all agents employ receptive updating,

wij,k =


αi,k, for i = j;

(1− αi,k)/|Ni,k(εi)|, for j ∈ Ni,k(εi);

0, otherwise.
(5)

As in [34], we refer to Wk as the confidence matrix because
wij,k represents the weight the i-th agent attaches to the
opinion of the j-th agent at time step k. Note that, Wk

constitutes the weighted adjacency matrix of G†k(εεε) in (3).
We proceed with

Proposition 1. In an environment where agents possess prob-
abilistic agent opinions, the opinion of a cautiously updating
agent is invariant.

Proof. Suppose the i-th agent employs a cautiously updating
strategy. Its CUE parameters satisfy (see Definition 6)

βij(B)k = µij,kmi(A)k; αi,k +
∑
j 6=i

∑
A∈F̂j,k

µij,k = 1,

for singletons A,B ∈ Θ. But, for singleton propositions
A,B ∈ Θ, Bl(B|A) = 1 only if B = A, and Bl(B|A) = 0

otherwise [25]. Using this and the fact that for singletons
propositions belief and masses are equal, the CUE-based up-
date in Definition 5 for the i-th agent reduces to mi(B)k+1 =
mi(B)k, ∀k ∈ N≥0.

Definition 7 (Left (or Backward) Products). [35]
(i) Left Product: The left product of the sequence of matrices

{Wk}, Wk ∈ RN×N , is

Wk:` =


I, for k < `;

W`, for k = `;

WkWk−1 · · ·W`, for k > `.

(ii) Left-Converging Product: The left product Wk:0 is said
to be left-converging if limk→∞Wk:0 exists, in which case we
write W∞ = limk→∞Wk:0.

Note that the dynamic system in (4) can be expressed as
πππ(θp)k+1 = Wk:0 πππ(θp)0. Thus, whenever W∞ exists,

lim
k→∞

πππ(θp)k+1 = W∞ πππ(θp)0. (6)

Clearly, the convergence of the agent opinions depends on
the existence and the nature of W∞. When W∞ exists, let us
denote the converged opinion profile for θp as πππ∗(θp) ∈ RN

[0,1].
Consensus (in the sense of Definition 4) is a special case of
a converged opinion profile.

Lemma 1. The agents form a consensus iff ∃ηηη = {ηp} ∈
RM

[0,1] s.t., πππ∗(θp) = ηp1N ,∀p ∈ 1,M, ∀i ∈ 1, N .

Proof. Suppose πππ∗(θp) = ηp1N ,∀p ∈ 1,M, ∀i ∈ 1, N ,
for some ηηη = {ηp} ∈ RM

[0,1]. This clearly means that
limk→∞ Ei,k ≡ E∗, ∀i ∈ 1, N . Thus, the agents form a
consensus. Conversely, if limk→∞ Ei,k ≡ E∗, ∀i ∈ 1, N , we
must clearly have πππ∗(θp) = ηp1N ,∀p ∈ 1,M, ∀i ∈ 1, N .

The limiting behavior of the stochastic matrix product {Wk}
plays a crucial role in consensus analysis when DST BoEs
possess only singleton focal elements.

Lemma 2. Consider the stochastic chain {Wk}, k ∈ N≥0,
s.t. W∞ = 1vT for some stochastic vector v ∈ RN

[0,1]. Then,
the agents reach the consensus πππ∗(θp) = (vTπππ(θp)0)1, where
πππ(θp)0 ∈ RN

[0,1] denotes the initial opinion profile.

Proof. Use (6): limk→∞ πππ(θp)k+1 = 1vTπππ(θp)0 = ηp1,
where ηp = vTπππ(θp)0. So, from Lemma 1, we achieve a
consensus.

1) No Opinion Leaders: This is the most widely studied
scenario and many consensus-related results applicable to this
case are available [6], [12], [34], [36], [37]. The work in
[34] studied convergence when each element in the stochastic
chain {Wk} has positive diagonals. From a graph theoretic
viewpoint, this implies that there is a path from each vertex to
itself; from an opinion dynamics perspective, this is referred
to as having the self-communicating property [34].

2) Single Opinion Leader: We first introduce

Definition 8 (Opinion Dynamics Chain Driven By One Group
(1-ODC)). The directed dynamic network G†k(εεε) = (V,E†k(εεε))
in (3) is said to be an opinion dynamics chain driven by one



6 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS

group (1-ODC) if its corresponding confidence matrix Wk in
(4) can be expressed as the lower block triangular matrix

Wk =

[
Ak 0
Ck Dk

]
,

where Ak ∈ RNC×NC

[0,1] and Dk ∈ RNout×Nout

[0,1] , and the other
matrices have compatible sizes.

GC,k(ε)
†

Gout,k(ε)
†

C
k

Fig. 1: An opinion dynamics chain driven by one group (1-
ODC).

One may view an 1-ODC as consisting of a ‘central’
component G†C,k(εεε) = (VC , E

†
C,k(εεε)) (with NC agents) and

another component G†out,k(εεε) = (Vout, E
†
out,k(εεε)) (with Nout

agents) s.t. no agent in G†out,k(εεε) belongs to the in-component
of G†C,k(εεε), for any k ∈ N≥0. See Fig. 1. Note that, Ak and
Dk correspond to the confidence matrices of agents in G†C,k(εεε)

and G†out,k(εεε), respectively.

Theorem 1. Consider agents embedded in a 1-ODC employ-
ing a CUE-based update strategy. Furthermore, suppose that

(a) limn→∞An:0 = 1NC
vT
A, where vA ∈ RNC

[0,1] is a
stochastic vector so that the agents in VC reach their own
consensus, and

(b) ‖Dk‖ ≤ ρ < 1, ∀k ∈ N≥0.
Then, the agents in V (i.e., agents in VC and Vout) reach

a consensus at the consensus reached by the agents in VC .

Proof. The opinion update strategy yields the dynamic
system [

πππA(θp)k+1

πππD(θp)k+1

]
= Wk

[
πππA(θp)k
πππD(θp)k

]
, (7)

where k ∈ N≥0, θp ∈ Θ, and

Wk =

[
Ak 0
Ck Dk

]
=⇒ Wn:0 =

[
An:0 0
Pn Dn:0

]
. (8)

Here the sub matrices have sizes compatible with Wk. Use
Wn+1:0 = Wn+1Wn:0 to get

Pn+1 = Cn+1An:0 +Dn+1Pn, P0 = C0, (9)

for n ∈ N≥0. Due to the row-stochasticity of Wk, we have

1Nout
= Ck1NC

+Dk1Nout
, ∀k ∈ N≥0. (10)

Subtract 1Nout
vT
A from both sides of (9):

Pn+1 − 1Nout
vT
A

= Cn+1An:0 +Dn+1Pn − 1Noutv
T
A

= Cn+1An:0 +Dn+1Pn − [Cn+11NC
+Dn+11Nout

]vT
A

= Cn+1[An:0 − 1NC
vT
A] +Dn+1[Pn − 1Nout

vT
A],

for n ∈ N≥0. Here, we have used (10). Employing the notation
∆Pn = Pn − 1Noutv

T
A, n ∈ N≥0, we express this as

∆Pn+1 = Cn+1[An:0 − 1NC
vT
A] +Dn+1∆Pn, n ∈ N≥0.

Then, we may bound ‖∆Pn+1 −Dn+1∆Pn‖ as

|‖∆Pn+1‖ − ‖Dn+1∆Pn‖|
≤ ‖∆Pn+1 −Dn+1∆Pn‖ = ‖Cn+1[An:0 − 1NC

vT
A]‖

≤ ‖An:0 − 1NC
vT
A‖. (11)

We proceed by noting that limn→∞An:0 = 1NC
vT
A, where

vA is a NC-sized stochastic vector, implies that the agents in
VC converges to a consensus (see Lemma 2). Hence, given an
arbitrary εA > 0, ∃NA ∈ N≥0 s.t.

‖An:0 − 1NC
vT
A‖ < εA, ∀n ≥ NA. (12)

From (11) and (12), we can obtain the following: given an
arbitrary εA > 0, ∃NA ∈ N≥0 s.t.

|‖∆Pn+1‖ − ‖Dn+1∆Pn‖| < εA, ∀n ≥ NA.

So, for n ≥ NA, we have

‖∆Pn+1‖ < ‖Dn+1∆Pn‖+ εA < ρ ‖∆Pn‖+ εA,

where we use the fact that ‖Dn+1‖ ≤ ρ < 1, ∀n ≥ NA. This
upper bound for ‖∆Pn+1‖ yields

‖∆PNA+L‖ < εA

L−1∑
`=0

ρ` + ρL‖∆PNA
‖, L ≥ 0. (13)

We note that

lim
L→∞

(
εA

L−1∑
`=0

ρ` + ρL‖∆PNA
‖

)
=

εA
1− ρ

,

i.e., given an arbitrary εP > 0, ∃LP ∈ N≥0 s.t.

εA

L−1∑
`=0

ρ` + ρL‖∆PNA
‖ − εA

1− ρ
< εP , ∀L ≥ LP .

Use this in (13): ‖∆PNA+L‖ < εP + εA/(1− ρ), ∀L ≥ LP .
In other words,

lim
n→∞

‖∆Pn‖ = lim
n→∞

‖Pn − 1Noutv
T
A‖ = 0. (14)

Using (8) in (7), we get[
πππA(θp)n+1

πππD(θp)n+1

]
=

[
An:0 0NC×Nout

Pn Dk:0

] [
πππA(θp)0

πππD(θp)0

]
(15)

Let us take the consensus among agents in VC as

πππ∗A(θp) = (1NC
vT
A)πππA(θp)0.

However, from (14), we know that limn→∞ Pn = 1Nout
vT
A.

Then, by (15), we can write[
πππ∗A(θp)
πππ∗D(θp)

]
=

[
1NC

vT
A 0NC×Nout

1Nout
vT
A 0Nout×Nout

]
︸ ︷︷ ︸

1NC+Noutv
∗T

[
πππA(θp)0

πππD(θp)0

]
, (16)

where v∗ is a (NC +Nout)-sized stochastic vector created by
concatenating the vectors vA and 0Nout×1, and

πππ∗D(θp) = 1Nout
vT
AπππA(θp)0. (17)
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Since (16) satisfies the conditions of Lemma 2, all agents in
V achieve a consensus. Moreover, as (16) and (17) show, this
consensus is the same consensus achieved within VC .

An immediate consequence of Theorem 1 is

Corollary 1. Consider the network G†k(εεε) = (V,E†k(εεε)) in
(3) populated with receptively updating opinion followers
and a single cautiously updating opinion leader. Suppose
Dk corresponds to the confidence matrix of the receptively
updating opinion followers with ‖Dk‖ ≤ ρ < 1, ∀k ∈ N≥0.
Then, with a CUE-based update strategy, all the agents reach
a consensus opinion at the opinion of the opinion leader.

Proof. Construct a 1-ODC as in Definition 8 with G†C,k(εεε)

containing the opinion leader only and G†out,k(εεε) populated
with the opinion followers. Proposition 1 implies that V †C
(which consists of the only cautiously updating agent) gen-
erates a consensus. So, from Theorem 1, all the agents in V
reach a consensus at the opinion of the opinion leader.

GC1,k(ε)
†

Gout,k(ε)
†

GC2,k(ε)
†

Ck
(1)

Ck
(2)

Fig. 2: An opinion dynamics chain driven by two groups (2-
ODC).

3) Two Opinion Leaders: The situation turns out to be sig-
nificantly more complicated when there are multiple opinion
leaders. To look at the two opinion leader case, let us introduce

Definition 9 (Opinion Dynamics Chain Driven By Two
Groups (2-ODC)). The directed dynamic graph G†k(εεε) =

(V,E†k(εεε)) in (3) is said to be an opinion dynamics chain
driven by two groups (2-ODC) if its corresponding confidence
matrix Wk in (4) can be expressed as the lower block
triangular matrix

Wk =

A
(1)
k 0 0

0 A
(2)
k 0

C
(1)
k C

(2)
k Dk

 .
Here, A(1)

k ∈ RNC1×NC1

[0,1] , A(2)
k ∈ RNC2×NC2

[0,1] , and Dk ∈
RNout×Nout

[0,1] ; the other matrices have compatible sizes.

One may view a 2-ODC as consisting of two ‘central’
components G†C1,k(εεε) = (VC1, E

†
C1,k(εεε)) (with NC1 agents)

and G†C2,k(εεε) = (VC2, E
†
C2,k(εεε)) (with NC2 agents), plus a

third component G†out,k(εεε) = (Vout, E
†
out,k(εεε)) (with Nout

agents) s.t. no agent in G†out,k belongs to the in-components
of either G†C1,k(εεε) or G†C1,k(εεε). See Fig. 2. Note that, A(1)

k ,
A

(2)
k , and Dk correspond to the confidence matrices of agents

in G†C1,k(εεε), G†C2,k(εεε), and G†out,k(εεε), respectively.
We now demonstrate that the agents in even a 2-ODC cannot

reach a consensus in general, even though the agents in VC1

and VC2 may have achieved their own consensus opinions.

Theorem 2. Consider agents embedded in a 2-ODC employ-
ing a CUE-based update strategy. Furthermore, suppose that

(a) limn→∞A
(1)
n:0 = 1NC1

vT
1 and limn→∞A

(2)
n:0 =

1NC2
vT

2 , where v1 ∈ RNC1

[0,1] and v2 ∈ RNC2

[0,1] are stochastic
vectors so that the agents in VC1 and VC2 achieve their own
consensus opinions, and

(b) ‖Dk‖ ≤ ρ < 1, ∀k ∈ N≥0.
Then, the following are true:
(i) The agents in V (i.e., agents in VC1, VC2, and Vout)

reach a consensus iff the consensus opinions of the agents in
VC1 and VC2 are equal.

(ii) When the consensus opinions of the agents in VC1

and VC2 are not equal, a consensus among the agents in
Vout occurs if ∃λ(1)

k , λ
(2)
k ∈ (0, 1) s.t. λ(1)

k + λ
(2)
k = 1 and

λ
(1)
k C

(1)
k 1NC1

= λ
(2)
k C

(2)
k 1NC2

, ∀k ∈ N≥0.

Proof. Note that we may write

Wn:0 =

A
(1)
n:0 0 0

0 A
(2)
n:0 0

P
(1)
n P

(2)
n Dn:0

 , (18)

where, for n ∈ N≥0,

P
(1)
n+1 = C

(1)
n+1A

(1)
n:0 +Dn+1P

(1)
n , P

(1)
0 = C

(1)
0 ;

P
(2)
n+1 = C

(2)
n+1A

(2)
n:0 +Dn+1P

(2)
n , P

(2)
0 = C

(2)
0 . (19)

(i) Suppose the two consensus opinions of the agents in VC1

and VC2 are equal. One may then recast the 2-ODC as a 1-
DOC with the confidence matrices corresponding to the central

component and the other component taken as
[
A

(1)
k 0

0 A
(2)
k

]
and

Dk, respectively. Noting that the central component reaches
a common consensus opinion, apply Theorem 1 to show that
all the agents must reach a consensus which is identical to
the common consensus opinion formed within the central
component. Conversely, if the two consensus opinions of the
agents in VC1 and VC2 are not equal, no consensus is possible
among the agents in VC1 and VC2 because these two sets of
agents do not update from each other.

(ii) Suppose the two consensus opinions of the agents in VC1

and VC2 are not equal. The row stochasticity of Wk implies

1Nout = C
(1)
k 1NC1

+ C
(2)
k 1NC2

+Dk1Nout ;

λ
(2)
k 1Nout

= C
(1)
k 1NC1

+ λ
(2)
k Dk1Nout

, k ∈ N≥0, (20)

where we used λ
(1)
k C

(1)
k 1NC1

= λ
(2)
k C

(2)
k 1NC2

and λ
(1)
k +

λ
(2)
k = 1. Now, proceed as we did in the proof of Theorem 1.

Subtract λ(2)
k 1Nout

vT
1 from both sides of (19) and substitute

for 1Nout
from (20):

P
(1)
n+1 − λ

(2)
k 1Nout

vT
1

= C
(1)
n+1[A

(1)
n:0 − 1NC1

vT
1 ] +Dn+1[P (1)

n − λ(2)
k 1Nout

vT
1 ],

for n ∈ N≥0. As before, we use the notation ∆P
(1)
n = P

(1)
n −

λ
(2)
k 1Nout

vT
1 to express this as

∆P
(1)
n+1 = C

(1)
n+1[A

(1)
n:0 − 1NC1

vT
1 ] +Dn+1∆P (1)

n ,



8 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS

for n ∈ N≥0. Now, bound ‖∆P (1)
n+1 −Dn+1∆P

(1)
n ‖ as

|‖∆P (1)
n+1‖ − ‖Dn+1∆P (1)

n ‖|
≤ ‖∆P (1)

n+1 −Dn+1∆P (1)
n ‖ = ‖C(1)

n+1[A
(1)
n:0 − 1NC1

vT
1 ]‖

≤ ‖A(1)
n:0 − 1NC1

vT
1 ‖,

where we used the sub-stochasticity of C(1)
n .

Now, as in the proof of Theorem 1, use the fact that the
agents in VC1 and VC2 each achieve a consensus to show that

lim
n→∞

‖P (1)
n − λ(2)

k 1Nout
vT

1 ‖ = lim
n→∞

‖P (2)
n − λ(1)

k 1Nout
vT

2 ‖

= 0.

In other words,

lim
n→∞

P (1)
n = λ

(2)
k 1Nout

vT
1 ; lim

n→∞
P (2)
n = λ

(1)
k 1Nout

vT
2 .

Denote the consensus among the agents in VC1 and VC2 as

πππ∗A(1)(θp) = (1NC1
vT

1 )πππA(1)(θp)0;

πππ∗A(2)(θp) = (1NC2
vT

2 )πππA(2)(θp)0,

respectively. Then we haveπππ∗A(1)(θp)
πππ∗
A(2)(θp)
πππ∗D(θp)

=

 1NC1
vT

1 0 0
0 1NC2

vT
2 0

λ
(2)
k 1Nout

vT
1 λ

(1)
k 1Nout

vT
2 0

πππA(1)(θp)0

πππA(2)(θp)0

πππD(θp)0

,
where πππ∗D(θp) is given as

πππ∗D(θp) = 1Nout

[
λ

(2)
k vT

1 λ
(1)
k vT

2

] [πππA(1)(θp)0

πππA(2)(θp)0

]
.

Hence, from Lemma 2, we conclude that the agents in Vout
reach a consensus if λ(1)

k + λ
(2)
k = 1, ∀k ∈ N≥0.

One may interpret this result in the following manner: the
matrices C(1)

k and C
(2)
k signify the ‘weights’ or ‘bias’ that

agents in Vout give to the agents in VC1 and VC2, respectively.
To reach a consensus, each agent in Vout must give the same
proportion of weights to the agents in VC1 and VC2 for all
k ∈ N≥0: λ(2)

k > λ
(1)
k implies that a higher weight is given to

the opinions of the agents in VC1 than to the opinions of the
agents in VC2. This might be due to stronger interconnections
between the agents in VC1 and Vout or it could simply be due
to a bias towards the opinions of the agents in VC1.

As an immediate consequence of Theorem 2 we get

Corollary 2. Consider the network G†k(εεε) = (V,E†k(εεε)) in (3)
populated with receptively updating opinion followers and two
cautiously updating opinion leaders. Suppose Dk corresponds
to the confidence matrix of the receptively updating opinion
followers with ‖Dk‖ ≤ ρ < 1, ∀k ∈ N≥0. Then, with a CUE-
based update strategy, the following are true:

(i) All the agents reach a consensus iff the opinions of the
two opinion leaders are equal.

(ii) When the opinions of the opinion leaders are not equal,
the opinion followers form an opinion cluster if the proportion
of weights each receptively updating agent gives to the two
opinion leaders is identical and no opinion leader is given
zero weight.

B. Dirichlet Agent Opinions

Next, let us suppose that agents opinions are modeled via
Dirichlet BoEs. Then, using the properties Bl(θi|θi) = 1,
Bl(θi|θj) = 0, i 6= j, and Bl(B|Θ) = B, ∀B ⊆ Θ, one
can easily show that the CUE-based update mechanism in
Definition 5 retains the Dirichlet property of the updated BoEs
at each step. For this Dirichlet BoE case, the CUE-based
opinion update reduces to the following DT dynamic system:

πππ(θp)k+1 = W̆k πππ(θp)k, p ∈ 1,M. (21)

Here πππ(·)k is as in (4) and W̆k = {w̆ij,k} ∈ RN×N where
w̆ij,k, i, j ∈ 1, N, k ∈ N≥0. When the i-th agent is receptively
updating,

w̆ij,k =


αi,k, for i = j;
(1− αi,k)(1 +mj(Θ)k)

|Ni,k(εi)|
, for j ∈ Ni,k(εi);

0, otherwise;
(22)

when the i-th agent is cautiously updating,

w̆ij,k =


1, for i = j;
(1− αi,k)mi(Θ)k
|Ni,k(εi)|

, for j ∈ Ni,k(εi);

0, otherwise.

(23)

While we may still refer to W̆k as the corresponding confi-
dence matrix, unlike Wk, W̆k is not necessarily stochastic.

To proceed, we take inspiration from [31], where it is shown
that, under mild conditions, the masses for complete ambiguity
Θ vanish when two Dirichlet agents mutually update each
other. The same result turns out to hold true for multiple BoEs.

Lemma 3. Consider the CUE-based updating of the Dirichlet
BoEs as in (21). If

αi,k +
∑
j 6=i

βij(Θ)k ≤ ρ < 1, ∀i, j ∈ 1, N, ∀k ∈ N≥0,

then limn→∞mi(Θ)n = 0, ∀i ∈ 1, N .

Proof. Observe that the update of πππ(Θ) can be written as

πππ(Θ)k+1 = ΓΓΓkπππ(Θ)k,

where

ΓΓΓk =


α1,k β12(Θ)k β13(Θ)k · · · β1N (Θ)k

β21(Θ)k α2,k β23(Θ)k · · · β2N (Θ)k
...

...
. . .

...
...

βN1(Θ)k βN2(Θ)k βN3(Θ)k · · · αN,k

 .
The condition in the statement implies that ‖ΓΓΓk‖∞ ≤ ρ <
1, ∀k ∈ N≥0, which guarantees the claim.

Note that, each BoE being updated possessing at least one
singleton focal element ensures that the condition in Lemma 3
is satisfied, which in turn, ensures that the mass for each
completely ambiguous proposition vanishes in the limit. When
this occurs, one may show the following results which apply
to Dirichlet agents. These are the counterparts to Corollaries 1
and 2 which apply to probabilistic agents. Rigorous proofs of
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these results are not provided; they can be carried out in a
manner which parallel the proofs of Corollaries 1 and 2.

Corollary 3. Consider the network G†k(εεε) = (V,E†k(εεε))
in (3) populated with receptively updating Dirichlet opinion
followers and a single cautiously updating Dirichlet opinion
leader. Suppose that the condition in Lemma 3 is satisfied. Let
Dk denote the confidence matrix of the receptively updating
opinion followers with ‖Dk‖ ≤ ρ < 1, ∀k ≥ ND, for some
ND ∈ N≥0. Then all the agents reach a consensus opinion.

Corollary 4. Consider the network G†k(εεε) = (V,E†k(εεε))
in (3) populated with receptively updating Dirichlet opinion
followers and two cautiously updating Dirichlet opinion lead-
ers. Suppose that the condition in Lemma 3 is satisfied. Let
Dk denote the confidence matrix of the receptively updating
opinion followers with ‖Dk‖ ≤ ρ < 1, ∀, k ≥ ND, for some
ND ∈ N≥0. Then, with a CUE-based update strategy, the
following are true:

(i) All the agents reach a consensus iff the converged
opinions of the two opinion leaders are equal.

(ii) When the opinions of the opinion leaders are not equal,
the opinion followers form an opinion cluster if the proportion
of weights each receptively updating agent gives to the two
opinion leaders is identical for k ≥ ND and no opinion leader
is given zero weight.

V. EMPIRICAL EVALUATIONS AND DISCUSSION

We now present some typical results obtained through
extensive simulations of scenarios where agent opinions are
captured via p.m.f.s (see Section V-A), Dirichlet BoEs (see
Section V-B), and more general DST BoEs (see Section V-C).
The results confirm our theoretical analysis in Section IV and
demonstrate the applicability of these results for the more
general DST models presented in Section III.

The agents in all the simulations employ a CUE-based
opinion update strategy with αi = 0.50, ∀i ∈ 1, N . The
agents’ bounds of confidence are taken as identical, i.e.,
εi = ε, ∀i ∈ 1, N . Note that, for αi > 0, ∀i ∈ 1, N , and for
sufficiently large ε, all agents satisfy the self-communicating
or the strong-aperiodic property [34], [37]. Even though being
embedded in a static network, the agents must accommodate
the bounds of confidence as the opinions are updated. In effect,
this creates a dynamic network G†k(εεε).

For ease of visualization, consensus/cluster formation are
displayed using bifurcation diagrams that depict the state of
consensus/cluster formation in the limit density versus ε [12].

A. Probabilistic Agent Opinions

For our simulations we embed seven agents on a graph
of seven nodes and 100 agents on Erdős-Rényi (ER) random
graphs of 100 nodes.

1) Simulations with Seven Agents: The FoD of the opinion
BoE of each agent is Θ = {θ1, θ2, θ3}. For the results shown
in Figures 3 to 6, initial opinion profile of θ1 is selected
as πππ(θ1)0 = [0.80, 0.78, 0.76, 0.40, 0.80, 0.10, 0.20]T ; the re-
maining masses are equally distributed among the opinion
profiles πππ(θ2)0 and πππ(θ3)0.

No Opinion Leaders. Fig. 3(a) shows the network topology
of the seven receptively updating agents Ri, i ∈ 1, 7. As
the corresponding bifurcation diagram in Fig. 3(b) shows, for
smaller values of ε, seven ‘opinion clusters’ are generated
because agents are essentially isolated. As the value of ε is
increased, the number of opinion clusters decreases because
the agents are updating their opinions based on opinions
of their neighbors who are within their confidence bounds.
Eventually, for ε > 0.46 (approx.), as expected from our
analytical results in Section IV-A1, a consensus emerges.

(a) Network topology.
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(b) Bifurcation diagram for πππ(θ1).

R1 R2

R3 R4 R5

R6 R7

(0.035)

(0.017)

(0.329)

(0.017)

(0.312)

(0.346)

(0.52) > ε = 0.5

(0.572) > ε = 0.5

(0.087)

(c) For ε = 0.5, first iteration:
(R3, R6) and (R5, R7) do not ex-
change opinions because the cor-
responding opinion distances are
above ε = 0.5.

R1 R2

R3 R4 R5

R6 R7

(0.146)

(0.088)

(0.089)

(0.065)

(0.146)

(0.154)

(0.421) < ε

(0.351) < ε

(0.078)

(d) For ε = 0.5, second iteration:
All neighbor agents exchange opin-
ions because all corresponding opin-
ion distances are below ε = 0.5.

Fig. 3: Probabilistic agents: Simulation results for seven recep-
tively updating agents (Ri, i ∈ 1, 7) and no opinion leaders.
A consensus occurs for ε > 0.46 (approx.). For ε = 0.5,
Figs 3(c) and 3(d) show the ‘directions’ of opinion exchange
at the first two iterations. Edge labels indicate the distance
between the opinions of the corresponding agent pair.

Even though the underlying network topology shown in
Fig. 3(a) is static, opinion updating occurs in a dynamic
network G†k(εεε). To illustrate this further, consider the case
when ε = 0.5. As Fig. 3(c) illustrates, agent pairs (R3, R6)
and (R5, R7) do not exchange opinions because their opinion
distances exceed the bound of confidence ε = 0.5. However,
after the first iteration of opinion exchanges, distances among
agents change. As Fig. 3(d) illustrates, the opinion distances
of all agents (including (R3, R6) and (R5, R7)) are now well
within ε = 0.5 and, at the second iteration, all agents exchange
opinions with their neighboring agents.

Single Opinion Leader. We create this scenario by replacing
agent R1 in Fig. 3(a) with a cautiously updating agent C1
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thus obtaining the graph in Fig. 4(a). For this topology the
bifurcation diagram for πππ(θ1) is depicted in Fig.4(b). As
before, for smaller values of ε, each agent forms its own
‘opinion cluster’. For larger values of ε, in accordance with
Corollary 1, a consensus emerges, and this consensus opinion
is the opinion of the opinion leader C1 (viz., m(θ1) = 0.80).
As Fig. 4(b) indicates, this consensus begins to emerge for
ε > 0.46 (approx.). The dynamic nature of opinion exchange
in the first three iterations is illustrated in Figs 4(c), 4(d), and
4(e).

(a) Network topology.
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(b) Bifurcation diagram for πππ(θ1).

C1 R2

R3 R4 R5

R6 R7

(0.017)

(0.035) (0.329)

(0.017)

(0.312)

(0.346)

(0.52) > ε = 0.46

(0.572) > ε = 0.46

(0.087)

(c) For ε = 0.46, first
iteration: (R3, R6) and
(R5, R7) do not ex-
change opinions.

C1 R2

R3 R4 R5

R6 R7

(0.067)

(0.104) (0.115)

(0.024)

(0.078)

(0.091)

(0.472) > ε = 0.46

(0.459) < ε

(0.001)

(d) For ε = 0.46, sec-
ond iteration. (R3, R6)
now exchange opinions;
(R5, R7) still do not
exchange opinions.

C1 R2

R3 R4 R5

R6 R7

(0.079)

(0.176) (0.055)

(0.029)

(0.042)

(0.027)

(0.456) < ε

(0.272) < ε

(0.115)

(e) For ε = 0.46, third
iteration. All agents ex-
change opinions with
their neighbors.

Fig. 4: Probabilistic agents: Simulation results for one opinion
leader (C1) and six receptively updating agents (Ri, i ∈ 2, 7).
A consensus occurs for ε > 0.46 (approx.), at C1’s opinion
(i.e., m(θ1) = 0.80). For ε = 0.46, Figs 4(c), 4(d), and
4(e) show the ‘directions’ of opinion exchange at the first
three iterations. Edge labels indicate the distance between the
opinions of the corresponding agent pair.

Two Opinion Leaders. Here we replaced the two agents
{R1, R7} in Fig. 3(a) by the cautiously updating agents
{C1, C7}, respectively. Figs 5(a) and 5(b) show the corre-
sponding network topology and bifurcation diagram for πππ(θ1),
respectively. In accordance with Corollary 2, no consensus
is reached because the two opinion leaders {C1, C7} possess
different opinions.

With the opinions of two opinion leaders being different, the
number of opinion clusters created depends on the bound of
confidence ε. For 0.31 < ε < 0.42 (approx.), we observe two
opinion clusters, the minimum number of clusters possible.
We have achieved this by picking the agent BoEs carefully so
that the network separates into two components, each with its
own opinion leader, for the aforementioned values of ε. For
these values, the network gets separated into two components

(a) Network topology.
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(b) Bifurcation diagram for πππ(θ1).

Fig. 5: Probabilistic agents: Simulation results for two opinion
leaders (C1 and C7) and five receptively updating agents
(Ri, i ∈ 2, 6). With the two opinion leaders possessing
different opinions, no consensus is achieved. A minimum of 2
opinion clusters are achieved for 0.31 < ε < 0.42 (approx.).
There is no consensus among the receptively updating agents.

{C1, R2, R3, R,R5} and {C7, R6} because ‖E3 − E6‖ > ε
and ‖E5 − E7‖ > ε, for 0.31 < ε < 0.42 (approx.). The
ensuing network generates two opinion clusters at the opinions
of the two opinion leaders C1 and C7. For larger values of ε,
some (or all) receptively updating agents get influenced by
both opinion leaders which creates different opinion clusters
that are influenced by both opinion leaders.

(a) Altered topology.
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(b) Bifurcation diagram for πππ(θ1).

Fig. 6: Probabilistic agents: Simulation results for two opinion
leaders (C1 and C7) and five receptively updating agents
(Ri, i ∈ 2, 6) embedded in a topology that generates a con-
sensus among the receptively updating agents. This consensus
appears for ε > 0.43 (approx.).

As asserted in Corollary 2, when the two opinion leaders
possess different opinions, the receptively updating agents will
reach a consensus if the matrices C(1)

k and C(2)
k in Definition 9

satisfy λ
(1)
k C

(1)
k 1NC1

= λ
(2)
k C

(2)
k 1NC2

, ∀k ∈ N≥0. Fig. 6(a)
shows a network topology which satisfies this condition, and
the corresponding bifurcation diagram in Fig. 6(b) shows the
emergence of a third opinion cluster around m(θ)1 = 0.50
(approx.) for ε > 0.43 (approx.).

2) Simulations with 100 Agents: Here we embed 100
agents in random graphs of 100 nodes generated using the
Erdős-Rényi (ER) random graph model. As is well known,
for an ER random graph, the phase transition for network
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(a) No opinion leaders.
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(b) One opinion leader.
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(c) Two opinion leaders.

Fig. 7: Probabilistic agents: Simulation results for 100 agents embedded in an Erdős-Rényi random graph with p = 0.10 and
agent BoEs sampled from Dir(1, 1, 1). Consensus can be seen in Fig. 7(a) and 7(b), for ε > 0.26 and ε > 0.21, respectively.
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Bifurcation Diagram

(a) No opinion leaders.
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(b) One opinion leader.
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Bifurcation Diagram

(c) Two opinion leaders.

Fig. 8: Dirichlet agents: Simulation results for 7 agents with no opinion leaders, one opinion leader and two opinion leaders
embedded in the graphs in Figs 3(a), 4(a), and 5(a) respectively. Consensus can be seen in Fig. 8(a) and 8(b), for ε > 0.51
and ε > 0.5, respectively.

connectivity occurs when the edge formation probability p
exceeds ln n/n [29]. With n = 100, ln n/n = 0.046 and
we used p = 0.10 for generating all our random graphs.
Moreover, every random graph was tested for connectedness
at initialization. For sufficiently large values of ε, the graph
G†k(ε)ε)ε) is therefore essentially the same as Gk, and thus it is
connected as well.

The BoE of each agent was sampled from the symmetric
Dirichlet distribution Dir(1, 1, 1), which is equivalent to a
uniform distribution over the open standard 2-simplex [38].
As Figs 7(a) and 7(b) show, for ε > 0.26 (approx.) and
ε > 0.21 (approx.), a consensus appears when there are no
opinions leaders and when only one opinion leader is present,
respectively. In accordance with Corollary 2, Fig. 7(c) shows
that there is no consensus among the 100 agents when the two
opinion leaders have different opinions.

B. Dirichlet Agent Opinions

Here, we repeat the experiments conducted with the 7-agent
topologies in Section V-A1 but with Dirichlet agent opinions.
For all the agents, we kept the same mass vectors πππ(θ2)0 and
πππ(θ3)0 as those in Section V-A1 while we used πππ(Θ)0 = 0.1;
the remaining masses were assigned to πππ(θ1)0.

Fig. 8 shows the corresponding bifurcation diagrams. As is
evident, and in consistent with Corollary 3, a consensus can
be seen in Figs 8(a) and 8(b) for ε > 0.51 and ε > 0.5,
respectively. However, in Fig. 8(c), there is no consensus
among the agents. This is consistent with Corollary 4(i)
because the cautious agents do not possess the same converged
opinion. The minimum number of opinion clusters appear for
0.26 < ε < 0.52 (approx.).

Interestingly, even for higher values of ε, no consensus
emerges even among the receptive agents. Indeed, one would
expect that the receptive agents who are now less restrained
to exchange opinions with their neighbors would form an
opinion clusters of their own. In contrast, when the agents
are embedded in the graph shown in Fig. 6(a), a consensus
emerges among the receptive agents for ε > 0.46 (approx.).
See Fig. 9. This is because the graph topology in Fig. 6(a)
satisfies the condition in Corollary 4(ii).

C. General DST Agent Opinions

1) Simulations with Seven Agents: In this study, we as-
signed random DST mass assignments for the seven agents
embedded within the topology in Fig. 6(a). For this purpose,
we utilized the Dirichlet distribution which has been widely
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(a) No opinion leaders.
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(b) One opinion leader.
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(c) Two opinion leaders.

Fig. 10: General DST agents: Simulation results for seven receptively updating agents embedded within the network topology
in 6(a) and DST mass values sampled from Dir(4, 4, 4, 2, 2, 2, 1). A consensus appears for the no opinion leader and one
opinion leaders cases in Fig. 10(a) and 10(c) for ε > 0.18 (approx.) and ε > 0.17 (approx.), respectively.
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Fig. 9: Dirichlet agents: Simulation results for two opinion
leaders (C1 and C7) and five receptively updating agents
(Ri, i ∈ 2, 6) embedded in the graph in Fig. 6(a) generates
a consensus among the receptively updating agents. This
consensus appears for ε > 0.46 (approx.).

employed in opinion modeling [39]–[41]. In particular, for
each agent in each trial, the DST masses for θ1, θ2, θ3, (θ1θ2),
(θ1θ3), (θ2θ3), and Θ = (θ1θ2θ3) were sampled from the
Dirichlet distribution Dir(4, 4, 4, 2, 2, 2, 1). Figs 10(a), 10(b),
and 10(c) show the bifurcation diagrams when the network
contains no opinion leaders, one opinion leader, and two
opinion leaders, respectively.

As Fig. 10(a) shows, with no opinion leaders, a consensus
appears for ε > 0.18 (approx.). Fig. 10(b) shows bifurcation
diagram when only one opinion leader is present, and we
can see that a consensus appears for ε > 0.17 (approx.). As
Fig. 10(c) shows, with two opinion leaders, no consensus is
reached among the agents. However, it is interesting to note
that three opinion clusters emerge for ε > 0.21 (approx.).

As mentioned earlier, the main reason for utilizing the DST
framework for capturing agent opinions is its ability to capture
the types of uncertainties and the nuances that are characteris-
tic of agent states and opinions. DST agent opinions can also
generate new emergent behavior which cannot be captured via
probabilistic agents. For example, consider 7 receptive agents
embedded within the topology in Fig. 3(a). The initial opinions
and the converged opinions for ε = 0.30 appear in Table I.
Notice that two opinion clusters have emerged: the first cluster

formed by {R1, . . . , R5} converge to the probabilistic opinion
{m∗1(θ1), m∗1(θ2), m∗1(θ3)} = {0.63, 0.19, 0.18}; the second
cluster formed by R6 and R7 converge to the general DST
opinion {m∗2(θ1), m∗2(θ2, θ3)} = {0.15, 0.85} which allows
no further ‘refinement’ between the singletons θ2 and θ3. Such
emergent behavior is qualitatively different than what appears
in prior models [12]–[16].

TABLE I: Initial and Converged Opinions (with ε = 0.30)

Agent DST Mass Values
θ1 θ2 θ3 (θ1, θ2) (θ2, θ3)

Initial Opinions:
R1 0.60 0.10 0.10 0.10 0.10
R2 0.62 0.11 0.04 0.11 0.12
R3 0.51 0.12 0.05 0.12 0.20
R4 0.57 0.15 0.03 0.15 0.10
R5 0.60 0.10 0.10 0.10 0.10
R6 0.10 – – – 0.90
R7 0.20 – – – 0.80

Converged Opinions (with ε = 0.30):
{R1, . . . , R5} 0.63 0.19 0.18 – —
{R6, R7} 0.15 – – – 0.85

VI. CONCLUSION

In this paper, we use the DST framework for representing
agent opinions and explore the formation of consensus and
opinion clusters when agents residing within a network ex-
change and update their opinions. In particular, we explore
the effect that opinion leaders have on these processes. Our
opinion model accounts for aspects from SJT and possesses
the ability to capture a wider variety of uncertainties and
nuances in agent opinions, an advantage inherited from its
DST basis. Theoretical analysis, which focuses on probabilis-
tic and Dirichlet agent opinions, provides conditions for the
emergence of consensus and opinion clusters in the presence
of opinion leaders. Our results show that a consensus can be
formed when the number of opinion leaders is no more than
one and with a sufficiently high bound of confidence of the
agents. With two or more opinion leaders possessing different
opinions, no consensus can be reached in general. We also
explore the conditions for opinion cluster formation among
the opinion followers.



DABARERA, et al.: CONSENSUS IN THE PRESENCE OF MULTIPLE OPINION LEADERS ... 13

Our current work involves extending this theoretical analysis
to scenarios where agent opinions are captured via more
general DST BoEs, which may require recourse to tools
from paracontractions theory [7]. It is also noteworthy that
we have taken all agents to possess the identical bound of
confidence value. When this is not the case, the opinion
exchange mechanism itself would be directional (because an
agent with a lower bound of confidence may update itself
from its neighbor agent who may not update itself because
of a higher bound of confidence value). An interesting future
research problem is the study of networked agents whose
bounds of confidence values are different. Another interesting
issue to be addressed is the assessment of the convergence
speed of our algorithms [42].
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