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ABSTRACT 

This paper presents a method to validate the true patrons of a brand, group, artist or any other 

entity on the social networking site Twitter. We analyze the trend of total number of tweets, 

average retweets and total number of followers for various nodes for different social and political 

backgrounds. We argue that average retweets to follower ratio reveals the overall value of the 

individual accounts and helps estimate the true to fake account ratio. 
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1. INTRODUCTION 

The term Social Network (SN) was coined in 1954 by J.A. Barnes [1]. It represents a social 

structure of relationships and communication between people, organizations and other entities, 

on an online site or third party application. It comprises of three main components: nodes, links 

and communication [2]. A node represents the users or any other entity that has a unique 

account; links are the interconnections between different nodes; communication represents the 

interaction among various nodes via these links. The value of any network can be determined by 

the activity and connectivity among its unique nodes. The nature of the nodes can be: active, 

dormant, fake or duplicate.  

 

 

 

 

 

 

 

 

 

Figure 1. Social Graph depicting nodes and links in LinkedIn [4] 
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Fig. 2: Social graph created by Gephi for a Facebook account 

Social Networks require Social Networking Sites (SNSs) which provide a platform to the users 

to build and expand their social networks. There are two types of SNS: Symmetric and 

Asymmetric. A Symmetric model makes use of a two-way relationship where both the nodes 

should have confirmed the relationship to be a member of each other’s network e.g. Facebook, 

LinkedIn, etc. An asymmetric model is how Twitter and Instagram work, where a one-way 

relationship can be established by the interested party.   

Fig. 2 is the social graph generated by Gephi for my personal Facebook account. The different 

nodes spread out around the node representing my profile at the lower-left end, showcase other 

Facebook pages and profiles I have visited in the recent past. The software, OutWit Hub version 

5.0.0.246 was used to extract data such as source address, destination address and frequency of 

visiting the same webpage, from my Facebook account. This data was then imported to Gephi, a 

network analysis tool, which evaluated the various parameters and then provided a graphical 

representation of the imported data. 

Today, social networking has become a part and parcel for people of every age group, race, 

gender and socio-economic background. It has become a vital source for communication, 

knowledge-sharing, brand publicity and discussions on public issues, news and politics. “When 

you walk into a brand, you now ask ‘how many followers do they have?’ ” said Ivan Bart, senior 

vice president and managing director of IMG Models. – The Wall Street Journal, R.A. Smith, 

Sep. 3, 2013[3].  

Social Networking tools such as Twitter, Facebook, LinkedIn and the like, play a major role in 

providing a platform for people to express their ideas and share their experiences. Hence, it lies 

in the interest of the millions of users around the globe that they get exposed to the true statistics 

and data which is the foundation of their knowledge and belief.  

Social Networks, being a powerful source of information exchange, can pose several challenges 

and thereby, a need to validate the dynamic nodes and connections. Generating fake followers 

and likes on social networking sites can be used as an easy technique for entities to gain quick 

recognition and improve their reputation in the market. Padding the followers to improve the 
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visual identity deludes the naïve audience into thinking that the brand or an artist is genuine and 

currently trending.  

The primary motive behind associating with fake accounts is to attract audiences and customers 

by targeting the human tendency to: jump on a bandwagon, find an easy way up the ladder of 

perceived success, have an edge over those in competition and for some it is simply a status 

concern. These applications have become famous because of our desire to stand out and find 

short cuts to quick success.  Nevertheless, the true patrons are the only ones who would continue 

to add value by actively participating and getting involved with the brand. They would not get 

perturbed by the sudden fame or defame of the brand or entity.  

In this world of close competition where organizations are constantly competing for the smallest 

gains, this publicity strategy could easily attract bad press. For example, the recent case of Pepsi 

and Mercedes-Benz for purchasing fake followers [4], disappointed the patrons of both the 

brands. An event like this might not have as profound an impact on the entities which already 

have a strong foundation of patrons as the ones which are battling to flourish for success. 

However, this does not undermine the need to filter the social networking sites of the redundant 

nodes. Moreover, with the availability of tools to be able to fake followers on SNSs, there are 

several prototypes as well as full-fledged online applications available, which could track these 

spurious accounts. 

 

2. BACKGROUND 

Social Follow, Twitter Followers Trend, like4like, Magic Liker, Instaliker 1000 and  Instamacro 

are some of the sites and applications which provide fake followers and likes to the users of  

symmetric networks such as Facebook as well as asymmetric networks such as Twitter and 

Instagram. A detailed list is provided in Table 1. Some of these sites are free of charge and 

merely require the users to register with them in order to provide the fake likes (for e.g. 

like4like) whereas, some of the sites such as buyrealmarketing.com, charge up to $10 per 1000 

fake twitter followers. 

Table 1. List of sites and applications providing fake followers or likes 

Social 

Network 
Sites/Applications Activity 

Facebook LikeFake, like4like, buyrealfbfriends.com Provides fake likes, friends 

Twitter 
Social Follow, Twitter Followers Trend, 

granbysportss.org, buyrealmarketing.com 
Provides fake likes, followers 

Instagram 

Magic Liker, Instaliker 1000, Famedgram, 

Monstagram 
Provides fake likes, followers 

Instamacro Automates Instagram activity 
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These sites make use of software programs such as Twitter Account Creator PRO (shown in 

Fig.3), which is capable of generating several accounts by sending data through proxy IP 

addresses and thereby creating fake profiles without actually going through the targeted social 

networking site [5]. Private proxies i.e. unutilized IP addresses, are used to simulate several users 

simultaneously. These software creation programs make use of features such as proxy rotation, 

randomization of page load time, captcha-dodging logic, scraping of profile pictures, etc. in 

order to avoid detection [6]. Hence, some of the created profiles are a replication of the original 

one with a few minor changes. Once a fake profile is established, other software programs are 

used to manage the followers, retweets, likes and messages.  

 

 

 

 

 

 

 

 

Fig. 3: Twitter Account Creator PRO:  

Software that can create thousands of Twitter accounts at a time [5] 

 

With the increase in number of applications providing fake accounts, the availability of tools to 

detect the fake patrons on social networking sites has also rapidly increased. Some of them are 

listed in Table 2. These sites make use of the predefined codes and algorithms to verify several 

criteria such as: sudden spike in the number of followers; followers to followed ratio; no profile 

picture, description or headline; irrelevant comments; quality of interaction and contribution to 

pages, diversity of access point (using more than one means to access accounts such as mobile, 

laptop, etc.); linked accounts; monitoring account activity such as number of Tweets and status 

updates less than a certain threshold number [5]. For a user account in scrutiny to be genuine, it 

should at least successfully surpass the cut-off of these validity checks.  

Even though checking these criteria can be a good strategy to spot and eliminate fake redundant 

profiles, they are not sufficient otherwise, the social networking sites would have themselves 

applied these filters to get rid of all the fake accounts. Moreover, these tools are not as readily 

available to the public as the fake profile building applications. 
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Table 2. List of applications available for detecting fake accounts 

Social Network Sites/Applications 

Facebook Social Media Examiner, Social Bakers 

Twitter 
Status People, Social Bakers, Twitter Audit, Twitter Counter, 

instantcheckmate.com 

Since 2012, many SNSs have been taking measures to purge fake accounts from their sites. For 

instance, in suspicion of a fake, duplicate or a deceased individual’s account, Facebook deleted 

about 8% of its accounts in March, 2015 [6]. 

Table 3 presents analysis of the twitter accounts of a few well known entities from different 

socio-economic backgrounds, generated by Twitter Audit. Twitter Audit analyzes a user’s 

follower list taking into account several characteristics such as number of tweets, ratio of 

followers to friends, tweet duration, [7] etc. It then evaluates whether the followers are good or 

bad based on these results. Good represents the number of genuine and active followers whereas, 

bad represents the number of fake and inactive followers.  

Table 3. Analysis of few Twitter accounts using Twitter Audit [7] 

 

Barack Obama, is at the top of the list with the highest number of followers but only 36% of his 

followers are real. This might be because it is his last year of presidency and so the focus has 

been shifted more towards the current presidential candidates. On the other hand, OSU professor, 

Dr. S. Kak, despite having the lowest number of followers, display the highest percentage of real 

followers. Therefore, probability of fake nodes associated with social accounts is independent of 

their total followers. In general, this method of evaluation of an individual’s twitter account helps 

us determine the quality of the social network. 
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3. GENERAL PROPERTIES OF SOCIAL NETWORKS 

 

Small-world networks and Scale-free networks are the two main properties of the social 

networks. In a small-world network, all nodes are not directly linked to each other but most of 

them can be interconnected by taking a few extra steps, exhibiting a short average path length 

[8]. Bridges are present to shorten the average distance between the clusters of locally connected 

nodes. Due to its transitivity and ability of weak links to connect across clusters [9], Small-world 

model is cost-effective and supports complexity. Hence, it finds its use in many areas such as 

social networks, internet architecture and even in cognition networks.  

 

Mathematically, a small-world network can be represented by the following equation: 
 

                                                                   L  log N                                                                   (1) 
 

L is the distance between any two random nodes and N is the total number of nodes in the 

network [8], [15]. This equation represents that the distance between any two random nodes is 

proportional to the log of network size. The following figures represents a small-world network.  

 

        Fig. 4: Small-world network [10], [12] 

     

Scale-free networks on the other hand follow the power law distribution showcasing a skewed 

distribution of links. It can be constructed by adding more nodes to the existing network and 

forming links with the existing nodes in a probabilistic manner such that it results in a 

hierarchical structure [12]. The following figures represent a scale-free network with grey circles 

as Hubs: 

 

 

 

 

 

 

 

 

Fig. 5: Scale-free network [11], [12] 
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Mathematically, the number of links (k) originating from any given node following the power 

law can be represented as follows:  
 

                                                                  P (k) ~ k
- 

                                                                    (2) 
 

Typically, value of   lies between 2 and 3 (2 <  < 3) [13]. The nodes with highest degree of 

links are referred to as Hubs. These hubs are further connected with relatively lower degree 

nodes. Scale-free model offers good fault tolerance as failure of small degree nodes would not 

affect the hubs and in the event of hub-failure, other hubs will maintain the connectivity [13].  

 

4. POWER LAW 

Power law gives the relationship between two quantities where, a relative change in one quantity 

is reflected as a proportional relative change in the other quantity, regardless of the initial value 

of both the quantities. Mathematically, it can be represented as: 

                                                                      y = ax
k
                                                                     (3) 

Taking Log on both sides,                    Log (y) = Log (a x
k
) 

                                                              Log (y) = log (a) + k log (x)                                            (4) 

where ‘x’ and ‘y’ are the variables of interest, ‘k’ is the power law exponent and ‘a’ is a constant. 

For increasing or decreasing functions, k is positive or negative respectively. As seen in equation 

(4), power law adopts a linear relationship if the variables are plotted on a logarithmic scale. 

Power law is frequently used to determine the underlying properties of social, scientific, human 

as well as natural systems.  

The power law can be used to reveal the characteristics of a social network. As the network 

evolves with time, large number of new edges might get added to nodes which already have a 

large number of links, thereby increasing the degree of nodes disproportionately. This results in a 

few highly connected nodes and many weekly connected nodes displaying a long-tailed degree 

distribution of a scale-free network [9].  

                  Fig. 6: Network Evolution [9]         Fig. 7: Scale-free network-power law [14] 
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5. ZIPF’S LAW 
 

Zipf’s law is one of most useful power-law distributions in the field of social and physical data 

approximation. It states that the frequency of occurrence of an element in a well-defined sample 

space is inversely proportional to its rank in that space. For instance, the frequency of utterance 

of a word in any natural language is inversely proportional to its rank in the frequency table [16], 

[24]. Hence, the frequency of occurrence of the second most frequent word will be half the 

frequency of the most frequent word; the frequency of the third most frequent word will be one-

third of the most frequent word and so on. Hence, the following relation can be established [19]: 

                                                         X = 
𝐹

∑ 𝑛𝑁
𝑛=1

                                                                 (5) 

Where, X is the frequency of occurrence of the element at rank ‘n’ and F is the frequency of the 

element at rank 1. Equation (5) illustrates that the value of an element at rank n (where, nN) 

will be 1/n
th

 times the value of the element at rank one.   

 

 

 

 

 

 

 

 

 

 

Fig. 8: Zipf’s Distribution 

A random data set of 50 points starting at 90 million was generated to graphically represent the 

Zipf’s distribution. Rank is plotted on the abscissa and the value of each rank is plotted on the 

ordinate. As seen in Fig. 8, the resulting Zipf’s distribution follows a power-series model defined 

by equation (2). Rank 1 is twice as large as rank 2, thrice as large as rank 3 and 50 times greater 

than the last data point with rank 50.  

Zipf’s law is a good method to estimate the value of an element if the number of elements is a 

random variable following power-law distribution where, the specific exponent value in the 

power law characterizes its distribution [24]. Determining cumulative distribution function and 

probability mass function for Zipf’s law is a good method for studying the characteristics of data 

[16].  
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Fig. 9.2: Analysis of Average Retweets 

Fig. 9.3: Analysis of Total Followers 

Fig. 9.1: Analysis of Total Tweets 

Table 4. Data from Twitter for the top 12 ranks 

6. DATA ANALYSIS 

 

6.1 ANALYSIS OF OVERALL DATA 

Overall Analysis of Total Tweets, Average Retweets and Total Followers: 

 

 

Table 4 presents the total tweets, average 

retweets and total followers of the top 12 ranks 

(evaluated as mutually exclusive parameters) 

from the Twitter data (appendix) put together 

for the 70 individuals. 

Graphical representation is used to further 

analyze the output of the data for Zipf’s 

distribution. The parameter values are plotted 

on the abscissa and their respective rank is 

plotted on the ordinate. A dotted line running 

across the graphs represents the power series 

model. As we can see from Figures 9.1, 9.2 

and 9.3, the trend line closely follows the 

power law for total tweets and average 

retweets showcasing a good fit for Zipf’s 

distribution. In the Total Followers case, it 

may not be a good fit for the upper tail but, 5
th

 

rank onwards, the lower tail gets closer to the 

power series’ trend line. 

Hence, the data arranged in descending order is observed to follow Zipf’s law for all the three cases. 

Rank Total Tweets 
Average 

Retweets 
Total 

Followers 

1 96.20K 51.70K 84.80M 

2 54.20K 41.40K 77.50M 

3 48.50K 24.20K 73.30M 

4 41.70K 20.71K 71.00M 

5 31.40K 14.80K 41.50M 

6 30.70K 9.32K 40.60M 

7 27.30K 5.93K 35.10M 

8 23.70K 4.94K 27.80M 

9 23.60K 4.93K 27.80M 

10 21.10K 4.70K 21.40M 

11 21.00K 4.01K 20.40M 

12 18.40K 3.73K 19.90M 
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Table 5. Data retrieved from Twitter for Celebs 

Fig. 10.1: Analysis of Total Tweets for Celebs 

Fig. 10.2: Analysis of Average Retweets for Celebs 

Fig. 10.3: Analysis of Total Followers for Celebs 

6.2   ANALYSIS OF CELEBRITIES (Movies and Music industry) 

 

 

The above figures represent the trend of celebrity Twitter accounts on the basis of total tweets, 

average retweets and total number of followers they have. It can be inferred that all the three 

parameters conform to the Zipf’s law and show a decreasing trend proportional to 1/n
th 

of the 

highest rank where, n is the position of the rank. 

 

Rank 
Total 

Tweets 
Average 

Retweets 
Total 

Followers 

1 54.20K 51.70K 84.80M 

2 48.50K 41.40K 77.50M 

3 30.70K 24.20K 73.30M 

4 27.30K 20.71K 40.60M 

5 23.70K 9.32K 35.10M 

6 23.60K 5.93K 27.80M 

7 18.40K 4.93K 21.40M 

8 17.60K 4.70K 19.90M 

9 16.90K 4.01K 18.40M 

10 16.90K 3.73K 16.90M 

11 11.90K 3.25K 16.40M 

12 8.40K 2.00K 15.20M 

13 8.18K 1.69K 14.90M 

14 8.10K 1.21K 13.60M 

15 6.90K 1.02K 13.10M 

16 5.60K 0.77K 11.60M 

17 4.43K 0.71K 11.60M 

18 4.39K 0.67K 10.50M 

19 4.16K 0.62K 8.83M 

20 4.10K 0.54K 6.94M 

21 4.10K 0.46K 6.40M 

22 3.76K 0.43K 6.32M 

23 2.44K 0.42K 6.24M 

24 1.36K 0.34K 4.92M 

25 1.25K 0.13K 4.54M 

26 1.05K 0.10K 4.04M 

27 0.70K 0.06K 2.91M 

28 0.62K 0.06K 2.47M 

29 0.41K 0.05K 2.08M 

30 0.40K 0.04K 1.47M 

31 0.37K 0.02K 0.11M 
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Fig. 11.3: Analysis of Total Followers for Politicians 

Table 6. Twitter data for Politicians 

Fig. 11.1: Analysis of Total Tweets for Politicians 

Fig. 11.2: Analysis of Average Retweets for Politicians 

6.3 ANALYSIS OF POLITICIANS 

 

 

Table 6 presents the Twitter data 

retrieved for current American 

presidential candidates (such as Donald 

Trump and Hillary Clinton), and other 

politicians such as an Indian politician, 

Narendra Modi and a British politician, 

David Cameron.  

In the Politicians’ subset, graphs for all 

the three parameters (i.e. 11.1, 11.2 

and 11.3) prove to be a good fit for the 

Zipf’s distribution. However, the graph 

representing the distribution of total 

followers is the best of them all.  

Hence, the total number of followers 

of the politician at rank 2 is 

approximately half of the total number 

of followers of Barack Obama who is 

at rank 1 in case of the total follower 

parameter. Similarly, the politician 

who has the 9
th

 largest size of 

followers will be sitting at rank 9.    

 

 

 

Rank 
Total 

Tweets 
Average 

Retweets 
Total 

Followers 

1 31.40K 4.94K 71.00M 

2 15.20K 2.28K 18.50M 

3 14.70K 2.26K 7.16M 

4 13.90K 1.39K 5.73M 

5 10.70K 1.37K 3.89M 

6 7.86K 1.08K 1.71M 

7 4.78K 0.68K 1.39M 

8 3.18K 0.62K 0.95M 

9 2.20K 0.16K 0.25M 
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Fig. 12.1: Analysis of Total Tweets for Sportsmen 

Fig. 12.2: Analysis of Total Tweets for Sportsmen 

Fig. 12.3: Analysis of Total Tweets for Sportsmen 

Table 7. Twitter data for Sportsmen 

6.4 ANALYSIS OF SPORTSMEN 

 

 

Table 7 presents the total number of 

tweets, average tweets and total number of 

followers for the following 9 sports 

people: Amir Khan, Mahendra Singh 

Dhoni, Sachin Tendulkar, Chad Johnson, 

Wasim Akram, Michael Clarke, Sania 

Mirza, Rafael Nadal and Serena Williams. 

Indian cricketer, Sachin Tendulkar has the 

maximum number of followers and 

highest average retweets placing him at 

rank 1 and the famous Spanish tennis 

player, Rafael Nadal at rank 2.  

Power law trend line is represented by a 

dashed line running along the data output 

in the graphs. All the three graphs are a 

good fit for the power law in speculation, 

with the graph representing total tweets as 

the best of them all. 

In case of sportsmen, power law equations 

have a greater negative exponent as 

sportsmen don’t have as many active 

followers as celebrities and politicians do. 

Hence, the deviation in adjacent node 

values is greater.  

 

Rank 
Total 

Tweets 
Average 

Retweets 
Total 

Followers 

1 96.20K 3.23K 9.99M 

2 21.00K 2.82K 9.23M 

3 13.30K 0.63K 6.10M 

4 4.20K 0.54K 5.10M 

5 2.70K 0.22K 3.59M 

6 2.10K 0.14K 3.54M 

7 0.78K 0.08K 2.07M 

8 0.78K 0.07K 1.69M 

9 0.42K 0.02K 1.60M 
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Fig. 14. Log (N) Analysis  

Fig. 13. Analysis of the parameter ‘P’  

7. POWER LAW HYPOTHESIS 

 

Total tweets and follower data was collected from the authentic twitter accounts of all the 70 

individuals. Average retweets were evaluated by taking into account retweets of the top fifteen 

posts. P is the ratio of average retweets to total number of followers as shown in equation (5). 

The ratio ‘P’ is then normalized such that it returns a whole number on taking the logarithmic 

value. Log (N) values are then plotted on the x-axis of the graph ranging from 1 to 4 units. The 

abscissa is further divided into bins of 0.2 units to evaluate the number of nodes falling in each 

bin.  

Fig. 13 shows that the ratio P also follows the power series model. Since logarithm is an inverse 

operation of exponentiation, Log N values, as depicted in Fig. 14, form a linear plot. Thus, the 

power-law holds true for our data set. 
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Table 8. Bin density 

Table 9. Power-Law Equations 

 

                          P = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑡𝑤𝑒𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠
                                    (6)   

                          N = P * 10
6
                                                 (7) 

 

The dashed line in Fig. 12 represents the logarithmic trend 

line. Log N values are a good fit for the trend line with the 

following equation: 

y = -65.85ln(x) + 83.476 

Table 8 gives the number of individuals or nodes falling in 

different bins. The node density increases at first, reaches the 

maximum and then gradually decreases. Largest number of 

nodes fall in the bin ranging from 2.4 – 2.6.  

 

Even though the distribution of nodes is not uniform across 

the various bins, they display linear characteristics when 

plotted together.   

 

 

POWER-LAW EQUATIONS 

 

Table 9 provides the power-law equations of the three parameters used for analysis of the 

overall data and its subsets. This data can be used for value-analysis of the three classes: 

celebrities, politicians and sportsmen. The exponential values are very different for all the three 

classes as their pool of interested audience differs. In case of sportsmen, the exponents have a 

greater negative value depicting that there is a quick fall in the value of adjacent elements. This 

might be because people are more drawn towards politicians and the glitz and glamour of 

celebrities than sportsmen.    

 

Power Law Equations of Best Fit 

  
Total Tweets Average Retweets Total Followers 

Overall data 62750 x-0.915 76853 x-1.197 107 x-0.62 

Celebrities 235252 x-1.512 320967 x-2.281 3*107 x-1.297 

Politicians 40095 x-1.077 6416.7 x-1.209 9*106 x-2.262 

Sportsmen 122725 x-2.444 7046 x-2.27 106 x-0.904 
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8. CONCLUSION 

 

The underlying nature of the social network system is captured by the power law. Even though 

the total tweets, average retweets, total followers and the ratio of average retweets to total 

followers are unrelated parameters, they all follow the crowded upper-tail and sparsely populated 

lower-tail characteristics of Zipf’s power-distribution, further demonstrating the network 

evolution. 

The parameters associated with the power law vary amongst different category of individuals.  

This can help check on whether the number of followers in a particular category are real or fake. 

The evaluation of the ratio P proved to be a good measure for analysis of the individual nodes 

and their cumulative contribution to the social network. A higher value of P is desirable as it 

signifies the availability of a large number of active nodes involved with the target node, thereby, 

improving the quality of the overall network. It further provides a platform for the comparison of 

connectivity among the various dynamic and complex nodes available within a particular 

network. 

The power law equations provided in Table 9 reveal that, greater the negative exponential value, 

greater is the drop in values of the adjacent elements and smaller is the size of the interested 

parties for that particular category. The exponential value plays a major role in determining the 

characteristics of the distribution of elements in any system. Hence, it can be very useful in 

revealing the nature of the network, co-relation with other networks and systems, the strengths 

and weaknesses of a network, and most importantly the network traffic. 
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