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Structural balance and opinion separation in
trust–mistrust social networks*

Weiguo Xia, Ming Cao, and Karl Henrik Johansson

Abstract—Structural balance theory has been developed in
sociology and psychology to explain how interacting agents, e.g.,
countries, political parties, opinionated individuals, with mixed
trust and mistrust relationships evolve into polarized camps.
Recent results have shown that structural balance is necessary
for polarization in networks with fixed, strongly connected
neighbor relationships when the opinion dynamics are described
by DeGroot-type averaging rules. We develop this line of research
in this paper in two steps. First, we consider fixed,not necessarily
strongly connected, neighbor relationships. It is shown that if
the network includes a strongly connected subnetwork containing
mistrust, which influences the rest of the network, then no opinion
clustering is possible when that subnetwork is not structurally
balanced; all the opinions become neutralized in the end. In
contrast, it is shown that when that subnetwork is indeed
structurally balanced, the agents of the subnetwork evolveinto
two polarized camps and the opinions of all other agents in the
network spread between these two polarized opinions. Second, we
consider time-varying neighbor relationships. We show that the
opinion separation criteria carry over if the conditions for fixed
graphs are extended to joint graphs. The results are developed
for both discrete-time and continuous-time models.

Keywords: Structural balance theory, opinion separation,
signed graphs.

I. I NTRODUCTION

In theoretical sociology and social psychology, a strong
interest has been maintained over the years in the study of
the evolution of opinions of social groups [2], [3]. There is
a long tradition to study how continuous interactions within
an interconnected collective without isolated subgroups,might
lead to the emergence of segregation, or even polarization,of
communities that form homogenous opinions only internally
[4], [5]. One popular theory is that the balance between trust
and mistrust that dictate people’s opinions to become closer or
further apart, respectively, plays a major role in the dynamical
process of opinion separation [6]. This theory, when explicitly
expressed using signed graphs describing the trust and mistrust
relationships among the interacting social agents, is called
structural balance theory[7], [8], [9], [10], [11]. Specifically,
for the graph describing the neighbor relationships between
agents in a social network, positive signs are assigned to those
edges corresponding to trust and negative signs to those edges

*Compared to the journal version of this paper [1], an assumption has been
added to both Theorem 5 and Theorem 8.
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corresponding to mistrust. Then the network isstructurally
balancedif all the vertices of its signed graph can be divided
into two disjoint sets such that every edge between verticesin
the same set is with a positive sign and every edge between
vertices in the distinct sets is with a negative sign [10].

While structural balance theory tells clearly how the trust–
mistrust relationships should be distributed among the agents
for the presence of stable polarized opinions, it does not
specify how the agents’ opinions update. Recently, there
is a growing effort to introduce DeGroot-type of opinion
updating rules to social networks with trust and mistrust
relationships [12], [13], [14], [15]. The DeGroot model [16]
describes how each agent repeatedly updates its opinion to
the average of those of its neighbors. Since this model reflects
the fundamental human cognitive capability of taking convex
combinations when integrating related information [17], it has
been studied extensively in the past decades [18]. But to
show the process of opinion separation using the DeGroot
model, more work [19], [20], [21] is to rely on mechanisms
that lead to disconnected networks, the so-called bounded
confidence Krause model, rather than to resort to trust–mistrust
relationships in connected networks. Some other work has
introduced an adaptive noisy updating model that characterizes
individuals’ diversified tendencies to explain the occurrence
of clustering in human populations [22]; in this model, noise
is critical in sustaining clusters of opinions in a connected
network.

For DeGroot-type opinion dynamics in trust–mistrust net-
works, it has been proved in [12], [13] using continuous-time
models that in a strongly connected and structurally balanced
network consisting of two camps, where agents only trust
those within the same camp, the opinions of all the agents
within the same camp become the same, which is exactly the
opposite of the opinion of the other camp. It has also been
shown that in a structurally unbalanced network, the opinions
of all the agents asymptotically converge to zero. It remains
an open question about how the opinions of the agents evolve
when the network is not strongly connected but structurally
unbalanced. What is even more intriguing is to investigate the
dynamical behavior under time-varying network topologies,
since in practical situations the relationships between agents
may change over time.

In this paper, we investigate the opinion evolution of in-
teracting agents with trust–mistrust relationships undereither
fixed network topologies containing directed spanning trees or
dynamically changing topologies with joint connectivity.For
the fixed topology case, we show that when the network graph
contains a strongly connected subgraph with negative edges,
which has a directed path to every other vertex in the network,
the opinions of all the agents become neutralized at zero if the
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strongly connected subgraph is not structurally balanced.In
comparison, if the strongly connected subgraph is structurally
balanced, it is shown that the opinions of the agents in this
subgraph polarize at the exactly opposite values, and the
opinions of the rest of the agents lie in between the polarized
values. For dynamically changing network topologies, similar
conclusions hold when the graphical conditions are applied
to the corresponding joint graphs. Our results show that in
addition to getting polarized and reaching consensus, the
DeGroot-type opinion dynamics can give rise to opinion clus-
tering in a network under weaker connectivity conditions. This
complements the existing mechanisms that induce clusters in
social networks through introducing bounded confidence [19],
updating noise [22], or delays [23].

The rest of the paper is organized as follows. In Section II,
several examples are presented to motivate our study. In
Section III, we introduce the opinion dynamics models and
formulate the problem considered in the paper. In Section IV
and Section V the behaviors of the systems with discrete-time
and continuous-time dynamics are studied, respectively. We
present simulation examples to verify the effectiveness ofthe
theoretical results in Section VI. Section VII discusses the
conclusions and ideas for future work.

II. M OTIVATING EXAMPLE

In this section, to motivate introducing weaker connectivity
conditions for the DeGroot-type models in trust-mistrust social
networks, we present several examples showing that more
complex behaviors may take place compared to what have
been reported in the literature. Consider the directed graphs
given in Fig. 1. Each directed edge is associated with a positive
or negative sign and the weight of each edge is either1 or
−1. Consider the network dynamics evolved on these graphs
described below. Each agent in the network is associated with
a scalarxi ∈ IR that represents its opinion on a certain subject.
If (vj , vi) is an edge in the graph, then agenti takes agentj
as a neighbor and thus agentj’s opinion is influencing agent
i’s. Time is slotted. At each time instant, each agent updates
its state to the weighted average of its neighbors’ and its own,
and a positive weight 1 is assigned to its own opinion. Take
agent 2 inG1 in Fig. 1(a) as an example. Taking the weights
of the edges into account, at timet, the state of agent 2 is
updated to

x2(t+ 1) =
x1(t) + x2(t) + x3(t)− x9(t)

4
, t ≥ 0,

since agents 1, 3, and 9 are the neighbors of agent 2 and
(v9, v2) with a negative weight gives the term−x9(t) in the
equation. The other agents update their states in the same
manner.

We are interested in the asymptotic behavior of the states of
the agents and Fig. 2 shows the evolution of the agents’ states
under different network topologies: in (a) the graph isG1; in
(b) the graph isG2; in (c) the graph isG1 at even times and
is G3 otherwise; in (d) the graph isG1 at even times and is
G4 otherwise. The initial condition of each agent lies in the
interval [−1, 1].
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Fig. 1. Directed signed graphsG1, G2, G3 andG4.

It is clear thatG1 is structurally balanced [7] (the formal
definition will be given in the next section) in the sense that
it can be partitioned into{1, . . . , 5} and {6, . . . , 10} with
positive edges within each set and negative edges in between.
SinceG1 is strongly connected, we know from Theorem 1
in [13] that the agents’ states will “polarize” in the sense that
agents inV1 reach the same value that is opposite of the agreed
value of those inV2. This is also called “bipartite consensus”
in [13]. Although [13] only studied the switching case of
strongly connected graphs at each time, one may infer that
the agents still polarize sinceG1 andG3 are both structurally
balanced and share the same bipartition.

However, when the topology switches betweenG1 andG4,
it is unclear why the agents reach an agreement as each graph
is structurally balanced though they do not share a common
bipartition. What is intriguing is the phenomenon observedfor
Fig. 2(b) where the network topologyG2 contains a directed
spanning tree but is not strongly connected. Instead of getting
polarized or reaching consensus, the agents’ opinions become
clustered and this clustering is a new behavior that does not
take place when the network is strongly connected. More
detailed theoretical analysis about such behavior is provided
in Theorem 2 and Theorem 5. The new opinion clustering
phenomenon has motivated us to study the system dynamics
when the network topologies are not strongly connected and/or
become time varying.

III. PROBLEM FORMULATION

Consider a network ofN agents labeled by1, . . . , N , where
each agenti, 1 ≤ i ≤ N , is associated with a scalarxi ∈ IR
that represents its opinion on a certain subject. Here,xi being
positive implies supportive opinions, being negative implies
protesting views, and being zero implies neutral reaction.
We use a directed signed graphG [8] with the vertex set
V = {v1, . . . , vN} to describe the trust–mistrust relationships
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(a) (b)

(c) (d)

Fig. 2. The evolution of the agents’ states when the graph topology (a) is
G1; (b) is G2; (c) switches betweenG1 andG3; (d) switches betweenG1

andG4.

between the agents. The definition of signed graphs is as
follows.

Definition 1: A directedsignedgraph is a directed graph in
which each edge is associated with either a positive or negative
sign.

Some notions in graph theory need to be introduced
[24]. We consider only directed graphs without self-loops
throughout the paper. In a directed graphG = (V , E) with
V = {v1, . . . , vN} and E ⊆ V × V , a directedwalk is a
sequence of verticesvi1 , . . . , vik such that(vis , vis+1

) ∈ E
for s = 1, . . . , k − 1. A directedpath is a walk with distinct
vertices in the sequence. A directedcycle is a walk with
distinct verticesvi1 , . . . , vik , k ≥ 2 and vi1 = vik . G is
said to bestrongly connectedif there is a directed path from
every vertex to every other vertex inG. A directed tree is
a graph containing a unique vertex, calledroot, which has a
directed path to every other vertex. A directedspanning tree
Gs = (Vs, Es) of the directed graphG = (V , E) is a subgraph
of G such thatGs is a directed tree andVs = V . G is said
to contain a directed spanning tree if a directed spanning tree
is a subgraph ofG. “Directed” is omitted for the rest of the
paper and we simply sayG contains a spanning tree since we
focus exclusively on directed graphs. Theroot vertex setof G
is a set of all the roots ofG.

In the N -agent network, there is a directed edge(vj , vi)
from vj to vi if and only if agent i takes agentj as a
neighbor and thus agentj’s opinion is influencing agenti’s.
Furthermore, the directed edge(vj , vi) is assigned with a
non-zero weightaij , which is positive if agenti trusts agent
j and negative otherwise; here, we assume the inter-agent
relationship, if there is any, is either trusting or mistrusting,
although the strength of the relationship may vary as reflected
by the magnitude|aij |. We useNi to denote the set of indices
of agenti’s neighbors.

For the DeGroot-type updating rule, both discrete-time and
continuous-time models have been constructed in the litera-

ture. The discrete-time opinion dynamics can be described by

xi(t+1) =
∑

j∈{Ni(t),i}

pij(t)xj(t), i = 1, . . . , N, t = 0, 1, . . . ,

(1)
whereaii(t) > 0 is a self-trusting weight and

pij(t) =
aij(t)

aii(t) +
∑

k∈Ni(t)
|aik(t)|

, (2)

which obviously satisfies

pii(t) +
∑

j∈Ni(t)

|pij(t)| = 1. (3)

If we take x(t) = [x1(t), . . . , xN (t)]T to be the network state,
then equation (1) can be written in its state-space form

x(t+ 1) = P (t)x(t), t = 0, 1, . . . , (4)

whereP (t) = (pij(t))N×N is anN ×N matrix with positive
diagonals.

Similarly, the continuous-time update equation for agenti
is

ẋi = −
∑

j∈Ni(t)

|aij(t)|

(

xi − sgn(aij(t))xj

)

, i = 1, . . . , N,

(5)
where sgn(·) denotes the sign function. System (5) can be
written in the compact form

ẋ = −L(t)x, (6)

whereL(t) is the signed Laplacian matrix that is defined by

lii(t) =
∑

j∈Ni(t)

|aij(t)|,

lij(t) =

{

−aij(t), for j ∈ Ni(t),
0, for j 6= i andj /∈ Ni(t).

(7)

Since the graphs describing the interactions between agents
may change with timet, we useG(P (t)) and G(L(t)) to
denote the graph at timet for the discrete-time system (4) and
for the continuous-time system (6), respectively. LetP11(t) be
the principal submatrix ofP (t) obtained fromP (t) by deleting
the i1-th, i2-th,. . ., im-th rows and columns, where1 ≤
i1, . . . , im ≤ N . ThenG(P11(t)) = (Vs, Es) denotes the sub-
graph ofG(P (t)) = (V , E) such thatVs = V\{vi1 , . . . , vim}
andEs = {(vi, vj) : (vi, vj) ∈ E andvi, vj ∈ Vs}. When the
graph is fixed, we omitt and writeG(P ) andG(L).

Equations (4) and (6) both come from the DeGroot model
and share the same intuition: the opinions of those agents
that agenti trusts influence its opinion positively and thus the
averaging rule tries to bring them closer; at the same time, the
opinions of those agents that agenti does not trust influence
its opinion negatively and thus the averaging rule pushes them
apart. It is natural then that the distribution of positive and
negative edges of a graph affects the evolution of opinions
and for this reason, the notion of “structural balance” becomes
instrumental.

Definition 2: A directed signed graphG with vertex setV is
structurally balancedif V can be partitioned into two disjoint
subsetsV1 andV2 such that all the edges(vi, vj) with vi, vj
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taken in the same setVk, k = 1, 2, are of positive signs and
all the edges(vi, vj) with vi, vj taken in different setsVk are
of negative signs.

Note that in the definition of structural balance, a network
is still said to be structurally balanced ifall the edges of the
network graph are assigned with the positive sign and thus
one ofV1 andV2 in Definition 2 becomes empty.

A social network that is structurally balanced in which
the agents’ opinions update according to the DeGroot-type
averaging rules (1) or (5) may evolve into two polarized
camps. We now make our notion of polarization precise.

Definition 3: System (4) or (6)polarizes if for almost all
initial conditions, limt→∞ |xi(t)| = limt→∞ |xj(t)| > 0 for
all i, j = 1, . . . , N , and limt→∞ xi(t) = − limt→∞ xj(t) for
somei 6= j.

It has been shown in [13] that system (6) with a fixed,
strongly connected network graphG(L) polarizes ifG(L) is
structurally balanced. It is the goal of this paper to study for
both systems (4) and (6), what the relationship is between
structural balance and opinion separation, for which opinion
polarization is an extreme case, when the network topology is
either fixed and contains a spanning tree or time varying. In
what follows, we study separately the discrete-time model (4)
and the continuous-time model (6).

IV. D ISCRETE-TIME MODEL

We introduce a2N -dimensional system1 [25] based on the
N -dimensional system (4). For a matrixP (t), define two
nonnegative matricesP+(t) andP−(t) according to

(P+(t))ij =

{

pij(t), pij(t) > 0,

0, pij(t) ≤ 0,

(P−(t))ij =

{

−pij(t), pij(t) < 0,

0, pij(t) ≥ 0,

(8)

where (P+(t))ij and (P−(t))ij are the ij-th elements of
P+(t) and P−(t), respectively. It is obvious thatP (t) =
P+(t)− P−(t). Definex+

i (t) = xi(t), x
−
i (t) = −xi(t). One

knows thatx+
i (t) + x−

i (t) = 0 for all t ≥ 0. From system
(4), we obtain the following update equations forx+

i (t) and
x−
i (t):

x+
i (t+ 1) =

∑

j, pij(t)>0

pij(t)x
+
j (t) +

∑

j, pij(t)<0

|pij(t)|x
−
j (t),

x−
i (t+ 1) =

∑

j, pij(t)>0

pij(t)x
−
j (t) +

∑

j, pij(t)<0

|pij(t)|x
+
j (t).

(9)

Let y(t) = [x+
1 (t), . . . , x

+
N (t), x−

1 (t), . . . , x
−
N (t)]T . Then sys-

tem (9) can be written as

y(t+ 1) =

[

P+(t) P−(t)
P−(t) P+(t)

]

y(t) = Q(t)y(t), (10)

whereQ(t) =

[

P+(t) P−(t)
P−(t) P+(t)

]

is a stochastic matrix.

1We are indebted to Julien Hendrickx for pointing out this reformulation
of the update equations.
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Fig. 4. A structurally unbalanced graphG and the corresponding graph̄G.

To study the properties of system (4), we will explore the
properties of system (10) which is a classical consensus system
and existing convergence results can be utilized [26], [27],
[28]. We make the connection between the graphG(P (t))
associated withP (t) with the vertex set{v1, . . . , vN} and
the graphG(Q(t)) associated withQ(t) with the vertex set
{v′1, v

′
2, . . . , v

′
2N}, so that we can transform the graphical

conditions onG(P (t)) to conditions onG(Q(t)).
Given a directed signed graphG = (V , E) with V =

{v1, v2, . . . , vN}, we define an enlarged directed graph
Ḡ = (V̄ , Ē) based onG as follows. Ḡ has 2N ver-
tices and all of its edges are positive. Denote the ver-
tices in Ḡ as v+1 , v

−
1 , v

+
2 , v

−
2 , . . . , v

+
N , v−N . If there is a pos-

itive edge (vi, vj) ∈ E , then there are two directed edges
(v+i , v

+
j ), (v

−
i , v

−
j ) ∈ Ē ; if there is a negative edge(vi, vj) ∈

E , then there are two directed edges(v+i , v
−
j ), (v

−
i , v+j ) ∈ Ē .

In this manner, it is easy to see that if there is a positive path2

from vi to vj in G, then there is a path fromv+i to v+j and
a path fromv−i to v−j in Ḡ; if there is a negative path from
vi to vj in G, then there is a path fromv+i to v−j and a path
from v−i to v+j in Ḡ. Two examples are illustrated in Figs. 3
and 4.

Lemma 1:Let G be a strongly connected signed graph and
let Ḡ be the enlarged graph based onG. ThenG is structurally
balanced if and only ifḠ is disconnected and composed of
two strongly connected components.
Proof. (Necessity) IfG is structurally balanced, there is a
bipartition V1 = {vi1 , . . . , vim}, V2 = {vim+1

, . . . , viN },
1 ≤ i1, . . . , iN ≤ N of V such that the edges betweenV1

and V2 are all negative and edges within each setVi, i =
1, 2, are all positive. We claim that in̄G there is no edge
between V̄1 = {v+i1 , . . . , v

+
im
, v−im+1

, . . . , v−iN } and V̄2 =

{v−i1 , . . . , v
−
im
, v+im+1

, . . . , v+iN }, and thusḠ is disconnected.
If the contrary is true and there is an edge betweenV̄1 and

2In a directed signed graph, a path is said to be positive if it contains an
even number of edges with negative weights and to be negativeotherwise. A
positive or negative cycle is defined similarly.
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V̄2, then there is a positive edge betweenV1 and V2 or a
negative edge withinV1 or V2, which contradicts the fact
thatG is structurally balanced. SinceG is strongly connected,
each component with the vertex setV̄i, i = 1, 2, is strongly
connected.

(Sufficiency) Assume that the vertex sets of the two com-
ponents areV̄1 and V̄2 and v+i1 , . . . , v

+
im

are in V̄1 and
v+im+1

, . . . , v+iN are in V̄2. We claim thatv−ij , j = 1, . . . ,m

are in V̄2 and v−ij , j = m + 1, . . . , N are in V̄1. If this is
not true, then without loss of generality, assumev+i1 and v−i1
are both inV̄1. Since each component is strongly connected,
there is a path fromv+i1 to v+ij and a path fromv+ij to v−i1 for
j = 2, . . . ,m. Then from the definition of̄G, there is a path
from v−i1 to v−ij and a path fromv−ij to v+i1 . It follows that
v−ij , j = 2, . . . ,m are in V̄1 and thusV̄1 = {v+ij , v

−
ij
, j =

1, . . . ,m}. Similarly V̄2 = {v+ij , v
−
ij
, j = m + 1, . . . , N}.

Since there is no edge between̄V1 and V̄2 in Ḡ, it follows
that G is disconnected, which contradicts the assumption.
One can conclude that̄V1 = {v+i1 , . . . , v

+
im
, v−im+1

, . . . , v−iN }

and V̄2 = {v−i1 , . . . , v
−
im
, v+im+1

, . . . , v+iN }. Then it is easy
to see thatG is structurally balanced if we defineV1 =
{vi1 , . . . , vim}, V2 = {vim+1

, . . . , viN }. ✷

Lemma 2:Let G be a strongly connected signed graph and
let Ḡ the enlarged graph based onG. ThenG is structurally
unbalanced if and only if̄G is strongly connected.
Proof.Sufficiency is obvious in view of Lemma 1 and we only
prove the necessity.

SinceG is structurally unbalanced, without loss of general-
ity, assume that there is a negative cycle fromvk to vk in G [8].
For anyi 6= j, 1 ≤ i, j ≤ N , sinceG is strongly connected,
there is a path fromvi to vj . Without loss of generality, assume
this path is positive. Then there is a directed path fromv+i
to v+j and a directed path fromv−i to v−j in Ḡ. SinceG is
strongly connected and there is a negative cycle starting from
vk, we are able to find a directed negative walk fromvj to vi.
Accordingly, there is a walk fromv+j to v−i in Ḡ . Thus in
Ḡ there is a directed walk fromv+i to v+j , to v−j and tov−i .
Thus there is a directed path fromv+i to v+j , to v−j and tov−i
and it follows thatḠ is strongly connected. ✷

Two examples are given in Figs. 3 and 4 to illustrate these
two lemmas.

Let G(P (t)) be the enlarged graph based onG(P (t)). If
we denote the graph associated withQ(t) by G(Q(t)), then
it is easy to see from the structure ofQ(t) thatG(P (t)) and
G(Q(t)) are isomorphic [24], i.e.,G(P (t)) ≃ G(Q(t)). The
bijectionφ that maps the vertex set{v+1 , v

−
1 , . . . , v

+
N , v−N} of

G(P (t)) to the vertex set{v′1, v
′
2, . . . , v

′
2N} of G(Q(t)) is

given by:v+i → v′i, v
−
i → v′N+i for i = 1, . . . , N . We simply

use{v+1 , v
−
1 , . . . , v

+
N , v−N} to denote the vertex set forG(Q(t))

in the following for the clear correspondence. We have the
following result from Lemmas 1 and 2.

Proposition 1: Assume thatG(P (t)) is strongly connected.
G(P (t)) is structurally balanced if and only ifG(Q(t))
is disconnected and composed of two strongly connected
components;G(P (t)) is structurally unbalanced if and only
if G(Q(t)) is strongly connected.

A. G(P (t)) is fixed

WhenG(P (t)) is fixed, the matrixP (t) in (4) andQ(t) in
(10) are also fixed, i.e.,P (t) ≡ P, Q(t) ≡ Q, t ≥ 0. In view
of (3), we know that3 |P | is a stochastic matrix.

Theorem 1:Consider an irreducibleP with |P | being
stochastic. Assume that the graphG(P ) has at least one
negative edge. System (4) polarizes if and only ifG(P ) is
structurally balanced. IfG(P ) is structurally unbalanced, then
limt→∞ x(t) = 0 for every initial value.
Proof: (Sufficiency) WhenG(P ) is structurally balanced
with at least one negative edge, from the proof of
Lemma 1 and Proposition 1 we know thatG(Q) con-
tains two disconnected components each of which is
strongly connected and{v+i1 , . . . , v

+
im
, v−im+1

, . . . , v−iN } and
{v−i1 , . . . , v

−
im
, v+im+1

, . . . , v+iN } are the vertex sets of the two
components, for somem, 1 ≤ m < N and1 ≤ i1, . . . , iN ≤
N . Thus they-system (10) is decomposed into two discon-
nected subsystems. It follows from the classical consensus
result [26], [27] that each subsystem converges to some
constant value. In system (4) the agents in{vi1 , . . . , vim} have
the same value and the other agents in{vim+1

, . . . , viN } have
the opposite value. Since the initial conditions that renders the
agreed value of each component to be zero form a set which
has zero Lebesgue measure, system (4) polarizes.

(Necessity) Assume that system (4) polarizes. IfG(P )
is structurally unbalanced, thenG(Q) is strongly connected
based on Proposition 1. It follows thatyi(t) converges to some
constantα for all i = 1, . . . , 2N ast → ∞. Since they-system
containsx+

i (t) andx−
i (t) as subsystems,α should always be

0 which contradicts the assumption that system (4) polarizes.
One can conclude thatG(P ) is structurally balanced. ✷

The above discussion has assumed thatP is irreducible or
equivalentlyG(P ) is strongly connected. Next we discuss the
more general case whenG(P ) is not necessarily strongly con-
nected but contains a spanning tree. Using some permutation
of rows and columns ofP , P can be transformed into

P =

[

P11 0

P21 P22

]

(11)

whereP11 ∈ IRr×r, P22 ∈ IR(N−r)×(N−r), P21 ∈ IR(N−r)×r

and0 is a zero matrix of compatible dimension. The subma-
trix P11 is irreducible and the subgraphG(P11) is strongly
connected, and there is a directed path from every vertex in
G(P11) to every other vertex inG(P ). Note that the vertex set
of G(P11) is the root vertex set ofG(P ). If P is irreducible,
thenr = N .

Without loss of generality, assume thatP is in the form of
(11). We discuss two scenarios whenG(P ) contains edges of
mixed signs: the first is thatG(P11) is structurally unbalanced
and the other is thatG(P11) is structurally balanced with at
least one negative edge.
Case 1.G(P11) is structurally unbalanced.

SinceG(P11) is structurally unbalanced, the subgraph with
the vertex set{v+1 , . . . , v

+
r , v

−
1 , . . . , v−r } in the graphG(Q)

is strongly connected. In addition, sinceG(P ) contains a
spanning tree, similar to the proof of Lemmas 1 and 2, one

3We take the absolute value of a matrix elementwise.
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can show thatG(Q) contains a spanning tree as well.y(t) in
system (10) converges toα1 for some constantα as t → ∞,
where 1 is the all-one vector of compatible dimension; in
additionα must be 0 sincelimt→∞(x+

i (t)+x−
i (t)) = 2α = 0.

Thusx(t) → 0 as t → ∞.
Case 2.G(P11) is structurally balanced with at least one
negative edge.

If G(P ) is structurally balanced, then similar to Lemma
1 one can show thatG(Q) contains two disconnected com-
ponents withv+i in one component andv−i in the other. In
addition, each component contains a spanning tree. Thus the
agents in each component reaches the same value which is the
opposite of the other component. It immediately implies that
the agents in (4) polarize.

Next we consider the case whenG(P ) is structurally
unbalanced. SinceG(P11) is structurally balanced, we know
from Lemma 1 that in graphG(Q) the subgraph with the
vertex set V̄s = {v+1 , . . . , v

+
r , v

−
1 , . . . , v

−
r } is composed

of two disconnected components and each one is strongly
connected. The vertex sets of the two components can be
denoted asV̄s

1 = {v+i1 , . . . , v
+
im
, v−im+1

, . . . , v−ir} and V̄s
2 =

{v−i1 , . . . , v
−
im
, v+im+1

, . . . , v+ir}, 1 ≤ i1, . . . , ir ≤ r. Since
G(P ) contains a spanning tree, one know that for every vertex
in V̄\V̄s in G(Q), there is a directed path from some vertex
in V̄s to it.

We check the spectral property ofQ and determine the
limit of Qk as k → ∞. Using some permutation of rows
and columns ofQ, Q can be transformed into

Q =





Q1 0 0

0 Q2 0

Q31 Q32 Q33



 , (12)

with Q1 = Q2 andQ1 being irreducible. The vertices in the
subgraphG(Q1) are V̄s

1 and those inG(Q2) are V̄s
2 , and for

any vertex inG(Q33) there is a directed path from some
vertex either inG(Q1) or in G(Q2) to it. It can be shown
that the spectral radius ofQ33 is less than 1, i.e.,ρ(Q33) < 1
[29]. SinceQ1 has positive diagonals and is irreducible, 1 is
a simple eigenvalue ofQ1 and the magnitudes of all the other
eigenvalues ofQ1 are less than 1. HenceQ has exactly two
eigenvalues equal to 1 and the magnitudes of all the other
eigenvalues are less than 1. The following lemma, the proof
of which is provided in Appendix A, is useful for determining
the asymptotic state of system (10).

Lemma 3:Let Q = (qij)s×s =





Q1 0 0

0 Q1 0

Q31 Q32 Q33



 be

a stochastic matrix, whereQ1 ∈ IRr×r is a square matrix.
Assume thatQ has exactly two eigenvalues equal to 1 and the
magnitudes of all the other eigenvalues are less than 1. Then

lim
k→∞

Qk =





1ξT 0 0

0 1ξT 0

η1ξ
T η2ξ

T
0



 , (13)

where ξ ≥ 0, ξTQ1 = ξT , ξT1 = 1 and η1 = (I −
Q33)

−1Q311, η2 = (I − Q33)
−1Q321 are some nonnegative

column vectors. In addition,||η1 − η2||∞ ≤ 1.
The matrix Q in (12) satisfies the condition in Lemma

3. Hence the states of all the agents in (10) converge. The

agents inV̄s have the same final absolute value given by
|ξT [xi1 (0), . . . , xim(0),−xim+1

(0), . . . ,−xir (0)]
T |, where ξ

is the left eigenvector ofQ1 corresponding to 1 defined as
in the above lemma. For every agent inV\V̄s, we have the
following bound

lim
t→∞

|yi(t)|

≤||η1 − η2||∞|ξT [xi1
(0), . . . , xim(0),−xim+1

(0), . . . ,−xir (0)]
T |

≤|ξT [xi1
(0), . . . , xim(0),−xim+1

(0), . . . ,−xir (0)]
T |,

for i = 2r + 1, . . . , 2N .
We summarize the above discussion into the following

theorem.
Theorem 2:ConsiderP in the form of (11), with P11

being irreducible,|P | being stochastic, andG(P ) containing a
spanning tree. IfG(P11) is structurally unbalanced, the state of
system (4) converges to zero for every initial value. IfG(P11)
is structurally balanced with at least one negative edge, then
the agents of the subgraphG(P11) polarize, and the states of
the other agents converge and lie in the interval[−|C|, |C|],
where|C| is the absolute value of the polarized value of the
agents inG(P11). Furthermore, whenG(P ) is structurally
balanced with at least one negative edge, system (4) polarizes.

Remark 1: In [30], the authors pointed out that when the
fixed graph is structurally unbalanced and contains a spanning
tree, the states of the agents may converge to zero or become
fragmented. Here by looking into the eigenvalues and eigen-
vectors of system matrixQ of (10), we are able to give a
complete characterization of the final state of system (4).

B. G(P (t)) is time-varying

In this subsection, we consider the case whenG(P (t))
changes with time. Assume that there exists a constantγ, 0 <
γ < 1, such that the nonzero elements ofP (t) satisfy

|(P (t))ij | ≥ γ for (P (t))ij 6= 0, t = 0, 1, 2, . . . . (14)

We have the following polarization result.
Theorem 3:Assume thatP (t), t = 0, 1, 2, . . . , satisfy

(3) and (14) and there exists a bipartition ofV into two
nonempty subsets, such that for each graphG(P (t)), t ≥ 0,
the edges between the two subsets are negative and the edges
within each subset are positive. Assume that there exists
an infinite sequence of nonempty, uniformly bounded time
intervals[ti, ti+1), i ≥ 0, starting att0 = 0 with the property
that across each time interval[ti, ti+1), the union of the graphs
G(P (t)) is strongly connected. Then system (4) polarizes.
Proof. Assume that the bipartition ofV is V1 =
{vi1 , . . . , vim}, V2 = {vim+1

, . . . , viN } for some 1 ≤
m < N and 1 ≤ i1, . . . , iN ≤ N . Consider
system (10). From the assumption, one can show that
across each time interval[ti, ti+1), the union of the
graphs G(Q(t)) contains two disconnected components
with the vertex sets{v+i1 , . . . , v

+
im
, v−im+1

, . . . , v−iN } and
{v−i1 , . . . , v

−
im
, v+im+1

, . . . , v+iN }, and in addition, each compo-
nent is strongly connected. We conclude from [26], [27] that
the states of the agents in each of the two subsystems converge
to the same values, respectively, which are the opposite of each
other. Since the initial conditions that render the agreed value
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of each component to be 0 come from a set with zero measure,
we know that system (4) polarizes. ✷

Remark 2: If P (t), t = 0, 1, 2, . . . , are all irreducible and
structurally balanced and furthermore the unique bipartitions
of V satisfying Definition 2 are the same forG(P (t)), t =
0, 1, 2, . . ., then the assumptions in Theorem 3 are satisfied
and the states of the agents converge to two opposite values.
Theorem 3 is a generalization of the previous results for dis-
tributed averaging algorithms in [26], [27], where the weights
are nonnegative and obviouslyP (t) are structurally balanced.

Theorem 4:Let P (t), t = 0, 1, 2, . . . , satisfy (3) and (14).
Assume that[ti, ti+1), i ≥ 0, t0 = 0, is an infinite sequence
of nonempty, uniformly bounded time intervals. Suppose that
across each time interval[ti, ti+1), the union of the graphs is
strongly connected and there does not exist a bipartition of
V into two subsets, such that for each graphG(P (s)), s ∈
[ti, ti+1), the edges between the two subsets are negative and
the edges within each subset are positive. Thenx(t) of system
(4) converges to zero asymptotically.

Note that in Theorem 4, one of the two subsets may be
empty.

Remark 3:For each time interval[ti, ti+1), if there always
exists somet ∈ [ti, ti+1), such thatP (t) is strongly connected
and structurally unbalanced, then the conditions in Theorem 4
are satisfied and thus the state of the system converges to zero.
Said differently, if structural unbalance arises in the network
frequently enough, then polarization of the states of the agents
will not happen and instead the opinions of the agents in the
network become neutralized in the end.

Proof of Theorem 4.It suffices to prove thaty(t) of system
(10) converges toα1 for some constantα ast goes to infinity.
For each time interval[ti, ti+1), we will prove that the union
of the graphs over[ti, ti+1), ∪s∈[ti,ti+1)G(Q(s)), is strongly
connected. Then from Theorem 3.10 in [26], it follows that
y(t) converges toα1 as t goes to infinity.

For each time interval[ti, ti+1), define a directed graph
G

m = (Vm, Em) with Vm = V as follows. For two verticesvj
andvk, there exists a positive edge(vj , vk) ∈ Em if (vj , vk)
is a positive edge in graphG(P (s)) for somes ∈ [ti, ti+1);
there is a negative edge(vj , vk) ∈ Em if (vj , vk) is a negative
edge in graphG(P (s)) for somes ∈ [ti, ti+1). Note that for
an ordered pair of verticesvj and vk, there may exist two
directed edges(vj , vk) in Gm with one being positive and the
other being negative. Let the enlarged graph based onGm be
Gm. Since the union of the graphsG(P (s)) over the interval
[ti, ti+1) is strongly connected,Gm is strongly connected.
In addition, from the condition that there does not exist a
bipartition of V into two subsets, such that for each graph
G(P (s)), s ∈ [ti, ti+1), the edges between the two subsets are
negative and the edges within each subset are positive, there is
a negative cycle in the graphGm. Mimicking the proof in the
necessity part of Lemma 2, it can be proved that the enlarged
graphGm is strongly connected. Based on the way we define
Gm, it can be seen thatGm and∪s∈[ti,ti+1)G(Q(s)) are iso-
morphic and thus∪s∈[ti,ti+1)G(Q(s)) is strongly connected.
Hence,y(t) converges toα1 asymptotically, which implies the
statex(t) converges to zero asymptotically. ✷

If the union of the graphs over [ti, ti+1),
∪s∈[ti,ti+1)G(P (s)), is not strongly connected, but only
contains a spanning tree, system (4) can give rise to some
new behavior as discussed next4.

Theorem 5:Let P (t), t = 0, 1, 2, . . . , satisfy (3) and (14).
Let the root vertex set of the union of the graphs over[0,∞)
be Vs. Assume that there exists a bipartition ofVs into
two nonempty subsets, such that for each graphG(P (t)),
t ≥ 0, the edges between the two subsets are negative and
the edges within each subset are positive. Assume that there
exists an infinite sequence of nonempty, uniformly bounded
time intervals[ti, ti+1), i ≥ 0, starting att0 = 0 with the
property that across each time interval[ti, ti+1), the union of
the graphs contains a spanning tree and the root vertex set
of the union of the graphs isVs. Then the agents in the root
vertex set polarize, and the other agents’ states will finally lie
in between the polarized values.
Proof. From Theorem 3 we know that the agents in the root
vertex setVs polarize. Assume that the polarized values are
C and−C, whereC is a nonnegative constant. We prove that
the states of the other agents will asymptotically be bounded
by C.

Let

C(t) = max
vi∈Vs

|xi(t)|, M(t) = max
vi∈V\Vs

|xi(t)|

for t ≥ 0. From the result in the previous paragraph, one
knows thatlimt→∞ C(t) = C. If M(t) > C(t) holds only for
a finite timet, then there exists at′ such thatM(t) ≤ C(t)
for t ≥ t′ and hence

lim sup
t→∞

M(t) ≤ lim
t→∞

C(t) = C.

For this case, the desired conclusion follows.
Next we assume thatM(t) > C(t) holds for an infinite

time sequencet = t∗1, t
∗
2, . . . . We pick the specific timet∗1 to

carry out the discussion. It is easy to see from (3) and (4) that

C(t∗1 + l) ≤ C(t∗1) < M(t∗1), M(t∗1 + l) ≤ M(t∗1), (15)

for all l ≥ 0. Pick an integerr such thattr−1 ≤ t∗1 < tr and
consider the time interval[tr, tr+1). Since the union of the
graphs across[tr, tr+1) contains a spanning tree, there exists
some times1 ∈ [tr, tr+1) such that(vi0 , vi1 ) is an edge of the
graphG(P (s1)) with vi0 ∈ Vs andvi1 ∈ V\Vs. One has

|xi1(s1 + 1)| =

∣

∣

∣

∣

∣

∣

N
∑

j=1

pi1j(s1)xj(s1)

∣

∣

∣

∣

∣

∣

≤ |pi1i0(s1)xi0 (s1)|+
∑

j 6=i0

|pi1j(s1)xj(s1)|

≤ γC(t∗1) + (1− γ)M(t∗1)

= C(t∗1) + (1 − γ)(M(t∗1)− C(t∗1)),

4We are indebted to Prof. M. Elena Valcher for pointing out a missing
assumption in the journal version [1] of Theorem 5.
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where γ is the constant in (14). SinceP (t) has positive
diagonals, further calculation shows that

|xi1 (s1 + 2)|

≤ γ(C(t∗1) + (1− γ)(M(t∗1)− C(t∗1))) + (1− γ)M(t∗1)

= C(t∗1) + (1− γ2)(M(t∗1)− C(t∗1)).

Recursively, forl ≥ 0,

|xi1(s1 + l)| ≤ C(t∗1) + (1− γl)(M(t∗1)− C(t∗1)).

Specifically, the following inequality is true forl ≥ 0

|xi1 (tr+1 + l)| ≤ C(t∗1) + (1− γtr+1−s1+l)(M(t∗1)− C(t∗1))

≤ C(t∗1) + (1− γtr+1−tr+l)(M(t∗1)− C(t∗1)).
(16)

DefineV1 = {vj |(vi, vj) as an edge in the union of the graphs
across the time interval[tr, tr+1) for somevi ∈ Vs andvj ∈
V\Vs}. Then the above inequality (16) holds for anyvi1 ∈ V1.

Consider the time interval[tr+1, tr+2). Define V2 =
{vj |(vi, vj) as an edge in the union of the graphs across
the time interval[tr+1, tr+2) for some vi ∈ Vs ∪ V1 and
vj ∈ V\(Vs ∪ V1)}. If vi2 ∈ V2, vi0 ∈ Vs ∪ V1 and (vi0 , vi2)
is an edge of the graphG(P (s2)) for somes2 ∈ [tr+1, tr+2),
one has

|xi2 (s2 + 1)|

≤|pi2i0(s2)xi0 (s2)|+
∑

j 6=i0

|pi2j(s2)xj(s2)|

≤γ(C(t∗1) + (1− γs2−tr )(M(t∗1)− C(t∗1))) + (1− γ)M(t∗1)

=C(t∗1) + (1− γs2−tr+1)(M(t∗1)− C(t∗1)).

Thus for l ≥ 0, the following inequality holds

|xi2 (s2 + l)| ≤ C(t∗1) + (1 − γs2−tr+l)(M(t∗1)− C(t∗1)).

For all vi ∈ V1 ∪ V2, it holds that

|xi(tr+2 + l)| ≤ C(t∗1) + (1− γtr+2−tr+l)(M(t∗1)− C(t∗1)).

Continuing this process, one derives that for allvi ∈ V\Vr,

|xi(tr+N−1)| ≤ C(t∗1) + (1− γtr+N−1−tr )(M(t∗1)− C(t∗1))

≤ C(t∗1) + (1− γ(N−1)T )(M(t∗1)− C(t∗1)),

whereT is a uniform upper bound fortr+1 − tr. Repeating
the above calculation, we have that for allvi ∈ V\Vr,

|xi(tr+(N−1)l)| ≤ C(t∗1) + (1− γ(N−1)T )l(M(t∗1)− C(t∗1)).

Combining with (15), one has that

M(tr+(N−1)l + s) ≤ max{M(tr+(N−1)l), C(tr+(N−1)l)}

≤C(t∗1) + (1− γ(N−1)T )l(M(t∗1)− C(t∗1)),

for all 0 ≤ s < tr+(N−1)(l+1) − tr+(N−1)l. From the above
inequality, we can conclude thatlim sup

t→∞
M(t) ≤ C(t∗1).

Since the above discussion applies to allt∗r , it holds that
lim sup
t→∞

M(t) ≤ C(t∗r) for all r = 1, 2, . . . . In view of the

fact thatlimt→∞ C(t) = C, one haslim sup
t→∞

M(t) ≤ C. This

completes the proof. ✷

Remark 4: In the fixed topology case in the previous sec-
tion, when the graph contains a spanning tree, it is shown in

Theorem 2 that the agents in the root vertex set polarize and
the states of the other agents converge and lie in between the
polarized values. However, when the network topologies are
time-varying, the states of the other agents may not converge
but they will finally lie in between the polarized values, which
will be illustrated though an example in Section VI.

Theorem 6:Let P (t), t = 0, 1, 2, . . . , satisfy (3) and (14).
Assume that[ti, ti+1), i ≥ 0, t0 = 0, is an infinite sequence
of nonempty, uniformly bounded time intervals. Suppose that
across each time interval[ti, ti+1), the union of the graphs
contains a spanning tree and for the root vertex set of the
union graph, there does not exist a bipartition of this set into
two subsets, such that for each graphG(P (s)), s ∈ [ti, ti+1),
the edges between the two subsets are negative and the edges
within each subset are positive. Then the state of system (4)
converges to zero asymptotically.
Proof. Using similar arguments to the proof of Theorem 4,
we can show that the union of the graphsG(Q(t)) across
each time interval[ti, ti+1), i ≥ 0, contains a spanning tree.
It immediately follows that they-system (10) converges toα1
for some constantα from [26]. Thus system (4) converges to
zero asymptotically. ✷

Remark 5: In [25], Hendrickx formally introduced the
transformation (9) and studied discrete-time and continuous-
time systems with reciprocal interactions between agents and
nonreciprocal interactions under joint strong connectivity con-
ditions. The convergence of the system to polarized values or
to zero were derived based on studies on consensus systems
with “type-symmetric” interactions and by looking into the
persistent interactions between agents [28]. Here we have con-
sidered nonreciprocal interactions between agents with joint
graphs containing spanning trees, where opinion separation of
the agents may appear.

V. CONTINUOUS-TIME MODEL

In this section, we present our main results for the
continuous-time model (6). For eachA(t), similar to (8),
we can define two nonnegative matricesA+(t) and A−(t)
based onA(t). Let x+

i (t) = xi(t), x−
i (t) = −xi(t) and

y(t) = [x+
1 (t), . . . , x

+
N (t), x−

1 (t), . . . , x
−
N (t)]T . From system

(6), we obtain the following update equations fory(t):

ẏ(t) =
([

A+(t) A−(t)
A−(t) A+(t)

]

−
[

D(t) 0

0 D(t)

])

y(t) = −W (t)y(t),

(17)
where D(t) = diag{d1(t), . . . , dN (t)} with

di(t) =
∑N

j=1, j 6=i |aij(t)| and W (t) =

[

D(t) 0

0 D(t)

]

−
[

A+(t) A−(t)
A−(t) A+(t)

]

is the Laplacian matrix with nonpositive

off-diagonal elements. The dynamical behavior of system (6)
can be revealed by studying system (17).

A. G(L(t)) is fixed

Consider the continuous-time system (6) under fixed topolo-
gies. LetA(t) ≡ A ∈ IRN×N be the signed adjacency matrix,
and letL(t) ≡ L be the signed Laplacian matrix given by
(7) for all t ≥ 0. When the graphG(L) contains a spanning
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tree, by a suitable permutation of rows and columns of its
associated signed Laplacian matrixL, L can be brought into
the following form

L =

[

L11 0

L21 L22

]

(18)

whereL11 ∈ IRr×r is irreducible,L22 ∈ IR(N−r)×(N−r), and
L21 ∈ IR(N−r)×r. By looking into system (17) and in view of
Lemmas 1 and 2, similar to Theorem 2, we have the following
theorem.

Theorem 7:Let G(L) be a signed graph containing a
spanning tree and letL be its associated signed Laplacian
matrix in the form (18). If the subgraphG(L11) is structurally
unbalanced, the state of system (6) converges to zero for
every initial value. IfG(L11) is structurally balanced with
at least one negative edge, then the agents in the subgraph
G(L11) polarize and the states of the other agents converge
and lie in between the polarized values; furthermore, ifG(L)
is structurally balanced with at least one negative edge, system
(6) polarizes.

B. G(L(t)) is time-varying

In this subsection, we consider the case when the interaction
graph topologies are dynamically changing. Assume thatA(t)
andL(t) are piecewise constant functions and the interaction
graph topologies or the weights of the edges change at time
instantst1, t2, . . .. System (6) can be rewritten as

ẋ(t) = −L(ti)x(t), t ∈ [ti, ti + τi), (19)

where t0 = 0 is the initial time, andτi = ti+1 − ti, i =
0, 1, . . . are the dwell times. Letτ be a finite set of positive
numbers and letT be an infinite set generated fromτ , which is
closed under addition, and multiplication by positive integers.
Assume thatτi ∈ T , i = 0, 1, 2, . . . . Let the nonzero elements
ajk(ti) of A(ti) satisfy thatajk(ti) ∈ [γ1, γ2], whereγ1, γ2
are positive constants.

The y-system (17) can be written as

ẏ(t) = −W (ti)y(t), t ∈ [ti, ti + τi). (20)

Employing similar ideas as in the previous section for the
discrete-time model (4) and (10) and in view of Theorem 3.12
in [26], we can prove the following two theorems.

Theorem 8:Let the root vertex set of the union of the
graphs over[0,∞) be Vs. Assume that there exists a bipar-
tition of Vs into two nonempty subsets, such that for each
graphG(L(t)), t ≥ 0, the edges between the two subsets are
negative and the edges within each subset are positive. Assume
that there exists an infinite sequence of nonempty, uniformly
bounded time intervals[tik , tik+1

), k ≥ 0, starting atti0 = 0
with the property that across each time interval[tik , tik+1

),
the union of the graphs contains a spanning tree and the root
vertex set of the union of the graphs isVs. Then the agents in
the root vertex set of system (6) polarize, and the states of the
other agents will finally lie in between the polarized values.

Theorem 9:Assume that[tik , tik+1
), k ≥ 0, ti0 = 0, is

an infinite sequence of nonempty, uniformly bounded time
intervals. Suppose that across each time interval[tik , tik+1

),

the union of the graphs contains a spanning tree and for the
root vertex set of the union graph, there does not exist a
bipartition of this set into two subsets, such that for each graph
G(L(s)), s ∈ [tik , tik+1

), the edges between the two subsets
are negative and the edges within each subset are positive.
Then the state of system (6) converges to zero asymptotically.

VI. I LLUSTRATIVE EXAMPLES

In this section, we perform simulation studies on system (4)
with topologies containing spanning trees. Consider the two
graphs shown in Fig. 5, where the edges with negative weights
are labeled by “−” signs and those with positive weights are
labeled by “+” signs. Their corresponding matricesP1 and
P2 are given by

P1 =

[

(P1)11 0

(P1)21 (P1)22

]

=

















1
2 0 − 1

2 0 0 0
0 1

2 − 1
2 0 0 0

− 1
3 − 1

3
1
3 0 0 0

0 1
4

1
4

1
4 − 1

4 0
0 0 1

2 0 1
2 0

0 0 0 1
3

1
3

1
3

















,

P2 =

[

(P2)11 0

(P2)21 (P2)22

]

=

















1
3

1
3 − 1

3 0 0 0
1
2

1
2 0 0 0 0

− 1
2 0 1

2 0 0 0
0 1

3 0 1
3 − 1

3 0
0 0 1

2 0 1
2 0

0 0 0 − 1
3

1
3

1
3

















.

One can see thatG(P1) is structurally unbalanced but the
subgraphG((P1)11) is structurally balanced.G(P2) is struc-
turally balanced. Let the initial state of the system bex(0) =
[0.9, 0.7,−0.9,−1, 0.2, 0.9]T .

The evolution of the states of the agents under the graph
topologyG(P1) in Fig. 5(a) has been illustrated in Fig. 2(b)
in Section II. As indicated in Theorem 2, the agents1, 2, 3 in
the subgraphG(P11) achieve opposite values and the states
of agents 4, 5 and 6 converge and lie in between the opposite
values. For system (4) with

P (t) =

{

P1, t is even,

P2, t is odd,
(21)

the evolution of the states of the agents are shown in Fig. 6,
from which we can see that the states of agents 4 and 6 do
not converge but they still lie in between the opposite values
of agents1, 2, 3.

VII. C ONCLUSION

In this paper, we have studied the relationship between
structural balance and opinion separation in social networks
that contain both trust and mistrust relationships. When the
opinion update rules are described by DeGroot-type models,
we have shown that under conditions that are closely related
to whether a network is structurally balanced or not, the
opinions sometimes get separated, for which in the extreme
case the network evolves into two polarized camps, and
sometimes become neutralized. Our results complement the
existing results in the literature.
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Fig. 5. Two graphsG(P1) andG(P2) both contain spanning trees.
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Fig. 6. The evolution of the agents’ states with the graphs switching between
Fig. 5(a) and Fig. 5(b).

We are interested in further developing opinion separation
models that rely less on the DeGroot averaging rules. One
promising direction is to look into the biased assimilationbe-
havior in social groups. The nonlinearity inherently associated
with such behavior is a main challenge that we want to attack.
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APPENDIX A

Proof of Lemma 3Since Q1 is a stochastic matrix, 1 is
an eigenvalue ofQ1 with the corresponding eigenvector1.
From the assumption of the lemma, we know that 1 is a
simple eigenvalue ofQ1 and the magnitudes of all the other
eigenvalues ofQ1 are less than 1. In additionρ(Q33) < 1.
Thus from the Perron-Frobenius theorem [31],

lim
k→∞

Qk
1 = 1ξT ,

whereξ ≥ 0, ξTQ1 = ξT , andξT1 = 1.
It is easy to see thatvT1 = [ξT 0

T
0
T ] andvT2 = [0T ξT 0

T ]
are two independent left eigenvectors ofQ corresponding to 1.
One can verify thatu1 = [1T

0
T ηT1 ]

T andu2 = [0T
1
T ηT2 ]

T

are two independent right eigenvectors ofQ corresponding to
1, whereη1 andη2 are given by

η1 = (I −Q33)
−1Q311, η2 = (I −Q33)

−1Q321.

http://arxiv.org/abs/1402.2766
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I − Q33 is invertible becauseρ(Q33) < 1. In addition, the
following equalities holdvT1 u1 = 1, vT2 u2 = 1, vT1 u2 = 0
and vT2 u1 = 0. By using the Jordan canonical form, we can
show thatQk converges ask goes to infinity and

lim
k→∞

Qk = u1v
T
1 + u2v

T
2 =





1ξT 0 0

0 1ξT 0

η1ξ
T η2ξ

T
0



 .

Since1 = (Q31 +Q32 +Q33)1, it follows that η1 + η2 =
(I−Q33)

−1(Q31+Q32)1 = 1. From the nonnegativity of the
vectorsη1 andη2, one has that

||η1 − η2||∞ ≤ ||η1 + η2||∞ = 1.

✷
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