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Abstract

We build a model of our spacetime by assuming new particles called “space
quanta.” In the ambient or bulk spacetime SDamb (Damb ≥ 4), a multitude of space
quanta form a nearly three-dimensional object, whose continuum approximation
is called the space 3-brane. The world volume WV sq of this space 3-brane is
described by an embedding fA(xµ) ∈ SDamb , which produces the induced metric
γµν on the world volume WV sq. This emergent spacetime (WVsq, γµν) from the
many space quanta is proposed as the particle model of our spacetime. To study
our spacetime (WVsq, γµν), we construct what we call the Aim-At-Target (AAT)
method, which introduces an action for a 4D metric gµν . This metric action from
the AAT method can lead to General Relativity at low enough energies. The
spacetime (SGR, gµν) of General Relativity is, at least, a good approximation to
the exact or true spacetime (WV sq, γµν) of our universe.
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1 Introduction

The gravitational physics has been successfully understood in terms of General Relativity
[1, 2, 3]. However, since the non-gravitational physics has been accurately explained by the
principles of quantum mechanics, it seems necessary that General Relativity is merged with
quantum mechanics [4]. For the quantum theory of gravity [4], there have been attempts
such as string theory [5].

In this paper, we present a particle model of our spacetime, and explain the origin
of gravity (i.e., General Relativity), as follows: in the ambient or bulk spacetime SDamb

(Damb ≥ 4), there exist new particles called “space quanta.” A multitude of space quanta
form a nearly three-dimensional object, which is called the “quasi-3D object.” Within this
quasi-3D object, the average distance d sq between nearest-neighbor space quanta satisfies
d sq . O(M−1

P ), where MP is the Planck mass ≈ 1019GeV.

At low energies . O(0.1)d−1
sq , we can use a continuum approximation [6] that the quasi-

3D object is replaced with a 3D continuum called the “space 3-brane.” Like a bosonic string
[5, 7], this space 3-brane sweeps out its 4D “world volume” WVsq in the ambient spacetime
SDamb . This world volume WV sq is described by an embedding fA(xµ) ∈ SDamb , which
produces the induced metric γµν on WV sq. This emergent spacetime (WVsq, γµν) from the
many space quanta is proposed as the particle model of our spacetime. The dynamics of the
embedding fA is provided by an effective theory S

(3br)
univ [f

A, · · · ] = S
(3br)
emb [fA] + · · · , where the

latter ellipsis · · · denotes the action for the matter sector (e.g., the Standard Model).

To study our spacetime (WV sq, γµν), we construct the “Aim-At-Target (AAT) method,”

which introduces an action for a 4D metric gµν , namely, S
(ovlp)
univ [gµν , · · · ] = S

(ovlp)
met [gµν ] + · · · ,

where the latter ellipsis · · · denotes the action for the matter sector. This new metric gµν is
used for finding the embedding fA(xµ) through the equality gµν = γµν , as follows:

For an easy understanding of the AAT method, we consider a simple situation that the
universe contains only the space-quantum sector (i.e., the space 3-brane)— the absence of

the matter sector. In this situation, we only have to study the two simpler actions S
(3br)
emb [fA]

and S
(ovlp)
met [gµν ], which are the actions without the matter sector. For example, when the

ambient spacetime SDamb is the Minkowski spacetime MDamb of the flat metric ηbulkAB , the
induced metric γµν is represented as

γµν = ∂µf
A
sol ∂νf

B
sol η

bulk
AB , (1.1)

where fA
sol is a solution for the fA equation of motion δS

(3br)
emb /δf

A = 0.

For the above metric action S
(ovlp)
met [gµν ], when a solution gsolµν of δS

(ovlp)
met /δgµν = 0 satisfies

the equality
gsolµν = γµν , (1.2)

Eqs. (1.1) and (1.2) require that the solution fA
sol of δS

(3br)
emb /δf

A = 0 should also be a solution
of the partial differential equation (PDE) for fA

∂µf
A ∂νf

B ηbulkAB = gsolµν . (1.3)
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In other words, when the new metric gsolµν satisfies gsolµν = γµν , the solution f
A
sol of the equation

of motion δS
(3br)
emb /δf

A = 0 can be found by solving the PDE ∂µf
A∂νf

BηbulkAB = gsolµν . Note
that the embedding fA is similar to the locally inertial coordinates ξα̂ of General Relativity,
because the PDE ∂µf

A∂νf
BηbulkAB = gsolµν is similar in form to ∂µξ

α̂∂νξ
β̂ηα̂β̂ = gµν , where ∂µξ

α̂

is the vierbein [2].

To sum up, the AAT method using the metric action Smet[gµν ] consists of two main steps:
(i) finding a solution gsolµν of (δSmet/δgµν)[gµν ] = 0, and next (ii) finding a solution fA

PDE·sol

of ∂µf
A∂νf

BηbulkAB = gsolµν . In case of gsolµν = γµν (= ∂µf
A
sol∂νf

B
solη

bulk
AB ), we can find a solution

fA
PDE·sol satisfying f

A
PDE·sol = fA

sol, where f
A
sol is what we really want to know.

Then, as far as the equality gsolµν = γµν remains true, the “combination” of

(a) the metric action Smet[gµν ] and (b) the PDE ∂µf
A∂νf

BηbulkAB = gsolµν (1.4)

can be used instead of the 3-brane action S
(3br)
emb [fA]. This is the essential feature of the AAT

method.

At low enough energies, the metric action Smet[gµν ] in Eq. (1.4) can be well approximated
by the Einstein-Hilbert action SEH of General Relativity. Then, this Einstein-Hilbert action
SEH can be a good low-energy description for the 3-brane action S

(3br)
emb [fA] in the absence of

the matter sector. When the matter sector is present, the whole action of General Relativity
can be a good low-energy description for the above “universe action” S

(3br)
univ [f

A, · · · ]. In
this manner, the AAT method can produce General Relativity at low enough energies— this
explains the origin of gravity (i.e., General Relativity).

Since, in the AAT method, General Relativity can be subsidiary to the universe action
S
(3br)
univ [f

A, · · · ] (see around Eq. (1.4)), we must not forget that, at the most fundamental level,
our universe should be studied in terms of physical laws within the ambient spacetime SDamb

which govern both the space-quantum and matter sectors of our universe. These physical
laws within the ambient spacetime SDamb can be represented as quantum field theories defined
on SDamb—this may shed some light on the quantum theory of gravity [4].

Meanwhile, like usual many-particle systems (e.g., superconductors), our universe as a
system in the ambient spacetime SDamb consists of an enormous number of particles such
as space quanta. Thus, useful ideas for the study of our universe in SDamb can be found by
surveying physics in our spacetime WV sq, for example, condensed matter physics [8].

The rest of this paper is organized, as follows: in Sec. 2, the wave-particle duality of
quantum mechanics is applied to the gravitational field. Since the particle nature of the grav-
itational field implies the existence of the new particle (i.e., space quantum), the spacetime
manifold SGR of General Relativity is assumed to consist of (very many) space quanta—this
is called the space-quantum hypothesis.

In Sec. 3, to maintain the wave nature of a single space quantum (even without any other
space quanta), we assume that there exists the ambient spacetime SDamb , which surrounds
the spacetime SGR of General Relativity. To explain the 3D space part of the GR spacetime
SGR, we assume that space quanta in SDamb form the quasi-3D object, whose continuum
limit is the space 3-brane.
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In Sec. 4, we deal with the kinematics of the space 3-brane, whose world volume WV sq

is described by an embedding fA(xµ). The induced metric γµν on the world volume WV sq

can be approximated by the GR metric gµν . For simplicity, we consider the effective theory

S
(3br)
emb [fA] only for the space 3-brane (the action for matter will be studied in Sec. 7).

In Sec. 5, we present the Aim-At-Target (AAT) method for studying the effective theory

S
(3br)
emb [fA] of the space 3-brane. This AAT method using a metric action Smet[gµν ] contains

the coupled equations δSmet/δgµν = 0 and ∂µf
A∂νf

BηbulkAB = gµν . As far as gµν = γµν holds

good, the metric action Smet[gµν ] can replace the 3-brane action S
(3br)
emb [fA].

In Sec. 6, in terms of symmetries, we study the forms of the metric action Smet[gµν ] used
in the AAT method. The Diff(4)-invariant action Smet[gµν ] can explain the Einstein-Hilbert
action SEH[gµν ], which is an essential part of General Relativity.

In Sec. 7, since the universe contains the matter sector, we consider the more general
action S

(3br)
univ [f

A, · · · ] = S
(3br)
emb [fA] + · · · for the inclusion of matter. By applying the AAT

method similarly, we can obtain General Relativity at low enough energies.

2 Applying Quantum Mechanics to Gravity: Space as

a Discrete System of Particles

Quantum mechanics explains many phenomena of nature very well. Thus, we can try to com-
bine gravity with it (i.e., a quantum theory of gravitation). Because quantum mechanics has
the wave-particle duality as its signature property, we further think about the basic concept
particle: since the wave-particle duality has been successfully applied to ordinary sensible
objects like light and matter, considering these ordinary objects (rather than graviton) is
helpful in understanding the concept of particle.

An ordinary material object (e.g., a bearing ball) has a “substance” characterized by (i)
stuff material (e.g., metal) and (ii) shape in space (e.g., ball or sphere), which may correspond
to “matter” (hyle in Greek) and “form” (eidos or morphe) of the ancient Greek philosophy,
respectively. Therefore, an object is called a “particle” if the shape of its substance is point-
like in space while the object exists. The particle nature of material objects like electron is
evident.

Because the important quantum phenomena like the photoelectric effect and the Davisson-
Germer experiment have been observed by laboratory frames (e.g., Orest of Fig. 1(a)) under
the influence of gravity, the wave-particle duality of quantum mechanics must be observed by
the rest frame Orest. In addition, through the general covariance, the wave-particle duality
is also observed by the freely-falling frame OFF of Fig. 1(a).

In the weak-field situation of General Relativity (GR) [1, 2, 3], there exists a “nearly
Lorentz (NL) coordinate system” xµ

NL relative to which the metric gµν of a slightly curved
GR spacetime Sweak

GR has the components at every point p of the spacetime Sweak
GR

gµν = ηµν + hµν with |hµν | ≪ 1 at every p ∈ Sweak
GR , (2.1)

3



O FF

O rest

K inertial

Kaccel

mm
g

g

(a) Source M : present

M

−

(b) Source M : absent

Figure 1: The correspondence between two different situations distinguished by
the existence of a gravitational source M (e.g., the earth), namely, (a) the source-

present, and (b) the source-absent situations. There are two kinds of “two-frame
equivalences,” (i) the “non-inertial equivalence” between Orest and Kaccel, and (ii)
the “inertial equivalence” between OFF and Kinertial.

where ηµν = diag(−1,+1,+1,+1) in themostly plus convention is called the flat “background
metric,” and hµν a small “perturbation” [1].

For the above NL coordinates xµ
NL, the Einstein tensor Gµν(gρσ) = Rµν −R gµν/2 has

the series expansion in powers of the perturbation hµν [1, 2, 3]

Gµν(ηρσ + hρσ) = G (1)
µν + O(h2) with G (1)

µν
def
= (∂ρ∂νh

ρ
µ + · · · )/2 . (2.2)

Then, the vacuum Einstein’s equation Gµν = 0 has its first-order approximation

G (1)
µν = 0 . (2.3)

Under a “background Lorentz transformation” with
∂x′µ

NL

∂xρ
NL

∈ SO(1, 3), the perturbation

hµν in Eq. (2.1) transforms like h′
µν =

∂xρ
NL

∂x′µ
NL

∂xσ
NL

∂x′ν
NL

hρσ as if it were a Lorentz tensor defined

on the flat Minkowski spacetime M4. This leads to the “flat-spacetime fiction” that the
tensor hµν belongs to a theory in the flat spacetime M4 [1]. This fiction is supported by
the Fierz-Pauli (F-P) theory, where gravity is described by a symmetric tensor on the flat
spacetime M4 [9].

Because the F-P theory shares G (1)
µν = 0 with General Relativity, the curved spacetime

Sweak
GR = (R4, ηµν + hµν) of General Relativity can be interpreted as the combination of

(i) the flat spacetime M4 = (R4, ηµν), and (ii) the field hµν propagating in this M4. This
interpretation about Sweak

GR is expressed as

Sweak
GR ≡ M4 ⊕ hµν . (2.4)

Since the linearized vacuum Einstein’s equation G (1)
µν = 0 in Eq. (2.3) has plane-wave

solutions, its solution hµν in Eq. (2.4) can be the superposition of plane-wave solutions

hµν(xNL) =
∑

σ

∫
d 3k

[
a(~k, σ) eµν(~k, σ) e

+ i kρx
ρ
NL + a∗(~k, σ) e∗µν(

~k, σ) e− i kρx
ρ
NL

]
, (2.5)

4



where eµν(~k, σ) is a polarization tensor for wave vector ~k and helicity σ [2].

As in the field quantization of the F-P theory, the amplitudes a(~k, σ) and a∗(~k, σ) in

Eq. (2.5) are replaced with the annihilation and creation operators â(~k, σ) and â †(~k, σ) for
a “particle” called the graviton—the wave-particle duality is applied to the “wave” hµν .

The graviton for the field operator ĥµν(xNL) is a massless spin-2 particle moving in the flat
spacetime M4.

After the field quantization, the “classical field” hµν in the expression Sweak
GR ≡ M4 ⊕ hµν

corresponds to “gravitons,” whose number is denoted by Ngr (≥ 1). Then, the classical
relation Sweak

GR ≡ M4 ⊕ hµν in Eq. (2.4) is replaced with its semi-classical counterpart

Sweak
GR ≡ M4 ⊕ gravitons , (2.6)

which means that the curved spacetime Sweak
GR of General Relativity is the combination of (i)

the flat spacetime M4 and (ii) the Ngr gravitons moving in this M4.

In other words, the curved GR spacetime Sweak
GR is formed by adding the gravitons (i.e.,

particles) to the flat spacetime M4. The “gravitons” in Eq. (2.6) can be regarded as the
building blocks of the difference between Sweak

GR and M4. For example, the GR spacetime
Sweak
GR depends on the number Ngr and the locations of the gravitons.

Of course, the flat spacetime M4 in Eq. (2.6) may be such a bizarre entity that it does not
contain any particles unlike the curved spacetime Sweak

GR . However, this M4 shares the same
name “spacetime manifold” with the Sweak

GR , which surely contains particles (i.e., the Ngr

gravitons in Eq. (2.6)). Thus, the analogical reasoning based on its sharing the same name
favors the opposite opinion that the M4 contains particles like the Sweak

GR . Moreover, since
the quantum theory of gravitons is possible for non-flat “background spacetimes” (e.g., an
expanding universe) [10], the flat spacetime M4 cannot be the “only” background spacetime
for the definition of gravitons.

Therefore, we assume that the background spacetime M4 is composed of particles, whose
number is denoted by NBS (≥ 1). This implies, through “Sweak

GR ≡ M4 ⊕ gravitons” in
Eq. (2.6), that the “full GR spacetime” Sweak

GR is also composed of particles (e.g., the NBS

particles+ the Ngr gravitons).

This conclusion that Sweak
GR consists of particles is based on the particular form of the

metric gµν in Eq. (2.1), which is unchanged only for special types of coordinate transforma-
tions among all the transformations of General Relativity [1]. Despite this, the conclusion
about Sweak

GR can be true for all the other coordinate transformations, because our theory can
produce General Relativity as a prediction (see Sec. 7).

To explain that the flat and curved spacetimes M4 and Sweak
GR of General Relativity are

composed of particles, we make a hypothesis that

every spacetime manifold SGR of General Relativity is composed of particles , (2.7)

5



which has the meaning that

every point p of the GR spacetime SGR has a three-dimensional (3D) spacelike

neighborhood N 3D
space(p) which is a “continuum approximation” to a discrete

system composed of particles. (2.8)

Since the concepts like substance and shape are basically defined at a constant time, the
“3D spacelike neighborhood N 3D

space(p)” in Eq. (2.8) can represent (partially) the substance

of the spacetime SGR. For example, the substance of a Robertson-Walker spacetime S(RW)
GR

is wholly represented by the 3D spacelike hypersurface of a constant cosmic time t, which
approximately describes a discrete system composed of particles according to Eq. (2.8).

Next, we consider a question: “Is graviton a fundamental building block for the substance
of the GR spacetime SGR?” According to Eq. (2.8), the substance of the spacetime SGR

is a discrete system like solid materials (cf. Sec. 3). Thus, for analysis, we can use an
analogy that the substance of the spacetime SGR corresponds to a crystal composed of many
lattice atoms. This atomic crystal can experience a large-scale deformation of its lattice.
In the quantum-mechanical framework, the lattice deformation of longer wavelengths than
the lattice spacing(s) can be analyzed by introducing a quantized normal mode called the
“phonon” [8]. This bosonic quasi-particle, phonon, differs much in moving range from the
lattice atom, which is confined to a small region around its equilibrium position.

If the graviton corresponds to the lattice atom in the above analogy, then (i) the graviton
(e.g., a plane-wave solution moving at the speed of light) should be confined to a small region
like the lattice atom, and (ii) there exist collective vibrational motions of many “lattice
gravitons,” i.e., the lower-energy excitations corresponding to the phonon in the analogy.
Since these two conclusions do not seem plausible, the graviton does not correspond to the
lattice atom but to the phonon in the analogy.

Therefore, we formulate the “space-quantum hypothesis” that

every point p of the GR spacetime SGR has a 3D spacelike neighborhood N 3D
space(p)

which is a continuum approximation to a discrete system Syst sq composed of

particles called space quanta, (2.9)

which is the final meaning of the hypothesis in Eq. (2.7). Like the phonon, the graviton is an
emergent phenomenon arising through interactions among space quanta (see Secs. 6 and 7),
implying each of these space quanta is different and more fundamental than the graviton.

If the substance of every space quantum has a point-like shape, the space quantum is a
particle. However, the point-like shape of the space quantum (and the other kinds of quanta)
may be only an approximation based on the smallness of its substance compared with the
observational precision. Then, the space quantum may be a spatially p br-dimensional object
such as a string (p br = 1), or a composite system made up of two or more objects which
interact weakly and/or strongly. However, in this paper, the space quantum is regarded as

6



a particle of point-like shape (i.e., p br = 0), if the assumption of p br = 0 produces General
Relativity as a low-energy effective theory (see Secs. 6 and 7).

Since the space-quantum hypothesis implies the space part of the GR spacetime SGR

is essentially a discrete object, the hypothesis is different from the basic axiom of General
Relativity that spacetime is a differentiable manifold (i.e., a continuous object). This differ-
ence may not be sufficiently studied when the particle nature of gravity receives much less
attention than its wave nature.

However, the discrete system of many space quanta (e.g., Syst sq) can be approximated
by a 3D continuous object, when the precision of length measurement is sufficiently larger
than the average distance d sq between nearest-neighbor space quanta (see Sec. 3). This
philosophy has been successfully used in the continuum mechanics [6].

3 The ContinuumApproximation of a Space-Quantum

System in the Ambient Spacetime

When space quanta forming the discrete system Syst sq in Eq. (2.9) change their positions,
the system Syst sq undergoes a deformation. This implies, due to the space-quantum hy-
pothesis, that the spacelike subset N 3D

space(p) also deforms. This deformation of the subset
N 3D

space(p) is similarly found in General Relativity (e.g., the Schwarzschild metric) [1, 2, 3].
In addition, the deformation of the system Syst sq can affect the motions of other objects
(e.g., lights and matters) within the system Syst sq. This is similar to the deflection of light
in General Relativity. These two similarities to General Relativity suggest the relationship
between the space-quantum hypothesis and General Relativity (see Secs. 6 and 7).

When Nsq space quanta form a GR spacetime SNsq , the motion of a single space quantum
P within SNsq can be described by its background spacetime Sbkgd (= SNsq−1), which is
formed by the other Nsq − 1 space quanta. However, if we consider the limiting case that
there are no space quanta except the single quantum P (i.e., Nsq = 1), then the wave
kinematics using the background spacetime Sbkgd (= S0) is not possible any longer, implying
the space quantum P loses its wave nature. In other words, the wave-particle duality (and
thus quantum mechanics) cannot be applied to the single particle P in this limiting case.

If we want to maintain the quantum mechanics (e.g., the wave nature) of the particle
P, a simple solution to the wave-nature problem for P is to introduce another spacetime
SDamb of dimension Damb (≥ 4) within which the space quantum P moves like a particle
moving within a GR spacetime SGR. In other words, the motion of the single space quantum
P is defined by the ambient (i.e., surrounding) spacetime SDamb , without considering
any other space quanta. In general, any number of space quanta can occupy the ambient
spacetime SDamb .

Since the spacetime SGR of General Relativity has the metric gµν of the Lorentzian
signature (−,+,+,+), the ambient spacetime SDamb can have its own Damb-dimensional
Lorentzian metric gbulkAB (A,B = 0, . . . , Damb − 1). For simplicity, the ambient spacetime

7



SDamb with the bulk metric gbulkAB is assumed to be theDamb-dimensional Minkowski spacetime
MDamb = (RDamb , ηbulkAB ), where the flat bulk metric ηbulkAB is the diagonal matrix in the mostly

plus convention
ηbulkAB = diag(−1,+1, . . . ,+1 ) (3.1)

everywhere for the inertial “bulk-coordinates” Y A (∈ RDamb). These bulk-coordinates Y A

are used by an inertial “bulk observer” Obulk who lives in the ambient spacetime MDamb .

Because it is natural that any particle performs a time evolution in every Minkowski
spacetime, all space quanta occupying the ambient spacetime MDamb must execute time
evolutions, producing their own world lines WLsq in the spacetime MDamb . Here, the physics
of space quantum is studied in the ambient spacetime MDamb .

To explain the observation that the space part of our universe is three-dimensional,
we assume that space quanta in the spacetime MDamb form a nearly 3D object, which is
called the quasi-3D object of the many space quanta. If the average distance d sq between
nearest-neighbor space quanta is sufficiently smaller than the precision ∆Lobs of the length
measurement, we can apply the continuum approximation to the quasi-3D object in the
spacetime MDamb , as in the continuum mechanics [6].

The “validity condition” of the continuum approximation [6] is

d 3
sq ≪ δVsq ≪ (∆Lobs)

3 , (3.2)

where δVsq is the volume of a 3D spacelike region δRsq (⊂ MDamb) which contains space
quanta. Since there are δNsq = O(δVsq/d

3
sq) space quanta inside the region δRsq, the validity

condition in Eq. (3.2) implies the region δRsq contains many space quanta (i.e., δNsq ≫ 1).

We assume that the quasi-3D object satisfying the validity condition behaves like a 3D
continuously-distributed system, which is called the space 3-brane (i.e., another name of
space). In other words, the space 3-brane in the spacetime MDamb is the continuum approx-
imation of the quasi-3D object having many space quanta, as in the continuum mechanics
for solids and fluids. Mathematically, the space 3-brane composed of many space quanta is
represented by a 3D spacelike submanifold of the ambient spacetime MDamb .

Since the continuum approximation is applied to both of solids and fluids, we need to
discuss whether the quasi-3D object (or its space 3-brane) is like a solid or a fluid: because
space quanta in the fluid phase move faster, the Brownian motion can be a crucial criterion
distinguishing between the two phases of the quasi-3D object. In the Brownian motion, the
root-mean-square displacement ∆rrms of a “big” particle (e.g., proton) colliding with quick
space quanta can be proportional to the square root of the elapsed time τE, namely,

∆rrms ∝ τ
1/2
E . (3.3)

This long-term behavior implies that the quasi-3D object (i.e., space) behaves like a medium
which exerts random forces on the above big particle.

However, the Brownian motion caused by the fluid phase of space quanta is rejected by
(i) Newton’s first law imposing ∆rrms = (initial speed) × τE on every free particle, and (ii)

8



the rectilinear propagation of light in vacuum. For example, if lights from (more) distant
stars were (more) deflected by the above Brownian motion, we would observe the (larger)
disk-like images of the stars. In fact, the images of stars are point-like.

Therefore, the quasi-3D object of many space quanta is like a solid in our observation
region. This solid-like quasi-3D object (a) can have a crystal lattice (e.g., simple cubic) or a
non-crystalline structure like an amorphous glass, and (b) can deform elastically or plastically
in response to stimuli like ordinary solid materials [8]. The deformations or strains of the
quasi-3D object can be (approximately) determined by Einstein’s equation Gµν = 8πGNTµν

(see Secs. 5, 6 and 7).

Since a space quantum within the solid-like quasi-3D object is not an isolated particle in
the ambient spacetime MDamb , the mass msq of the space quantum may differ considerably

from its effective mass m
(eff)
sq which is affected by interactions like (i) the effective mass of

electron in a solid and (ii) the constituent quark mass in a hadron.

Because space quanta in the quasi-3D object have inter-particle spacings of O(d sq), the
physical quantities of the space quanta (e.g., energy density) can vary significantly over
spatial distances . O(d sq). Thus, since the quasi-3D object resembles a discontinuously-
distributed system at a high observational precision ∆Lobs . O(d sq), the above continuum
approximation breaks down at the high precision ∆Lobs . O(d sq). This requires the lower

bound ∆L
(c)
obs (≤ ∆Lobs) in order for the continuum approximation to be acceptable.

Thus, the continuum approximation considers only the larger-scale (i.e., lower-energy) be-
haviors of the space-quantum system, ignoring its smaller-scale (i.e., higher-energy) physics.

Then, the critical precision ∆L
(c)
obs for the continuum approximation plays a similar role to the

“UV cutoff ” ΛUV of an effective field theory [11], whose example is the Wilsonian effective
action obtained by integrating out higher-energy modes than a UV cutoff.

Therefore, the continuum approximation of the quasi-3D object can be regarded as a
low-energy effective theory of the space-quantum system, which has its own UV cutoff Λcont

(∼ 1/∆L
(c)
obs) satisfying

Λcont = ǫcont × (1/d sq) with ǫcont . O(10−1) . (3.4)

4 The Effective Theory for the Space 3-Brane: the

Bottom-Up Approach

The space 3-brane corresponds to the “continuum limit” d sq → 0 of the quasi-3D object
which consists of many space quanta. Then, like a bosonic string [5, 7], the space 3-brane
sweeps out a 4D manifold WV sq in the ambient spacetime MDamb . The world volume
WV sq of the space 3-brane is a continuum approximation to the discrete set of the world
lines WLsq of all space quanta forming the space 3-brane.

As in the case of the 2D world sheet WS of a bosonic string [5, 7], we can assume that
the world volume WVsq of the space 3-brane is a 4D submanifold of the ambient spacetime
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MDamb (see Refs. [3, 12] for mathematical treatments): since this submanifold WV sq is a
subset of MDamb (i.e., WV sq ⊂ MDamb), there exists the inclusion map i of the world volume
WV sq, which is defined as a function

i : WV sq (⊂ MDamb) → MDamb , satisfying (4.1)

i (p) = p ∈ MDamb for every point p ∈ WV sq . (4.2)

Since WV sq is a submanifold of MDamb , the inclusion map i is an immersion, i.e.,

its derivative at p, i ′
p : TpWV sq → TpMDamb , is injective for every p ∈ WV sq , (4.3)

where TpM (M = WV sq, MDamb) denotes the tangent vector space of M at p. In addition,
the inclusion map i is of constant rank 4 everywhere on WV sq, i.e.,

rank(i (p))
def
= rank(i ′

p) = 4 for every p ∈ WV sq , (4.4)

where rank(i ′
p)

def
= dim(Im(i ′

p)). Then, rank(i ′
p) = 4 in Eq. (4.4) guarantees that the image

i ′
p(TpWV sq) of the “brane tangent space” TpWV sq under the map i ′

p in Eq. (4.3)

i ′
p(TpWVsq)

def
= { i ′

p(v) for ∀ v ∈ TpWV sq } ⊂ TpMDamb (4.5)

is a 4D subspace of the “bulk tangent space” TpMDamb .

We are studying the submanifold WV sq within its ambient manifold MDamb , which has
a coordinate chart Y A at every point P ∈ MDamb : since the submanifold WV sq is also a
manifold, the set WVsq as a 4D manifold has its own coordinate chart xµ (µ = 0, . . . , 3)
at every point p ∈ WV sq. Therefore, we need to consider two kinds of charts at every
point p of WVsq: (i) a “brane-chart” xµ of WV sq, and (ii) a “bulk-chart” Y A of MDamb .
Then, a coordinate transformation xµ → x′µ between two brane-charts xµ and x′µ of WV sq

is called a “brane-to-brane (b⇒b′) transformation.” Moreover, a coordinate transformation
Y A → Y ′A between two bulk-charts Y A and Y ′A of MDamb is called a “bulk-to-bulk (B⇒B′)
transformation.” None of these coordinate transformations xµ → x′µ and Y A → Y ′A change
the point p of WV sq at all— this passive-viewpoint property is shared by any coordinate
transformation between two charts in differential geometry.

Relative to the brane-chart xµ of WV sq, and the bulk-chart Y A of MDamb , the equality
p = i (p) in Eq. (4.2) has its coordinate representation

Y A(p) =
(
Y A ◦ i ◦ (xµ)−1

)
(xµ(p)) , (4.6)

where xµ(p) ∈ R4 and Y A(p) ∈ RDamb .

Then, for the xµ-and-Y A coordinate representation of i (see Eq. (4.6))

fA def
= Y A ◦ i ◦ (xµ)−1 , (4.7)

10



Eq. (4.6) defines a new kind of transformation xµ → Y A, called the “brane-to-bulk (b⇒B)
transformation,”

Y A = fA(xµ)
def
= fA ◦ xµ at the point p of WV sq . (4.8)

Through the representation fA = Y A ◦ i ◦ (xµ)−1 in Eq. (4.7), rank(i ′
p) in Eq. (4.4) has its

xµ-and-Y A coordinate representation

rank(i ′
p) = rank(∂µf

A)| atxν(p) , (4.9)

where the Damb × 4 matrix ∂µf
A is the Jacobian matrix of the above b⇒B transformation

Y A = fA(xµ).

By using the metric bulk-tensor ηbulk of the ambient manifold MDamb , the pullback map

i ∗ of the inclusion map i in Eqs. (4.1) and (4.2) induces a symmetric tensor γµν on the
submanifold WVsq in the “brane-coordinates” xµ

γµν
def
= (i ∗ηbulk)µν = (f ∗ηbulkAB )µν = ∂µf

A ∂νf
B ηbulkAB satisfying (4.10)

γµν v
µwν = ηbulk(i ∗v, i ∗w) = ηbulkAB (f∗v)

A(f∗w)
B for ∀ v, w ∈ TpWV sq , (4.11)

where the two maps f ∗ and f∗ from fA = Y A ◦ i ◦ (xµ)−1 are the coordinate representations
of the pullback and the pushforward maps i ∗ and i ∗ (e.g., i

′
p in Eq. (4.5)) in the brane- and

bulk-charts xµ and Y A (cf. Refs. [3, 12]). Then, γµν(x
ρ(p)) is a tensor defined on the tangent

space TpWVsq at a point p ∈ WV sq, whereas η
bulk
AB (Y C(p)) is a tensor defined on TpMDamb at

the same point p = i (p) as an element of MDamb .

Then, besides the constraint in Eq. (4.4) (equivalently, rank(∂µf
A) = 4), we assume

another constraint on fA(xµ) that the symmetric tensor γµν = ∂µf
A ∂νf

B ηbulkAB in Eq. (4.10)
is non-degenerate everywhere on the world volume WV sq, i.e.,

det(γµν) 6= 0 , (4.12)

which means that the pullback γµν becomes a “metric tensor” on WV sq (called the “induced
metric”). Note that det(γµν) 6= 0 is a sufficient condition for rank(i ) = rank(∂µf

A) = 4 in
Eq. (4.4).

Relative to the bulk metric ηbulk, the 4D subspace i ′
p(TpWV sq) of the bulk tangent space

TpMDamb in Eq. (4.5) contains both

• timelike bulk-vectors Vt = i ∗vt (i.e., η
bulk(i ∗vt, i ∗vt) < 0) due to the time evolution in

the ambient spacetime MDamb , and

• spacelike bulk-vectors Vs = i ∗vs (i.e., ηbulk(i ∗vs, i ∗vs) > 0) due to the three-brane
nature of the space 3-brane.

Thus, the restriction ηbulk
∣∣
i ′
p(TpWVsq)

of the bulk-tensor ηbulk to the subspace i ′
p(TpWV sq)

has the (3+1)-dimensional Lorentzian signature (−,+,+,+). This signature (−,+,+,+) is

11



shared by the induced metric γµν , because γµν as the pullback of ηbulkAB satisfies, for example,
γµν v

µ
k v

ν
k = ηbulk(i ∗vk, i ∗vk) with k = t, s (see Eq. (4.11)).

Therefore, through Eq. (4.11), the induced metric γµν (i.e., the pullback f ∗(ηbulkAB ) of ηbulkAB

by fA) becomes a Lorentzian metric having the 4D Lorentzian signature (−,+,+,+). Then,
the 4D Lorentzian manifold (WV sq, γµν) is interpreted as a (3+1)-dimensional spacetime.
This spacetime manifold (WV sq, γµν) is an “emergent entity,” because (WV sq, γµν) arises
through interactions among many space quanta which occupy the ambient spacetime MDamb .

To sum up, the 4D manifold (WV sq, γµν) is the (3+1)-dimensional emergent spacetime
which occupies the ambient spacetime MDamb . Since the spacetime of our universe is (3+1)-
dimensional like (WVsq, γµν), we assume that the emergent spacetime (WV sq, γµν) occupying
MDamb forms the spacetime of our universe— (WV sq, γµν) is the model of our spacetime.

Note that the emergent spacetime (WV sq, γµν) is the exact or true spacetime of our
universe. Thus, when we say that a spacetime and a metric of the universe are observed
(or measured), the observed spacetime and the observed metric should be identical to WV sq

and γµν within the measurement precisions.

Then, since General Relativity has accurately explained the spacetime of our universe,
we can think that the spacetime SGR and the metric gµν of General Relativity are at least
the good approximations of the world volume WV sq and the induced metric γµν (see around
Eqs. (7.36) and (7.37)), i.e.,

SGR ≈ WV sq , (4.13)

gµν ≈ γµν (= ∂µf
A∂νf

BηbulkAB ) . (4.14)

Because Einstein developed General Relativity without considering the space quanta and
the ambient spacetime, General Relativity is a phenomenological theory of spacetime like
the meson theory which Yukawa developed without considering quarks and gluons.

Until now, we have established the kinematics for the space 3-brane: the world volume
WV sq of the space 3-brane in the ambient spacetime MDamb is a 4D submanifold of MDamb ,
which is described by the brane-to-bulk transformation Y A = fA(xµ) satisfying

(i) an embedding (i.e., an immersion and an injection) , (4.15)

(ii) the 4D Lorentzian signature of the induced metric γµν = ∂µf
A∂νf

BηbulkAB . (4.16)

In Eq. (4.15), the immersion condition is replaced with det(γµν) 6= 0 contained in Eq. (4.16)
(see below Eq. (4.12)), and the injection condition may be omitted in the case of eccen-
tric behaviors of the space 3-brane (e.g., self-intersections). Note that the function fA(xµ)
describing the world volume WV sq is neither an arbitrary function of xµ nor a general em-
bedding, but it is a special kind of embedding called the “4D-Lorentzian (4DL) embedding,”
which is defined as a function satisfying the conditions in Eqs. (4.15) and (4.16).

Based on the above kinematics for the space 3-brane, we have to consider its dynamics:
an effective theory for the space 3-brane can be defined by the “3-brane action”

S
(3br)
emb [fA] =

∫

WVsq

d 4x L̂emb(f
A, ∂µf

A, . . . ) , (4.17)
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where the Lagrangian density L̂emb can contain the UV cutoff Λcont in Eq. (3.4). In Eq. (4.17),

the symbol ̂ in L̂emb does not denote the operator nature of L̂emb unlike the same symbol
used in, e.g., â(~k, σ) of Sec. 2. Note Lemb without the symbol ̂ is called the “Lagrangian”
(see below Eq. (4.25)).

Because the full theory of the effective theory S
(3br)
emb [fA] is not known, we use the bottom-

up approach to building an effective theory, i.e., writing out the most general set of La-
grangians consistent with the symmetries of the theory [11]. Then, the crucial step is to find

the symmetries satisfied by the effective action S
(3br)
emb [fA] for the embedding fA(x).

To find the symmetries of the 3-brane action S
(3br)
emb [fA], we will use a generalization based

on the special case of a 0-brane (i.e., point particle) in the 4D Minkowski spacetime M4, as
follows: similarly to the space 3-brane in the ambient spacetime MDamb , the 0-brane in M4

produces a 1D world line WL inM4, which is described by a 1D-Lorentzian embedding hµ(τ)
of the world-line parameter τ (∈ R).

It is well known that the effective action S
(0br)
emb [hµ] for the 0-brane has two kinds of

symmetries under (i) the 4D Poincaré group ISO(1, 3) with h′µ(τ) = Λµ
νh

ν(τ) + cµ, and
(ii) the 1D diffeomorphism group Diff(1) with h′µ(τ ′) = hµ(τ), where τ ′ = Φ1D(τ) for
Φ1D ∈ Diff(1). Note that the ISO(1, 3) symmetry is required by the Special Principle of
Relativity (i.e., special covariance) in M4.

Therefore, by using the generalization from the “ 0-brane inM 4 ” to a “ p br -brane inMD,”
the effective action S

(3br)
emb [fA] for the space 3-brane in MDamb (i.e., p br = 3 and D = Damb)

has two corresponding symmetries: the first symmetry is the invariance of the 3-brane action
S
(3br)
emb [fA] under the bulk Poincaré group ISO(1, Damb − 1) with

f ′A(xµ(p)) = ΛA
B fB(xµ(p)) + cA at a point p of WV sq (4.18)

for f ′A = Y ′A ◦ i ◦ (xµ)−1 and fA = Y A ◦ i ◦ (xµ)−1 , (4.19)

where ΛA
B and cA denote each element of the bulk Lorentz group SO(1, Damb − 1), and each

translation in MDamb , respectively.

Due to Eq. (4.19), the transformation fA → f ′A in Eq. (4.18) uses only the B⇒B′

transformation Y A → Y ′A while keeping the brane-chart xµ fixed. In other words, the above
ISO(1, Damb− 1) is exactly the same as the set of all coordinate transformations Y A → Y ′A

of the ambient manifold MDamb .

The second one is the invariance of the 3-brane action S
(3br)
emb [fA] under the 4D local -

reparametrization group Diff(4) (i.e., the symmetry group of General Relativity) with

x′µ(p) = Φµ
4D(x

ν(p)) and f ′A(x′µ(p)) = fA(xµ(p)) at the same point p (4.20)

for f ′A = Y A ◦ i ◦ (x′µ)−1 and fA = Y A ◦ i ◦ (xµ)−1 , (4.21)

where Φ4D ∈ Diff(4) corresponds to every general coordinate transformation of General
Relativity.

Due to Eq. (4.21), the transformation f ′A(x′) = fA(x) in Eq. (4.20) uses only the b⇒b′

transformation xµ → x′µ while keeping the bulk-chart Y A fixed. In other words, the above
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Diff(4) is exactly the same as the set of all coordinate transformations xµ → x′µ of the sub-
manifold WVsq. The insertion of Eq. (4.21) into Eq. (4.20) produces Y A(p) = f ′A(x′(p)) =
fA(x(p)), which means the invariance of Y A(p) under x(p) → x′(p). This transformation
law f ′A(x′) = fA(x) under x → x′ implies that each of fA=0,...,Damb−1 is a scalar field under
Diff(4). Note that the Nambu-Goto action for a bosonic string is the p br = 1 case in the
above generalization, having the similar kinds of symmetries [5, 7].

First, we deal with the Diff(4) invariance of the 3-brane action S
(3br)
emb [fA] more closely:

since the world volume WV sq exists in the ambient spacetime MDamb irrespective of the
b⇒b′ transformation x → x′ = Φ4D(x) in Eq. (4.20), the pair f ′A(x′) and fA(x) should be
simultaneously the solutions for the equation of motion. Thus, if the unprimed map fA(x) is

an extremum point of the unprimed action S
(3br)
emb [fA] (i.e., fA(x) obeys Hamilton’s principle

δS
(3br)
emb [fA] = 0), then the primed map f ′A(x′) is an extremum point of the primed action

S
(3br) ′
emb [f ′A] in the primed system (x′ρ, f ′A, L̂ ′

emb)

S
(3br) ′
emb [f ′A] =

∫

WVsq

d 4x′ L̂ ′
emb(f

′A, ∂ ′
ρf

′A, . . . ) , (4.22)

and vice versa.

The situation that both of f ′A(x′) and fA(x) are the solutions can be realized by the
sameness in the values of the two actions (called the “value invariance of the action”)

S
(3br) ′
emb [f ′A] = S

(3br)
emb [fA] , (4.23)

which leads to

L̂ ′
emb(f

′A, ∂ ′
ρf

′A, . . . ) = det(∂xµ/∂x′ρ)× L̂emb(f
A, ∂µf

A, . . . ) . (4.24)

Due to f ′A(x′) = fA(x) in Eq. (4.20), the primed metric γ ′
ρσ

def
= ∂ ′

ρf
′A∂ ′

σf
′BηbulkAB follows

the usual transformation law γ ′
ρσ = ∂xµ

∂x′ρ
∂xν

∂x′σ γµν for a (0, 2)-type tensor, which together with
det(γµν) 6= 0 in Eq. (4.12) implies

det(∂xµ/∂x′ρ) =
√

| det(γ ′
ρσ)| /

√
| det(γµν)| . (4.25)

Then, the Lagrangian Lemb defined as Lemb
def
= L̂emb /

√
| det(γµν)| is a scalar under Diff(4)

due to L′
emb(f

′A, ∂ ′
ρf

′A, . . . ) = Lemb(f
A, ∂µf

A, . . . ) unlike the scalar density L̂emb of weight

−1. Note that
√
| det(γµν)| is a function of ∂µf

A due to the definition γµν = ∂µf
A∂νf

BηbulkAB

in Eq. (4.10).

In addition, when the “form invariance of the Lagrangian density”

L̂ ′
emb(f

′A, ∂ ′
ρf

′A, . . . ) = L̂emb(f
′A, ∂ ′

ρf
′A, . . . ) (4.26)

(thus L′
emb(f

′A, ∂ ′
ρf

′A, . . . ) = Lemb(f
′A, ∂ ′

ρf
′A, . . . )) is fulfilled, the Euler-Lagrange equation

for the primed map f ′A(x′) has the same form as that for the unprimed map fA(x).
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Similarly, the ISO(1, Damb − 1) invariance of S
(3br)
emb [fA] consists of two parts, (a) the

value invariance of the action, and (b) the form invariance of the Lagrangian density. Due
to these value and form invariances, the invariance under a translation fA → fA + cA from
ISO(1, Damb−1) means that the Lagrangian density L̂emb (thus Lemb) does not contain any

derivative-free terms of fA (e.g., fAfBηbulkAB ), implying L̂emb = L̂emb(∂µf
A, . . . ).

From now on, the effective action S
(3br)
emb [fA] in Eq. (4.17) is expressed as the form using

the Diff(4)-invariant volume element d 4x
√

| det(γµν)|

S
(3br)
emb [fA] =

∫

WVsq

d 4x
√

| det(γµν)| Lemb(∂µf
A, . . . ) , (4.27)

where the Lagrangian Lemb can contain the UV cutoff Λcont in Eq. (3.4). The Lagrangian

Lemb of the 3-brane action S
(3br)
emb [fA] can have the form of

Lemb(∂µf
A, . . . ) = −T3br + L(der)

emb (∂µf
A, . . . ) , (4.28)

where T3br is the “energy density” or “three-brane tension” of the space 3-brane, which
corresponds to the Nambu-Goto action for a three-brane [5, 7].

The “derivative Lagrangian” L(der)
emb (∂µf

A, . . . ) in Eq. (4.28) does not have any constant

term. This derivative Lagrangian L(der)
emb can be originated from (i) internal interactions

between space quanta (e.g., elastic forces), and/or (ii) external interactions of space quanta

with other kind(s) of particles. This Lagrangian L(der)
emb can contain the Einstein-Hilbert term

d 2Λ
2
contR, where R is the Ricci scalar built from the induced metric γµν (d 2: constant).

The “embedding scalars” fA of the 3-brane action S
(3br)
emb [fA] are different in two ways

from ordinary scalars (e.g., pions π±, 0) in General Relativity, as follows:

First, unlike the ordinary scalars, the embedding scalars fA(x) appear in the metric
tensor γµν of the world volume WVsq through the definition γµν = ∂µf

A∂νf
BηbulkAB . As

a result, the embedding scalars fA also appear in the quantities depending on γµν , for

example, (i)
√
| det(γµν)| in the action S

(3br)
emb [fA], (ii) the Christoffel symbols Γρ

µν for the
covariant derivative ∇µ, and (iii) the inverse metric γρσ for contraction.

Second, unlike the ordinary scalars, the solution fA
sol(x

µ) of the equation δS
(3br)
emb [fA] = 0

is not an arbitrary function, but a 4DL embedding. This 4DL embedding fA
sol(x

µ) makes the
induced metric γµν a 4D metric of the signature (−,+,+,+). Then, the non-zero value of
the composite field γµν = ∂µf

A
sol∂νf

B
solη

bulk
AB may be interpreted as the “condensation” for the

covariant four-vectors ∂µf
A.

Now, we want to find the 4D-Lorentzian embedding fA(x) which makes the world volume
WV sq globally flat, that is, the induced metric

γµν(x
ρ(p)) = ηµν at every point p of WV sq . (4.29)

Due to the definition of γµν , the equality γµν = ηµν in Eq. (4.29) can be represented as the
partial differential equation (PDE) for the 4DL embedding fA

∂µf
A ∂νf

B ηbulkAB = ηµν . (4.30)
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This PDE for the embedding fA can be solved, when its derivatives ∂µf
A satisfy

∂µf
A = ΛA

Bµ everywhere on WV sq , (4.31)

where ΛA
B ∈ SO(1, Damb − 1), B 0 = 0 (i.e., the bulk time), and three different B i=1, 2, 3 ∈

{1, . . . , Damb − 1}. A simple example is ΛA
Bµ = δAµ , where δ

A
µ comes from the bulk Kronecker

delta. For ∂µf
A = ΛA

Bµ in Eq. (4.31), the induced metric is expressed as

γµν = ηbulkBµBν , (4.32)

which corresponds to the 4D Minkowski spacetime M4.

Because ∂νΛ
A
Bµ = 0 everywhere on WV sq, the integration of Eq. (4.31) leads to a linear

function of xµ

fA
lin(x) = ΛA

Bµ xµ + DA , (4.33)

where DA are independent of xµ.

Then, our remaining task is to check whether this linear embedding fA
lin(x) is a solution

of the Euler-Lagrange (E-L) equation, as follows: Hamilton’s principle using the Lagrangian

Lemb = −T3br + L(der)
emb in Eq. (4.28)

δS
(3br)
emb

δfA
[fA] = 0 (4.34)

produces the equation of motion for the space 3-brane (i.e., the E-L equation)

{
∂µ

[
T3br

√
| det(γρσ)| γµν∂νfBηbulkAB

]}
+ · · · = 0 with γρσ = ∂ρf

A∂σf
BηbulkAB , (4.35)

where the ellipsis · · · denotes the contribution of the derivative Lagrangian L(der)
emb .

If the energy density T3br of the space 3-brane is independent of xµ, then each term of
Eq. (4.35) can contain only the second or higher derivatives of fA (e.g., ∂µ∂νf

A). As a
result, each term of Eq. (4.35) vanishes for any linear function of xµ, for example, the linear
embedding fA

lin(x) = ΛA
Bµxµ +DA in Eq. (4.33).

Therefore, for the xµ-independent energy density T3br, the linear embedding fA
lin(x) is

the solution of the E-L equation in Eq. (4.35), implying the world volume WV sq is the 4D
Minkowski spacetime M4 due to the flat metric γµν = ηbulkBµBν induced by fA

lin(x).

Since the linear embedding fA
lin(x) satisfies the E-L equation irrespective of the value of

the xµ-independent T3br, the flat metric γµν = ηµν of the world volume WV sq exists for any
value of the uniform energy density T3br. This interesting feature distinguishes the 3-brane
action S

(3br)
emb [fA] from General Relativity.
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5 The Aim-At-Target (AAT) Method for Studying the

World Volume of the Space 3-Brane

In Sec. 4, since the space 3-brane occupies the ambient spacetime MDamb , the effective theory
S
(3br)
emb [fA] of the space 3-brane was built for the ambient spacetime MDamb through the field
fA(xµ) ∈ MDamb . The world volume (WV sq, γµν) of the space 3-brane is described by the

solution fA
sol for the equation of motion δS

(3br)
emb /δf

A = 0. Since this world volume (WV sq, γµν)
is the exact or true spacetime of our universe, it is important to know the solution fA

sol

describing our spacetime (WV sq, γµν).

In this section, we want to show a methodology for studying the world volume (WV sq, γµν)
by using a metric action Smet[gµν ] (see Table 1). The key point of this methodology is

that the solution fA
sol of δS

(3br)
emb /δf

A = 0 can be found by solving the different equation
∂µf

A∂νf
BηbulkAB = gµν when the new metric gµν satisfies gµν = γµν (= ∂µf

A
sol∂νf

B
solη

bulk
AB ). An

example of the methodology is the flat-metric case γµν = ηµν , whose treatment is shown
below Eq. (4.29). The details of our methodology are shown, as follows:

To study the world volume (WV sq, γµν) of the space 3-brane, we consider the solution

set Σtarget for the equation of motion
δS

(3br)
emb

δfA [fA] = 0 in Eq. (4.34)

Σtarget
def
= { fA

sol : 4DL embedding | (δS(3br)
emb /δf

A)[fA
sol] = 0 } ⊂ Fspace , (5.1)

where Fspace = {φA} is the function space, and the element fA
sol is called the “4D-Lorentzian

(4DL) solution.” For the given original action S
(3br)
emb [fA], the solution set Σtarget = {fA

sol} is
a fixed set in the function space Fspace. Note that Σtarget ∋ fA

lin for a uniform energy density
T3br (see around Eq. (4.34)).

By the way, since our methodology to study the solution set Σtarget = {fA
sol} is similar

to “a bullet fired at a fixed target in space” (see the discussions around Eq. (5.13)), the
solution set Σtarget = {fA

sol} is called the target (or target set) in the space Fspace = {φA}.
For an easy understanding, we show the tenors and the vehicles in the bullet-target (B-T)
metaphor

〈 Σbullet , Σtarget , Fspace 〉 ⇐⇒ 〈〈 bullet , target , space 〉〉 , (5.2)

where the “bullet” Σbullet will be defined in Eq. (5.9). Moreover, there are discussions about
the “rifle” (above Eq. (5.10)) and the “aim-of-the-rifle” (above Eq. (5.13)).

Through the definition γµν = ∂µf
A∂νf

BηbulkAB in Eq. (4.10), the target Σtarget = {fA
sol} in

Eq. (5.1) produces the set Σind of the induced metrics γµν with the signature (−,+,+,+)

Σind
def
= { γµν | γµν = ∂µf

A
sol ∂νf

B
sol η

bulk
AB for every fA

sol ∈ Σtarget } . (5.3)

Note that Σind ∋ ηµν for a uniform energy density T3br (see around Eq. (4.32)).
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Conversely, this “induced-metric set” Σind = {γµν} can produce the target set Σtarget =

{fA
sol}, because (i) the former set Σind = {γµν} produces the solution set Σ

(sol)
PDE of the partial

differential equation (PDE) for the embedding fA

Σ
(sol)
PDE

def
= { fA | ∂µfA∂νf

BηbulkAB = γµν for every γµν ∈ Σind } , (5.4)

and (ii) this “PDE solution set” Σ
(sol)
PDE contains the target set Σtarget = {fA

sol}, i.e.,

Σ
(sol)
PDE ⊃ Σtarget . (5.5)

The result Σ
(sol)
PDE ⊃ Σtarget in Eq. (5.5) suggests a hint about how to know the target set

Σtarget (⊂ Fspace), implying the importance of studying the induced-metric set Σind = {γµν}.
To study this set Σind = {γµν}, since its element γµν is a 4D Lorentzian metric, we consider
the theory Smet[gµν ] of a 4D Lorentzian metric gµν (rather than γµν)

Smet[ gµν ] =

∫

S4D
met

d 4x
√

| det(gµν)| Lmet(Λmet; gµν) , (5.6)

where (S 4D
met, gµν) is a 4D spacetime manifold, Lmet(Λmet; gµν) is the Lagrangian containing

the derivatives of gµν , and Λmet is the UV cutoff of the metric action Smet[gµν ] (see Table 1
for the role of Smet[gµν ]).

Since the metric action Smet[gµν ] in Eq. (5.6) neglects the microscopic behaviors of indi-
vidual space quanta (i.e., the underlying discreteness of the space 3-brane) like the original

action S
(3br)
emb [fA], we can assume the UV cutoff Λmet of the metric action Smet[gµν ] satisfies

Λmet . O(Λcont) , (5.7)

where Λcont is the UV cutoff of the original action S
(3br)
emb [fA] (see Eqs. (3.4) and (4.17)). The

spacetime manifold (S 4D
met, gµν) for the metric action Smet[gµν ] can be a good approximation

of the exact or true spacetime manifold (WVsq, γµν), which is an emergent object arising
from many space quanta in MDamb (see Eqs. (6.9), (6.10) and (6.11)).

Then, we can approach the induced-metric set Σind = {γµν} by using the solution set

Σ
(sol)
met of the equation δSmet

δgµν
[gµν ] = 0

Σ
(sol)
met

def
= { gsolµν | (δSmet/δgµν)[g

sol
µν ] = 0 } , (5.8)

which is called the cartridge (see above Eq. (5.10)). The solution gsolµν in Eq. (5.8) is called
the “solution metric.”

In order to study the target Σtarget = {fA
sol} in the space Fspace, we define the bullet

Σbullet (corresponding to the PDE solution set Σ
(sol)
PDE in Eq. (5.4))

Σbullet
def
= { fA | ∂µfA∂νf

BηbulkAB = gsolµν for every gsolµν ∈ Σ
(sol)
met } ⊂ Fspace (5.9)
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by using the cartridge Σ
(sol)
met = {gsolµν}. Since the bullet set Σbullet = {fA

bul} can overlap the
target set Σtarget = {fA

sol} in the function space Fspace = {φA} like the “bullet” of the B-T
metaphor “a bullet fired at a fixed target in space” (see Eq. (5.2)), the set Σbullet = {fA

bul} is
called the bullet.

In Eq. (5.9), the PDE ∂µf
A∂νf

BηbulkAB = gsolµν defines a transformation Σ
(sol)
met → Σbullet =

ΨPDE(Σ
(sol)
met ) like the rifle of the above B-T metaphor, which transforms its cartridge into the

metallic bullet. Thus, the “solution-metric set” Σ
(sol)
met = {gsolµν} and the PDE ∂µf

A∂νf
BηbulkAB =

gsolµν are called the cartridge (see below Eq. (5.8)), and the rifle firing the bullet Σbullet =

{fA
bul}, respectively. This “rifle PDE,” and the PDE for Σ

(sol)
PDE in Eq. (5.4) have the same

form
∂µf

A ∂νf
B ηbulkAB = qµν (qµν = gsolµν , γµν) , (5.10)

which is invariant under the bulk Poincaré group ISO(1, Damb − 1) with f ′A = ΛA
Bf

B + cA

(see Sec. 4).

Thus, if the “metric intersection (MI)” ΣMI
def
= Σ

(sol)
met ∩ Σind = {gMI

µν } contains an element

gMI⊗
µν = gsol⊗µν = γ⊗µν

(
= ∂µf

A
sol⊗ ∂νf

B
sol⊗ η

bulk
AB with fA

sol⊗ ∈ Σtarget = {fA
sol}

)
, (5.11)

then the bullet Σbullet = {fA
bul} shares the 4DL solution fA

sol⊗ with the target Σtarget = {fA
sol}.

Since the converse of this proposition is true, we have the equivalence that

ΣMI = Σ
(sol)
met ∩ Σind 6= ∅ if and only if ΣB∩T

def
= Σbullet ∩ Σtarget 6= ∅ , (5.12)

where ΣB∩T is called the “bullet-target (B-T) overlap.”

In Eq. (5.12), the B-T overlap ΣB∩T = Σbullet ∩Σtarget describes the manner in which the

target Σtarget = {fA
sol} of the original action S

(3br)
emb [fA] is overlapped by the bullet Σbullet =

{fA
bul} of the metric action Smet[gµν ]. Since the original action S

(3br)
emb [fA] is given to us (i.e.,

not changed arbitrarily by us), the target Σtarget in the B-T overlap ΣB∩T = Σbullet ∩ Σtarget

is treated as a fixed set in the function space Fspace = {φA}. Then, the B-T overlap ΣB∩T

represents the maximum knowledge about the fixed target Σtarget which we can obtain by
using the bullet Σbullet of the chosen action Smet[gµν ].

For example, the maximum B-T overlap Σ
(max)
B∩T = Σtarget (i.e., Σ

(max)
bullet ⊃ Σtarget) means

that we can know the whole of the target Σtarget by using the maximum bullet Σ
(max)
bullet .

However, the minimum overlap Σ
(min)
B∩T = ∅ (i.e., Σ

(min)
bullet ∩Σtarget = ∅) means that we cannot

know the target Σtarget through the minimum bullet Σ
(min)
bullet.

Fortunately, unlike the target Σtarget, the bullet Σbullet changes depending on which metric
action Smet[gµν ] we choose (see Eqs. (5.8) and (5.9)). Thus, this metric action Smet[gµν ]
corresponds to “the aim of the rifle at the target” of the above B-T metaphor “a bullet fired
at a fixed target in space.” Then, the metric action Smet[gµν ] is called the aim-of-the-rifle.

Through the dependence of Σbullet on Smet[gµν ], the B-T overlap ΣB∩T = Σbullet∩Σtarget in
Eq. (5.12) depends on the metric action Smet[gµν ]. In other words, the metric action Smet[gµν ]
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Table 1: The Outline of the Aim-At-Target (AAT) Method for ΣB∩T 6= ∅

Action Name Role

S
(3br)
emb [fA] Original action The “true theory” of the space 3-brane within MDamb

S
(ovlp)
met [gµν ] Overlapping action

{
(a)ME : a “mere tool” for knowing Σtarget of S

(3br)
emb

(b) PE : producing a “constitutive equation”




Caution : the motion of the space 3-brane in MDamb is described by either

(a′) the target Σtarget or (b
′) the B-T overlap Σ

(ovlp)·PE
B∩T , depending on

the role of the overlapping action S
(ovlp)
met [gµν ] (see the text).




produces the bullet Σbullet, and this bullet Σbullet produces the B-T overlap ΣB∩T, i.e.,

Smet[gµν ] −→ Σbullet −→ ΣB∩T (= Σbullet ∩ Σtarget) . (5.13)

Since this sequence in Eq. (5.13) implies that the metric action Smet[gµν ] determines the B-T
overlap ΣB∩T, various metric actions Smet[gµν ] are classified by their B-T overlap ΣB∩T into

two types, (i) the “overlapping” metric action S
(ovlp)
met [gµν ] satisfying ΣB∩T 6= ∅, and (ii) the

“non-overlapping” metric action S
(6ovlp)
met [gµν ] satisfying ΣB∩T = ∅.

Because a non-overlapping action S
(6ovlp)
met [gµν ] has its empty B-T overlap Σ

(6ovlp)
B∩T = ∅ (=

Σ
(min)
B∩T ), the solution set Σtarget = {fA

sol} of the original action S
(3br)
emb [fA] cannot be known by

using the non-overlapping bullet Σ
(6ovlp)
bullet (see above). Thus, this undesirable action S

(6ovlp)
met [gµν ]

should be modified.

Then, through the dependence of Σbullet on Smet[gµν ], we can find a suitable overlapping

action S
(ovlp)
met [gµν ] by making ΣB∩T 6= ∅, namely, by changing (i) the form of the metric

action Smet[gµν ] and (ii) the values of its parameters. As a result, we can (partially) know

the target Σtarget = {fA
sol} by using the bullet Σ

(ovlp)
bullet of the overlapping action S

(ovlp)
met [gµν ].

This methodology for knowing the target Σtarget by trying the aim-of-the-rifle Smet[gµν ] is
called the “Aim-At-Target (AAT) method.”

For a better understanding of this AAT method, we summarize it for a non-empty B-T
overlap ΣB∩T 6= ∅ (see Table 1), as follows: first, the AAT method uses the two actions

S
(3br)
emb [fA] and Smet[gµν ]. Second, since the original action S

(3br)
emb [fA] shows the truth (e.g.,

the equation of motion in MDamb) about the space 3-brane occupying MDamb , the 3-brane

action S
(3br)
emb [fA] is the “true theory” of the space 3-brane in MDamb .

Third, when the B-T overlap ΣB∩T = Σbullet ∩ Σtarget is not empty (i.e., ΣB∩T 6= ∅), the
metric action Smet[gµν ] can be desirable. Depending on the “mode of existence” (mathemat-

ical/physical), the overlapping metric action S
(ovlp)
met [gµν ] has two different implications:

• (a) An overlapping action S
(ovlp)
met [gµν ] has only the “mathematical existence (ME)”
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unlike the original action S
(3br)
emb [fA]: this overlapping action is called the “ME action”

S
(ME)
met [gµν ]. Due to its mathematical existence, this ME action S

(ME)
met [gµν ] cannot affect

the occurrence of any element fA
sol of the target Σtarget = {fA

sol} through the B-T overlap

Σ
(ovlp)·ME
B∩T . In other words, irrespective of the B-T overlap Σ

(ovlp)·ME
B∩T , every element fA

sol

of the target Σtarget still can occur in the ambient spacetime MDamb as a motion of the

space 3-brane. Therefore, the ME action S
(ME)
met [gµν ] making the overlap Σ

(ovlp)·ME
B∩T is a

“mere tool” for knowing the target Σtarget of the true theory S
(3br)
emb [fA].

• (b) An overlapping action S
(ovlp)
met [gµν ] has the “physical existence (PE)” like the original

action S
(3br)
emb [fA]: this overlapping action is called the “PE action” S

(PE)
met [gµν ]. Due to

its physical existence, this PE action S
(PE)
met [gµν ] allows (forbids) the occurrence of an

element fA
sol of the target Σtarget, when this 4DL solution fA

sol does (not) belong to

the B-T bullet Σ
(ovlp)·PE
B∩T . In other words, only the element fA

ove of the B-T overlap

Σ
(ovlp)·PE
B∩T = {fA

ove} (⊂ Σtarget) can occur in the ambient spacetime MDamb as a motion
of the space 3-brane. Since this decrease in “set of possible motions” from Σtarget to

Σ
(ovlp)·PE
B∩T (⊂ Σtarget) is similarly found for constitutive equations (e.g., Ohm’s law), the

PE action S
(PE)
met [gµν ] making the overlap Σ

(ovlp)·PE
B∩T produces a “constitutive equation”

specific to the space 3-brane in MDamb .

Our AAT method using the metric action S
(ovlp)
met [gµν ] seems similarly found in General

Relativity: in General Relativity, the locally inertial coordinates (LIC) ξα̂ are studied by

solving the PDE ∂µξ
α̂∂νξ

β̂ηα̂β̂ = gsol
µν with (δSEH/δgµν)[g

sol
µν ] = 0 (this situation corresponds

to Eqs. (5.8) and (5.9)). Moreover, these LIC ξα̂ are similar to the embedding fA of the

action S
(3br)
emb [fA], because (i) ξα̂ appear in the “GR metric” gµν = ∂µξ

α̂∂νξ
β̂ηα̂β̂ like fA in

γµν = ∂µf
A∂νf

BηbulkAB , and (ii) ξα̂ form an immersion of xµ like fA due to rank(∂µξ
α̂) =

rank(∂µf
A) = 4, where ∂µξ

α̂ is the vierbein. Then, due to these similarities between ξα̂

and fA, the analogical reasoning can support that the embedding fA has the metric action
S
(ovlp)
met [gµν ] like the LIC ξα̂ having SEH[gµν ]. For the use of these actions S

(ovlp)
met [gµν ] and

SEH[gµν ], see between Eqs. (5.14) and (5.24).

Mathematically, the AAT method using the overlapping action S
(ovlp)
met [gµν ] consists of two

main steps: (i) finding a solution gsolµν of (δS
(ovlp)
met /δgµν)[gµν ] = 0 as in Eq. (5.8), and next (ii)

finding a solution fA
bul of the rifle PDE ∂µf

A∂νf
BηbulkAB = gsolµν as in Eq. (5.9).

Since this “two-step AAT method” is a method for solving the two coupled equations
(δS

(ovlp)
met /δgµν)[gµν ] = 0 and ∂µf

A∂νf
BηbulkAB = gµν , we can try a different method, i.e., the

insertion of the latter equation ∂µf
A∂νf

BηbulkAB = gµν into the former

δS
(ovlp)
met

δgµν

∣∣∣∣∣
repl

def
=

δS
(ovlp)
met

δgµν
[∂µf

A∂νf
BηbulkAB ] = 0 , (5.14)

where the symbol |repl denotes the replacement gµν ⇛ ∂µf
A∂νf

BηbulkAB . This new equation

δS
(ovlp)
met /δgµν |repl = 0 is called the “replaced-equation” (cf. Eqs. (7.14) and (7.21)).
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Because solving Eq. (5.14) is the same as solving the rifle PDE ∂µf
A∂νf

BηbulkAB = gsolµν of
the two-step AAT method, the solution set of Eq. (5.14)

Σ
(sol)
ovlp

def
= { fA | δS(ovlp)

met /δgµν |repl = 0 } (5.15)

is equal to the bullet set Σ
(ovlp)
bullet of the overlapping action S

(ovlp)
met [gµν ], namely,

Σ
(sol)
ovlp = Σ

(ovlp)
bullet . (5.16)

In Eq. (5.14), the replacement |repl was applied after the functional derivative δ/δgµν .
Here, we apply the replacement |repl before the derivative δ/δgµν . This produces a new
functional of the embedding fA

S̃
(ovlp)
met [fA]

def
= S

(ovlp)
met [gµν ]|repl = S

(ovlp)
met [∂µf

A∂νf
BηbulkAB ] , (5.17)

implying the Lagrangian L̃(ovlp)
met of this new functional S̃

(ovlp)
met [fA] satisfies (cf. Eq. (4.27))

L̃(ovlp)
met (∂µf

A, . . . )
def
= L(ovlp)

met (gµν , . . . )|repl . (5.18)

Of course, it is possible that the original action S
(3br)
emb [fA] in Eq. (4.27) takes the form of the

new functional S̃
(ovlp)
met [fA] = S

(ovlp)
met [∂µf

A∂νf
BηbulkAB ] (see Eq. (5.25)).

After the replacement in Eq. (5.17)

gµν = ∂µf
A∂νf

BηbulkAB , (5.19)

the functional derivative δ/δgµν in Eq. (5.14) is replaced with δ/δ(∂µf
A∂νf

BηbulkAB ). Thus,
δS

(ovlp)
met

δgµν
|repl = 0 in Eq. (5.14) is expressed as

δS̃
(ovlp)
met

δ(∂µfA∂νfBηbulkAB )
[fA] = 0 , (5.20)

which is different from the usual variational equation

δS̃
(ovlp)
met

δfA
[fA] = 0 . (5.21)

Since
δS̃

(ovlp)
met

δ(∂µfA∂νfBηbulkAB )
= 0 in Eq. (5.20) is the same as

δS
(ovlp)
met

δgµν
|repl = 0 in Eq. (5.14), the

solution set Σ̃
(sol)
ovlp of the former equation

Σ̃
(sol)
ovlp

def
= { fA | δS̃(ovlp)

met /δ(∂µf
A∂νf

BηbulkAB ) = 0 } (5.22)

satisfies
Σ̃

(sol)
ovlp = Σ

(sol)
ovlp = Σ

(ovlp)
bullet (see Eq. (5.16)) . (5.23)
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Due to the equality Σ̃
(sol)
ovlp = Σ

(ovlp)
bullet in Eq. (5.23), the bullet Σ

(ovlp)
bullet is also produced by the

odd-looking equation δS̃
(ovlp)
met /δ(∂µf

A∂νf
BηbulkAB ) = 0 in Eqs. (5.20) and (5.22). Therefore, this

equation δS̃
(ovlp)
met /δ(∂µf

A∂νf
BηbulkAB ) = 0 can replace the equation of motion δS

(3br)
emb /δf

A = 0

within the overlapping B-T overlap Σ
(ovlp)
B∩T = Σ

(ovlp)
bullet ∩ Σtarget ( 6= ∅)— the “equivalence”

between these two equations within Σ
(ovlp)
B∩T . This conclusion becomes more evident, when we

compare the bullet Σ
(ovlp)
bullet = Σ̃

(sol)
ovlp = {fA| δS̃(ovlp)

met /δ(∂µf
A∂νf

BηbulkAB ) = 0 } with the target

Σtarget = {fA| δS(3br)
emb /δf

A = 0 } in Eq. (5.1).

In the above conclusion, we should be careful in interpreting the odd-looking equation
δS̃

(ovlp)
met /δ(∂µf

A∂νf
BηbulkAB ) = 0: this odd-looking equation must not be interpreted as the

equation of motion for the space 3-brane, because (i) the space 3-brane already has its own

equation of motion δS
(3br)
emb /δf

A = 0, and (ii) the solution set Σ̃
(sol)
ovlp (= Σ

(ovlp)
bullet ) in Eq. (5.22)

may not be equal to the target Σtarget (see Eq. (5.28)). Then, the odd-looking equation

δS̃
(ovlp)
met /δ(∂µf

A∂νf
BηbulkAB ) = 0 may be interpreted, at best, as the constitutive equation

specific to the space 3-brane (see above). Despite this, if we try to know the target Σtarget by

using the new functional S̃
(ovlp)
met [fA], the odd-looking equation δS̃

(ovlp)
met /δ(∂µf

A∂νf
BηbulkAB ) = 0

should be used rather than the usual variational equation δS̃
(ovlp)
met /δfA = 0.

However, in General Relativity, it is well known that (δSEH/δgµν)| gµν= ∂µξα̂∂νξβ̂ηα̂β̂
= 0 if

and only if δS̃EH/δ(∂µξ
α̂) = 0, where ∂µξ

α̂ is the vierbein satisfying gµν = ∂µξ
α̂∂νξ

β̂ηα̂β̂. (For

the mathematical proof, see Ref. [2].) From the similarities of fA to ξα̂ (see above), we easily
confirm the equivalence that

δS̃
(ovlp)
met

δ(∂µfA∂νfBηbulkAB )
[fA] = 0 if and only if

δS̃
(ovlp)
met

δ(∂µfA)
[fA] = 0 . (5.24)

For the special case of

S
(3br)
emb [fA] = S̃

(ovlp)
met [fA] = S

(ovlp)
met [∂µf

A∂νf
BηbulkAB ] (see Eq. (5.17)) , (5.25)

the usual variational equation δS̃
(ovlp)
met /δfA = 0 in Eq. (5.21) becomes the equation of motion

for the space 3-brane. According to

δS̃
(ovlp)
met /δfA =

[
δS̃

(ovlp)
met /δ(∂µf

C∂νf
DηbulkCD )

]
×

[
δ(∂µf

M∂νf
NηbulkMN )/δf

A
]

(5.26)

≡ − 2 ∂µ

{[
δS̃

(ovlp)
met /δ(∂µf

C∂νf
DηbulkCD )

]
∂νf

MηbulkAM

}
, (5.27)

the odd-looking equation δS̃
(ovlp)
met /δ(∂µf

A∂νf
BηbulkAB ) = 0 is not a necessary but sufficient

condition for the equation of motion δS̃
(ovlp)
met /δfA = 0.

This means
Σ̃

(sol)·sp
ovlp $ Σsp

target (thus Σ
(ovlp)·sp
B∩T $ Σsp

target) , (5.28)

where the superscript “sp” denotes the special case S
(3br)
emb [fA] = S̃

(ovlp)
met [fA], and Σsp

target
def
=

{fA
sol| (δS̃(ovlp)

met /δfA)[fA
sol] = 0 } is the target set for this special case. The inequality Σ̃

(sol)·sp
ovlp $
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Table 2: Symmetries in the Aim-At-Target (AAT) Method

Action ISO(1, Damb − 1) Diff(4)

S
(3br)
emb [fA] O O

S
(ovlp)
met [gµν ] O O (X† )

(O : preserving , X : breaking )
† The Diff(4) invariance may be broken by an ME action S

(ME)
met [gµν ],

as said in the text.

Σsp
target in Eq. (5.28) supports the above statement that δS̃

(ovlp)
met /δ(∂µf

A∂νf
BηbulkAB ) = 0 must

not be interpreted as the equation of motion for the space 3-brane.

Due to Σ̃
(sol)·sp
ovlp $ Σsp

target, the special case S
(3br)
emb [fA] = S̃

(ovlp)
met [fA] in Eq. (5.25) does not

have the “defect” of
Σ̃

(sol)
ovlp − Σtarget 6= ∅ , (5.29)

which means that the bullet set Σ̃
(sol)
ovlp in Eq. (5.22) contains elements outside the target

set Σtarget = {fA
sol}. This suggests defining the “contained metric action” S

(cont)
met [gµν ] as an

overlapping action S
(ovlp)
met [gµν ] satisfying Σ̃

(sol)
ovlp $ Σtarget (i.e., without the defect of Σ̃

(sol)
ovlp −

Σtarget 6= ∅). The overlapping action S
(ovlp)
met [gµν ] of the special case in Eq. (5.25) is an

example of the contained action.

As implied in Eq. (5.29), for evaluating an ME action S
(ME)
met [gµν ], we may use the “bullet-

target (B-T) difference”

∆BT
def
= Σbullet − Σtarget (5.30)

together with the B-T overlap ΣB∩T = Σbullet ∩ Σtarget in Eq. (5.12). For example, a “large”
B-T overlap ΣB∩T and a “small” B-T difference ∆BT can result in a “good” ME action
S
(ME)
met [gµν ].

6 The Symmetries and the Forms of the Overlapping

Metric Action in the AAT Method

Now, in terms of symmetries, we study the forms of the overlapping metric action S
(ovlp)
met [gµν ]

(see Table 2). The B-T overlap Σ
(ovlp)
B∩T = Σ

(ovlp)
bullet ∩Σtarget represents the maximum knowledge

which we can obtain about the target Σtarget = {fA
sol} of the original action S

(3br)
emb [fA] by

using the chosen metric action S
(ovlp)
met [gµν ].

First, we consider the symmetries of the target Σtarget = {fA
sol} of the original action

S
(3br)
emb [fA], as follows: since the original action S

(3br)
emb [fA] is invariant under ISO(1, Damb−1)
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and Diff(4), the definition of the invariance of this action S
(3br)
emb [fA] implies that the solution

set Σtarget = {fA
sol} of the action S

(3br)
emb [fA] is also invariant under ISO(1, Damb − 1) and

Diff(4) (see Sec. 4). By definition, the induced-metric set Σind = {γµν} in Eq. (5.3) is
invariant under ISO(1, Damb − 1) and Diff(4). Note γ ′

µν = γµν under ISO(1, Damb− 1), and

γ ′
ρσ = ∂xµ

∂x′ρ
∂xν

∂x′σ γµν under Diff(4).

Next, we consider the symmetries of the bullet Σ
(ovlp)
bullet = {fA

bul} of the overlapping action

S
(ovlp)
met [gµν ], as follows: since gµν = ∂µf

A∂νf
BηbulkAB in Eq. (5.19) is already invariant under

ISO(1, Damb − 1), the action S
(ovlp)
met [gµν ] has the ISO(1, Damb − 1) invariance. This implies

its solution-metric set Σ
(sol)·ovlp
met = {gsolµν} also has the ISO(1, Damb − 1) invariance.

Then, since both gsolµν and ∂µf
A∂νf

BηbulkAB are invariant under ISO(1, Damb − 1), Σ
(ovlp)
bullet ∋

f ′A = ΛA
Bf

B+cA is equivalent to Σ
(ovlp)
bullet ∋ fA, which means the bullet Σ

(ovlp)
bullet = {fA

bul} has the
ISO(1, Damb− 1) invariance like the target Σtarget = {fA

sol}. Therefore, since the intersection
of two g-invariant sets is g-invariant (g: a group), the B-T overlap Σ

(ovlp)
B∩T = Σ

(ovlp)
bullet ∩Σtarget

is invariant under ISO(1, Damb − 1).

Before studying the Diff(4) symmetry properties, we need to re-consider the (i) mathe-

matical and (ii) physical existences of the overlapping action S
(ovlp)
met [gµν ] (see the summary

of the AAT method in Sec. 5):

First, we study an ME action S
(ME)
met [gµν ], which is a mere tool for knowing the target

Σtarget. Since this mere tool S
(ME)
met [gµν ] cannot forbid any element fA

sol of the target set

Σtarget = {fA
sol}, we can use a Diff(4)-breaking or a Diff(4)-preserving action S

(ME)
met [gµν ] as

long as this ME action S
(ME)
met [gµν ] provides a considerable information about the target Σtarget.

For example, we can use a Diff(4)-breaking ME action S
(ME)
met [gµν ] as a mere tool for Σtarget.

Since this action S
(ME)
met [gµν ] is not invariant under Diff(4) unlike the original action S

(3br)
emb [fA],

the solution set Σ
(sol)·ME
met of the metric action S

(ME)
met [gµν ] has an element gsol♮µν satisfying

gsol♮µν ∈ Σ
(sol)·ME
met but gsol♮ ′ρσ 6∈ Σ

(sol)·ME
met for an element Φ♮

4D of Diff(4) , (6.1)

where gsol♮ ′ρσ = ∂xµ

∂x′ρ
∂xν

∂x′σ g
sol♮
µν with x′ = Φ♮

4D(x). This means the solution-metric set Σ
(sol)·ME
met =

{gsol·ME
µν } breaks the Diff(4) invariance.

Despite this, if the Diff(4)-breaking set Σ
(sol)·ME
met = {gsol·ME

µν } contains a “Diff(4) gauge

slice” Σ
(GS)
ind of the Diff(4)-preserving set Σind = {γµν}, we can still know the target Σtarget =

{fA
sol} by, for example, (i) finding a solution fA

sol (∈ Σtarget) of the rifle PDE ∂µf
A∂νf

BηbulkAB =

gsol·ME
µν ∈ Σ

(GS)
ind , and (ii) applying Diff(4) to this solution fA

sol, which forms its “Diff(4) gauge
orbit” 〈fA

sol〉diff . This aspect is similarly found in a gauge theory, where the gauge invariance
is broken by adding a gauge-fixing term.

Thus, the breaking of the Diff(4) invariance by the ME action S
(ME)
met [gµν ] may not be a

serious problem for knowing the target Σtarget (see the symbol X in Table 2). Of course, we

can use a Diff(4)-preserving ME action S
(ME)
met [gµν ] as another mere tool for the target Σtarget.
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Next, we study a PE action S
(PE)
met [gµν ], which has the physical existence unlike the ME

action S
(ME)
met [gµν ]. Then, since the PE action S

(PE)
met [gµν ] produces the constitutive equation,

only the element fA
ove of the B-T overlap Σ

(PE)
B∩T = {fA

ove} (⊂ Σtarget) can be a motion of the
space 3-brane in MDamb , as said in Sec. 5.

The PE action S
(PE)
met [gµν ] can determine the Diff(4) symmetry property of the B-T overlap

Σ
(PE)
B∩T = Σ

(PE)
bullet∩Σtarget through its bullet Σ

(PE)
bullet: for example, we consider a Diff(4)-breaking

PE action S
(PE)
met [gµν ], whose solution-metric set Σ

(sol)·PE
met has an element gsol♯µν satisfying

gsol♯µν ∈ Σ
(sol)·PE
met but gsol♯ ′ρσ 6∈ Σ

(sol)·PE
met for an element Φ♯

4D of Diff(4) , (6.2)

where gsol♯ ′ρσ = ∂xµ

∂x′ρ
∂xν

∂x′σ g
sol♯
µν with x′ = Φ♯

4D(x). This means the breaking of the Diff(4) invari-

ance by the solution-metric set Σ
(sol)·PE
met = {gsol·PEµν }.

Suppose that a 4DL solution fA
sol♯ (∈ Σtarget) of the original action S

(3br)
emb [fA] satisfies

∂µf
A
sol♯ ∂νf

B
sol♯ η

bulk
AB = gsol♯µν (i.e., fA

sol♯ ∈ Σ
(PE)
bullet) , (6.3)

which means the induced metric γ♯µν = ∂µf
A
sol♯∂νf

B
sol♯η

bulk
AB (cf. Eq. (4.10)) has the equality

γ♯µν = gsol♯µν . (6.4)

Then, the transformed 4DL solution f ′A
sol♯(x

′) = fA
sol♯(x) with x

′ = Φ♯
4D(x) satisfies

∂ ′
ρf

′A
sol♯ ∂

′
σf

′B
sol♯ η

bulk
AB = gsol♯ ′ρσ , (6.5)

where f ′A
sol♯ (∈ Σtarget) is an element of the Diff(4) gauge orbit 〈fA

sol♯〉diff .
Due to gsol♯ ′ρσ 6∈ Σ

(sol)·PE
met in Eq. (6.2), the transformed 4DL solution f ′A

sol♯ (∈ Σtarget) does

not belong to the bullet Σ
(PE)
bullet (i.e., f

′A
sol♯ 6∈ Σ

(PE)
bullet) unlike the original 4DL solution fA

sol♯ in

Eq. (6.3). Thus, like the bullet Σ
(PE)
bullet, the B-T overlap Σ

(PE)
B∩T describing the space 3-brane

breaks the Diff(4) invariance, because

Σ
(PE)
B∩T ∋ fA

sol♯ but Σ
(PE)
B∩T 6∋ f ′A

sol♯ . (6.6)

To sum up, the Diff(4)-breaking PE action S
(PE)
met [gµν ] may imply the Diff(4)-breaking B-T

overlap Σ
(PE)
B∩T.

However, the Diff(4)-breaking B-T overlap Σ
(PE)
B∩T can cause a physical problem of being

contrary to the observed General Relativity: since only the element fA
ove of the B-T overlap

Σ
(PE)
B∩T = {fA

ove} can occur in the ambient spacetime MDamb as a motion of the space 3-brane

(see Sec. 5), the latter result Σ
(PE)
B∩T 6∋ f ′A

sol♯ in Eq. (6.6) forbids γ♯ ′ρσ = ∂ ′
ρf

′A
sol♯∂

′
σf

′B
sol♯η

bulk
AB to

occur in MDamb unlike the former Σ
(PE)
B∩T ∋ fA

sol♯, which allows γ♯µν = ∂µf
A
sol♯∂νf

B
sol♯η

bulk
AB to occur

in MDamb . Thus, due to the approximation gµν ≈ γµν in Eq. (4.14), g♯ ′
ρσ (≈ γ♯ ′ρσ) cannot
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occur in MDamb unlike g♯
µν (≈ γ♯µν). This means that the primed GR metric g♯ ′

ρσ cannot be a
solution of General Relativity unlike the unprimed one g♯

µν . As a result, General Relativity
should be a Diff(4)-breaking theory, which is falsified by observations.

Therefore, it is natural to use only a Diff(4)-preserving PE action S
(PE)
met [gµν ] which pro-

duces the Diff(4)-preserving B-T overlap Σ
(PE)
B∩T. In addition, since it is not compulsory that

the ME action S
(ME)
met [gµν ] breaks the Diff(4) invariance, we can choose to use a Diff(4)-

preserving ME action S
(ME)
met [gµν ]. To sum up, we use only a Diff(4)-invariant case of the

overlapping action S
(ovlp)
met [gµν ], irrespective of whether it is an ME or PE action.

For a Diff(4)-invariant overlapping action S
(ovlp)
met [gµν ], due to the definition Σ

(ovlp)
B∩T

def
=

Σ
(ovlp)
bullet ∩ Σtarget, every element fA

ove of the B-T overlap Σ
(ovlp)
B∩T = {fA

ove} satisfies

fA
ove = fA

bul = fA
sol with fA

bul ∈ Σ
(ovlp)
bullet and fA

sol ∈ Σtarget , (6.7)

which results in
∂µf

A
ove ∂νf

B
ove η

bulk
AB = gsolµν = γµν . (6.8)

From Eq. (6.8), we obtain the equality for the solution metric

gsolµν = γµν for every element fA
ove of Σ

(ovlp)
B∩T (cf. Eq. (4.14)) . (6.9)

This equality gsolµν = γµν within the B-T overlap Σ
(ovlp)
B∩T means that, below the “metric cutoff ”

Λmet, the metric gµν can describe the “emergent field” γµν (= ∂µf
A
sol∂νf

B
solη

bulk
AB ), which is

derived from the locations (∈ MDamb) of space quanta occupying MDamb .

Moreover, due to the equality gsolµν = γµν , the spacetime S 4D
met having this metric gsolµν is

exactly the same as the world volume WV sq of the space 3-brane, i.e.,

S 4D
met = WV sq for every element fA

ove of Σ
(ovlp)
B∩T (cf. Eq. (4.13)) . (6.10)

This equality S 4D
met = WV sq within the B-T overlap Σ

(ovlp)
B∩T means that, below the cutoff Λmet,

the spacetime S 4D
met with the metric gsolµν can describe the “emergent spacetime” WV sq, which

is formed by the world lines WLsq (⊂ MDamb) of many space quanta in MDamb .

In sum, by Eqs. (6.9) and (6.10), we have the equality for the two spacetime manifolds

(S 4D
met, g

sol
µν ) = (WVsq, γµν) within Σ

(ovlp)
B∩T (below Λmet) . (6.11)

Exact values for the spacetime measurements are provided by the exact or true spacetime
(WV sq, γµν), which is the 4D emergent spacetime occupying the ambient spacetime MDamb .

Now, for the Diff(4)-preserving overlapping action S
(ovlp)
met [gµν ], we consider the form of

its Lagrangian L(ovlp)
met (Λmet; gµν) more closely: as in usual effective theories, this Lagrangian

L(ovlp)
met having its own UV cutoff Λmet (cf. Eq. (5.6)) can be expressed as

L(ovlp)
met (Λmet; gµν) =

∑
ck

Ok

Λdk−4
met

, (6.12)
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where the coefficient ck has no mass dimension, and the local operator Ok of mass dimension
dk consists of the metric gµν and its derivatives. To make L(ovlp)

met (Λmet; gµν) invariant under
Diff(4), we assume every operator Ok is invariant under Diff(4). Since the Diff(4) invariance

of the overlapping action S
(ovlp)
met [gµν ] is shared by General Relativity, we easily expect this

metric action S
(ovlp)
met [gµν ] to contain the Einstein-Hilbert action (see Eq. (6.17)).

Generally speaking, since the metric Lagrangian L(ovlp)
met having the derivatives of gµν

can contain at least one dimensionful parameter (say, ξmet) to maintain its mass dimension

[L(ovlp)
met ] = 4, the Lagrangian L(ovlp)

met becomes the function of the parameter ξmet, which has
a Laurent series for ξmet. Thus, this Laurent series with ξmet = Λmet can lead to the series
like Eq. (6.12), even when the effective-theory nature of L(ovlp)

met (Λmet; gµν) is not considered.

If we (i) observe at an energy Eobs (. Λmet), and (ii) neglect all the operators with
dk ≥ d negl, then the error εnegl has a size of O(Eobs/Λmet)

dnegl−4, implying

d negl ≈ 4 +
log εnegl

log(Eobs/Λmet)
. (6.13)

This leads to the approximate predictive power that a computation with the error εnegl
requires only a finite number of operators Ok up to the maximally allowed mass dimension
dmax (< d negl).

When the operator Ok in Eq. (6.12) contains N∂ derivatives ∂α and Ng metrics gµν ,
the Diff(4) invariance requires the operator Ok to possess 1

2
N∂ +Ng inverse metrics gµν for

contraction. The mass dimension of Ok satisfies

dk = [Ok] = [ (ĝ−1)
1
2
N∂+Ng × ∂N∂ × ĝNg ] = [ (ĝ dXdX)−

1
2
N∂ ] = N∂ , (6.14)

where the four symbols have correspondences ĝ−1 ↔ gµν , ∂ ↔ ∂µ, ĝ ↔ gµν and dX ↔ dxµ.

Since the number 1
2
N∂ +Ng of inverse metrics gµν should be an integer (≥ 0),

N∂ = 2× (integer) , (6.15)

implying dk is an even integer due to dk = N∂ in Eq. (6.14). Thus, the “overlapping

Lagrangian” L(ovlp)
met (Λmet; gµν) in Eq. (6.12) has the derivative expansion

L(ovlp)
met (Λmet; gµν) =

∑

dk : even

c dk Λ
4
metO

(
∂

Λmet

)dk

, (6.16)

where dk are non-negative even integers.

The overlapping Lagrangian L(ovlp)
met (Λmet; gµν) in Eq. (6.16) can have the form of

L(ovlp)
met = c 0Λ

4
met + c 2Λ

2
metR + c

(1)
4 R

2 + c
(2)
4 RµνR

µν + c
(3)
4 g

µν∇µR∇νR + · · · , (6.17)

where all the coefficients (e.g., c 0, c 2) are dimensionless, and both of the covariant derivative
∇µ and the curvature quantities (e.g., R) are built from the metric gµν (see Ref. [3]).
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7 The Effective Theory for the Universe: the Inclusion

of Matter

According to observations, our universe contains various particles (e.g., leptons) which are
different in kind from space quanta. To distinguish those particles from the space quanta, we
coin a new term occupant quantum (OQ) denoting any particle which (i) differs from space
quanta, and (ii) occupies the space 3-brane without departing from it (i.e., the confinement
of the occupant quantum to the space 3-brane).

To sum up, our universe can be regarded as a composite system which consists of space
quanta and occupant quanta, moving within the ambient spacetime MDamb .

Since space quantum is more fundamental than graviton, there can be a scenario that
every particle of the Standard Model (SM) is a bound state of occupant quanta. However,
there can be another scenario that each SM particle is identified with a single occupant
quantum. Besides these, there can be various other scenarios.

Despite this, from now on, we will consider only the low-energy spectrum (e.g., the SM
particles) of occupant quanta which can be observed at low enough energies: since each of
these observable occupant quanta is confined to the world volume WV sq of the space 3-brane,
it is described by a function ΨOQ whose domain is the world volume WV sq. For a brane-chart
xµ of WV sq, the “brane-field” ΨOQ on WV sq is represented as the function ΨOQ(x

µ) of the
four coordinates xµ.

The value ΨOQ(x
µ(p)) at a point p ∈ WV sq is either (i) a “brane-tensor of a type”

(e.g., a scalar) of WVsq, or (ii) a “brane-spinor” (e.g., a Weyl spinor) of the “brane Lorentz
group” SO(1, 3) at the point p. The vierbein eaµ satisfying eaµe

b
νηab = γµν can be used

in the action for brane-spinors. Suppose that the bosons and fermions of the Standard
Model are described by their corresponding brane-fields Ψ

(SM)
OQ . Like the induced metric

γµν(x), all the SM brane-fields Ψ
(SM)
OQ (x) are invariant (i.e., “bulk-scalars”) under every B⇒B′

transformation Y A → Y ′A ∈ ISO(1, Damb−1) between the bulk-charts Y A and Y ′A ofMDamb .

The action S
(3br)
OQ for the observable occupant quanta ΨOQ(x) can be expressed as

S
(3br)
OQ [ΨOQ, f

A]
def
=

∫

WVsq

d 4x
√

| det(γµν)| L(3br)
OQ (ΨOQ, ∂µf

A, . . . ) , (7.1)

where γµν = ∂µf
A∂νf

BηbulkAB . This action S
(3br)
OQ [ΨOQ, f

A] is assumed to be invariant under

ISO(1, Damb − 1) and Diff(4) like the 3-brane action S
(3br)
emb [fA]. Of course, the action S

(3br)
OQ

in Eq. (7.1) may depend on a “bulk-field” Ψbulk(Y
A) of the bulk spacetime MDamb , whose

field point Y A should satisfy Y A = fA(xµ). For example, when Ψbulk(Y
A) is a bulk-tensor

(e.g., a Damb-dimensional vector), it can appear in the action S
(3br)
OQ through its pullback

(f ∗Ψbulk)(x
µ) at sufficiently low energies.

Finally, the “original” universe action S
(3br)
univ [f

A,ΨOQ] at low energies is written as

S
(3br)
univ [f

A,ΨOQ] = S
(3br)
emb [fA] + S

(3br)
OQ [ΨOQ, f

A] , (7.2)
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where the integral for the 3-brane action S
(3br)
emb [fA] shares the same set WV sq with that for

S
(3br)
OQ [ΨOQ, f

A] in Eq. (7.1).

For the original action S
(3br)
univ [f

A,ΨOQ] in Eq. (7.2), its universe target Σ
(univ)
target = {fA

sol}
is defined as

Σ
(univ)
target

def
= { fA

sol : 4DL embedding | (δS
(3br)
univ /δf

A)[fA
sol,Ψ

sol
OQ] = 0 } ⊂ Fspace , (7.3)

where (fA
sol,Ψ

sol
OQ) is a solution of the coupled Euler-Lagrange (E-L) equations

(δS
(3br)
univ /δf

A)[fA,ΨOQ] = 0 and (δS
(3br)
univ /δΨOQ)[f

A,ΨOQ] = 0 . (7.4)

Although the element fA
sol of the set Σ

(univ)
target = {fA

sol} satisfies the different equation (i.e.,

δS
(3br)
univ /δf

A = 0) from δS
(3br)
emb /δf

A = 0 for the target Σtarget in Eq. (5.1), the solution fA
sol in

Eq. (7.3) is still called a “4D-Lorentzian (4DL) solution.”

Since the universe target Σ
(univ)
target in Eq. (7.3) is defined similarly to the target Σtarget, we

can similarly apply the AAT method in order to know the universe target Σ
(univ)
target = {fA

sol},
as follows: as in Sec. 5, the knowledge about the universe target Σ

(univ)
target is related to the

universe induced-metric set

Σ
(univ)
ind

def
= { γµν | γµν = ∂µf

A
sol ∂νf

B
sol η

bulk
AB for every fA

sol ∈ Σ
(univ)
target } . (7.5)

To study this universe induced-metric set Σ
(univ)
ind = {γµν} as in Sec. 5, we impose three

requirements on the “overlapping” universe action S
(ovlp)
univ =

∫
S4D
univ

d 4x L̂ (ovlp)
univ :

• For the study of Σ
(univ)
ind = {γµν}, the overlapping action S

(ovlp)
univ is a functional of the

4D Lorentzian metric gµν on the 4D manifold S 4D
univ.

• The spacetime S 4D
univ for the action S

(ovlp)
univ =

∫
S4D
univ

d 4x
√

| det(gµν)| L(ovlp)
univ satisfies

S 4D
univ = WVsq (cf. Eqs. (6.10) and (7.25)) . (7.6)

• The solution gsol·Uµν (called the “U-metric”) of the equation δS
(ovlp)
univ = 0 (see Eq. (7.18))

satisfies
gsol·Uµν = γµν (cf. Eqs. (6.9) and (7.25)) . (7.7)

Thus, since this induced metric γµν depends on the observable occupant quanta through
the 4DL solution fA

sol due to Eqs. (7.3) and (7.5), it is natural to assume that the

overlapping universe action S
(ovlp)
univ depends on these occupant quanta.

Therefore, we consider the overlapping universe action of the form

S
(ovlp)
univ [gµν , ψoq]

def
= S

(ovlp)
met [gµν ] + S

(ovlp)
OQ [ψoq, gµν ] , (7.8)
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where the “occupant-quantum (OQ) action”

S
(ovlp)
OQ [ψoq, gµν ]

def
=

∫

S4D
univ

d 4x
√

| det(gµν)| L(ovlp)
OQ (ψoq, gµν , . . . ) , (7.9)

and the metric action

S
(ovlp)
met [gµν ]

def
=

∫

S4D
univ

d 4x
√

| det(gµν)| L(ovlp)
met (Λmet; gµν) . (7.10)

Because this metric action S
(ovlp)
met [gµν ] defined for S4D

univ will be chosen to be invariant under

ISO(1, Damb − 1) and Diff(4) (see below), its Lagrangian L(ovlp)
met (Λmet; gµν) in Eq. (7.10) has

the same form as the Lagrangian in Eqs. (6.16) and (6.17)—we use the same notations.

Like gµν describing γµν through gsol·Uµν = γµν , each “occupant-quantum (OQ) field” ψoq in

the overlapping action S
(ovlp)
univ [gµν , ψoq] describes its counterpart ΨOQ through

ψsol
oq = Ψsol

OQ (see Eqs. (7.12) and (7.18)) , (7.11)

where ψsol
oq is a part of the solution (gsol·Uµν , ψsol

oq ) of the coupled E-L equations

(δS
(ovlp)
univ /δgµν)[gµν , ψoq] = 0 and (δS

(ovlp)
univ /δψoq)[gµν , ψoq] = 0 . (7.12)

When δS
(ovlp)
univ /δψoq = 0 in Eq. (7.12) is compared with δS

(3br)
univ /δΨOQ = 0 in Eq. (7.4), we

can find a simple method for achieving the above equality ψsol
oq = Ψsol

OQ under the assumption

gsol·Uµν = γµν in Eq. (7.7), as follows: the original OQ action S
(3br)
OQ [ΨOQ, f

A] in Eq. (7.1) can
satisfy, at least at low enough energies,

S
(3br)
OQ [ΨOQ, f

A] = S̃
(ovlp)
OQ [ΨOQ, f

A]
def
= S

(ovlp)
OQ [ΨOQ, ∂µf

A∂νf
BηbulkAB ] , (7.13)

which is obtained by the replacements (i) ψoq ⇛ ΨOQ and (ii) gµν ⇛ ∂µf
A∂νf

BηbulkAB in the

overlapping OQ action S
(ovlp)
OQ [ψoq, gµν ] in Eq. (7.9).

Due to Eq. (7.13), the solution Ψsol
OQ of (δS

(3br)
OQ /δΨOQ)[ΨOQ, f

A
sol] = 0 from Eq. (7.4) is

also a solution of the replaced-equation from Eq. (7.12)

δS
(ovlp)
OQ /δψoq|repl def

= (δS
(ovlp)
OQ /δψoq)[ψoq, ∂µf

A
sol∂νf

B
solη

bulk
AB ] = 0 , (7.14)

which contains fA
sol unlike other replaced-equations in Eqs. (5.14) and (7.21) due to the

assumption gsol·Uµν = γµν . In this manner, the equality ψsol
oq = Ψsol

OQ in Eq. (7.11) is achieved.

For this equality ψsol
oq = Ψsol

OQ, the OQ field ψoq shares the same ISO(1, Damb − 1) and
Diff(4) symmetry properties with its corresponding brane-field ΨOQ. For example, the OQ
field ψoq is a Diff(4)-tensor or SO(1, 3)-spinor of the spacetime S4D

univ like its counterpart ΨOQ.
Of course, the equality ψsol

oq = Ψsol
OQ may have a limited validity like gsolµν = γµν in Eq. (6.9),

which is valid only for the B-T overlap Σ
(ovlp)
B∩T (⊂ Σtarget).
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Due to Eq. (7.13), the original universe action S
(3br)
univ [f

A,ΨOQ] in Eq. (7.2) can satisfy

S
(3br)
univ [f

A,ΨOQ] = S
(3br)
emb [fA] + S̃

(ovlp)
OQ [ΨOQ, f

A] at low enough energies . (7.15)

Hamilton’s principle δS
(3br)
univ /δf

A = 0 gives the equation of motion for the space 3-brane

∂µ( T3br

√
| det(γρσ)| γµν∂νfBηbulkAB ) + · · · = ∂µ(

√
| det(γρσ)| T µν

OQ∂νf
BηbulkAB ) , (7.16)

where

TOQµν
def
= − 2√

| det(γαβ)|
δS̃

(ovlp)
OQ

δγµν
. (7.17)

Since the OQ action S̃
(ovlp)
OQ [ΨOQ, f

A] is added to the 3-brane action S
(3br)
emb [fA], the equation

of motion in Eq. (7.16) is changed from Eq. (4.35).

As in Sec. 5, for the overlapping universe action S
(ovlp)
univ [gµν , ψoq] in Eq. (7.8), its universe

cartridge Σ
(sol)
univ = {gsol·Uµν } is defined as

Σ
(sol)
univ

def
= { gsol·Uµν | (δS(ovlp)

univ /δgµν)[g
sol·U
µν , ψsol

oq ] = 0 } , (7.18)

where (gsol·Uµν , ψsol
oq ) is the solution of the coupled E-L equations in Eq. (7.12).

Then, the universe bullet Σ
(univ)
bullet = {fA

bul} of the overlapping action S
(ovlp)
univ [gµν , ψoq] is

defined as

Σ
(univ)
bullet

def
= { fA | ∂µfA∂νf

BηbulkAB = gsol·Uµν for every gsol·Uµν ∈ Σ
(sol)
univ } ⊂ Fspace . (7.19)

Like the universe target Σ
(univ)
target = {fA

sol} in Eq. (7.3), the universe bullet Σ
(univ)
bullet = {fA

bul}
depends on the occupant quanta through the U-metric gsol·Uµν in Eq. (7.19), because this
solution metric gsol·Uµν depends on the occupant quanta ψoq through, e.g., the ψoq-dependent

equation (δS
(ovlp)
univ /δgµν)[gµν , ψoq] = 0 in Eq. (7.12).

Because the action S
(ovlp)
univ [gµν , ψoq] in Eq. (7.8) is an overlapping one, the “universe B-T

overlap” Σ
(univ)
B∩T

def
= Σ

(univ)
bullet ∩ Σ

(univ)
target is not the empty set, i.e.,

Σ
(univ)
B∩T 6= ∅ , (7.20)

where Σ
(univ)
B∩T = {fA

ove} is assumed to contain a low-energy motion (e.g., |∂| ≪ Λmet) which
the space 3-brane can perform in the ambient spacetime MDamb . As in Sec. 5, the universe
B-T overlap Σ

(univ)
B∩T = {fA

ove} is the maximum knowledge which we can obtain about the

universe target Σ
(univ)
target = {fA

sol} by using the overlapping universe action S
(ovlp)
univ [gµν , ψoq].

Until now, we have presented the “two-step AAT method” for the overlapping universe
action S

(ovlp)
univ [gµν , ψoq] (cf. Sec. 5):
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• Step 1: finding a solution gsol·Uµν of the coupled equations (δS
(ovlp)
univ /δgµν)[gµν , ψoq] = 0

and (δS
(ovlp)
univ /δψoq)[gµν , ψoq] = 0 in Eq. (7.12), and next

• Step 2: finding a solution fA
sol of the new rifle PDE ∂µf

A∂νf
BηbulkAB = gsol·Uµν .

Instead of this two-step AAT method, as in Sec. 5, we try another method of eliminating
the metric gµν from those E-L equations δS

(ovlp)
univ /δgµν = 0 and δS

(ovlp)
univ /δψoq = 0 by inserting

the PDE ∂µf
A∂νf

BηbulkAB = gµν into them. Namely, we solve the coupled replaced-equations

δS
(ovlp)
univ /δgµν |repl = 0 and δS

(ovlp)
univ /δψoq|repl = 0 (cf. Eq. (5.14)) , (7.21)

where δS
(ovlp)
univ /δZ|repl def

= (δS
(ovlp)
univ /δZ)[∂µf

A∂νf
BηbulkAB , ψoq] for Z = gµν , ψoq. The former

replaced-equation δS
(ovlp)
univ /δgµν |repl = 0 is expressed as δS̃

(ovlp)
univ /δ(∂µf

A∂νf
BηbulkAB ) = 0, where

S̃
(ovlp)
univ [fA, ψoq]

def
= S

(ovlp)
univ [∂µf

A∂νf
BηbulkAB , ψoq] (cf. Eqs. (5.17) and (5.20)).

Since solving the coupled replaced-equations in Eq. (7.21) is the same as solving the new
rifle PDE ∂µf

A∂νf
BηbulkAB = gsol·Uµν of the two-step AAT method, the solution set for Eq. (7.21)

Σ
(sol)
univ

def
= { fA | δS(ovlp)

univ /δgµν |repl = 0 and δS
(ovlp)
univ /δψoq|repl = 0 } (7.22)

is equal to the universe bullet Σ
(univ)
bullet = {fA

bul} in Eq. (7.19), namely,

Σ
(sol)
univ = Σ

(univ)
bullet (cf. Eq. (5.16)) . (7.23)

This equality Σ
(sol)
univ = Σ

(univ)
bullet means that the universe bullet Σ

(univ)
bullet = {fA

bul} is also produced

by the coupled replaced-equations δS
(ovlp)
univ /δgµν |repl = δS

(ovlp)
univ /δψoq|repl = 0.

Therefore, these replaced-equations δS
(ovlp)
univ /δgµν |repl = δS

(ovlp)
univ /δψoq|repl = 0 can be used

instead of the E-L equations δS
(3br)
univ /δf

A = δS
(3br)
univ /δΨOQ = 0 in Eq. (7.4) within the uni-

verse B-T overlap Σ
(univ)
B∩T (see below Eq. (5.23)). In other words, within this B-T overlap

Σ
(univ)
B∩T , the replaced-equations from S

(ovlp)
univ [gµν , ψoq] are “equivalent” to the E-L equations

from S
(3br)
univ [f

A,ΨOQ].

When a “single” overlapping action S
(ovlp)
univ [gµν , ψoq] is discovered as a result of investiga-

tion, we can assume that the replaced-equations from this discovered action S
(ovlp)
univ [gµν , ψoq]

are applied, at least, to many and various motions which the space 3-brane can perform
in the ambient spacetime MDamb at low enough energies. Namely, the AAT method using
the single discovered action S

(ovlp)
univ [gµν , ψoq] is valid for those many and various low-energy

motions of the space 3-brane. (For a further study, see our next paper [14].) Of course, the

discovered action S
(ovlp)
univ [gµν , ψoq] can change, depending on observation energies.

Suppose a low-energy motion of the space 3-brane is described by a 4DL solution fA
sol(x

µ).
Then, each momentum pµ in the Fourier transform of fA

sol(x
µ) satisfies | pµ| ≪ Λcont for all

µ. In this Fourier-transform context, the low-energy motion fA
sol(x

µ) is expressed as

|∂| ≪ Λcont . (7.24)

33



For this low-energy motion fA
sol of |∂| ≪ Λcont, the U-metric gsol·Uµν (= ∂µf

A
sol∂νf

B
solη

bulk
AB by

Eq. (7.7)) is also expressed as |∂| ≪ Λcont.

As in Sec. 6, we choose the “invariant case” that the overlapping action S
(ovlp)
univ [gµν , ψoq] in

Eq. (7.8) is invariant under ISO(1, Damb−1) and Diff(4) like the original one S
(3br)
univ [f

A,ΨOQ],

irrespective of whether S
(ovlp)
univ [gµν , ψoq] is an ME or PE action. Thus, the metric Lagrangian

L(ovlp)
met (Λmet; gµν) in S

(ovlp)
univ [gµν , ψoq] shares the same form with that in Eqs. (6.16) and (6.17).

Then, the Diff(4)-invariant universe action S
(ovlp)
univ [gµν , ψoq] can contain (i) the Einstein-

Hilbert action and (ii) the action for matter (i.e., occupant quanta), both of which are
the essential parts of General Relativity.

Within the region |∂| ≪ Λcont in Eq. (7.24), we have the equality for the two spacetime
manifolds (see Eqs. (7.6) and (7.7))

(S 4D
univ, g

sol·U
µν ) = (WV sq, γµν) . (7.25)

Note the 4D emergent spacetime (WV sq, γµν) is determined by the 4DL solution fA
sol for

the E-L equations δS
(3br)
univ /δf

A = δS
(3br)
univ /δΨOQ = 0 in Eq. (7.3). This emergent manifold

(WV sq, γµν) occupying MDamb is the exact or true spacetime which provides exact values for
our spacetime measurements (see below Eq. (6.11)).

As said below Eq. (7.10), since the metric Lagrangian L(ovlp)
met (Λmet; gµν) in Eq. (7.10)

shares the same form with that in Eqs. (6.16) and (6.17), we use the same notations. Due
to the power-law behaviors (∂/Λmet)

dk in Eqs. (6.16) and (6.17), the most dominant term in

L(ovlp)
met (Λmet; gµν) for |∂| ≪ Λmet is the dk = 0 Lagrangian L(0)

met
def
= c 0Λ

4
met, which contributes

to a cosmological constant. Moreover, the next dominant term is the dk = 2 Lagrangian

L(2)
met

def
= c 2Λ

2
metR, which contains only the two-derivative terms of the metric gµν .

As assumed before, the AAT method using the overlapping universe action S
(ovlp)
univ [gµν , ψoq]

is applied to various low-energy motions (i.e., |∂| ≪ Λcont) of the space 3-brane. Within the
region |∂| ≪ Λcont, we can find a low-energy region |∂| ≪ Λmet (. O(Λcont)) in which the

overlapping action S
(ovlp)
univ [gµν , ψoq] has the approximation

S
(ovlp)
univ [gµν , ψoq] ≈ S

(≤ 2)
univ [gµν , ψ

low
oq ] , (7.26)

where

S
(≤ 2)
univ [gµν , ψ

low
oq ]

def
= S

(≤ 2)
met [gµν ] + S

(low)
OQ [ψlow

oq , gµν ] , (7.27)

S
(≤ 2)
met [gµν ]

def
=

∫

S
4D (≤ 2)
univ

d 4x
√

| det(gµν)|
(
c 0Λ

4
met + c 2Λ

2
metR

)
. (7.28)

In Eq. (7.27), the new OQ action S
(low)
OQ [ψlow

oq , gµν ] is the low-energy approximation of

its full theory S
(ovlp)
OQ [ψoq, gµν ] in Eq. (7.9). Namely, S

(low)
OQ [ψlow

oq , gµν ] contains only the low-

dimension interactions of S
(ovlp)
OQ [ψoq, gµν ] which are not negligible in the low-energy region
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|∂| ≪ Λmet. Of course, some heavy OQ fields (say, ψheavy
oq ) appearing in S

(ovlp)
OQ [ψoq, gµν ] may

be decoupled from its low-energy approximation S
(low)
OQ [ψlow

oq , gµν ]. In Eq. (7.28), the integral

for S
(≤ 2)
met [gµν ] undergoes the replacement S 4D

univ ⇛ S 4D (≤ 2)
univ , which is also undergone by the

integral for S
(low)
OQ [ψlow

oq , gµν ].

Due to the approximate equality S
(ovlp)
univ ≈ S

(≤ 2)
univ in Eq. (7.26), the solution (gsol·Uµν , ψsol

oq )

of the “exact” equations δS
(ovlp)
univ /δgµν = 0 and δS

(ovlp)
univ /δψoq = 0 in Eq. (7.12) has the

approximate equalities

gsol·Uµν ≈ gsol (≤ 2)
µν and ψsol

oq ≈ ψsol (≤ 2)
oq , (7.29)

where (g
sol (≤ 2)
µν , ψ

sol (≤ 2)
oq ) is the solution of the “approximate” equations δS

(≤ 2)
univ /δgµν = 0 and

δS
(≤ 2)
univ /δψoq = 0. In addition, gsol·Uµν ≈ g

sol (≤ 2)
µν in Eq. (7.29) implies the approximate equality

for the spacetime
S 4D
univ ≈ S 4D (≤ 2)

univ . (7.30)

In the low-energy region |∂| ≪ Λmet, the approximate equation δS
(≤ 2)
univ /δgµν = 0 is the

same as Einstein’s equation with the three parameters c 0, c 2 and Λmet

Gµν − c 0Λ
2
met

2c 2
gµν =

1

2c 2Λ
2
met

T (low)
µν , (7.31)

where 1/(2c2Λ
2
met) corresponds to 8πGN of the ordinary Einstein’s equation, and

T (low)
µν

def
= − 2√

| det(gαβ)|
δS

(low)
OQ

δgµν
. (7.32)

For γµν = gµν , the tensor TOQµν in Eq. (7.17) satisfies TOQµν ≈ T
(low)
µν at the low energies

|∂| ≪ Λmet.

Suppose that the “scalar×gµν” term in Eq. (7.31) is negligible as in the observed ΛCDM

model [13]. Then, a spherical massive object can produce the Schwarzschild metric g
(S)
µν ,

which leads to the gravitational potential φgrav = − (g
(S)
00 + 1)/2 in the Newtonian limit

[1, 2, 3]. Since this potential φgrav (∝ 1/c 2Λ
2
met) depends on c 2Λ

2
met strongly, the value of

c 2Λ
2
met can be easily determined by the comparison with observed data.

In Eq. (7.28), when the coefficient c 2Λ
2
met in the integrand satisfies

c 2Λ
2
met = 1/16πGN (i.e., Λmet =MP/

√
16πc 2 ) , (7.33)

the approximate metric action S
(≤ 2)
met [gµν ] may not be distinguished from the Einstein-Hilbert

action S
(DE)
EH [gµν ] with a dark energy (DE) density ρDE

S
(DE)
EH [ gµν ]

def
=

∫

SGR

d 4x
√

| det(gµν)| (R/16πGN − ρDE) , (7.34)

35



where the Ricci scalar R of General Relativity (GR) is built from the GR metric gµν .

To be more concrete, we consider in what situation General Relativity is valid: since using
General Relativity of the (∂/MP)

dk≤2 terms means neglecting all the higher-order (∂/MP)
dk≥4

terms of the Lagrangian L(ovlp)
met (Λmet; gµν) in Eq. (7.10), it is important to estimate the size

of ∂. As a measure of |∂|, Kretschmann scalar K
def
= RµνρσRµνρσ is used due to K = O(∂ 4).

In this context, we deal with an extremely strong gravity related to a Schwarzschild
black hole of mass Mbh, whose Kretschmann scalar is K|at r = 48M2

bh/M
4
Pr

6 [3]. Outside
the Schwarzschild radius RS = 2Mbh/M

2
P (i.e., r > RS), the scalar satisfies K|at r < K|atRS

,
which leads to |∂|/MP . MP/Mbh due to K|at r = O(∂ 4) and K|atRS

= O(MP/Mbh)
4M4

P.
Then, for Mbh & M⊙ (≈ 1038MP), the result |∂|/MP ≪ 1 implies that General Relativity is
valid outside the event horizon at r = RS.

Meanwhile, inside this event horizon, there is a radius R∞ satisfying K|atR∞
= O(M4

P),
which produces R∞ = O(Mbh/MP)

1/3M−1
P (M−1

P ≪ R∞ ≪ RS). For r . R∞, |∂|/MP & 1
(i.e., dmax → ∞) implies that General Relativity is not valid far inside the event horizon.
Similarly, for r ≪ Rcont with K|atRcont = O(Λcont)

4, |∂|/Λcont ≫ 1 implies that the continuum
approximation of the quasi-3D object breaks down—the above black hole may not have the
singularity at its center r = 0.

To sum up, in the low-energy region |∂| ≪ Λmet, General Relativity can be a good

approximation of the overlapping universe action S
(ovlp)
univ [gµν , ψoq], which is an essential part

of the AATmethod for studying the original universe action S
(3br)
univ [f

A,ΨOQ] (i.e., the principle
governing the motions of the space 3-brane). Note that our spacetime WVsq (≈ SGR) can
have its own gravity (i.e., General Relativity) although the ambient spacetime SDamb does
not have any “bulk gravity” (i.e., SDamb = MDamb).

In the case of
S
(≤ 2)
met [gµν ] = S

(DE)
EH [gµν ] , (7.35)

the solution metric gsol
µν and the spacetime SGR of General Relativity have the equalities

gsol
µν = gsol (≤ 2)

µν (≈ gsol·Uµν = γµν due to Eqs. (7.25) and (7.29)) , (7.36)

SGR = S 4D (≤ 2)
univ (≈ S 4D

univ = WV sq due to Eqs. (7.25) and (7.30)) . (7.37)

According to Eqs. (7.36) and (7.37), the spacetime (SGR, g
sol
µν) of General Relativity can

be at least a good approximation of the exact or true spacetime (WV sq, γµν), which is formed
by many space quanta occupying the ambient spacetime MDamb . This supports the space-
quantum hypothesis in Eq. (2.9). If the exact equality S

(ovlp)
univ = S

(≤ 2)
univ really happens instead

of the approximate one in Eq. (7.26), the “approximate equality” signs ≈ in Eqs. (7.29),
(7.30), (7.36) and (7.37) are replaced with the equality signs =.

Finally, until now, we have considered only the special situation that the ambient space-
time SDamb is the flat manifold MDamb = (RDamb , ηbulkAB ), in which the inertial bulk observer
Obulk uses the inertial bulk-coordinates Y A (see Sec. 3).

However, the ambient spacetime SDamb can be a curved manifold having a general bulk

36



metric gbulkAB , implying the replacements

MDamb ⇛ SDamb , (7.38)

ηbulkAB ⇛ gbulkAB , (7.39)

ISO(1, Damb − 1) ⇛ Diff(Damb) . (7.40)

For these replacements, our previous studies can be extended similarly.

The topology of the ambient spacetime SDamb may be, for example, RDamb or R4×TDamb−4,
where TDamb−4 is a (Damb−4 )-dimensional spacelike torus. For Damb = 4, when the topology
of SDamb is R4, the topology of the space 3-brane can be R3, implying the world volume WV sq

of this space 3-brane may be spatially flat. Then, due to SGR ≈ WVsq in Eq. (7.37), the
corresponding spacetime SGR of General Relativity may be spatially flat, which can agree
with the observed ΛCDM model [13]. For Damb ≥ 5, the same conclusions can be reached
even for the topology R4 × TDamb−4 of SDamb , when the size of this torus TDamb−4 is much
smaller than the distance d sq between space quanta—at low energies ≪ Λcont, the bulk
spacetime SDamb can be observed as if its topology were R4.
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