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The “Butterfly Effect” has been well known and widely discussed in the 
scientific literature and beyond, especially in the science fiction. It sounds 
approximately like “The beating of a butterfly wing in South America can 
result in the considerable change of positions and force of a tropical cyclon in
Atlantic 2 weeks later”. In other words, the hydrodynamic instability of the 
atmosphere is so high that small perturbation produced by the motion of a 
butterfly wing grows exponentially, and the increment is so high that 2 weeks
is enough for it to grow to the grand scale. The characteristic time 2 weeks 
was found by Arnold (see [A], Appendix 2, p.342) as a by-product of his 
computations of the curvature of the group of volume-preserving 
diffeomorphisms (in his work the Earth was modeled on a 2-dimensional 
torus with the size of about 20000km). The curvature computed by Arnold 
turns out to be negative in most directions, being associated with high 
instability of geodesics.  

Since the work of Arnold, the issue of a strong instability of the flows (i.e. 
geodesics of the group of diffeomorphisms) attracted considerable attention. 
In particular, this problem has been studied numerically in [R1, R2]. In this 
work, the Euler equations on a 2-d torus were solved numerically for several 
simple initial configurations of vorticity. It was found that there exist several 
types of behavior similar to scattering. Within each type the solution was 
moderately stable with respect to small changes in the initial conditions (the 
perturbations grew linearly), while in the transition zones between different 
types the solution was highly sensitive to the initial conditions (so that the 
perturbations grew exponentially in time). 

In this work we make a closer look at the flow instability. We solve 
numerically the Euler equations on the 2-d torus, using a different sort of 
initial conditions. Namely, the initial vorticity is an isotropic, nearly 
monochromatic random field (i.e. it is a sum of a finite Fourier series with 



random coefficients and with frequencies concentrated in a narrow band
∣k∣∼k0 ). Such initial condition brings about the mechanism of inverse 

cascade which results in merging of small vortices and formation of larger 
ones. The final configuration is a pair of large vortices of opposite signs. 
These vortices slowly move about; their shapes are slowly pulsating. In some
simulations, we can observe smaller “satellites” of larger vortices. The flow 
(which is a result of a long evolution) appears to be quasi-periodic in time.

In order to reveal the possible strong instability, we ran two series of 
numerical simulations with very close initial conditions. Namely, the changes
were made in the amplitude of just one mode; the relative difference was 
about 10−7 . 

The flow picture in both solutions at different moments is shown in the 
following series of pictures. In each of the pictures, the left one corresponds 
to the first solution, and the right picture corresponds to the second one. We 
can see that two solutions are practically indistinguishable at the beginning; 
however, they diverge later, and soon look as completely unrelated to one 
another. Their final configurations are just the pairs of large vortices; but 
these vortices are at very different positions. So, if we regard the initial 
perturbation as produced by a “butterfly”, it results in a considerable change 
of position of large vortices (“cyclons”) a while later. So, the “butterfly 
effect” is materialized literally.

The perturbation growth is shown at Figure 7. We see that the perturbation 
amplitude, measured in the vorticity norm, grows from about 2 ⋅10−8 to 
about 100 . 

The simulations were done using the standard pseudospectral method. The 
resolution was 210

×210 modes; a small viscosity η=0.5⋅10−5 was added 
to ensure the numerical stability. The characteristic wave number of the 
initial flow k0∼20 , so that the initial configuration consisted of about 400 
vorticity blobs. The simulation results are quite robust, and 100% 
reproducible.



                  Figure 1. Initial vorticity distribution at t=0 . The left and the right pictures here 
                 and in the next figures correspond to two simulations with very close initial conditions. 

                                            Figure 2. Vorticity distribution at t=20 .



                                         Figure 3. Vorticity distribution at t=25 .

                                      Figure 4. Vorticity distribution at t=60 .



                                    Figure 5. Vorticity distribution at t=100 .

                                Figure 6. Vorticity distribution at t=120 .



                                      
                                          Figure 7. L2 - norm of the perturbation as a function of time.

So, the “Butterfly Effect” exists.
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