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Students’ difficulties in quantum mechanics may be the result of unproductive framing and not
a fundamental inability to solve the problems or misconceptions about physics content. We ob-
served groups of students solving quantum mechanics problems in an upper-division physics course.
Using the lens of epistemological framing, we investigated four frames in our observational data:
algorithmic math, conceptual math, algorithmic physics, and conceptual physics. We discuss the
characteristics of each frame as well as causes for transitions between different frames, arguing that
productive problem solving may occur in any frame as long as students’ transition appropriately be-
tween frames. Our work extends epistemological framing theory on how students frame discussions
in upper-division physics courses.

I. INTRODUCTION

For students to be successful quantum mechanics prob-
lem solvers, it is insufficient to think about only the
features of the physical system. They also need to co-
ordinate different representations by thinking conceptu-
ally about the mathematical representations that satisfy
the physical system, evaluate the algorithmic steps, and
reflect upon their work. Unsurprisingly, students often
have trouble unifying these ideas during problem solv-
ing.

Researchers in student understanding of quantum me-
chanics have used “difficulties” theory to understand stu-
dent reasoning (e.g.1–3), which forms long lists of dif-
ficulties that span many topics in quantum mechanics.
However, we posit that these disparate difficulties can be
unified through the lens of epistemological framing4, and
errors in transitions between frames5. Epistemological
frames reveal students’4,6 ways of thinking and expecta-
tions. They govern which ideas students link together
and utilize to solve problems. Careful observation of stu-
dent behaviors, gaze, and discourse can provide clues for
determining students’ epistemological frames. Produc-
tive problem solving requires both an appropriate frame7

and appropriate transitions between frames8.
Some students, despite having strong numerical tools

or skills, still “get stuck” in certain problem solving
situations9. This happens particularly in upper-division
courses such as quantum mechanics, where mathematics
is critical to understanding the subject. Quantum me-
chanics is a great choice for this study, because students
are trying to coordinate difficult, often counter-intuitive
concepts and complicated, often novel mathematical for-
malism.

Bing et al10 identified four epistemological frames to
aid in understanding the role of math as a reasoning
tool as opposed to a numerical tool. They analyzed
students’ thinking while the students translate physical
ideas into informative mathematical forms, or compare
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a mathematical structure in two similar physics or math
scenarios. Though Bing et al identified “Physical Map-
ping”, and “Math Consistency” frames, their “Calcula-
tion” frame is biased toward the use of formal math,
independent of physical sense making. However, they
did not further differentiate between trivial math calcu-
lations and conceptual math reasoning.

On the other hand, Kuo et al11 differentiated between
the use of equations as an input-output calculator tem-
plate, instead of attending to the conceptual meaning
embedded in the equation to create shortcuts. They re-
ferred to “cognitive elements”12 to capture students’ un-
derstanding of equations while they blend their reasoning
with symbolic forms and create a shortcut to interpret
the situation. They concluded that successful problem
solvers are able to make a decision as to which tools they
bring into play for an efficient understanding of the prob-
lem situation.

Earlier studies identified other possible avenues that
students may follow to obtain a correct solution by us-
ing conceptual physics and algorithmic math as numer-
ical tools. These problem solving studies often focused
on the differences between experts and novices13–15. A
novice adopts an inverse strategy by simply attending
to the goal of the problem, recalling and manipulating
an equation that contains the unknown quantities. In
contrast, an expert moves forward based on having a
representation for the situation, and then choosing the
relevant principles13. However, this study is limited be-
cause experts’ expertise far exceeds the difficulty of the
end-of-chapter problems, and so such a study can not
show the heuristics of expert-like problem solvers.

Heller et al14 designed context-rich problems to chal-
lenge introductory students beyond end-of-chapter exer-
cises. This method requires students to make sense of
the physical system, and justify what strategies to adopt
as experts do. Their work assesses how students initially
translate the problem statement into a visual represen-
tation in order to help them to adopt a proper strat-
egy for determining the implicit unknown physical quan-
tities. The strategy would allow students to translate
their physical representation into a mathematical repre-
sentation in order to do the algorithmic steps, and find
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the unknown quantity to make sense of their solution.
While this problem solving strategy was initially quite
prescriptive in the nature and order of the problem solv-
ing steps, later research has permitted a less-linear struc-
ture to problem solving.

Building on this work, Caballero et al16 worked to ex-
plain the common difficulties of upper-division students
in problem solving, focusing on four steps in mathemati-
cal tool use: activation, construction, execution, and re-
flection. These steps could be completed in any order,
and solutions may vary among students and problems.
One student could stay mostly in the execution phase
to process the algorithmic steps. Another student might
evaluate the solution by staying in the construction phase
and skipping the execution elements in favor of concep-
tual steps, or one could bring into play both components
of execution and construction. Students’ use of certain
steps in this theory does not necessarily imply difficul-
ties with the missing component of their problem solving
process. This could become important when the problem
statement of the question nudges students toward the use
of one of these four components more than the others.

Broadly speaking, these three research traditions – re-
search into student difficulties in quantum mechanics,
research into epistemological framing, and research into
student problem solving – suggest several approaches for
understanding how students understand quantum me-
chanics problems. One approach may consider the initial
physical understanding of the problem as more critical,
with less emphasis on the mathematical manipulations,
whereas other approaches may consider equally a close
relationship between math and physics, or focus on the
conceptual meaning of math in reasoning. Our present
study integrates these three approaches to capture the
various facets of students’ epistemological framing dur-
ing problem solving at the upper division. Our theoret-
ical framework33 takes up the idea of epistemic frames
to explain student problem solving without prescribed
steps. Our model suggests that difficulties are an inter-
action effect between question asked and students ideas,
which implies there may be an underlying structure to
identified difficulties in quantum mechanics.

In this paper we develop a theoretical framework which
models students’ framing in math and physics, expanded
through the algorithmic and conceptual space of stu-
dents’ problem solving. We investigate four frames: algo-
rithmic math, conceptual math, algorithmic physics, and
conceptual physics, looking for moments where students’
problem solving is impeded because they are in an un-
productive frame. We applied this theoretical framework
to observational data from quantum mechanics classes in
which students solve typical quantum problems in pairs
and small groups. Our purpose in this paper is to illus-
trate our theory, not to exhaustively show the prevalence
of specific frames or to catalog the methods by which
students may transition between them.

II. CONTEXT

We video recorded the class meetings of one semester
of a senior-level quantum mechanics class. The class
is taught using Griffith’s Introduction to Quantum
Mechanics17 using a wavefunctions-first topic order. It
meets for four 50-minute sessions each week. During
class, lecture is interspersed with small group problem
solving. Groups of 2-3 students solve problems collabora-
tively on shared table-based whiteboards. Most problem-
solving sessions last 2-5 minutes, though they can be as
long as 15 minutes for more difficult problems. Students
are remarkably collaborative, usually working together
for the entire duration of each problem-solving session.
In our data set, we see about one problem-solving ses-
sion per class, though this decreases in frequency near
the end of the semester.

Generally, these problem-solving sessions begin when
the professor halts the lecture to ask the students to at-
tempt to solve a problem related to their current topic,
or to introduce a new topic. Occasionally, they also arise
when students initiate a class discussion and the professor
decides to assign a problem to gauge their understanding.

The groups in this class are somewhat fluid, and stu-
dents may form different groups on different days. Stu-
dents occasionally recruit others from nearby groups to
help them solve problems. The instructor does not ex-
plicitly tell students where to sit or with whom to work
(other than “people near you”). Generally speaking, stu-
dents work in pairs or threes; occasionally fours.

III. METHODOLOGY FOR VIDEO DATA

In learning environments such as group problem solv-
ing in upper-division contexts, one way to interpret the
high level of interactions within group members is to care-
fully analyze the discourse and gestures of each member
of the group. Ethnography provides an opportunity to
understand the detail of students’ discourse, behaviors,
as well as capture useful information while they are inves-
tigating a phenomena18. One of the methods for data col-
lection in ethnography studies in through video record-
ing of activities. This becomes more important by pro-
viding multiple researchers an opportunity to view and
analyze the videos19. Previous researchers in education
have used ethnography to study the culture of classroom
activities20 or in more engaging learning environments,
such as advanced physics laboratory21. Our goal was to
develop a theoretical lens to enable us to explain problem
solving within various topics in quantum mechanics.

We divide class into episodes of problem solving and
episodes of lecture, discarding episodes of lecture because
they don’t help us understand student reasoning. The
problem solving episodes have distinct boundaries: they
start with the professor explicitly asking students to be-
gin working on their table-based whiteboards and end
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when the professor either asks for answers or begins ex-
plaining the answer.

In our preliminary analysis of the students’ group
problem-solving activities, we observed that some aspects
of the data represent a conceptual approach and other
aspects represent an algorithmic approach. We also no-
ticed students’ use of conceptual physics and algorithmic
math. This distinction is consistent with the ACER16

and framing10 literature on problem solving from upper-
division physics classes, showing how students’ under-
standing of physical systems maps to algorithmic repre-
sentations. However, neither theoretical framework ade-
quately captured the richness of our data, prompting us
to take further steps to interpret our data set. From the
tradition of progressive refinement of hypotheses22, we
set out to refine our observations through close interro-
gation of the video data.

We started with selecting episodes for close analysis
based on their duration (longer is better), conceptual
richness (more complex is better), and technical qual-
ity (more visible and audible are better). We reflected
on these episodes, seeking to answer “what’s going on?”
for each of them. Through repeated watching and ex-
amining the details of the selected episodes, we sought
to capture changes in students’ discussion or behavior
that might indicate a shift in the students’ problem solv-
ing processes. We began to focus on instances where
students “got stuck” in their problem solving processes.
This momentary impasse prompted them to try a differ-
ent kind of reasoning until suddenly they were able to get
“un-stuck”. We examined the interactions immediately
preceding and following the unsticking moments to look
for regularities in unsticking behavior.

We developed a preliminary theoretical framework23

which mapped student behavior onto three discrete
frames: conceptual physics, conceptual math, and al-
gorithmic math. The two math frames – concordant
with research in mathematics education on concepts and
processes24,25 – suggested that we expand our ideas to
look for the “missing” physics frame: algorithmic physics.

Concurrently, we grew troubled with the idea of dis-
crete frames. Sometimes, students seemed exceptionally
“mathy”, operating without regard to any sense of physi-
cal meaning. It is possible, however, to blend conceptual
ideas from both math and physics domains, or to move
fluidly and rapidly between conceptual and algorithmic
thinking. We reframed our ideas into two orthogonal
axes: conceptual to algorithmic and math to physics,
defining a coordinate plane in which students’ problem
solving roams. In pursuit of evidence to refine this two
coordinate-axis framework, we delved again into our ob-
servational data, seeking examples of all four quadrants
and transitions among them.

After several more iterative cycles of analysis and re-
finement, we reached a stable point where new episodes
did not change the theoretical framework or our appli-
cation of it. Operating with the newly-stable frame-
work, two independent raters came to consensus on ev-

ery episode; two additional raters checked a selection of
episodes with agreement of > 90%. We selected episodes
for analysis based on frequency of students’ discussion
regarding concepts and processes, as well as displays and
features of potential frame transitions. We categorized
episodes with conceptually rich discussions and frame ne-
gotiations as strong examples, and established inter-rater
reliability about the content of the episodes and regard-
ing which episodes strongly or weakly evidenced frame
transitions.

We also identified very weak examples when it was
hard to find evidence of students’ framing from the group
discussion. This could happen due to noisy or garbled au-
dio, or when students were writing on part of the white-
board that was not in the view of the camera, or in gen-
eral the raters did not have enough information to deter-
mine students’ framing.

Once we identified students’ frames, we looked for tran-
sitions in those frames to help us to interpret the dy-
namic of students’ problem solving behaviors or identify
the impasse students reach when they fail to notice cer-
tain factors that could have triggered a transition to a
more appropriate state.

We acknowledge the existence of other frames that
could describe students’ behavior while they are engaged
with other kinds of activities in a classroom e.g. turn-
ing in home work to the instructor, taking break within
solving several parts of a long problem, or discussing up-
coming social events26. While these other frames can
be important for problem solving more broadly5, in this
study our focus is on investigating students’ topical dis-
cussions during problem solving sessions which last about
2-5 minutes.

Epistemological frames are context dependent6. For
example, by walking into a restaurant relevant resources
consistent with behaving in the situation are activated
to read a menu, order food, pay the tip, etc. However,
in the setting of the restaurant we don’t access our re-
sources for behaving in a library. Students’ perceptions
of the problem context affect their framing of what sub-
set of their knowledge to activate. In an interactive class
environments such as group problem solving the instruc-
tor’s framing can also affect the students framing of the
situation5,7,26. Even within group problem solving, other
students’ framing can affect an individual’s framing as
well. The instructor can nudge students to frame the
problem more conceptually by asking about the physics
of the situation, or more algorithmically by asking about
formulae26.

IV. THEORETICAL FRAMEWORK

Our theoretical framework consists of two axes: an
algorithmic versus conceptual axis, and a math versus
physics axis (Figure 1).

The two axes divide different aspects of students’ prob-
lem solving into four regions: algorithmic math, concep-



4

FIG. 1. Math-physics-algorithmic-conceptual theoretical
framework. The horizontal axis indicates algorithmic and
conceptual directions. The vertical axis represents the math
versus physics directions. Each quadrant is labeled.

tual math, algorithmic physics, and conceptual physics.
It is important to note that none of these frames are
inherently “good”, “bad”, or even universally useful. At
different times, different frames may be productively used
to solve problems in physics, and often more complicated
problems require multiple transitions between frames.

A. Algorithmic and conceptual math

In algorithmic frames, students are focused on follow-
ing a known series of steps to solve a problem. Since
the result of each step is used to process the following
step, students are focused on their task to prevent er-
rors. They tend to be in a writing mode, and have less
discussion as compared to conceptual frames. In their
discussions, they tend to focus on error-checking (“what
did you get for part c?” or minutiae of their steps (“you
are missing a minus sign”).

When the problem statement requires explicit algorith-
mic calculations to find an answer, students enter an al-
gorithmic math frame to spend a considerable amount of
time setting up a series of algebra-based steps to evalu-
ate integrals, take derivatives and simplify their solutions
by dividing or multiplying a term on both sides of their
solution.

Algorithmic math can be a quick and powerful
problem-solving mindset as they may take several fast
steps over a long period of time. However, without other
quadrants it is quite difficult to check whether or not the
solution makes sense. This frame leaves students with
a narrow5,27 discussion mostly to check the signs, or to
alert each other of the missing symbols, while they are
focused in their numerical calculations. For these fea-
tures, we consider the “just math” frame28 is an exam-
ple of students’ prolonged use of the algorithmic math
frame. Narrow framing which focuses only on the task

at hand5,27 is not exclusive to algorithmic frames, but it
is common within them.

In contrast, students in a conceptual math frame use
a conceptual approach to understand the mathematics.
They reason based on general properties of a class of
information in math. This could help them to apply
practical ideas about the behavior of the mathemati-
cal functions, and determine the result of an operation
without actually computing it. For example, by know-
ing that sine functions are independent of each other,
and discussing the orthogonality properties of the sine
functions, one can shortcut the integration of product
of two sine functions of different periods, preventing the
use of many trigonometric identities, and simply “see”
that the integral equals zero. Creating a “shortcut”
solution11 to the problem reduces the procedures and
lessens the writing. Concurrently, discussing mathemat-
ical problems conceptually gives students more opportu-
nities for sense-making discussions with other members
of the group5,7. This kind of thinking is generally more
expansive29, as students connect general cases of mathe-
matics to the specifics in this problem or bring in connec-
tions to other problems. Attention to conceptual math-
ematics is a large part of numeracy, and as such is an
important part of learning mathematics25 and physics11,
especially at the upper-division30,31.

B. Algorithmic and conceptual physics

Just as we find algorithmic and conceptual frames in
math, we find them in physics as well. Students in a
conceptual physics frame try to think in terms of the
features of the physical system and might coordinate be-
tween different representations such as graphical, geo-
metric or gestural to visualize the physical system. They
coordinate different physical laws and concepts to explain
the situation. We provide examples from the context of
Electromagnetic fields course as motivating examples to
show the broader phenomena. In the next section, we
will provide several quantum mechanics examples from
our own data.

For example, students might argue that the total
charge on a spherical shell whose surface charge density
σ is proportional to sin(2θ) (where θ is the azimuthal
angle) is equal to zero because the northern hemisphere
is positive while the southern is negative, and those two
halves must be equal and opposite. In this case, students
use conceptual reasoning to map charges to a sphere,
employing balancing resources to come to the conclusion
that the net charge equals zero. One could move to al-
gorithmic math frame to write the integral of the charge
density over the surface area:∫

σdA∝
∫

sin(2θ)r2 sin(θ)dθdφ (1)

It’s possible, of course, to solve this problem algorithmi-
cally (using trigonometric substitutions) or conceptually
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without reference to physical systems (via the orthogo-
nality of sine functions). In either the conceptual math or
conceptual physics frames, discussing the problem plan in
the conceptual physics frame can make later algorithmic
calculations easier.

Thinking conceptually about the underlying physics of
the situation encourages students to create connections
to real word situations and other classes of problems as
well. For example, to estimate the far distant electric
field of a uniformly charged disk, one method is to ex-
pand the solution by mostly engaging in algebra to get
the answer. Or one can visualize that far from the disk a
continuous charge looks similar to a point charge, and by
knowing the electric field of a point charge, the leading
terms in the solution can be guessed. In each case, stu-
dents are engaged in an activity to find an answer, but
the nature of the activities are different. The latter case
is more expansive, as students are open to make connec-
tion between the current situation and another class of
problem.

In contrast, students in the algorithmic physics frame
tend to recall equations, facts, and properties of phys-
ical quantities without conceptual justifications. They
use math as a tool to adjust equations via a series of
algebra-based steps to relate physics quantities to each
other, or to check the correctness of the physical quanti-
ties in the problem. For example, by doing dimensional
analysis students can check the correctness of their an-
swer. Just as with algorithmic math, students tend to
frame their work narrowly in algorithmic physics and fo-
cus on following procedures to find answers. Someone
who applies normalization conditions for wavefunctions
by rote, for example, is operating algorithmically.

It’s important to note that framing problems algorith-
mically can be fast. An expert doesn’t need to engage in
extensive conceptual thinking about the steps of a trivial
problem; she can just solve it.

C. Continua vs. categories

A careful reader might be concerned because we
started this section by claiming that there are two axes,
implying a continuous distribution of possible framings,
yet continued by identifying four frames which appear
to be discrete. We chose the axes for theory-driven rea-
sons: it’s possible that students’ framing exists on a con-
tinuum between very mathy and very physicsy, or very
algorithmic to very conceptual, and discrete frames can-
not capture this sense. We kept it for practical reasons:
on occasion, students appear to move fluidly and rapidly
among frames, and there’s not enough evidence to as-
sign them a single, quasi-stable frame before they move
to the next. We’re interested in quasi-stable frames be-
cause we want to study how students transition between
frames, and it is practically very difficult to find tran-
sitions between frames without first identifying (quasi-
)stable frames. We use the words mathy and physicsy

FIG. 2. Group problem solving in algorithmic math frame

FIG. 3. Diagram of students’ solution in algorithmic math
frame

to denote students’ framings which are more in the math
direction or which are more in the physics direction re-
spectively.

By using axes, we hope to capture a sense of direc-
tionality from more mathy to more physicsy and more
conceptual to more algorithmic. We do not imply that
these axes constitute a formal metric or scale. While
some prior work in student framing of problem solving
in physics has used discrete frames (e.g.7,10), other work
has used continua in the same way (e.g.5, building on32).

V. ILLUSTRATIVE EPISODES

In this section, we present four brief episodes which
illustrate the four quadrants in our framework. Before
the examples, we divert into a brief review of the quan-
tum mechanics of free particles and a typographic note
on how we present transcript.

A. Physics of free particles

Most of the examples in this section are chosen from
the same physics context of the free particle system, so
we review the physics of this system briefly for the reader.
In quantum mechanics, the free particle is characterized
by a zero potential energy, thus the Hamiltonian has just
one term, the kinetic energy. This problem is a good
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candidate for understanding basic properties of the wave
function and the Schrödinger equation. Since the Hamil-
tonian is in form of p2/2m, the eigenfunction solution can
be considered as a plane wave, which can be expanded
in terms of sinusoidal wave functions. However, for one
particle the wave function with a determined momentum
is not normalized over all the space. Thus a linear com-
bination of all solutions is considered as a normalizable
wave function. This is physically interpreted as a travel-
ing wave pocket.

Because the Hamiltonian has only the kinetic energy
term, the time independent Schrödinger (TISE) equation
results in a homogeneous second-order differential equa-
tion. In order to write the eigenvalue equation in terms of
a differential equation students might need to recall some
relations from algorithmic physics. Solving and finding
the eigenfunctions of the equation leaves room for either
algorithmic math calculations, or conceptual math dis-
cussions.

B. Typographic note

Before we present data, here is a brief typographic
note. In these interactions, students very frequently
speak the names of mathematical symbols. We could
have typeset their words as if they were equations or as
if they were the names of isolated symbols. Equations
are more compact – importing algebra to Europe caused
a scientific revolution – but they lose some of the nuance
of students’ speech. Isolated symbol names, on the other
hand, tend to be difficult to follow in text in a way that
they are not difficult to follow in speech, especially as of-
tentimes students write as they speak. We have chosen a
middle path, seeking to maximize clarity for the reader.

Additionally, we typeset a comma for brief pauses,
a period for longer ones, and ellipses (. . . ) for the
longest ones. Stage directions are denoted by parenthe-
ses. Should we omit or alter some students’ speech for
clarity, changed words are denoted by square brackets
and omitted ones by ellipses in square brackets ([. . . ]).

C. Episode: Algorithmic math

In this example a group of three students are solving
the Schrödinger equation to find the wave function of a
free particle. They treat the space part and the time part
separately. They start with the TISE for the space part.
Guess a solution in the form of ekx, and substitute it into
the TISE to find the constant k. Adam and Emma work
together quickly to solve the problem, while their third
groupmate (Eric) stays silent. (All student names are
pseudonyms.)

Figure 2 shows a snapshot of their whiteboard during
group problem solving, taken while Emma is pointing to
the both sides of their written equation to review the
taken algorithmic steps in search for the missing sign.

The numbers indicated on the figure show the order of
the students’ actions and narrations and reference the
numbers in the transcript below. Figure 3 shows a tran-
script of their writing on the whiteboard.

In this problem, Adam takes the derivative of the time
solution of the Schrödinger equation, and replaces it into
the equation using the whiteboard in front of both stu-
dents. He continues to replace the factors that the group
has manipulated earlier in their solution and setting both
sides of the equation equal to each other to verify if their
solution satisfies the Schrödinger equation.

Adam: Minus E equal

Emma: Minus h̄ squares over two. (1)

Adam: Minus 2mE over h̄ . . . squared . . . Boom
. . . Boom . . . Boom (while canceling the same quan-
tities from two sides of the equation) (2)

Emma: Cancel, cancel, cancel, and we are off by a neg-
ative (2)

Adam: Yeah [unintelligible] sign

Emma: With a negative up here, because these two are
negative.

Adam: Yeah that is true

Emma: So something happened here (pointing to the
two sides of their equation) (3)

Adam: Or we lost a sign (3)

Emma and Adam use short sentences and talk quickly
to be able to proceed to the next step of their algorithmic
evaluation. They speak primarily of mathematical terms
and operations, and do not talk explicitly or extensively
about the physical quantities these symbols represent.
At the end, they come up with an extra negative sign in
one side of their solution. After reviewing their solution,
Adam removes a negative sign in the earlier line of his
solution, which he thinks is extra, but he does not further
discuss the reason behind his decision.

At this point of their problem solving session, neither
Adam nor Emma try further to make a transition to an-
other frame to resolve thier error. In a low voice, Adam
points to the power of the time phase factor exponen-

tial and says “oh wait this [ei
E
h̄ t] gonna be a negative”.

Emma says “but I think we can start normalizing. . . ”,
then she starts to normalize their wave function.

In this brief moment of problem solving session the
group is in an algorithmic math frame. Students are op-
erating in algorithmic math frame because they are talk-
ing about manipulating mathematical symbols rapidly
and alegebraically, running through a series of brief steps.
Prior to this episode, Adam makes a transition from al-
gorithmic math to algorithmic physics. In so doing, he
is able to resolve the cause of their group error. After,
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he returns to algorithmic math to continue the solution.
(discussed in section VI C)

The group does not spend further time to find the
“dropped negative” since students are toward the end of
their problem solving session and are asked to normalize
the wave function, which is discussed in the next episode.

D. Episode: Conceptual math

In this example, the same group is working on nor-
malization of the free particle wave function by consid-

ering the general solution Ψ as the sum of two functions
of Aeikx and Be−ikx. They initially set the algorith-
mic steps, take the modulus square of the wave function
(| Ψ∗Ψ |) and insert the limits of the integral.

∫ ∞
−∞
| Ψ∗Ψ | dx =

∫∞
−∞ | A |

2 + | B |2 +AB∗e−2ikx +A∗Be2ikxdx (2)

=x(| A |2 + | B |2)

∣∣∣∣∣
∞

−∞

+
∫∞
−∞AB∗e−2ikxdx+

∫∞
−∞A∗Be2ikxdx (3)

= AB∗ 1
−2ikxe

−2ikx

∣∣∣∣∣
∞

−∞

+A∗B 1
2ikxe

−2ikx

∣∣∣∣∣
∞

−∞

(4)

There are a few errors in the students’ solution which
will not affect their conceptual discussion later in the
episode. Emma leaves just one differential elements of
length (dx) for the whole expression right after the last
term in the integrand (Equation 2). However, Emma is
mindful of her incorrect notation, as she will take the
integral of each term of the integrand with respect to x
in the following lines. The other error takes place after
taking the integral of the e2ikx: Emma leaves an extra
negative sign in the power of the exponential, and none of
the group members notice the extra sign for the second
exponential integral (Equation 4). Eric notes that the
result of the constant integrals are infinite; Emma will
not further discuss and skip those terms in the last line
of the solution.

They end up with the variable x in both the denom-
inator and the power of the exponential function in the
numerator of the fraction (Equation 4). We acknowl-
edge that the frame of students is mixed ahead of time
while they are setting up their integrals algoritmically.
But after this setup they switch to a purely conceptual
reasoning and start their discussion again.

Without evaluating the integral numerically, they re-
alize that the answer of the integrals might be infinite.
They start in a conceptual conversation in the math con-
text by arguing based on words and properties of the
wave functions rather than working out equations to jus-
tify their answer as being finite.

Emma: We don’t have to worry, this [the exponential
term in the numerator] is gonna blow up faster than
this [the denominator], right!

Eric: They both blow up

Emma: Yea, But one blows up faster and that matters

Adam: Definitely the exponential (points to numerator)

Emma: Yeah. . .

Emma has a discussion about which term “blows up”
faster than the other. Emma gives more evidence of her
conceptual understanding of the behavior of the two func-
tions in the second exponential integral, when Eric says
“but both terms blow up”. She then compares the decay
rate of the functions as an important factor that “mat-
ters”. Emma conveys her generalized expectation34 of
the situation by saying “We don’t have to worry”.

Although Emma only uses the term “blow up” briefly,
there is a conceptual meaning embedded in this phrase
which shows her understanding of the situation by com-
paring the rate. Adam seems to agree with Emma when
pointing to the exponential function as blowing up faster.

E. Episode: Conceptual physics

The Instructor asks the students to solve the
Schrödinger equation to find the wave function for the
free particle. Robert begins to write down the time in-
dependent Schrödinger equation (Ĥψ = Eψ). At this
point Alex states that the equation written by Robert is
time independent. On the other hand, Robert seems cer-
tain that the wave function is time independent. Robert
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pauses writing, and both of the students start a concep-
tual discussion before continuing any algorithmic manip-
ulations. Their arguments are based upon reasoning and
discussion rather than working out specific equations:

Robert: I think. . . .

Alex: That’s time independent. . .

Robert: Yeah. . . Why do we need time? hmm?

Alex: Hmm. . . Because the wave function might have it.

Robert: If there is no force then. . . um. . . why would
anything about the wave function change over
time?

Alex: Because the wave function might depend on
time. . . from its initial condition.

Robert: I don’t think it did. At least. . . [unintelligible].

Alex: Oh, okay.

Robert refers to the properties of the physical system
to reason that the wave function is time independent be-
cause there is no force acting on it, whereas Alex has
doubts about how the initial condition can affect the evo-
lution of the system over time. However, Alex does not
have enough evidence to justify his reasoning.

In this episode, both students are in a conceptual
physics frame, justifying their reasoning (albeit briefly)
with arguments about physical quantities instead of
mathematics or procedures, and bringing in more expan-
sive reasoning. Alex thinks in terms of the feature of the
problem by mentioning the initial condition. Thinking
about the features of this problem also helps Robert to
set the force equal to zero. This helps him to think more
deeply about the underlying concepts and justify a zero
change of the wave function over time.

F. Episode: Algorithmic physics

In contrast to the prior example, here Robert and Alex
shift into a more algorithmic frame. Robert continues to
rearrange the equation of the Hamiltonian into kinetic
and potential energy. He then sets the value of the po-
tential energy equal to zero, and continue to recall the
physical equations for the momentum based on the ve-
locity and substitute them into the equations.

Robert: (writing math as he speaks) Whole definition
is. . .T +U . . . Zero (crosses out U) is, uh 1/2. . .mv
squared. This is p. . . 1

2pv. . . and v equals ẋ So H is
1/2pẋ

Alex: You can have that H equals. . . or T equals p2

2m .
It’s skipping all of this.

Robert goes through multiple steps of algebra to re-
member the other physics equations in order to relate the
kinetic energy to the momentum. However, Alex directly
recalls the equation of the kinetic energy in terms of the
momentum. Alex’s framing is distinguished from algo-
rithmic mathematics because he’s not performing math-
ematical manipulations, merely recalling general physics
formulae. Robert is also in a recall mode, as evidenced by
the words which start his observation: “whole definition
is”. Both of them together implicitly agree that the goal
of this part of the interaction is to lay out physical laws
using mathematical formalism, not to discuss the appli-
cability of those laws or derive them from first principles,
as evidenced by Alex’s comment that they can “[skip] all
of” Robert’s more elaborate efforts.

VI. ACCOUNTING FOR FRAME
TRANSITIONS

The idea of the math-physics-algorithmic-conceptual
framework is itself a development in how we model stu-
dent thinking about math in physics contexts. How-
ever, only the briefest of problems (Heller & Heller’s
“exercises”35) require only one frame to solve them. To
better model longer problems in upper-division physics,
we must look at how students transition between frames
in the course of problem solving. Frame transitions – or
inability to transition – in students’ problem solving illu-
minates the connections among ideas and procedures in
longer problems.

We identify transitions by first identifying preceding
and following frames. The transition, definitionally, oc-
curs between two different frames. Broadly speaking, we
notice that the timing of transitions is relatively short
(on the order of a few seconds, less than length of a few
turns at talk).

A. Example: Conceptual math to algorithmic math

In the following example, the group transitions from a
conceptual math frame to an algorithmic frame, which is
a move from an expansive to a narrow frame.

In the previous class session, students discussed that
the probability density of a stationary state is time in-
dependent. Immediately prior to this example, the in-
structor asks the class to work in groups and find if the
probability density of a superposition of two stationary
states (Ψ1 and Ψ2) is time dependent or independent.

Eric decides to talk through the solution to the prob-
lem with his group. His preference is to start in the
conceptual math frame by comparing this problem to
previous problems, and his initial conclusion is that the
probability density is time independent.

Eric: I think. . . Cause when you do the, um, absolute
value, you have to multiply by the complex conju-
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gate, so I’m pretty sure that e thing [complex ex-
ponential part of the wave function] will just go to
one, cause you’ll replace that with. . . that e to the
minus blah blah blah with e to the plus blah blah
blah, and then when you multiply the. . . 1 over, you
know, x over x. That’s what I’m thinking.

We believe Eric is in the conceptual math frame be-
cause he uses reasoning based on the behavior of the
exponential function and complex conjugate to deter-
mine the “form” of the answer; namely, that the complex
conjugate causes complex exponential terms to drop out
when multiplied together. He isn’t working on an algo-
rithmic solution; he’s arguing from the nature of these
functions that his solution is reasonable. After he out-
lines the reasoning behind his conclusion, he begins work-
ing this problem out to check his answer.

After about two minutes the instructor mentions that
the answer is time dependent, which confuses Eric, who
proclaims his violated expectation loudly.

Eric: It is time dependent? Why? (While the instruc-
tor is explaining, he works on his paper) There’s
cross terms! Stupid. . . (smacks himself on forehead)
ugh. . . That’s why. Okay. Ugh, so stupid.

(From Eric’s tone of voice, we interpret that Eric uses
“stupid” to mean that his reasoning was thoughtless, not
that he is personally stupid.)

The instructor’s answer violates Eric’s previous conclu-
sion, prompting him to shift to another frame to explain
the new answer. He realizes that his conceptual shortcut
that exponentials will cancel with each other caused him
to make a mistake. By viewing the problem algorithmi-
cally, Eric is able to review his work and determine what
went wrong. He tries to find an answer for his question by
transitioning to the algorithmic math frame and noticing
that the “cross terms” are non-zero in this case.

B. Example: Algorithmic physics to algorithmic
math

The next example illustrates a transition from algorith-
mic physics to algorithmic math. Both of these frames
are narrow and actions in them are taken rapidly and
frequently.

In this session the instructor asks the students to find
the wave function of the free particle by solving the
Schrödinger equation. Emma begins to write down time
dependent Schrödinger equation (TDSE). She tries to
remember where to put h̄ in the time dependent side
of the equation and asks Eric if he remembers. Eric
then recalls and writes the TDSE on the whiteboard
(−h̄

2

2m
∂2Ψ
∂x2 = ih̄∂Ψ

∂t ). After they both finish writing the
equations, Emma compares them.

Emma: This is what I have, good we agree.
(very quickly reviewing the facts) F= 0, V=0,
. . . Separable.

Emma is in an algorithmic physics frame, recalling
equations and matching them term-by-term in prepara-
tion for solving the problem using a known procedure:
separation of variables.

However, Eric is in a different frame. He bids to be-
gin their problem solving by thinking about the physical
system:

Eric: So this is like the infinite [square well], except for
we don’t have boundaries.

Eric’s comment compares the current problem to a
well-understood system and provides opportunities for
further thinking about their current system. Here Eric
is using reasoning about a physical system by analogy
to a previous problem, which is indicative of concep-
tual physics thinking. However, Emma does not take
up Eric’s bid to use the conceptual physics frame.

After Eric’s comment, Emma asks Adam to join their
group. Adam’s involvement transitions the group into
the algorithmic math frame, picking up Emma’s earlier
work on algorithmic physics to state known equations.

Adam begins by checking that the conditions for this
problem satisfy the time independent Schrödinger equa-
tion. He spends a short time in algorithmic math frame
to justify that the energy in the spatial part of the
Schrödinger equation could be anything. This makes him
ready to solve the bulk of the problem algorithmically
and in a math frame via separation of variables.

Adam leads the group through his solution, which
takes about five minutes. Adam has already taken a
course on partial differential equations from the math de-
partment, and he feels very comfortable with this mathe-
matical procedure. Adam’s process begins in algorithmic
math with finding the general form for Ψ and the sepa-
ration constant K. Adam uses the letter λ as a known
constant in the solution and explains it’s relation to the
separation constant K.

Ĥψ = Eψ (5)

−h̄2

2m

∂2

∂x2
Ψ = Eψ (6)

k2 =
−2mE

h̄2 (7)

ψ′′ =
−2mE

h̄2 ψ (8)

k =
i

h̄

√
2mE (9)

ψ = Aeλx +Be−λx (10)
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ψ = Ae
i
h̄

√
2mE +Be−

i
h̄

√
2mE (11)

Adam and Emma: K squared equals minus E. . .

Emma: (interjecting) and then we do the e to the λ sign
and then we find λ

Adam and Emma: K squared equals minus E. . .

Emma: (interjecting) and then we do the e to the sign
and then we nd . . . So now we want to find out what
λ is

Adam: It is just square root of K (Adam points to equa-
tion 8). No wait it’s K, if we define the square [of]
K by that. . . (Adam points to equation 6)

Emma: It is k. . . yea

Adam: So our space part is just e to the i, square root
of 2mE over h̄. . . (Adam writes equation 10)

Emma: Just write K. . . Just write K. . .

Adam: Plus B to the. . .

Emma: Why would you not just write as K.

Eric: Because this is the real name. . . I don’t [unintelli-
gible] (Adam finishes writing equation 10)

The students appear to stay in algorithmic math af-
ter Adam transitions them there: there is no discussion
about how functions behave, what the physical system
looks like, the effects on the final solution, or whether this
makes sense. The students are purely focused on how to
define K, the separation constant, and its relationship
to λ, a known constant in the solution. This episode
shows that algorithmic math can be a quick and powerful
problem-solving mindset, but without other quadrants it
is quite difficult to check if solutions makes sense.

C. Example: Algorithmic math to algorithmic
physics

The group in the previous example continued their cal-
culations to find out the solution of the wave function for
the space part and time part. They find that the space
part is equal to Aekx + Be−kx. and the solution of the
wave function for the time part as e−i(µ/h̄)t. The next
step in their algorithmic calculations is to find how µ is
related to k. They multiply both functions and substi-
tute the “whole thing” into the TDSE. Earlier in their
solution, they have found k2 as −2mE

h̄2 . Part of this calcu-
lation happens while they are writing on the part of the
board that is not visible in the camera. As they are tak-
ing the derivatives with respect to time and space, they
forget a sign, which they will not notice it until later in
their problem solving session (Section V C).

Adam: So just µ equals h̄2 over 2m times k2 [µ =

( h̄
2

2m )k2].

Eric: What’s µ?

Emma: µ was our constant from when we were doing
this part (pointing to the time derivative part of
the TDSE).

Eric: For time?

Emma and Adam: Yea.

Emma: Because we have e−i(µ/h̄)t.

While Emma is explaining to Eric where the coefficient
µ comes from, Adam plugs in the value of k2. However,
he makes an error in the denominator, and only writes h̄
instead of h̄2. Emma and Adam continue with algorith-
mic simplifications. This mistake causes their final µ to
have an extra coefficient of h̄.

Adam: So, boom. . . boom.

Emma: cancel . . . cancel. . . cancel . . . cancel. We get
. . . h̄E

Adam: Hah . . . (writes −Eh̄ and taps his finger on the
board)

Emma: Is that wrong?

Adam: . . . Yeah.

Emma: Because you have the h̄ . . .

Adam: . . . Joules (pointing to the E) . . . joules-second
(pointing to the h̄). Yeah I don’t know if that’s
right.

Emma and Eric start algorithmic checking on the other
side of the board, while Adam is silent after checking
units by doing dimensional analysis. At this point, we
can hardly hear the conversation between Emma and
Eric, since the instructor has paused the problem solving
session and is giving feedback to the class. The group ig-
nores the instructor’s explanation and continue to work
quietly on their own.

Emma: Oh wait . . . wait. Isn’t that . . . ?

Emma: No h̄ is here (pointing to the e−i(µ/h̄)t to explain
something to Eric).

Emma: The h̄ is here (pointing to the h̄ in the time so-
lution), and that will cancel with this one (pointing
to the extra h̄ in the final answer)

Emma: And then we will have . . .

Adam: Oh wait a minute . . . hold on . . . hold on . . .

Adam: Wait . . . I know what I did . . . I did not square
this (pointing to the h̄ in the denominator).
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Adam adds the missing h̄ power to his solution, and
cancels it with the remaining h̄ in the final answer.

Adam: So it’s just minus E . . . Yes . . . (while raising his
fist in a triumphant gesture).

In the previous episode we showed Adam’s participa-
tion caused the whole group to shift from algorithmic
physics to algorithmic math. In this episode only Adam
shifts. He transitions from algorithmic math to algorith-
mic physics to find the source of his error by thinking in
terms of units of the physical quantities. In contrast to
Emma and Eric, Adam does not recheck his derivatives.
Instead he checks units to make sense of his answer as a
physics quantity and not just a symbolic answer. After
finding the source of his error he continues the simplifi-
cations in the algorithmic math frame to find the final
answer for µ. This episode shows that by coordinating
multiple frames students can better monitor their calcu-
lation process, saving time and/or making sense of their
final answers.

VII. DISCUSSION

In this study we identified the state of students’ think-
ing associated with four discrete frames including algo-
rithmic math, conceptual math, conceptual physics and
algorithmic physics. We presented several examples of
students’ group problems solving switching frames to
productively and correctly solve a problem.

While upper-division students are generally facile at
problem solving, on occasion they get stuck. By observ-
ing students’ behaviors we noticed moments that stu-
dents change the nature of their activities to make a de-
cision that affects the future of their problem solving, to
find the source of an error in their solution, or to get
“un-stuck”.

Epistemological framing is a window to individual’s
implicit state of thinking. This internal state can al-
ter as a result of interaction with external artifacts
in the environment such as the instructor’s framing5,8.
“Eric’s”(Section VI A) shift from conceptual math to al-
gorithmic math is responsive to the instructor’s correct
answer to the class. In group problem solving, shifts can
also be internal to the group: when members of a group
disagree, one student might cause the group to shift to
another frame8. Even in individual problem solving, stu-
dents may shift to another frame in the ordinary course
of solving a problem.

Epistemic games have been previously used for study-
ing problem solving behaviors at the introductory level9.
However, at the upper division the strict move structure
of these introductory e-games breaks down, and it may
be more productive to look at which frames students op-
erate in5,8,36.

In a similar contrast, Sherin12 compares the conceptual
schemata associated with symbolic forms with Larkin’s13

“principled-based schemata view”. He explains that the

goal of his schemata is conceptual understanding and the
goal of the latter schemata is step-based problem solv-
ing. However, these two views are again situated at the
introductory level where conceptual mathematics is rare.
In our framework, both conceptual understanding and
algorithmic thinking can be mathematical or physical,
allowing for greater freedom in modeling upper-division
student thinking. As evidenced by “Eric” (Section VI A),
conceptual thinking in not the only productive aspect of
thinking about physics.

“Eric” (Section VI A) switched from conceptual math
to algorithmic math, we do not mean to imply that al-
gorithmic math is universally more productive than con-
ceptual math. Rather, what counts as productive fram-
ing depends strongly on the problem context, and differ-
ent frames may be productive at different times within
a problem. Students’ difficulties in quantum mechanics
– such as thinking that the probability density is time
independent for a superposition of two stationary states,
as this student does – may simply be the result of unpro-
ductive framing and not fundamental inability to solve
these problems or conceptual “difficulties”1–3. Model-
ing students’ problem solving as movement in the math-
physics-algorithmic-conceptual plane allows for a richer
description of students’ problem solving behavior than
mere difficulty identification, even as difficulty identifi-
cation may more exactly specify the particular confusion
or incorrect reasoning students exhibit.

There is another external factor that is more important
in influencing students’ framing in a problem solving con-
text, even before being affected by other humans such
as groupmates or the instructor. As soon as students
read a problem, the problem statement framing interacts
with the students’ framing. In future work, we will use
this theoretical framework to categorize students’ fram-
ing and then analyze their responses as an artifact of the
problem statement and not just due to the final correct
answer or correct reasoning path.

VIII. CONCLUSION

In this study our goal was to examine students’ prob-
lem solving behaviors in the often-messy setting of the
classroom. We’re particularly interested in how students
solve problems collaboratively in groups, and especially
in the ways they connect math and physics reasoning to
solve upper-division problems.

We identified four epistemological frames: algorithmic
math, conceptual math, conceptual physics and algorith-
mic physics. We presented several examples of students’
group problems solving switching frames to productively
and correctly solve a problem. This framework divides
possible student errors into three different categories as
displacement error, transition error and content error.
The displacement error reveals students unproductive
frame of the situation. Content error shows what pieces
of knowledge have to be activated to understand all the
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ideas incorporated in the problem frame. The last er-
ror is transition, where students have ideas in different
mental spaces but do not coordinate them.

This framework developed as a result of analysis of
spontaneous and natural moments of in-class activities
during one semester. There was no constraint in the
problem solving sessions of the class, except, that the
time duration of the problem solving session was limited.
However, still students had enough time to illustrate nat-
ural moments of problem solving, to become creative,
to get enough engaged with the problem to “get stuck”
and then “un-stuck”, or become so deeply engaged in the
group problem solving to ignore the instructor’s comment
for several minutes after he has already paused the prob-
lem solving session. This kind of problem solving is more
ecologically valid than the problem solving in individual
clinical interviews37, and thus as a field we should attend
more carefully to it.

Instructionally, this framework is a useful tool for
instructors to assess and facilitate different moments
of problem solving sessions in their classroom settings.
Some students like “Eric”(Section VI A), are self reflec-
tive and get “un-stuck” by noticing the missing parts of

their solution. However, not all of the students might act
as “Eric” does. Using this framework may help instruc-
tors notice when students are stuck because of unproduc-
tive framing, and give them tools to nudge students into
a more productive frame. Instructors can tip students
into different frames5,38 or gently nudge students to use
additional resources1,39 to resolve content errors.
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