
Remixing as a Pathway to Computational Thinking
Sayamindu Dasgupta

MIT Media Lab
Cambridge, MA 02142

sayamindu@media.mit.edu

William Hale
University of Washington

Seattle, WA 98195
halew@uw.edu

Andres Monroy-Hernandez
Microsoft Research

Redmond, WA 98052
amh@microsoft.com

Benjamin Mako Hill
University of Washington

Seattle, WA 98195
makohill@uw.edu

ABSTRACT
Theorists and advocates of “remixing” have suggested
that appropriation can act as a pathway for learning. We
test this theory quantitatively using data from more than
2.4 million multimedia programming projects shared by
more than 1 million users in the Scratch online commu-
nity. First, we show that users who remix more often
have larger repertoires of programming commands even
after controlling for the numbers of projects and amount
of code shared. Second, we show that exposure to compu-
tational thinking concepts through remixing is associated
with increased likelihood of using those concepts. Our
results support theories that young people learn through
remixing, and have important implications for designers
of social computing systems.

ACM Classification Keywords
H.5.3 Information Interfaces and Presentation (e.g., HCI):
Group and Organization Interfaces—Computer-supported
cooperative work ; K.3.1 Computers in Education: Com-
puter Users in Education—Collaborative Learning

Author Keywords
remixing; learning; online communities; computers and
children; creativity support tools; social computing and
social navigation; computer mediated communication;
peer production

INTRODUCTION
When the Lifelong Kindergarten group at MIT designed
and built an online community for users of the Scratch
programming language in 2006 and 2007, the system was
designed as a platform to help young people learn to
program through remixing [29]. Every project shared
publicly on the Scratch website is released under a license

Paste the appropriate copyright statement here. ACM now supports
three different copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the
historical approach.
• License: The author(s) retain copyright, but ACM receives an ex-
clusive publication license.
• Open Access: The author(s) wish to pay for the work to be open
access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release state-
ment assuming it is single spaced.
Every submission will be assigned their own unique DOI string to be
included here.

Figure 1. Scratch code that will cause clicking on a visual
object (i.e., sprite) to grow in size, and then shrink, while
showing a speech bubble at the same time.

– explained in child-friendly terms – that allows unre-
stricted reuse and modification. Not an easy or obvious
decision at the time, the MIT team embraced remix-
ing with the hope that novice users might achieve their
goals by downloading, studying, and modifying existing
projects created by more skilled users, and through that
process, they would learn programming skills.

The idea that remixing and appropriation of content can
promote learning has broad currency in the literatures on
social computing and youth and media. Appropriation
or remixing has been described as an important literacy
or skill for young people by Bruckman [7], Jenkins [20],
Ito [18], Lessig [25], Manovich [28], and others. One of
the most important arguments made in favor of remixing
is that it allows users to engage with material created by
others with different skills, knowledge, and experiences,
and that this exposure promotes learning. The idea that
remixing can promote learning has been particularly in-
fluential in studies of programming. Scratch designers’
embrace of “creative appropriation” [29] is only one ex-
ample of a strong current in constructionist approaches
to learning [34] that attempt to place the learning of
“computational thinking” concepts [42, 43] in a social
context [33, 7].

This paper empirically tests the theory that young pro-
grammers can increase their skills and learn computa-
tional thinking concepts through remixing other program-
mers’ code. Using a longitudinal dataset of 2,426,894
projects created by 1,068,502 users over the first five years
of the Scratch online community, we examine the associ-
ation between engagement in remixing and the level and
speed with which users demonstrate new computational

ar
X

iv
:1

60
5.

08
76

6v
1 

 [
cs

.C
Y

] 
 2

7 
M

ay
 2

01
6



thinking concepts. Although limited in several ways, our
results provide broad support for the idea that young
people learn through remixing.

BACKGROUND
Remixing has been defined as the reworking and combi-
nation of existing creative artifacts, usually in the form
of music, video, and other interactive media. The phe-
nomenon is widespread, culturally significant, and con-
troversial. Lessig has suggested that remixing reflects a
broad cultural shift spurred by the Internet and a source
of enormous creative potential [25]. Manovich has called
remixing “a built-in feature of the digital networked me-
dia universe” [28]. Benkler has cited remixing as an
example of the power and potential of a new mode of
social production [1].

Remixing online is described as important for at least
three reasons. First, theorists like Lessig [25] take a nor-
mative position that participation in cultural production
is prima facie socially beneficial and have suggested that
remixing represents a low-cost and accessible form of par-
ticipation. Second, scholars like Benkler [1] have pointed
to remixing as a possible path toward high quality in-
formation goods through the mass aggregation of many
small contributions in ways that are similar, in both pro-
cess and effect, to Wikipedia or free/open source software.
Finally, theorists including Jenkins [20] have advanced
an argument that remixing leads to learning as a form
of legitimate peripheral participation [24]. Of course,
remixing has not been without its detractors. Keen [21]
and Lanier [23] have both suggested that remixing sys-
tematically falls short of its promise, in all three senses,
and that remixes are largely derivative, uninteresting,
and of poor quality.

Driven by excitement about the promise of remixing, a
large body of empirical research has been generated on
the subject. Much of this work has focused on mapping
dynamics within remixing communities to understand
why some users engage in remixing [9, 46] or why some
artifacts are remixed while most never become sites for
collaboration [16, 8, 32]. Because remixing involves appro-
priation, another body of work has looked at authorship
and credit-giving [26, 30, 22] and to intersections be-
tween remixing practice and copyright law [25, 14, 40,
12]. In line with theory, empirical work has also consid-
ered remixing and its relationship to quality in order to
explore if, and when, remixing leads to better results
than what is achieved by creators working alone [47, 15].

While empirical remixing research has explored means
of supporting and promoting remixing, tested the recep-
tion of remixes by users, and tested theories about the
quality of remixed outputs, we know of no research that
has empirically tested the theory that remixing acts a
pathway to learning. That said, the idea that remixing
can promote learning has been influential to designers of
remixing systems. The creators of the Scratch online com-
munity cited Jenkins [19] to describe their ideal model of
“active engagement” with content, where “members of the

community can share or appropriate the original building
blocks of the Scratch projects they interact with,” and
where users of the Scratch programming language can
learn through remixing others’ content [29]. Outside of
remixing communities, research on professional software
engineers has documented examples of appropriation as
a pathway to learning [2, 13].

The idea of a community that would use remixing to sup-
port learning about programming finds particular support
in the theory of constructionism [34, 36] that motivated
the design of Scratch itself [37]. Constructionist theories
hold that we learn best by designing and constructing
“public entities,” and that this learning is even more mean-
ingful and effective in a social context [33]. As a result,
research on learning in Scratch has focused on social in-
teractions and relationships within the community [6, 5,
11] as well as on appropriation within the Scratch website
[17, 30, 15, 16].

Although users of Scratch learn a wide range of 21st cen-
tury literacies [20], the system was designed to support
young people in learning to program. While construc-
tionism has been primarily focused on epistemology and
ways of learning, other research on computational think-
ing (CT) [42, 43] has influenced and described many
of the concepts that Scratch hopes its users will learn.
Wing, who coined the term, defines computational think-
ing as “the thought processes involved in formulating
problems and their solutions so that the solutions are
represented in a form that can be effectively carried out
by an information-processing agent” [44]. Recent work
by Brennan and Resnick [4] has unpacked CT in terms of
concepts, practices, and perspectives. In this treatment,
concepts reflect the most basic building blocks of com-
putation (like sequences, loops, and conditionals) while
practices and perspectives involve higher level strategies
and world-views (like debugging, or reflections on the
learning process itself).

Our goal is to test the theory that remixing or appropria-
tion of code is a mechanism through which individuals can
be exposed to and learn computational thinking concepts.
Attempts to measure learning are always challenging and
controversial and doing so in informal learning environ-
ments is even more difficult. Several previous studies
have looked at learning in Scratch, although most have
been case-study based and qualitative [27, 10, 35, 39, 3].
We are particularly inspired by recent work by Yang et
al. [45] that improves on previous quantitative studies
of learning in informal environments by looking at user
“trajectories.”

Yang et al. models learning as growth in the cumulative
repertoire of programming tokens, similar to a measure
of demonstrated vocabulary, which may grow more or
less quickly over time. Building on this approach, we seek
to examine how, ceteris paribus, a learner’s repertoire
of programming concepts increases when she engages
in remixing others’ projects that use unfamiliar blocks.
This leads us to our first hypothesis (H1): changes in a



Figure 2. Remix of a Scratch “pong” game (original project on the left), with modification of graphic elements, as well
as more sophisticated code for added functionality.

user’s programming repertoire will be larger when she has
engaged in more remixing activity.

We are also inspired by work by Scaffidi and Chambers
who seek to measure learners’ “breadth” in terms of the
number of types of concepts a user has demonstrated [39],
and by Brennan and Resnick’s description of particular
CT concepts [4]. As a result, we offer a narrower group of
hypotheses focused on the relationship between remixing
and individual CT concepts. Our second hypothesis (H2)
is that a user who remixes more projects that use a par-
ticular computational thinking concept will be more likely
to use that concept for the first time in a de novo project
than a user who has remixed fewer of these projects. We
test this theory as it applies to each of Brennan and
Resnick’s CT concepts separately.

EMPIRICAL SETTING
The current work contributes to the growing body of
previous work in social computing on remixing and learn-
ing using the Scratch online community as its empirical
setting. Scratch is a public and freely accessible web-
site1 where a large community of users create, share,
and remix interactive media with the Scratch program-
ming environment. With more than 7 million users, 10
million projects, and 2.6 million remixes, Scratch is the
largest community dedicated to remixing as well as the
largest informal community for young people to learn
programming.

The Scratch programming environment is visual, block-
based, and designed for novice users [37]. Programs
in Scratch are constructed by dragging and dropping
visual blocks together (see Figures 1 and 2). Blocks are
analogous to tokens or symbols in the source code of
traditional computer programs, and can be used to do
things like update a variable, move an object on the
screen, play a sound, or repeat a sequence of other blocks.
An analogy can be drawn between blocks and lines of
code, though blocks are more granular. Scratch includes
more than 120 distinct blocks which can be combined

1https://scratch.mit.edu

together to form “scripts.” Figure 1, for example, shows
two scripts with 4 and 2 blocks side-by-side.

Blocks define the behavior of on-screen graphical objects
called “sprites” which can interact with each other and
the user. Projects on the Scratch website vary enormously
in subject matter as well as in complexity in terms of
both code and media. Visitors to the Scratch website
must create accounts to share projects or to contribute
in other ways such as commenting, showing support (i.e.,
giving “loveits”), tagging, or flagging projects as inappro-
priate. Most of the community’s users self-report their
ages ranging between 8 and 17 with 12 being the median
age for new accounts. As of May 2013 the Scratch pro-
gramming environment has been fully integrated into the
web browser and online community. Our analysis covers
the Scratch community during a window from marzo -d,
2007 to abril -d, 2012, before the introduction of the
web-based editing environment.

DATA AND MEASURES
The Scratch online community uses a database-driven
web application that stores an extensive range of meta-
data on projects, users, and interactions on the website.
This database also identifies, tracks, and presents data on
whether projects are created through remixing. Addition-
ally, the website stores each of the raw Scratch project
files which can be further analyzed to reveal details such
as projects’ programming code and media elements. Our
dataset is constructed by combining exported metadata
about Scratch’s users, projects, and interactions with
algorithmic analyses of each project. Our unit of analysis
is the Scratch project and our dataset includes every
project shared on the Scratch online community from the
moment the first project was shared in Scratch on marzo
-d, 2007 through abril -d, 2012 – a total of 2,426,894
projects.

Because our study aims to measure learning by looking at
within-user changes, our analysis focuses on the 173,053
users who have shared at least two projects. We mark
age data as missing for 4,354 users who report their age
(at the time that they shared their first project) as less

https://scratch.mit.edu


Concepts Measure Scratch Blocks

Loops Uses looping blocks
(e.g., Forever block)

forever, foreverIf, repeat, repeatUntil

Parallelism Parallel scripts with
same “hat” block.

startHatTriggered, eventHatTriggered, keyHatTriggered, mouseHatTrig-
gered

Events Uses “when <>” hat
blocks

eventHatTriggered, keyHatTriggered, mouseHatTriggered, bounceOffEdge,
turnAwayFromEdge, touching, touchingColor, colorSees, mousePressed,
keyPressed, isLoud, sensor, sensorPressed, distanceTo

Conditionals Uses conditional blocks
(e.g. “if” block)

waitUntil, foreverIf, if, ifElse, repeatUntil, bounceOffEdge, turn-
AwayFromEdge, touching, touchingColor, colorSees, mousePressed, key-
Pressed, isLoud, sensor, sensorPressed, lessThan, equalTo, greaterThan,
and, or, not, listContains

Operators Uses operator blocks
(e.g. “+” or “or”
blocks)

lessThan, equalTo, greaterThan, and, or, not, add, subtract, multiply, divide,
pickRandomFromTo, concatenateWith, letterOf, stringLength, mod, round,
abs, sqrt, sin, cos, tan, asin, acos, atan, ln, log, eˆ, 10ˆ

Data Uses data blocks (e.g.
Variable block)

setVarTo, changeVarBy, showVariable, hideVariable, readVariable, ad-
dToList, deleteLineOfList, insertAtOfList, setLineOfListTo, contentsOfList,
getLineOfList, lineCountOfList, listContains

Table 1. Mapping of CT concepts to Scratch blocks.

than 4 or more than 90 years. Finally, we omit projects
for which we do not have data because of technical errors
in our analytic tools or because of corruption in the
project files. For analyzing overall repertoire size, we
consider 1,625,988 de novo projects shared by all users
within our restricted dataset, out of which we omit 4,059
projects due to missing data. While analyzing for specific
concepts, we omit 4,950 projects due to missing data and
analyze a total of 2,280,709 projects shared or remixed
by the same set of users. For parallelism, we omit 11,229
projects due to technical errors in our analytic tools or
missing or corrupt data and analyze a total of 2,274,435
projects.

To test hypothesis H1 about growth in programming
repertoire, we operationalize a user’s repertoire of pro-
gramming concepts as the number of programming block
types that they have ever used. To test hypothesis H2,
we measure the presence or absence of particular compu-
tational thinking concepts. Toward this end, we adopt
Brennan and Resnick’s mapping of Scratch blocks to CT
concepts [4] as described in Table 1. For example, use of
the “repeat” block in Scratch is one indicator of the use of
the CT concept of loops. To measure the CT concept of
“parallelism,” we parse projects’ code structure to detect
multiple event-handling blocks that are listening for the
same event. Figure 1 is a minimal example of Scratch
code expressing parallelism with two instances of the
same event-handler block with different blocks attached
to each. We deviate from Brennan and Resnick only in
that we do not attempt to measure the CT concept of
“sequences” as any block connected to another block is a
sequence and nearly every Scratch project includes this.

M x̄ σ Range

Cum. Repertoire 23 28 21 [0,142]
Remixes 0 3 15 [0,1008]

De Novo Projects 4 13 46 [1,6347]
Comments 0 53 601 [0,64374]

User Age (Years) 14 18 10 [4,90]
Experience (Days) 13 99 206 [0,1829]

Total Blocks 146 767 3402 [0,525964]
Downloads 1 19 99 [0,5591]

Table 2. Summary statistics for measures of users at the
point of data collection. Columns are included for the
median (M). mean (x̄), standard deviation (σ) and range.

Because our behavioral measures of learning may be influ-
enced by a wide range of factors other than the amount
of remixing a user has engaged in, we also include a
range of control variables. Most critically, we include a
count of the number of de novo projects a user has shared
(De Novo Projects) which provides the independent vari-
able for modeling growth in repertoire associated with
increased experience.

For some users of Scratch, interaction and sharing
projects is primarily a social activity. Because these
users’ repertoires may grow more slowly, we include a
control for the number of comments received by a user
(Comments); we expect a negative relationship between
this measure and block repertoire. Because learning is
related to development in general, we also include a self-
reported measure of age in years at the moment that
each project was shared (User Age) and the age of each
account in days (Experience). Both of these variables



Loops Parallelism

Events Conditionals

Operators Data

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

10 1000 10 1000
De Novo Projects Shared By User

P
ro

po
rt

io
n 

of
 U

se
rs

 W
ho

 H
av

e 
N

ev
er

 U
se

d 
C

on
ce

pt

Figure 3. Kaplan-Meier “survival” curves for users in
Scratch. The y axes show the portion of users who have
never uploaded a de novo project using a given program-
ming concept. The x axes show “time” in terms of the
number of de novo projects.

may capture the sophistication of the user and we expect
a positive relationship between these two variables and
block repertoire.

In designing our study, we were concerned by several
active sub-communities within Scratch that are charac-
terized by large amounts of remixing and small amounts
of project code. For example, many Scratch users engage
in Scratch primarily through “coloring-contests” where
users use remixing to modify image media in a given
project [31]. Since these projects tend to have few pro-
gramming blocks, we were concerned that this type of
remixing might bias our estimate of the relationship be-
tween remixing through exposure to code. To account for
this, we constructed a control for the aggregate corpus
size across each user’s de novo projects (Total Blocks).

For our final control measure, we use the number of
projects a user has downloaded (Downloads). Downloads
is a complicated measure for several reasons. During
the timespan our dataset covers, the only way to view
the source code of a project shared on Scratch was to
download it. If a user downloads a project, learns how to
use a new block, but does not share a modified version of

the downloaded project publicly, it will not be counted in
Remixes in our dataset. That said, exposure to and reuse
of a block through downloading would constitute “remix-
ing” as defined by Manovich [28] and as appropriation
as defined by Papert [34]. In this sense, the relationship
between downloads and measures of learning may itself
reflect evidence of learning through remixing. Although
our analysis focuses on the more conservative measure
of remixing used within the Scratch community, we urge
readers to interpret our results in this context.

Table 2 includes summary statistics for each of our vari-
ables at the user level at the end of our period of data
collection on abril -d, 2012. As is typical for data on par-
ticipation in online communities, nearly all the variables
are highly skewed. To assist in interpretation and the
satisfaction of parametric assumptions in our models, we
apply a log-transformation to each of our independent
variables to ensure that their distribution of values more
closely approximates normality.

ANALYSIS
For H1, we analyze longitudinal data that represents the
block repertoire of each Scratch user, use projects as our
unit of analysis, and include an observation for every
de novo project shared in Scratch during our window of
data collection by a user with two or more projects. To
model the effects of remixing within users, we use panel
regression models with user level fixed effects that are
equivalent to fitting a dummy variable for every user in
our sample [41]. Our formal model to test H1 is shown
below:

Cumulative Repertoire = β0 + β1 log Remixes

+β2 log De Novo Projects + β3 log Comments

+β4 log User Age + β5 log Experience

+β6 log Total Blocks + β7 log Downloads

+βuUSERu + ε

To test our theory about the effect of coloring-contests,
we fit an exploratory model (M1) without controlling for
Total Blocks or Downloads, a model (M2) with the Total
Blocks control, and a model (M3) which also adds the
Downloads control.

To test H2, we model the effect of remixing projects that
contain particular CT concepts on the likelihood of the
user employing those concepts in subsequent de novo
projects. The demonstration of concepts can happen at
any time during the tenure of a Scratch user and is, as a
result, well suited to modeling using a continuous time-
survival approach using the Cox proportional hazards
model [41]. Originally created for epidemiology models
of actual human survival against disease, the language of
these models can seem strange when applied to positive
events like learning. To support a Cox proportional
hazards approach, we modified our dataset so that each
observation represents a spell between projects.

Figure 3 includes non-parametric plots that show the
proportion of users who have never used a particular block



M1 M2 M3
ln Remixes −0.304∗ 1.402∗ 0.253∗

(0.017) (0.016) (0.017)
ln De Novo Projects 13.073∗ 4.779∗ 4.750∗

(0.023) (0.026) (0.026)
ln Comments 0.413∗ 0.643∗ 0.080∗

(0.011) (0.010) (0.011)
User Age 2.367∗ 2.912∗ 2.517∗

(0.019) (0.018) (0.018)
ln Experience 0.862∗ 0.128∗ −0.046∗

(0.008) (0.007) (0.007)
ln Total Blocks 5.965∗ 5.823∗

(0.011) (0.011)
ln Downloads 2.237∗

(0.012)
R2 0.751 0.793 0.798
Adj. R2 0.673 0.711 0.715
Num. obs. 1578362 1578362 1578362
∗p < 0.001

Table 3. Fitted regression models for Scratch users’ cumu-
lative block repertoires. All models use user-level fixed
effects and reflect within-user estimates.

as a function of the number of projects they have shared.
Users contribute data until they either use the concept,
or they are censored because they did not contribute
additional projects. Cox models estimate the association
between predictor variables and the “risk” of experiencing
an event as multipliers of a baseline “hazard” function
that is itself a function of the “survival” functions shown
in Figure 3.

Rather than treating time as calendar time, which pro-
duced substantively similar estimates, we use the number
of projects shared as our baseline time variable t. The
independent variable in our Cox models is the number
of remixes a user has shared that use the CT concept in
question (Remixes w/ Concept). We also include Remixes,
capturing total remixing activity as a control alongside
the other control variables used in our repertoire models.
We model the risk of a user demonstrating a new CT
concept, having shared a given number of projects λ(t),
as a function of a baseline hazard function λ0(t) in the
following model:

λ(t|X) = λ0(t) exp{β1 log Remixes w/ Concept

+β2 log Remixes + β3 log De Novo Projects

+β4 log Comments + β5 log User Age

+β6 log Experience + β7 log Total Blocks

+β8 log Downloads}

We estimate a separate model for each CT concept: con-
ditionals, data, events, loops, operators, and parallelism.

RESULTS
Our tests of H1 and the relationship between remixing
and blocks in a user’s repertoire are shown in Table 3.
In our first exploratory model M1, we find a negative
association between the number of remixes a user has

shared and the size of their repertoire. Controlling only
for the total number of projects, comments, and users’
age and experience, a one log-unit increase in the number
of remixes a user shares is associated with a within-user
decrease of 0.3 distinct blocks in her repertoire. Of course,
this negative effect may simply reflect the fact that many
users engaged in remixing are engaged in coloring-contests
that involve little or no code. Model M2 attempts to
address this concern by adding our control for the total
number of blocks shared. Once we control for total
block use, we find the parameter estimate for Remixes
is switched in sign and much larger. In this expanded
model, we estimate that a one log-unit increase in number
of remixes shared is associated with a 1.4 block increase
in repertoire.

M3 adds a control variable for Downloads and provides
confirming evidence for our prediction that downloading –
a step toward remixing in Scratch – moderates the effect
of remixing. Model M3 estimates that a one log-unit
increase in downloading is associated with a 2.24 block
increase in a user’s repertoire. This supports the idea that
remixing is a pathway to learning, in the broader con-
ceptual sense of remixing that is used by many theorists.
However, even with this strong control for downloads,
this model estimates that a one log-unit increase in the
number of remixes shared on Scratch is associated with
a 0.25 block marginal increase in repertoire. Although
reflecting only a portion of a block, this effect is well esti-
mated (σ = 0.02) and statistically significant even at the
conservative α = 0.001 level. Goodness of fit statistics
shown in Table 3 (e.g., R2 = 0.80) suggest that these
models fit the data well, and they explain a large major-
ity of variation in Scratch users’ cumulative repertoire of
blocks.

The marginal effect sizes in these repertoire models are
small, but can still be substantively meaningful. For
example, M2 predicts that, holding all control variables
at median values for similar users, a user who has shared
100 de novo projects – but who had never remixed – would
be predicted to have a block repertoire of 81 blocks. If the
user shared one remix for every three de novo projects, she
would have a predicted repertoire of 86 blocks instead.
When we control for downloads in M3, the estimated
difference for this prototypical user is approximately one
full block. Although small, this still reflects more than 1%
of the user’s repertoire, and almost as large a proportion
of all Scratch blocks.

Our results for hypothesis H2 are shown in the six models
described in Table 4. Although the relative size of the
effects vary between concepts, the pattern of results are
consistent. The marginal effect of the number of remixes
with the CT concept is positive for all concepts. Parame-
ter estimates can be interpreted as a “magnifier” of the
hazard function. For example, a user who has remixed
one log-unit more projects with conditionals would be
estimated as being at 1.34 (e0.29) times the risk of using



Loops Parallelism Events Conditionals Operators Data
ln Remixes w/ Concept 0.388∗ 0.235∗ 0.282∗ 0.295∗ 0.158∗ 0.204∗

(0.009) (0.009) (0.009) (0.008) (0.007) (0.007)
ln Remixes −0.283∗ −0.406∗ −0.355∗ −0.463∗ −0.433∗ −0.530∗

(0.012) (0.012) (0.012) (0.010) (0.009) (0.009)
ln Comments −0.586∗ −0.286∗ −0.574∗ −0.728∗ −0.702∗ −0.657∗

(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)
User Age −0.006∗ −0.006∗ −0.010∗ −0.011∗ −0.024∗ −0.026∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
ln Experience −0.152∗ −0.286∗ −0.191∗ −0.100∗ −0.061∗ −0.045∗

(0.004) (0.004) (0.004) (0.003) (0.003) (0.003)
ln Total Blocks 0.283∗ 0.431∗ 0.330∗ 0.287∗ 0.306∗ 0.323∗

(0.003) (0.004) (0.004) (0.004) (0.004) (0.004)
ln Downloads 0.109∗ 0.033∗ 0.109∗ 0.068∗ 0.148∗ 0.139∗

(0.006) (0.006) (0.005) (0.005) (0.005) (0.005)
AIC 963742 993339 908564 1193522 1231333 1152895
R2 0.142 0.143 0.150 0.140 0.081 0.073
Max. R2 0.996 0.995 0.995 0.966 0.888 0.829
Num. events 43615 44876 41122 51111 50658 46931
Num. obs. 179522 190933 179061 370524 584950 681062
Missings 4654 5415 5064 9148 15179 18393
∗p < 0.001

Table 4. Fitted Cox proportional hazard models that estimate the “risk” that a Scratch user will share a de novo project
that uses a block associated with a computational concept (e.g., loops) for the first time.

conditionals in one of their de novo projects compared
to an otherwise identical user.

To aid in interpretation, we include plots of model-derived
estimates of the proportion of users who have used compu-
tational concepts for prototypical Scratch users in Figure
4. Estimates are shown for users from their first project
up to 166 projects (the 99th percentile). Estimates are
shown for two prototypical users: the first user has never
shared a remix that uses the concept, while the second
user has shared three remixes that do. All other vari-
ables are held at their overall sample median across all
periods. The visualization shows that although the rel-
ative differences vary between concepts, Scratch users
are systematically at higher “risk” of using blocks that
demonstrate a given CT concept if they have remixed
several projects that contain that concept.

With Cox models, one concern is that the assumption of
proportional hazards may be violated if a variable has a
stronger or weaker association at different points in “time.”
Unfortunately, the test for proportionality is a function of
the size of one’s dataset, and our dataset is far too large
for the test to be useful. To address whether our inference
is affected, we examined Schoenfeld residual plots and
found that average values are largely flat, although in
some cases they appear to decrease toward zero as more
projects are shared. Although we believe that a violation
of the proportional hazards assumption is not affecting
our fundamental inference, we caution readers to remain
skeptical about the specific parameter estimates in the
models.

Overall, our controls correspond to our predictions. Total
Blocks has a positive association with learning across our

models and acts to attenuate the effects of other variables.
Although previous work offered mixed predictions for the
relationship between Comments and learning, the results
– a positive association with repertoire but a negative
association with concept use across the models in Table 4
– was unexpected and suggests a particularly interesting
area for future research. Results for our controls for Age
and Experience were also contrary to our predictions in
the survival models. Of particular note are the estimates
associated with Remixes in Table 4. Once we control for
remixes including a particular concept, the effect of the
raw number of remixes is consistently negative. This is
not surprising, since remixing projects that do not involve
a concept seems unlikely to increase the likelihood that
a particular concept will be used. We believe that the
negative effect is caused by social forms of remixing like
coloring-contests that are imperfectly measured by Total
Blocks.

Also worth noting is that Downloads is consistently posi-
tive across all the models that include it. This reveals an
interesting secondary result, as it suggests that simply
looking at projects has a strong positive association with
our measure of learning, and that Scratch may help sup-
port learning through less active forms of engagement.
Alternatively, as discussed above, this positive associa-
tion can also be seen as evidence for learning through a
broader definition of remixing.

The results from both sets of models provide evidence
that supports our original hypotheses. Our regression
models of block repertoire in Table 3 provide support for
H1 and suggest that, taking the raw amount of code pro-
duced into account, users who engage in more remixing



Loops Parallelism Events

Conditionals Operators Data

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

1 10 100 1 10 100 1 10 100
De Novo Projects Shared By User

P
ro

po
rt

io
n 

of
 U

se
rs

 W
ho

 H
av

e 
N

ev
er

 U
se

d 
C

on
ce

pt

Remixes w/ Concept 0 3

Figure 4. Plots of model-derived estimates of the proportion of users who have used blocks associated with CT concepts
for prototypical Scratch users. Estimates are shown for two prototypical users: (a) a user who has never shared a remix
that uses the concept, and (b) a user has shared three such projects. All other variables are held at their sample median.

tend to have larger repertoires of programming blocks
than users who engage in less. The survival models shown
in Table 4 and Figure 4 point to support for H2, and
suggest that remixing more projects with particular com-
putational thinking concepts is associated with using
those concepts in new projects. Among the six concepts,
those with weaker associations with remixing in our data
also showed lower adoption in general. This may indicate
a potential lacuna in the learnability of concepts like data
and operators, and warrants further investigation.

LIMITATIONS
The validity of our findings may be affected by a number
of threats and limitations. One of these threats arises
from the fact that our measures of learning may increase
for reasons unrelated to, but correlated with, levels of
remixing. To show that remixing causes learning, we
would need exogenous sources of variation in remixing
which we do not have. This is a common limitation in
learning research and in research on informal learning
environments in particular. We have tried to address
this concern by adding control variables that address the
effects of likely confounds. Although we have included
variables that attempt to control for users’ popularity,
experience, age, and technical sophistication, there may
be other important controls that we have omitted.

A limitation of our hazard models is that a Scratch user
may copy a stack of blocks that includes a block we are
looking for without understanding the underlying concept
behind the block. In robustness checks, we attempted
to address this by using an alternative threshold for
demonstration of a CT concept in each of our hazard

models that ignores any demonstration of a CT concept
if it occurs in a script that is identical to one used in a
previous remix. Results are included in the supplemental
material. With this alternate threshold, we discarded
2-15% of de novo projects that were previously associated
with a given CT concept. Because this criterion omits
all pure cut-and-pasting by remixing users as evidence
of learning, this acts as a conservative test that can only
reduce the strength of our findings. In all six cases, the
results are still positive, statistically significant, and only
moderately reduce the parameter estimates for Remixes
w/ Concept.

Another threat stems from the fact that users join Scratch
with different skills and initial repertoires. For example,
a user who joins with a deeper initial knowledge base
may grow more slowly but also be more likely to remix.
In a related sense, Yang et. al. [45] take initial block
repertoire into account when comparing user learning
trajectories. To mitigate this threat, we added a control
variable to our repertoire models that captures users’
initial block repertoire. The addition of this control did
not substantively impact our results.

A final threat is that the design of Scratch may make the
CT concept of parallelism emerge unintentionally. For
example, as Scratch projects often have multiple sprites,
and since the standard way to start a Scratch project is
to have an event-handler for “when green flag clicked,” a
large number of multi-sprite projects may exhibit paral-
lelism even though the user may not be able to use the
concept more generally. To address this, we extended
our algorithm to discard instances of parallelism between



sprites, and only take into account parallel scripts that
are within the same sprite. Results are included in the
supplemental material. In line with our expectations,
this specification strengthens the size of our parameter
estimate as we discard possible unintentional parallelism.

Several of these threats hint at a broader, unavoidable
limitation: no behavioral measure of learning can see
inside users’ minds to know what they have learned.
In this sense, measuring learning in informal learning
environments like Scratch is itself an open area of research
which we believe this work contributes to. Although we
believe that our measures of learning build and improve
on previous work in this area (e.g., [27, 39, 45]), other
metrics may lead to different results and conclusions.

Finally, like other work that studies activity within a
single online community, questions of generalizability are
both important and difficult to answer. Without further
research, we cannot know if these findings generalize be-
yond the users in our sample. A more nuanced version of
this limitation involves the fact that the large majority
of Scratch users never share more than a very small num-
ber of projects. Scaffidi and Chambers’ [39] point that
learning is unlikely to happen when most users engage
only for short periods of time reflects both a methodolog-
ical and substantive limitation that is critical to keep in
mind when considering the impact and application of our
findings.

DISCUSSION
Our work finds support for the theory that users can
learn through remixing. At the outset, we find that
a Scratch user’s repertoire of programming blocks is
positively associated with the amount of remixing they
engage in, controlling for the total amount of code a
user is publishing. Diving deeper, we also find that
users’ demonstration of six key computational thinking
concepts is positively associated with users’ exposure to
these concepts through remixing. We find our results
are robust to a series of potential threats to validity.
Although limited in a number of ways, these results
provide support for proponents of remixing as a pathway
to learning.

As discussed, the estimated effect sizes for our predictors
are relatively small. Treating the relationship between
Downloads and learning as part of remixing’s effect is sug-
gestive of more substantive effects, but does not add up
to a large effect itself. This is not entirely unexpected. Al-
though Scratch was designed to promote learning through
remixing, remixing itself is very unconstrained on the
platform and has become dominated by genres like col-
oring contests which were unanticipated by Scratch’s
designers. Given the informal and messy nature of obser-
vational data from Scratch, we believe that our marginal
effects still reveal important evidence of learning, and it
is easy to imagine stronger effects in a more structured
context.

For example, teachers could frame and construct remixing
experiences so that learners are exposed to code-intense
projects or to particular concepts. Brennan’s work on
combining formal learning environments with Scratch
is one useful guide for future work in this direction [3].
Larger effects might also be achieved through increased
structure within informal environments. For example,
research on other remixing platforms has suggested that
large amounts of remixing activity can be encouraged and
directed to particular source material by site administra-
tors [9]. Even within Scratch, previous studies document
efforts to promote “high value” forms of remixing through
“collaboration camps” [38].

Our work makes a series of contributions. Our most
fundamental contribution is in testing the widespread
and influential theory that remixing is positively associ-
ated with learning. Second, our paper builds on previous
work to describe two novel methods for measuring com-
putational thinking quantitatively. Because the Scratch
dataset is becoming more widely available to researchers
through a nascent public release, we hope our methods
will provide a point of departure for future studies of
Scratch. We also believe our approach can be adapted
to other informal learning environments.

Of course, this work is only a first step. We hope to build
on the current study by testing the relationship between
our measures of learning and other predictors like levels
and types of socialization. We hope that future work
will critique and build on our theories, our measures, and
our approach. As quantitative analysts of learning, we
know that any attempt to measure learning is necessarily
reductionist and potentially dangerous. We present our
findings with the hope that others will build and improve
upon our efforts.

Our findings have implications for designers interested
in promoting learning, and our results support calls to
incorporate remixing into the design of social comput-
ing systems. The differences between effect sizes in our
hazard models suggest that remixing may be more effec-
tive at promoting engagement with some concepts, like
loops, than others, like operators and data. This may
be because the type of projects that are popular in the
Scratch community tend to be those that leverage certain
concepts over others. Alternatively, these differences may
point toward certain concepts being less understandable
or learnable, at least within the context of Scratch. Both
of these reflect opportunities for designers to foster a
wider range of engagement. Our technique for measuring
learning has immediate implications and usefulness for
the designers of informal learning systems. For example,
we hope to work with the Scratch team at MIT to use
the measures in this study to evaluate the design of new
Scratch features.

As researchers and designers attracted to the promise of
remixing, we feel our results are a welcome validation
of the idea that remixing can act as a pathway to learn-
ing. That said, promoting remixing requires prolonged



engagement, and remains extremely difficult in informal
learning environments. Moreover, promoting remixing
among engaged users remains both difficult and fraught
with unpalatable trade-offs [16, 8]. The fact that remix-
ing may be associated with learning does not make it any
easier to promote or any better along other dimensions.
Although our results provide evidence that the promise
seen in remixing may not be misplaced, enormous work
remains to realize its potential.

ACKNOWLEDGMENTS
We would like to thank the Lifelong Kindergarten group
at the MIT Media Lab for creating Scratch, as well as the
millions of Scratch users who create and participate on
the Scratch website. We would also like to acknowledge
Mitchel Resnick, Natalie Rusk, Samantha Shorey, Samuel
Woolley, and our anonymous reviewers for their thought-
ful feedback. Financial support for this work came from
the National Science Foundation (grants DRL-1417663
and DRL-1417952).

REFERENCES
1. Yochai Benkler. 2006. The Wealth of Networks: How

Social Production Transforms Markets and Freedom.
Yale University Press.

2. Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two
studies of opportunistic programming: interleaving
web foraging, learning, and writing code. ACM
Press, 1589. DOI:
http://dx.doi.org/10.1145/1518701.1518944

3. Karen Brennan. 2013. Best of both worlds: Issues of
structure and agency in computational creation, in
and out of school. Ph.D. Dissertation. Massachusetts
Institute of Technology.

4. Karen Brennan and Mitchel Resnick. 2012. New
frameworks for studying and assessing the
development of computational thinking. In 2012
annual meeting of the American Educational
Research Association, Vancouver, Canada. http:

//scratched.gse.harvard.edu/ct/files/AERA2012.pdf

5. Karen Brennan and Mitchel Resnick. 2013.
Imagining, Creating, Playing, Sharing, Reflecting:
How Online Community Supports Young People as
Designers of Interactive Media. In Emerging
Technologies for the Classroom, Chrystalla Mouza
and Nancy Lavigne (Eds.). Springer New York,
253–268. http://link.springer.com/chapter/10.1007/

978-1-4614-4696-5_17

6. Karen Brennan, Amanda Valverde, Joe Prempeh,
Ricarose Roque, Michelle Chung, Karen Brennan,
Amanda Valverde, Joe Prempeh, Ricarose Roque,
and Michelle Chung. 2011. More than code: The
significance of social interactions in young people’s
development as interactive media creators, Vol. 2011.
2147–2156. http://www.editlib.org/p/38158/

7. Amy Bruckman. 1998. Community Support for
Constructionist Learning. Computer Supported
Cooperative Work (CSCW) 7, 1 (March 1998), 47–86.
DOI:http://dx.doi.org/10.1023/A:1008684120893

8. Giorgos Cheliotis, Nan Hu, Jude Yew, and Jianhui
Huang. 2014. The Antecedents of Remix. In ACM
17th Conference on Computer Supported Cooperative
Work &#38; Social Computing (CSCW ’14). ACM,
New York, NY, USA, 1011–1022. DOI:
http://dx.doi.org/10.1145/2531602.2531730

9. Giorgos Cheliotis and Jude Yew. 2009. An analysis
of the social structure of remix culture. In C&T
2009. 165–174. DOI:
http://dx.doi.org/10.1145/1556460.1556485

10. Aniket Dahotre, Yan Zhang, and Christopher
Scaffidi. 2010. A Qualitative Study of Animation
Programming in the Wild. In 2010 ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement (ESEM ’10). ACM,
New York, NY, USA, 29:1–29:10. DOI:
http://dx.doi.org/10.1145/1852786.1852825

11. Champika Fernando. 2014. Online learning webs :
designing support structures for online communities.
Thesis. Massachusetts Institute of Technology.
http://dspace.mit.edu/handle/1721.1/95602

12. Casey Fiesler and Amy S. Bruckman. 2014.
Remixers’ Understandings of Fair Use Online. In
ACM 17th Conference on Computer Supported
Cooperative Work &#38; Social Computing (CSCW
’14). ACM, New York, NY, USA, 1023–1032. DOI:
http://dx.doi.org/10.1145/2531602.2531695

13. B. Hartmann, S. Doorley, and S.R. Klemmer. 2008.
Hacking, Mashing, Gluing: Understanding
Opportunistic Design. IEEE Pervasive Computing 7,
3 (July 2008), 46–54. DOI:
http://dx.doi.org/10.1109/MPRV.2008.54

14. Scott C. Hemphill and Jeannie Suk. 2009. Remix
and Cultural Production. Stanford Law Review 61,
1227 (2009).

15. Benjamin Mako Hill and Andrés Monroy-Hernández.
2013a. The cost of collaboration for code and art:
evidence from a remixing community. In ACM 2013
conference on Computer supported cooperative work
(CSCW ’13). ACM, New York, NY, USA, 1035–1046.
DOI:http://dx.doi.org/10.1145/2441776.2441893

16. Benjamin Mako Hill and Andrés Monroy-Hernández.
2013b. The Remixing Dilemma The Trade-Off
Between Generativity and Originality. American
Behavioral Scientist 57, 5 (May 2013), 643–663. DOI:
http://dx.doi.org/10.1177/0002764212469359

17. Benjamin Mako Hill, Andrés Monroy-Hernández,
and Kristina Olson. 2010. Responses to remixing on
a social media sharing website. In Proc. ICWSM
2010. AAAI, Washington, D.C., 74–81.

http://dx.doi.org/10.1145/1518701.1518944
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://link.springer.com/chapter/10.1007/978-1-4614-4696-5_17
http://link.springer.com/chapter/10.1007/978-1-4614-4696-5_17
http://www.editlib.org/p/38158/
http://dx.doi.org/10.1023/A:1008684120893
http://dx.doi.org/10.1145/2531602.2531730
http://dx.doi.org/10.1145/1556460.1556485
http://dx.doi.org/10.1145/1852786.1852825
http://dspace.mit.edu/handle/1721.1/95602
http://dx.doi.org/10.1145/2531602.2531695
http://dx.doi.org/10.1109/MPRV.2008.54
http://dx.doi.org/10.1145/2441776.2441893
http://dx.doi.org/10.1177/0002764212469359


18. Mizuko Ito (Ed.). 2009. Hanging Out, Messing
Around, and Geeking Out: Kids Living and Learning
with New Media. The MIT Press.

19. Henry Jenkins. 2008. Convergence Culture: Where
Old and New Media Collide (revised ed.). NYU
Press, New York.

20. Henry Jenkins, Katie Clinton, Ravi Purushotma,
Alice Robinson, and Margaret Weigel. 2006.
Confronting the Challenges of Participatory Culture:
Media Education for the 21st Century. Technical
Report. MacArthur Foundation, Chicago, Illinois,
USA.
http://digitallearning.macfound.org/site/apps/nlnet/

content2.aspx?c=enJLKQNlFiG&b=2108773&content_id=

21. Andrew Keen. 2007. The Cult of the Amateur: How
Today’s Internet is Killing Our Culture (3rd
printing ed.). Crown Business.

22. Sangmi Kim, Seong-Gyu Kim, Yoonsin Jeon, Soojin
Jun, and Jinwoo Kim. 2015. Appropriate or Remix?
The Effects of Social Recognition and Psychological
Ownership on Intention to Share in Online
Communities. Human–Computer Interaction 0, ja
(Feb. 2015). DOI:
http://dx.doi.org/10.1080/07370024.2015.1022425

23. Jaron Lanier. 2010. You Are Not a Gadget: A
Manifesto (1 ed.). Knopf.

24. Jean Lave and Etienne Wenger. 1991. Situated
learning: Legitimate peripheral participation.
Cambridge University Press.

25. Lawrence Lessig. 2008. Remix: Making Art and
Commerce Thrive in the Hybrid Economy. Penguin
Press HC.

26. Kurt Luther, Nicholas Diakopoulos, and Amy
Bruckman. 2010. Edits & credits: exploring
integration and attribution in online creative
collaboration. In ACM CHI 2010. ACM, 2823–2832.
DOI:http://dx.doi.org/10.1145/1753846.1753869

27. John H Maloney, Kylie Peppler, Yasmin Kafai,
Mitchel Resnick, and Natalie Rusk. 2008.
Programming by choice: urban youth learning
programming with Scratch. ACM SIGCSE Bulletin
40, 1 (2008), 367–371.

28. Lev Manovich. 2005. Remix and remixability. (2005).
http://www.manovich.net/DOCS/Remix_modular.doc

29. Andrés Monroy-Hernández. 2007. ScratchR: sharing
user-generated programmable media. In ACM 6th
international conference on Interaction design and
children (IDC ’07). ACM, New York, NY, USA,
167–168. DOI:
http://dx.doi.org/10.1145/1297277.1297315

30. Andrés Monroy-Hernández, Benjamin Mako Hill,
Jazmin Gonzalez-Rivero, and danah boyd. 2011.
Computers can’t give credit: how automatic
attribution falls short in an online remixing
community. In ACM 2011 annual conference on

Human factors in computing systems. ACM,
Vancouver, BC, Canada, 3421–3430.

31. Jeffrey V. Nickerson and Andrés Monroy-Hernández.
2011. Appropriation and Creativity: User-Initiated
Contests in Scratch. In 2011 44th Hawaii
International Conference on System Sciences
(HICSS). 1–10. DOI:
http://dx.doi.org/10.1109/HICSS.2011.75

32. Lora Oehlberg, Wesley Willett, and Wendy E.
Mackay. 2015. Patterns of Physical Design Remixing
in Online Maker Communities. In ACM 33rd Annual
Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA,
639–648. DOI:
http://dx.doi.org/10.1145/2702123.2702175

33. Seymour Papert. 1976. Some Poetic and Social
Criteria for Education Design. Technical Report 373.
Massachusetts Institute of Technology, Cambridge,
Massachusetts.
http://dspace.mit.edu/handle/1721.1/6250

34. Seymour Papert. 1980. Mindstorms: Children,
computers, and powerful ideas. Basic Books, Inc.

35. Kylie A Peppler and Mark Warschauer. 2011.
Uncovering literacies, disrupting stereotypes:
Examining the (dis) abilities of a child learning to
computer program and read. (2011).

36. Mitchel Resnick, Amy Bruckman, and Fred Martin.
1996. Pianos not stereos: Creating computational
construction kits. Interactions 3, 5 (1996), 40–50.

37. Mitchel Resnick, John Maloney, Andrés
Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum,
Jay Silver, Brian Silverman, and Yasmin Kafai. 2009.
Scratch: programming for all. Commun. ACM 52,
11 (2009), 60–67. DOI:
http://dx.doi.org/10.1145/1592761.1592779

38. Ricarose Roque, Yasmin Kafai, and Deborah Fields.
2012. From Tools to Communities: Designs to
Support Online Creative Collaboration in Scratch.
In Proceedings of the 11th International Conference
on Interaction Design and Children (IDC ’12).
ACM, New York, NY, USA, 220–223. DOI:
http://dx.doi.org/10.1145/2307096.2307130

39. Christopher Scaffidi and Christopher Chambers.
2011. Skill Progression Demonstrated by Users in
the Scratch Animation Environment. International
Journal of Human-Computer Interaction 28, 6 (June
2011), 383–398. DOI:
http://dx.doi.org/10.1080/10447318.2011.595621

40. Oshani Seneviratne and Andrés Monroy-Hernández.
2010. Remix Culture on the Web: A Survey of
Content Reuse on Different User-Generated Content
Websites. In Web Science. Raleigh, NC.
http://journal.webscience.org/392/2/websci10_

submission_109.pdf

http://digitallearning.macfound.org/site/apps/nlnet/content2.aspx?c=enJLKQNlFiG&b=2108773&content_id=
http://digitallearning.macfound.org/site/apps/nlnet/content2.aspx?c=enJLKQNlFiG&b=2108773&content_id=
http://dx.doi.org/10.1080/07370024.2015.1022425
http://dx.doi.org/10.1145/1753846.1753869
http://www.manovich.net/DOCS/Remix_modular.doc
http://dx.doi.org/10.1145/1297277.1297315
http://dx.doi.org/10.1109/HICSS.2011.75
http://dx.doi.org/10.1145/2702123.2702175
http://dspace.mit.edu/handle/1721.1/6250
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/2307096.2307130
http://dx.doi.org/10.1080/10447318.2011.595621
http://journal.webscience.org/392/2/websci10_submission_109.pdf
http://journal.webscience.org/392/2/websci10_submission_109.pdf


41. Judith D. Singer and John B. Willett. 2003. Applied
Longitudinal Data Analysis: Modeling Change and
Event Occurrence (1 ed.). Oxford University Press,
USA.

42. Jeannette M. Wing. 2006. Computational Thinking.
Commun. ACM 49, 3 (March 2006), 33–35. DOI:
http://dx.doi.org/10.1145/1118178.1118215

43. Jeannette M. Wing. 2008. Computational thinking
and thinking about computing. Philosophical
Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences
366, 1881 (Oct. 2008), 3717–3725. DOI:
http://dx.doi.org/10.1098/rsta.2008.0118

44. Jeannette M Wing. 2010. Computational Thinking
— What and Why? (2010). http:

//www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

45. Seungwon Yang, Carlotta Domeniconi, Matt Revelle,
Mack Sweeney, Ben U. Gelman, Chris Beckley, and
Aditya Johri. 2015. Uncovering Trajectories of
Informal Learning in Large Online Communities Of
Creators. In ACM Second (2015) Conference on
Learning@ Scale. ACM, 131–140.

46. Jude Yew. 2009. Social performances: understanding
the motivations for online participatory behavior. In
ACM 2009 international conference on Supporting
group work. ACM, Sanibel Island, Florida, USA,
397–398. DOI:
http://dx.doi.org/10.1145/1531674.1531742

47. Lixiu Yu and Jeffrey V. Nickerson. 2011. Cooks or
cobblers?: crowd creativity through combination. In
ACM 2011 annual conference on Human factors in
computing systems (CHI ’11). ACM, New York, NY,
USA, 1393–1402. DOI:
http://dx.doi.org/10.1145/1978942.1979147

http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1098/rsta.2008.0118
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
http://dx.doi.org/10.1145/1531674.1531742
http://dx.doi.org/10.1145/1978942.1979147

	Introduction
	Background
	Empirical Setting
	Data and Measures
	Analysis
	Results
	Limitations
	Discussion
	Acknowledgments
	References 

