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Abstract

We address a molecular dissociation mechanism that is known to
occur when a Hy molecule approaches a catalyst with its molecular
axis parallel to the surface. It is found that molecular dissociation is
a form of quantum dynamical phase transition associated to an ana-
lytic discontinuity of quite unusual nature: the molecule is destabilized
by the transition from non-physical virtual states into actual local-
ized states. Current description complements our recent results for a
molecule approaching the catalyst with its molecular axis perpendicu-
lar to the surface [1]. Also, such a description can be seen as a further
successful implementation of a non-Hermitian Hamiltonian in a well

defined model.

1 Introduction

How do molecules form? This has been recognized as one of the ten un-
solved mysteries of Chemistry, enumerated in 2013 for the Year of Chemistry
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Celebration [2]. Indeed, a new entity emerges when two identical atoms
meet. The reciprocal is also true: as a dimer approaches a catalyst’s sur-
face, it may break down. But when and how does this break down precisely
happen? What distinguishes these two different quantum objects, i.e. the
molecule and the two independent atoms? It is natural to think that as some
control parameter move, e.g. an inter-atomic distance, a sort of discontinu-
ity or phase transition should happen. While a quantum calculation can be
set up to simulate such reaction, the calculations of an increasingly realistic
system quickly begin to overwhelm even the most powerful computer. While
DFT calculations hint a change in chemical bonds as the molecule-catalyst
interaction increases when the molecule approaches to the surface [3], this
is confronted with the fact that in a finite system no actual discontinuities
can happen. The key for the molecule formation/dissociation mystery can
be found in P. W. Anderson’s inspiring paper “More is Different” [4]. There,
Anderson recalled that the inversion oscillations in ammonia-like molecules
suffer a sort of transition into a non-oscillating mode as the masses are in-
creased. Much as in a classical oscillator transition to an over-damped regime,
the crucial ingredient is the infinite nature of the environment which induces
dissipation while preventing the occurrence of Poincare’s recurrences and en-
able a dynamical phase transition. These concepts were formalized in the
context of the Rabi oscillations in a quantum system: a spin dimer immersed
in an environment of spins. Since this is solved in the thermodynamic limit of
infinitely many spins which provide the crucial continuum spectrum. [5] [6].
In this case, the finite Rabi frequency undergoes a non-analytic transition
into a non-oscillatory mode as the interaction with the environment increases
[7, 8, @]. This mathematical discontinuity was termed Quantum Dynamical
Phase Transition (QDPT) [10].

While the application of these ideas to molecular dissociation/formation
is not completely straightforward, in a previous paper we succeeded in de-
scribing Hy molecule formation/dissociation in the presence of a catalyst as
a QDPT [I]. This description was achieved using a variant of the model
introduced by D. M. Newns for hydrogen adsorption in a metallic surface
[I1]. However, that analysis was restricted to the case when the molecular
azis is perpendicular to the catalyst surface. In [I] the environment provides
the infinitely many catalyst orbitals whose influence had to be treated be-
yond linear response. Indeed, the interaction among the crystal states and
the dimer orbitals dramatically perturb each other and has to be obtained
through a self-consistent Dyson equation. In particular, the substrate induces
imaginary corrections to the molecular energies, accounting for their finite
lifetime. These complex energies, as those obtained from the Fermi Golden
Rule, represent resonances and are accounted by a non-Hermitian Hamilto-



nian [I2]. Our main result was that two resonances are formed inside the
d band and that they present analytical discontinuities as a function of the
molecule-substrate interaction (distance) [13, 14, [15]. Thus, the molecular
dissociation/formation was identified as the non-analytic collapse/splitting
of these resonances.

In this paper, we address another reaction mechanism that is known to
occur when a Hy molecule approaches a catalyst with its molecular axis par-
allel to the surface. It is found that molecular dissociation is also a phase
transition associated to an analytic discontinuity, but of different and unusual
nature: the molecule is destabilized by the transition from non-physical vir-
tual states into actual localized states. For the rest of the article we will be
dealing with the same model and tools introduced in our previous work [1]
which, in this case, provide substantially new perspective into the molecular
dissociation/formation problem.

2 The model

Given a homonuclear molecule AB and a metal electrode with a half filled
d band, two independent geometries arise to describe the interaction. The
particular configuration of a molecule approaching with its axis perpendicular
to the metal surface, was previously investigated in reference [1]. A fully
different problem arises when the axis along the molecule lies parallel to the
surface. In this configuration the distances between a given atom belonging
to the metal surface and both atoms forming the molecule remain equal,
ie. da = dg = d ( see Fig. [1)). Therefore, both atoms interact identically
with the metal, resulting in a completely different Hamiltonian respect to
the perpendicular case, and hence yielding a dissimilar kind of transition.
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Figure 1: Homonuclear molecule interacting with a metallic surface. The principal
axis of the molecule is parallel to the surface and the distance of each atom to the
substrate are the same.



To set up the model Hamiltonian for the interaction between the molecule
and the metal, we write the molecule’s Hamiltonian as:

Hor = Ea|A) (Al + Eg |B) (B| = Vas (|A) (Bl + |B) (A]).
The atomic energies F4 and Ep are identical and their degeneracy is bro-
ken by the mixing element —V4p that leads to the bonding and antibonding
states, i.e. the Highest Occupied Molecular Orbital (HOMO) and Lowest
Unoccupied Molecular Orbital (LUMO), respectively. In this orientation,
the molecule only can have substantial overlap with the metal d,» and d,.
orbitals of the underlying metallic atom. Therefore, 2z is considered to be
perpendicular to the surface and z is chosen parallel to the molecular axis.
Both orbitals interact with the target molecule in different ways [16], as de-
picted in Fig. 2 On one side, the overlap of the d.» with the atomic orbitals
A and B have the same the sign and magnitude, resulting in a Hamiltonian
coupling element —V;. On the other side, the molecule also interacts with
the d,. orbital of the metal. In this case, while having equal strengths a dif-
ferent sign appears for each atomic orbital. Taking these considerations into
account, there are two concurrent mechanisms for molecule-metal interaction

where |d,2) and |d,,) are the metallic orbitals that interact with the molecule.
Furthermore, we have included a A factor to account for the difference among
the interaction strengths with the two d orbitals.
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Figure 2: Different signs for the interaction between the molecule and the metallic
atomic orbital, due to the lobe phase shift for the atomic orbital functions d,2
and d;,. The A factor accounts for the different strength interaction between the
molecule and the orbitals d,2 and dy,.

In Fig. [2l we represent explicitly two, assumed independent, sets of metal-
lic d orbitals associated with each symmetry of the surface orbitals (i.e. |d.2)
and |d,,)). Therefore, the relevant part of the metal Hamiltonian can be
represented using a narrow band model. This approximation was first pro-
posed by Newns [II], who stated that the projection of the d band Local
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Density of States (LDoS) over the specific orbital (either d.2 or d,.) could
be schematized as a semielliptic energy band that strongly interacts with the
molecule [I7]. This picture is validated by appealing to a Lanczos’s transfor-
mation [IL I8, 19] to obtain this simple electronic structure for the d band.
The basic procedure is visualised in Fig. |3| for a two dimensional metal rep-
resented as two distinct collections of orthonormal d orbitals. By choosing
one of the interacting metallic orbitals as a reference, the intermetallic inter-
actions provide (through the Lanczos’s procedure) for combination of atomic
d orbitals consistent with the initial symmetry. Typically, these are pro-
gressively included according to their distance to the initial orbital. These
“collective” substrate orbitals are naturally arranged in the Hilbert space in
order to evidence the tridiagonal nature of the Hamiltonian in the new basis.
By means of this procedure, the general three dimensional geometry of a
catalyst is reduced to a effective linear chain. The same reasoning applies for
both symmetries. Then, we can write the metal d,» Hamiltonian as:

HZ Z “|n) (n| — Z T (n) 1+ n+ 1) (), (1)

where |n) and Eff are the n-th collective metal orbital obtained by the
Lanczos’s transformation and the energy corresponding to that orbital re-
spectively. For the sake of simplicity, all the hopping elements Vn g1 are
considered to be equal to V. This is consistent with the fast convergence
of the hopping elements, first addressed by Haydock et al. [19]. A similar
Hamiltonian H »%. 1s obtained for the xy symmetry. Thus,

Hypo = Hiyer + Hi

In order to obtain an optimal configuration for our discussion on the
dissociation process [20], we make the d band to be centered around the
Fermi energy F by making F4 = Eg = F, = E. Then, the bonding and
antibondig molecular states, i.e. HOMO and LUMO, fall outside the band
as 2|Vap| > 4|V [21]. This choice is consistent with the standard knowledge
of the Markus-Hush theory for optimal conditions of electron transfer and
molecular dissociation. In this work, we used Vyp/V = 2.5 which is typical
for HQ.

The main features of the system, i.e. energy spectrum and relevant eigen-
values properties, could be obtained using a decimation procedure [22], 23].
This formulation deploys an infinite order perturbation theory for the interac-
tion th to dress the molecular Hamiltonian I:[moL into an effective molecular
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Figure 3: Effective non-Hermitian Hamiltonian due Lanczos’s transformation
from a molecule A-B (in blue), interacting with a 2D metal substrate composed of
two distinct collections of d orbitals. The transformation implies combining each
layer of orbitals at the same distance of the interacting atom. The decimation
process results in a four dimensional Hamiltonian with the metal represented as
two effective self-energies.

Hamiltonian that accounts for the presence of the catalyst, and yields a com-
plex correction, >, to the molecular bonding and antibonding energies. This
is sketched in the bottom panel of Fig. [3] This precisely defined procedure
resorts to the Green’s function matrix associated with the total Hamiltonian
H= Hmol + Hmet + VEnt;

Ge) = (eI —H)™ . (2)

We are going to profit from the fact that the poles of the Green’s function

are the eigenvalues of the system. At this point, a brief introduction to the

decimation technique is convenient for the sake of clarity. Let us first consider

the molecular Hamiltonian without the presence of the metal:
Eyx  —Vagp

Hypor = . 3

mol |: _VAB EB ( )



Then, the Green’s function matrix adopts the form:

1 e—FEp Vg (4)
(e—FEa)(e—Eg)—|Vap|?>| Va e—FEa |’
The Green’s function for atom A, the first diagonal element of G, can be
written as

Gmol =

GAA = (6— EA — EA)_l

mol —
Therefore, the energy of atom A is modified by the presence of the atom B
through the self-energy
Ya = |Vapl*/(c — Ep).

This decimation procedure can be extended to the full semi-infinite chain
that describes the components of the d band that couple with the HOMO and
LUMO according to their symmetry. The procedure consists on “dressing”
the successive “Lanczos’s orbitals” with the corresponding self-energies to
account for the interaction with the neighbour atom at the right. In a finite
system of N + 2 orbitals, >4 is written in terms of N +1 levels of a continued
fraction until one reaches the last level. To simplify the study of the spectral
density, the energies of the system can be renormalized by introducing an
imaginary small quantity —in, thus £ — E — in. This energy correction can
be seen as a weak environmental interaction, a role that could be assigned to
the sp band states [24]. Thus, in the thermodynamic limit of a semi-infinite
chain (N — o0), the self-energy correction due to the metal becomes:

2
X(e) = ‘Vl

e — (B —in) —X(e)
By setting £ = 0 in the whole system (i.e. setting down the Fermi level as
the energy reference) the analysis is further simplified. Equation [5| has two
solutions with different signs. The solution with physical meaning provides
a retarded response and results:

z(s)—gzi”—sgn<e>x(\/T;%ixsgn(y)x\/?“;m), (6)

: e —n en
with z = T—V2, y=3 and r = /2% + 12.
Then, the restriction to the first four orbitals of the total Hamiltonian
can be written in a simple way:

P Vo =V 0
G| % —m Vas 1A
I I P R\ (1 )

0 +AV, —AVp ¥%%(e)

= Afe) —il(e), (5)
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Now, a basis change can be made to a molecular bonding and antibonding
representation. Equation [§] shows the Hamiltonian in the new basis. Notice
that, the bonding state (second diagonal element) does not interact with
¥7%(e) (fourth diagonal element) and the antibonding state (third diagonal
element) does not interact with ¥’ (¢) (first diagonal element):

¥ (e) =2V 0 0
~, = ~ —V2Vy —Vap —in 0 0
H=H ogH = .
+® 0 0 Vg VA |
0 0 V2AV, 57 (e)

Therefore, the system is naturally detached in two portions in which the
Green’s function matrices can be solved independently. For the bonding
subspace, i.e. the bonding molecular orbital interacting with £*° (€), the
Green’s function takes the form:

_ 1 e+ Vap+in =2V
b+ = (e + Vap +in)(e — ¥ (¢)) — 2§ { —V2Vy  e—-3%(e) } - )

while, for the antibonding molecular orbital interacting with ¥%%(¢), there is
a subspace where

G — 1 £ — X% (g) V2AV,
T (e—Vup+in)(e — X (e)) —2\Vp)2 | V2AV, e —Vap +in |’
(10)
For the rest of the article A will be set A ~ 1 and ¥* = %#*. The
eigenenergies and resonances of the system are obtained by finding the poles
of Egs. [§land [9] This is achieved solving the equations:

e+ Vap — 2a%(e) =0, (11)

e —Vap —2aX(e) = 0. (12)

Equation [IT] accounts for the poles corresponding to the bonding state inter-
acting with the d,» band and Eq. for the poles of the antibonding state
interacting with the d,, band.

3 Molecular dissociation

A first hint for molecular dissociation arises from analysing the molecular
bonding orbital that intercats with the d band through the d,» orbital, Fig.
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In this case, Eq. provides two poles which are bellow the d band at
the molecular bonding energy ¢ = —V4p. One is a physical localized pole
(green line in Fig. which corresponds to the bonding state |AB). As
the interaction increases, |AB) evolves to a bonding combination between
the bonding state of the molecule and the metal, i.e. |(AB)d.2), becoming
more localized and its energy lying well below the Fermi level. The other
pole corresponds to a non-physical virtual state which, as the interaction
increases, escapes to negative energies and reappears at positive values (red
dots in Fig. . As the non-physical pole gets closer to the d band, it finally
meets the band-edge and suffers a transition into a physical localized state.
This is an antibondig combination between the molecular bonding state and
the metal |((AB)d.2)*) (blue line). In this scenario, bound weakening occurs
because occupying the |(AB)d.2) state implies diminish the occupation of the
bonding |AB) from 100% into a final 50%. Indeed, the molecular bonding
state now has 50% participation in the unoccupied |((AB)d,2)*) localized
orbital that emerged from the upper top of the d band.

p=c=

10 r T T
|((AB)d2)*
| (AB)")
B *
> .
— ol Fermi
g Level {
W |
Y
-0l

V,/V

Figure 4: Poles of the Green’s function for the parallel configuration when the
molecule interacts with the d,» orbital.

The previous discussion has a precise equivalence in the analysis of the
states that evolve from the molecular antibonding state. However, the same
formulation has now completely different meaning. The molecular antibond-
ing state interacts with the d band through d,.. The poles resulting from



Eq. are shown in Fig. 5l At the antibonding energy ¢ = Vg, two poles
appear. A physical localized state, related to the molecular antibonding state
|(AB)*) (blue line in Fig. [f]), whose energy increases as Vj increases and be-
comes an antibonding combination between the molecular antibonding state
and the metal site |((AB)*d,)*). The other pole at ¢ = Vyp is a virtual
state [25] 26] (red dots in Fig. [5)) which diverges as V{ increases and appears
again from —oo until its energy touches the d band. At this critical value, the
virtual state suffers a transition and becomes a localized state (green line in
Fig. [5)) which is a bonding combination between the molecular antibonding
state and the metal band |(AB)*d,.). Therefore, molecular dissociation can
be interpreted as occurring at the precise value when the virtual pole touches
the d band and becomes the localized, and occupied, state|(AB)*d,,). Thus,
molecular dissociation occurs at a non-analytical point of the physical ob-
servables, e.g. total energies. At this point the molecular electrons have a
transition from an increasingly occupied bonding state that participates of
the delocalized band into a localized combination between the d states and
antibonding molecular orbital. This is a form of Quantum Dynamical Phase
Transition which, to the best of our knowledge, has not been identified before
in the context of molecular dissociation.

L HED

((AB)*d.:-))

-10 3 4 5 6 7

AV, /V

(=)
—_
[\

Figure 5: Poles of the Green’s function for the parallel configuration when the
molecule interacts with the d,, orbital. The molecule dissociation as a QDPT can
be observed when the interaction is with the d;, band.

From the results it becomes evident that the most interesting situation is
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when the antibonding molecular orbital interacts with the d,.. From Eq.
we get the diagonal Green’s function at the d,, metallic orbital:

1

= 1
de(g) s _E<€> - 2(}\‘/0)2 ( 3)
1 e+in+ Vap
The LDoS for the d band can be obtained from Eq. [13]
1
Ng,.(e) = ——= lim Im[Gq,_(e)], (14)

T n—0t

which becomes of great help to reinforce and extend the previous discussion.
This LDoS is shown in Fig. [6| for AVy/V between 0 and 3.6 for A = 1. When
Vo ~ 0 the shape of the LDoS corresponds to a non interacting d,. band. As
AVp increases the d,, band starts to mix with the antibonding state of the
dimer. The energy of this antibonding combination |((AB)*d,,)*), progresses
toward increasingly positive values as the interaction grows. Meanwhile,
the virtual state approaches the d,, band from negative energies while it
produces an “attraction” that increases the LDoS near the band edge. As the
virtual state meets the band a localized state emerges from the band edge
and gains weight. A similar issue was recently discussed in the context of
engineered plasmonic excitations in metallic nanoparticle arrays [26]. There,
it was shown analytically that the distorted band is the product among the
original semi-elliptic band and a Lorentzian centered in the virtual state. This
concentrates a density of states near band edge until it becomes a divergence
and a localized state is expelled at a critical interaction strength, shown as
a dot in Fig. [f

The previous conclusion is reinforced by the analysis of LDoS at the
antibonding orbital. Figure [7] shows how the unoccupied antibonding state
|(AB)*) looses its weight towards a participation on combination with the
d,. band which finally emerges as an occupied localized state. This is a crucial
contribution to molecular destabilization. As in the first part of this work
[1] the new transition can be seen as a successful implementation of a non-
Hermitian Hamiltonian [I2] in a well defined model.

Notice that Figs. [6] and [7] also serve to discuss the interaction between
the bonding molecular state |AB) and the d.2 band by exchanging the sign
of the energy. Thus, in this case, the |((AB)d.2)*) emerges as an unoccupied
localized state above the d.» band, while |AB) state loses occupation as the
|(AB)d.2) state forms with increasing interaction.
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Virtual state
localization

Figure 6: LDoS of the d band. As Vj increases a state is expelled from the band
and, after the transition point, forms the localized state [(AB)*d,.), n = 0.01 eV.

Figure 7: LDoS of the molecular antibonding state |(AB)*), interacting with the
metallic orbital d,, as Vj increases, 7 = 0.05 eV.

12



4 Conclusions

As a Hy molecule approaches a catalyst with its axis parallel to the surface,
the interaction creates two independent collective orbitals which are super-
positions with different surface d orbitals that are part of their corresponding
metallic bands. The molecular bonding state becomes mixed with the d.2
band while the molecular antibonding state interacts with the d,, band. This
gives rise to two processes described by the same algebra, but with different
physical meanings as their energies are the reverse of each other.

On one side, the mixing of the molecular bonding state produces a de-
crease of its occupation. While this occurs, the LDoS of the d,» band is
distorted at its upper edge much as if it were “attracted” upwards. Finally,
at a critical interaction strength the divergent peak is expelled as a localized
state emerging from the upper (i.e. unoccupied) part of the d.» band. This
new unoccupied state is an antibonding combination among the surface d,2
orbital and the bonding state of the dimer.

On the other side, a fraction of the molecular antibonding state gets in-
creasingly mixed with the d,, metallic band. This produces a decrease of
the dimer participation on its unoccupied antibonding combination. Simul-
taneously, the d,, LDoS is “attracted” towards its lower edge until it finally
emerges as an occupied localized state build as a bonding combination among
the molecular antibonding state and the d,, band.

These simultaneous mixing processes, i.e. the depopulation of the molec-
ular bonding state and the occupation of the molecular antibonding state,
both schematized in Fig. [§], are responsible for the dimer destabilization that
leads to its breakdown.

While the essence of the molecule dissociation mechanisms are already
hinted by the resolution of toy models for the catalyst such as small metallic
clusters or even a single metal atom, the criticality of the dissociation tran-
sition would not be readily captured. Indeed, as in the first part of this work
[1], the quasi-continuum nature of a metallic substrate is crucial to describe
dissociation as an analytical discontinuity. In this case, we interpreted dis-
sociation as the emergence of the localized state from the band edges as the
interaction strength increases. This is an actual quantum dynamical phase
transition. Remarkably, the elusive virtual states (i.e. states that are non-
physical poles of G(e) [27, 28]) acquire a physical meaning as “attractors” of
a distortion of the continuum band creating a LDoS divergence that finally
expels a localized state. This is, a non-analytical transition.
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|AB) <—d.» |AB) 50 % unoccupied

/\

(AB)d.2)

[((AB)"dy2)")

[(AB)") ~—d. |(AB)*) 50 % occupied

A

AB)*d,.)

Figure 8: The interaction of the bonding molecular orbital with the d,. band
shields an antibondig combination that depopulates this molecular orbital, while
the occupied fraction losses weight towards the d,2 band. Simultaneously, the inter-
action of the antibonding molecular orbital with d,, band enforces this molecular
state to split among an antibonding combination and an emergent bonding one
that is interpreted as the molecular breakdown.
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