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The frequency-dependent mean free paths (MFPs) of vibrational heat carriers in amorphous silicon
are predicted from the length dependence of the spectrally decomposed heat current (SDHC) ob-
tained from non-equilibrium molecular dynamics simulations. The results suggest a (frequency) =2

scaling of the room-temperature MFPs below 5 THz.

The MFPs exhibit a local maximum at

a frequency of 8 THz and fall below 1 nm at frequencies greater than 10 THz, indicating local-
ized vibrations. The MFPs extracted from sub-10 nm system-size simulations are used to predict
the length-dependence of thermal conductivity up to system sizes of 100 nm and good agreement
is found with separate molecular dynamics simulations. Weighting the SDHC by the frequency-
dependent quantum occupation function provides a simple and convenient method to account for
quantum statistics and provides reasonable agreement with the experimentally-measured trend and

magnitude.

I. INTRODUCTION

Compared to heat transfer by phonons in crystalline
materials, heat transfer in amorphous materials is com-
plicated by the existence of three regimes of vibrational
modest Low-frequency propagons are delocalized and
have a well-defined wave vector and group velocity,?
similar to phonons in crystals, while high-frequency lo-
cons are localized and contribute negligibly to thermal
conduction.2 Diffusons have intermediate frequencies and
are delocalized, but do not have well-defined wave vec-
tors or group velocities. The contribution of diffusons
to thermal conduction can be notable, however, as they
occupy the majority of the vibrational spectrum.2

From kinetic theory the contribution of an individ-
ual phonon or propagon mode to thermal conductivity
is proportional to its mean free path (MFP). Because
diffusons do not have a well-defined group velocity, it is
not clear if they have a MFP or how it can be defined.
Their contribution to thermal conductivity can be pre-
dicted using their diffusivity, which is well-defined and
can be calculated from Allen-Feldman theory.2® Never-
theless, it would be insightful to identify a frequency-
dependent length scale for propagons and diffusons de-
scribing the decay of the heat flux at each vibrational
frequency. Such a definition would lift the (fundamen-
tally) arbitrary distinction between propagons and diffu-
sons and enable a unified description of heat transfer at
all vibrational frequencies.

In this paper, we apply the spectrally-decomposed
MFP method® to probe the non-equilibrium MFPs of
vibrational heat carriers in amorphous silicon (a-Si).
This method is based on calculating the spectrally-
decomposed heat current (SDHC)? in systems of differ-

ent lengths using non-equilibrium molecular dynamics
(NEMD) simulations. The MFPs are determined from
the variation of the SDHC as a function of system length
at each vibrational frequency.®

We previously used the spectrally-decomposed MFP
method to calculate the non-equilibrium MFPs in low-
dimensional systems such as carbon nanotubes® and
anharmonic chains.® We demonstrated that the non-
equilibrium MFPs transparently describe the ballistic-to-
diffusive transition in the length-dependence of thermal
conductivity. Compared to previous calculations for a-
Si, the spectrally-decomposed MFP method has several
advantages. Unlike in modal life-time calculations,? we
do not need to estimate the group velocities of individual
modes to calculate their MFPs. We also do not need to
distinguish between propagons and diffusons? nor resort
to the harmonic approximation.?2 In contrast to recent
calculations studying the spectral conductivity of a-Si in
fixed-size systems, 212 we focus on the MFPs of heat
carriers and the system-size dependence of thermal con-
ductivity.

The rest of the paper is organized as follows. The
calculation methods are presented in Sec. [Il and the
numerical results are discussed in Sec. [[IIl We also in-
troduce a simple method for the quantum correction
of thermal conductivity from classical MD simulations,
based on weighting the SDHC by the quantum occupa-
tion function. Because this quantum correction method
operates at the frequency level, it is more reasonable than
quantum-correction methods that operate at the system
level (see Ref.[13 and references therein) and allows us to
compare our predictions to experimental measurements.


http://arxiv.org/abs/1605.08925v1

Lbath

Figure 1. Schematic illustration of the a-Si system for L = 10
nm. The spectral heat flux g(w) is calculated at the cross-
section in the middle of the structure (dashed line). The
length L between the Langevin heat baths is varied to ex-
tract the vibrational mode MFPs based on the decrease of
q(w) as a function of L.

II. SIMULATION SETUP AND METHODS

All simulations are carried out using the LAMMPS
packagel? with a time step of 2.5 fs. The Si-Si inter-
actions are modeled by the Stillinger-Weber potentiall®
with the parameters of Ref. [16. The NEMD simulation
geometry is shown in Fig. [[I The atomic coordinates for
a-Si are generated by following the melt-quench proce-
dure of Ref.[17 and the final density is 2,291 kg/m?>. After
the equilibration of the quenched system, atoms located
within a distance Ly, = 5 nm from the left and right
edges of the structure are coupled to Langevin heat baths
at temperatures Ty = T + AT/2 and Te = T — AT/2
with bath relaxation times of 1 ps. To prevent sublima-
tion, atoms at the far left and right edges are fixed to their
equilibrium positions. Periodic boundary conditions are
applied at the boundaries transverse to the current flow.
The width of the system cross-section is 7 nm. System
lengths L (i.e., the region between the baths) between 1
and 10 nm at intervals of 1 nm are considered.

The SDHC is calculated through the plane of decom-
position located halfway between the hot and cold baths
(dashed line in Fig. [).%® The SDHC ¢ ;(w) between
particles ¢ and j located on opposite sides of this plane
is given by the pair-wise SDHC equation?”
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where gy is the simulation time, w is the angular fre-
quency, and the interatomic force constant K f‘j’ﬁ is defined
as
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The velocities 0% (w) and ﬁJB (w) are the discrete Fourier

transforms of the atomic velocities v¥(t) = u®(t) and
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vf (t) = uf (t) (the exact definitions are in Ref. lf), where

ui and uf are the displacements of atoms ¢ and j from
their equilibrium positions in directions a,5 € {x,y, z}.
In Eq. @), V is the interatomic potential energy function.
The spectral flux through the plane of decomposition is
obtained from Eq. (Il) by summing over all pairs of atoms
(one of the left side, denoted by L, and one on the right
side, denoted by R) within the potential cut-off distance
of each other and dividing by the interface area A:
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While Eq. () is the first-order approximation to the
inter-particle SDHC,? we have confirmed that the contri-
bution of higher-order terms is negligible for a-Si by com-
paring the integral of Eq. (@), which we denote as @, to
the total flux determined from the work done by the heat
baths. The two results agree within 4%. We attribute
this good agreement to the stiffness of the interatomic
bonds in a-Si, which ensures that the first-order term in
the current (proportional to the harmonic force constants
Kio‘j’e ) dominates the higher-order terms that are related
to anharmonic force constants. This restriction to the
first-order current term at the plane of decomposition
does not, however, mean that anharmonic scattering in
the bulk is neglected, because all anharmonic effects are
included in the NEMD simulations.%7
Frequency-dependent MFPs A(w) are calculated by de-
termining ¢(w, L) for different system lengths L and fit-
ting the length-dependent q(w, L) to the equation®®

W)
q(w, L) = T3 LAY (4)

where ¢°(w) is the spectral flux when the baths are in
contact (L — 07). Both ¢°(w) and A(w) are deter-
mined from the fitting procedure. While ¢°(w) depends
on the details of the heat baths, the MFPs extracted
from the length-dependence are not expected to depend
on the bath details.2 The frequency-dependent MFPs de-
termined from Eq. (@) are mode-averaged and projected
along the direction of heat transfer.® The MFPs are in-
dependent of the system length and therefore correspond
to the bulk values. We note that the MFPs determined
from Eq. (@) correspond to the decay length of the
heat flux. This definition does not necessarily coincide
with the conventional definition of the MFP as the decay
length of a wave packet.? This distinction is important for
diffusons, which do not have a well-defined wave-vector
so that the traditional definition cannot be applied.
Once the spectral MFPs are determined, the thermal
conductivity & for length L can be determined from?®
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The length-dependence of the thermal conductivity can



be intuitively understood by writing Eq. (@) in the equiv-
alent form
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where the “effective” MFP Aqg(w) has been introduced,
which is similar to the well-known Matthiessen rule.l®
The effective MFP accounts for boundary scattering
through the additional L/2 term and is limited to be-
low this value.

Finally, Eq. (@) allows for a simple quantum correc-
tion to the thermal conductivity prediction, because the
contributions of different frequencies can be weighted by
the vibrational mode energy and occupation, as in the
Landauer-Biittiker formalismi? 2!, We define the quan-
tum corrected thermal conductivity as

L [Tdw ¢°(w) hw O fpg(w,T)
_E/O wIiT LA T

R

where feg(w,T) = [exp(fiw/ksT) —1]"" is the Bose-
Einstein distribution function, kg is the Boltzmann con-
stant, and & is the Planck constant divided by 27. By
defining the dimensionless, length-dependent bath-to-
bath transmission function as

P (w)A 1

T L) = AT T+ LA ®

Eq. (@) can be written in the familiar Landauer-Biittiker
form as!?
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The proposed quantum correction accounts for the quan-
tum specific heat of the modes at each frequency, but does
not account for quantum effects in the dynamics. The
method is thus similar to the one recently introduced by
Lv and HenryX! who weight the modal contributions to
the equilibrium Green-Kubo thermal conductivity by the
quantum population function.

All our NEMD simulations are performed at a mean
temperature of T'= 300 K with temperature bias AT =
100 K. Choosing a relatively large temperature bias al-
lows for very good signal-to-noise ratio in the spectral
heat flux, suppressing the statistical noise. We checked
that halving the bias to AT = 50 K does not change the
spectral MFPs. In addition, we checked that the heat
flux is not sensitive to the exact arrangement of atoms
arising from the melt-and-quench procedure, which we
attribute to the large cross-section of the system giving
rise to spatial averaging in the spectral currents. There-
fore, we performed a single melt-quench for each system
length.
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Figure 2. Spectral heat flux g(w) for different system lengths
L. Increasing the system length reduces the heat flux, espe-
cially at high frequencies, where the MFPs are shorter. At
frequencies below 2 THz, the heat current is independent of
system length, suggesting ballistic transport.

III. RESULTS

The spectral heat flux g(w) for selected system lengths
L as a function of frequency f = w/(2w) is plotted in
Fig. The spectral distribution of the heat flux for
L = 20 nm was recently analyzed in detail by Zhou and
Hu,12 so we focus here on its length-dependence. As ex-
pected, increasing the system length reduces the heat
current throughout the whole frequency range because
of increased phonon-phonon scattering. The reduction is
strongest at high frequencies, where the MFPs are shorter
compared to low frequencies. At frequencies less than 2
THz, the spectral current is nearly independent of system
length. Such nearly ballistic conduction suggest that the
low frequency MFPs are notably longer than the system
sizes considered here.

Equation () suggests that the inverse of the spectral
flux will be linearly proportional to the system length,
with the slope given by [2A(w)]™!. To determine the
MFPs, we calculated the spectral flux for system sizes
L€ {1,2,...,10} nm, plotted g(w)~! versus L and fitted
a linear function at each frequency using least squares
fitting.88 A linear function accurately reproduces the
length-dependence of g(w)™! (not shown), as previously
also observed for other systems.%2

Because of the high computational cost associated with
calculating the spectral heat fluxes for large systems, we
limited our study to systems at most 10 nm long. This
restriction precludes extracting MFPs longer than 10 nm
accurately, limiting the current analysis to frequencies
greater than 2 THz. The MFPs A(w) extracted from
the linear fitting procedure are shown in a log-log plot
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Figure 3. Log-log plot of the spectral MFPs determined by
fitting to Eq. (@). The shaded regions correspond to the 95
% confidence interval.

in Fig. Bl At frequencies below 5 THz, the MFPs obey
a power-law scaling A(w) o< w™2. This scaling agrees
with modal life-time calculations on a-Sit? At frequen-
cies greater than 5 THz, the power-law scaling breaks
down and the MFPs increase with increasing frequency,
giving rise to a local maximum around 8 THz. A similar
maximum for a-Si has been observed in effective MFPs?
and in lifetimes.1? At higher frequencies, the MFPs de-
crease again and fall below 1 nm, which is on the order of
the silicon-silicon bond length. At such high frequencies,
the uncertainty is large because of the sensitivity of the
spectral flux to the system size.

Larkin and McGaughey reported a propagon-diffuson
transition frequency of 1.8 THz/A? such that the fre-
quency range considered in Fig. mostly corresponds
to diffuson-like modes. In the analysis below, we assume
that the scaling A(w) o< w™2 (solid line in Fig. [B]) remains
valid at frequencies below 2 THz. With such scaling, the
MEFPs exceed 100 nm below 530 GHz and 1 pm below
170 GHz. While the w2 scaling may break down in
real situations because of defects, boundary scattering,
or even the onset of a Rayleigh-like w™* scaling at very
low frequencies,2 we assume it to hold for simplicity.

We now investigate the length-dependence of the ther-
mal conductivity using Eq. ([@). The calculated thermal
conductivity (continuous line) is compared with that de-
termined directly from NEMD simulations (data points)
for lengths up to 100 nm in Fig. @ In the evaluation of
the integral in Eq. (@), the MFPs have been assumed
to scale as A(w) x w™?2 at frequencies below 2 THz.
These calculations were carried out without the quan-
tum correction as the NEMD simulations are classical.
Equation () combined with the MFP data of Fig.
reproduces the length-dependence of thermal conductiv-
ity up to lengths L = 100 nm to within 2%. This close
agreement (i) supports the assumption of A(w) x w™?
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Figure 4. Thermal conductivity versus system length. The
thermal conductivities calculated from direct NEMD simula-
tion are marked by circles and the estimated thermal conduc-
tivity from Eq. (B]) using classical statistics is indicated by the
solid line. The error bars in the NEMD thermal conductivities
correspond to the 95% confidence interval.

scaling at low frequencies, (ii) shows that the MFP data
in Fig. Bl which were determined from simulations of
systems shorter than 10 nm, can be reliably used to es-
timate the relative contributions of different vibrational
frequencies to thermal transport in much larger systems,
and (iii) provides support for the accuracy of Eq. (@) in
describing the length-dependence.

Because the Debye temperature of a-Si is 530 K22,
which is well above room temperature, we need to ap-
ply the quantum correction to compare the predicted
temperature-dependence of thermal conductivity to ex-
perimental data. To do so, we use Eq. (7)) and evaluate
the integral as a function of temperature using the MFPs
from Fig. B again assuming the scaling A(w) x w2 at
frequencies below 2 THz. A full quantum-corrected anal-
ysis would require determining the MFPs at each temper-
ature. For simplicity and based on the recent results of
Lv and Henry!!, we assume that the MFPs calculated at
a temperature of 300 K remain valid at other tempera-
tures.

The quantum-corrected thermal conductivity [Eq. ()]
is plotted as a function of temperature for system lengths
of 50, 250, and 1000 nm in Fig. As noted above, as-
suming finite L in Eq. (7) limits the MFPs to L/2. Ex-
perimental data from Cahill et al. for a 520 nm thick
film of hydrogenated a-Si with one atomic percent hy-
drogen content are also plotted.22 Because available ther-
mal conductivity measurements for a-Si contain signifi-
cant scatter,l? we use the data of Cahill et al. to check
the trend of our predictions, but do not expect agree-
ment. Differences may also exist due to the use of the
Stillinger-Weber potential and the classical nature of the
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Figure 5. Quantum-corrected thermal conductivity versus
temperature for system lengths of 50, 250, and 1000 nm. The
MFPs are assumed to scale as A(w) o< w™? below frequencies
of 2 THz and to be independent of temperature. Also plotted
is the thermal conductivity of a 520 nm thick hydrogenated
a-Si thin film measured by Cahill et al.23.

NEMD simulations. The increase of thermal conductiv-
ity with increasing temperature is well described by the
quantum-corrected thermal conductivity. At tempera-
tures higher than 300 K, the experimentally measured
thermal conductivity increases slightly slower as a func-
tion of temperature than our prediction, but this dis-
agreement may be related to our approximation that the
MFPs are independent of temperature. At such high
temperatures, anharmonic scattering will reduce MFPs
and therefore decrease the thermal conductivity. With-
out the quantum-correction, the predicted thermal con-
ductivity would depend only very weakly on temperature
(due to the weak temperature-dependence of the MFPs),
precluding reasonable agreement with the trend of the
experimental data. We caution that this quantum cor-
rection has only been examined for a-Si here and that its
application to other systems warrants further investiga-

tion.

IV. CONCLUSION

We investigated vibrational heat transfer in a-Si by
determining the SDHC and MFPs from NEMD simula-
tions. The calculated MFPs directly reflect the decay
of the heat flux at each vibrational frequency and do not
rely on the existence of a well-defined modal wave vector,
thereby avoiding the separate treatment of diffusons and
propagons. As shown in Fig. B the MFPs exhibit w2
scaling at frequencies above 2 THz and below 5 THz. At
frequencies higher than 10 THz, the MFPs fall below 1
nm, corresponding to strongly localized vibrations. The
length-independent MFPs can be used to accurately pre-
dict the thermal conductivity in systems as long as 100
nm (Fig. H). Weighting the SDHC by the frequency-
dependent quantum occupation function provides a sim-
ple method for a quantum-correction of thermal conduc-
tivity and is able to reproduce the experimentally mea-
sured temperature-dependence of thermal conductivity,
as shown in Fig.

In the future, it would be useful to calculate the SDHC
for systems longer than those considered here, enabling
direct extraction of MFPs at frequencies below 2 THz.
Such an analysis could inform the ongoing discussion?
of the low-frequency scaling of MFPs in a-Si. It will
also be important to compare the non-equilibrium MFPs
to those calculated from equilibrium molecular dynamics
simulations.
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