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We investigate oscillation frequencies for simultaneous trapping of more than one type of alkali atoms in a common optical 

lattice. For this purpose, we present numerical results for “magic” trapping conditions, where the oscillation frequencies for 

two different kind of alkali atoms using laser lights in the wavelength range 500-1200 nm are same. These wavelengths will 

be of immense interest for studying static and dynamic properties of boson-boson, boson-fermion, fermion-fermion, and 

boson-boson-boson mixtures involving different isotopes of Li, Na, K, Rb, Cs and Fr alkali atoms. In addition to this, we were 

also able to locate a magic wavelength around 808.1 nm where all the three Li, K, and Rb atoms are found to be suitable for 

oscillating at the same frequency in a common optical trap. 

 

1 Introduction  

 

Cold atomic and molecular trappings have been the subject of extensive interest for investigating exotic 

quantum phase transitions, to carry out various high precision measurements, for quantum information 

experiments etc. [1-4]. This has led to investigate simultaneous production of quantum degenerate Bose-Einstein 

and Fermi-Dirac gases [5-8]. Realization of bosonic-fermionic atomic mixtures have inspired intensive theoretical 

and experimental activities to verify various phase separations, influence of the superfluidity of the Bose-Einstein 

condensate (BEC) on the Fermi degeneracy, dilution refrigeration [9-11] etc.  Mixtures of bosonic and fermionic 

quantum systems, with an eminent example of 4He- 3He fluids, have attracted intense theoretical and experimental 

probes on their dynamical behaviour [9] that have provided signatures of many microscopic effects. The mixtures 

of magnetically-trapped alkali metal atoms such as Na-Cs and Na-K can be used [12] to search for evidence of an 

electric dipole moment in order to test for parity and time reversal symmetry violations. Besides this, Schloder et 

al. have also investigated the collisional properties of Li and Cs, which are simultaneously confined in a combined 

magneto-optical trap (MOT), by comprehensively studying trap-loss collisions between the two species [13]. 

Although optical lattices allow long measurement times with reduced Doppler shifts, however due to ac Stark 

effect, the trapping fields cause shifts in the internal energy levels of the cold atoms depending on the intensity of 

the applied lasers. This effect can be eventually nullified by trapping atoms at the magic wavelengths [14]. Magic 

wavelengths for trapping single species atoms have been reported for a number of atoms including the alkali atoms 

[14-17]. Simultaneous trapping of two different atomic species have also been reported in Refs. [12,13,18,19], 

but magic wavelengths of these combined species have not been studied extensively.  

 

   In this work, we aim to determine trapping magic wavelengths for the ground states of the Li, Na, K, Rb, 

Cs, and Fr alkali atoms confined in the same optical trap. The above problem can be resolved by using an optical 

lattice operating at “magic” trapping conditions (i.e. at the magic wavelengths) for which the oscillation frequency 

of different trapped atoms remains the same. We have taken into account the wavelength regime, where the 

primary resonances of the above alkali atoms appear. Since applied external laser fields are arbitrary, the important 

quantities that are theoretically relevance to find out these conditions are the dynamic dipole polarizabilities. At 

the magic wavelengths, the ratios of the frequency dependent electric dipole polarizabilities to the atomic weights 

between the ground states of both the atoms have to be nullified. At the primary resonances, if there are changes 

in the signs of the dynamic polarizabilities of the atomic states then they can give rise to magic wavelengths. This 

was demonstrated in Ref. [14], where the frequency-dependent polarizability values of many alkali-metal atoms 

(Li, Na, K, Rb and Cs) were calculated using an all-order single-double (SD) method, over a range of wavelengths 

(from the ultraviolet through infrared spectrum). In the present work, we consider these alkali atoms along with 

the magic trapping conditions for the Fr atoms to look for the magic wavelengths that are common to all these 

atoms. We employ a relativistic coupled-cluster (RCC) method considering all the non-linear effects at the singles 

and doubles excitation approximation that is explained in detail in our earlier works [20-22]. The laser cooled and 

trapped Fr atoms would be useful for studying fundamental symmetry violations such as searching for an electron 

permanent electric dipole moment and probing atomic parity non-conservation effects [23,24]. It is also one of 

the most experimentally investigated radioactive elements in terms of atomic laser spectroscopy: many 

measurements of energy levels [25,26], lifetimes [27-29], isotope shifts [30] and hyperfine structures [20,30] have 
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been reported. Laser cooling and trapping of different Fr isotopes have also been accomplished by different groups 

[30, 31]. Furthermore, there have been many theoretical calculations of energy levels, dipole matrix elements, 

lifetimes of states, isotope shifts and hyperfine structure and the enhancement factors for symmetry violation 

studies [20-22,32-38]. In addition to this, in a certain work presented in [39], the first quantum-degenerate mixture 

of two different fermionic atomic species and the first triple-degenerate fermion-fermion-boson mixtures were 

produced. The quantum-degenerate mixtures were also realized using the sympathetic cooling of the fermionic 

species of 6Li and 40K. Evaporatively cooled gas of bosonic 87Rb atoms in a MOT are also advantageous in a broad 

range of possible future experiments, including the creation of heteronuclear fermion-fermion dimers and 

investigating the BEC and Bardeen-Cooper-Schriffer (BCS) cross-over regime. So keeping this in mind, we intend 

in this work to determine magic wavelengths for the considered alkali atoms at which more than one species of 

atoms can be trapped together for carrying out many sophisticated experiments by effectively getting rid of the 

dominant Stark shifts. 

  
 

2 Theoretical Approach 

We We describe briefly here the procedure adopted in the present work for the calculation of the dynamic 

dipole polarizabilities in the considered alkali atoms. The dynamic polarizability of the ground state |𝛹𝑛⟩ in an 

atom is given by 

𝛼(𝜔) = ∑ [
|⟨𝛹𝑛|𝐷|𝛹𝐼⟩|2

𝐸𝐼−𝐸𝑛+𝜔
+

|⟨𝛹𝑛|𝐷|𝛹𝐼⟩|2

𝐸𝐼−𝐸𝑛−𝜔
]𝐼 =

2

3(2𝐽𝑛+1)
∑

(𝐸𝐼−𝐸𝑛)|⟨𝛹𝑛‖𝐷‖𝛹𝐼⟩|2

(𝐸𝐼−𝐸𝑛)2−𝜔2𝐼 ,                                                          (1) 

where 𝐽𝑛 = 1 2⁄  is the total angular momentum of the corresponding ground state, n represents for the principal 

quantum number, sum over I represents all possible allowed intermediate states due to the dipole operator D, E’s 

are the energies of the corresponding states and ⟨𝛹𝑛||𝐷||𝛹𝐼⟩ are the electric dipole (E1) reduced matrix elements 

between the states |𝛹𝑛⟩ and |𝛹𝐼⟩. For the convenience to carry out these frequency dependent polarizabilities of 

these ground states having a closed core and a valence electron for a wide range of frequencies, we can divide the 

above expression into various correlation contributions as [40] 

𝛼 = 𝛼𝑐 + 𝛼𝑣𝑐 + 𝛼𝑣  ,                                                                 (2) 

where the notations c, vc and v correspond to the core, core-valence and valence contributions respectively. To 

determine the valence contributions, we employ a sum-over-states approach by evaluating the E1 matrix elements 

by our RCC method [20-22] and using the experimental energies.  

 

   In this RCC approach, we can express |𝛹𝑛⟩ as 

|𝛹𝑛⟩ = 𝑒𝑇{1 + 𝑆𝑛}|𝛷𝑛⟩,                                                                                                                                         (3) 

where |𝛷𝑛⟩ is the reference state defined as |𝛷𝑛⟩ = 𝑎𝑛
†|𝛷0⟩, with |𝛷0⟩ being the Dirac-Fock (DF) function for the 

closed core. Here T and Sn operators account excitations of the electrons from the core orbitals alone and valence 

orbital together with core orbitals, respectively. We have described this approach to determine amplitudes of the 

T and Sn excitation operators in our earlier papers [20-22]. Use of the E1 matrix elements along with the 

experimental energies can give more accurate contributions to the valence correlation contributions of the 

polarizabilities α(𝜔). In fact, many precise E1 matrix elements of the primary transitions in the Na, K and Rb 

atoms have been compiled in Ref. [41]. So for more accurate determination of the dynamic polarizabilities, we 

replace our calculated E1 matrix elements when the compiled data from Ref. [41] are found to be more precise. 

We also use the E1 matrix elements for the 6S−6P transitions in the Cs atom reported by Rafac et al. [42]. 

Similarly, few of the E1 matrix elements of the primary transitions in Fr are taken from Ref. [27]. 

 

The high-lying excited state (tail) contributions to the valence correlations are comparatively smaller and can 

be used at the mean-field level approximation using the DF method. Also, the other core and core-valence 

correlations contributions are insignificant and can be evaluated with sufficient accuracies using simpler many-

body methods. Here, we employ random phase approximation (RPA) and a third order relativistic many-body 

perturbation theory (MBPT method) to determine the core and core-valence contributions, respectively, as 

discussed in Ref. [43]. Subsequently by calculating the frequency dependent dipole polarizabilities of  the Li, Na, 

K, Rb, Cs and Fr alkali atoms, we plot them against the frequencies to find out the wavelengths λ at which at least 

two species of alkali-metal atoms can have same oscillation frequencies so that they can be trapped in a common 

optical lattice. These wavelengths are determined by verifying the relation [14] 



𝑠 ≡ √
𝛼1(𝜆)

𝑚1

𝑚2

𝛼2(𝜆)
≈ 1,                                                                                                                                         (4) 

where mi  and 𝛼𝑖(𝜆) are the atomic weight and dipole polarizability of the respective alkali atom. So our aim would 

be to look for the wavelengths λ’s at which the relation 𝛼1(𝜆) 𝑚1⁄ = 𝛼2(𝜆) 𝑚2⁄  are almost satisfied.  

  

 

3 Results 

 

 
Table 1 Calculated values of the static dipole polarizabilities (in a.u.) for the Li, Na, K, Rb, Cs, and Fr alkali-metal 

atoms. Our values are compared with the other available theoretical and experimental results. References are given 

in the square brackets. 

 

Contribution Li Na K Rb Cs Fr 

       

𝛼𝑣 162.6 161.9 284.3 309.3 383.3 296.1 

𝛼𝑐 0.22 0.9 5.5 9.1 15.8 20.4 

𝛼𝑣𝑐 0 0 -0.13 -0.26 -0.47 -0.95 

𝛼𝑡𝑎𝑖𝑙 1.2 0.08 0.06 0.11 0.19 1.26 

       

Total (𝛼𝑛) 164.1 162.4 289.8 318.3 398.8 316.8 

Others 164.112 [44] 162.9 [45] 289.3 [46] 315.7 [47] 399.0 [48] 317.8 [49] 

Experiment 164.2 [50] 162.1 [51] 290.58 [52] 318.79 [52] 401.0 [53]  

 

 

In Table 1, we present the static dipole polarizabilities of the alkali-metal atoms, along with the detailed 

breakdown of the various contributions and compare them with the earlier theoretical and experimental results. 

The details of these calculations are also presented in Ref. [15]. Comparison of these values with their 

corresponding experimental results will ascertain about the accuracy in the results. This can also ensure about 

similar accuracy in the estimated dynamic polarizabilities. The most accurate experimental measurement of Li 

ground-state polarizability has been reported as 𝛼2𝑠 = 164.2 in atomic unit (a.u.) [50]. Our result 𝛼2𝑠 = 164.1 

a.u. is in excellent agreement with this experimental value. The most stringent experimental value for Na ground-

state polarizability was obtained by interferometry experiments as 𝛼3𝑠 = 162.1 a.u. [51], and our present value 

𝛼3𝑠 = 162.4 a.u. agrees well with the experimental value. The experimental result available for the ground-state 

polarizability of K is 𝛼4𝑠= 290.58 a.u. [52], which is very close to our calculated value 𝛼4𝑠= 289.8 a.u. In the same 

table, we also list the polarizability of the 5S state of Rb as 318.3 a.u, while the most precise experimental result 

reported is 318.79 a.u.  [52]. This is also in excellent agreement with our result. Our calculated value of the static 

polarizability for the 6S state of Cs atom is 398.8 a.u., which agrees well with the value 399.0 a.u. obtained by 

Borschevsky et al. [48] using another RCC method and experimentally measured value 401.0 a.u. of Amini et al. 

[53] using the time of flight technique. Similarly, our calculated value of static polarizability of Fr atom is 316.8 

a.u. is close to the previously reported value as 317.8 a.u. [49] using high accuracy experimental data of the E1 

matrix elements. Thus from the comparison between the other available values and out calculated results, as shown 

in the table, it is clear that our static polarizabilities are very accurate. 

 

  To find out the magic wavelengths λ, we plot the dynamic polarizabilities of the ground states of all the alkali 

atoms and they are found at the crossings of curves for the ratio of polarizability to the atomic weight for the 

corresponding alkali atoms. We particularly choose atomic weights mi for the 7Li, 23Na, 40K, 85Rb, 133Cs, and 223Fr 

alkali atoms as 7.016003 a.u., 22.989769 a.u., 39.96399 a.u., 84.911794 a.u, 132.90542 a.u. and 223.0197 a.u. 

respectively from NIST database.  The reason for considering these particular isotopes is that they are often used  

 

 

 

 

 

 

 
 



Table 2 Wavelengths 𝜆 in nm, at which a pair of alkali atoms among 7Li, 23Na, 40K, 85Rb, 133Cs, and 223Fr can have the 

same frequencies of oscillation at which a common optical trap can be used for trapping them.  The corresponding 

ground state frequency dependent polarizabilities  𝛼1 and  𝛼2 (in a.u.) for an 1-2 atom pair are also given. 

 

Alkali Pair (1-2) Wavelength  𝜆 (nm) 𝛼1 𝛼2 
7Li – 23Na 549.09 -329.38 -1078.2 

 
7Li – 40K 808.02 522.15 2972.2 

 
7Li – 85Rb 786.79 594.66 7192.7 

807.92 523.41 6330.8 

 
7Li – 133Cs 864.24 412.92 7817.18 

907.99 358.86 6793.8 

 
7Li – 223Fr 720.12 1238.8 39356.3 

820.49 491.61 15618.1 

 
23Na – 40K 769.02 321.95 559.84 

 
23Na – 85Rb 789.61 370.21 1367.9 

950.07 263.81 974.77 

 
23Na – 133Cs 875.95 296.44 1714.41 

1020.07 245.89 1422.03 

 
23Na – 223Fr 732.09 461.67 4480.47 

836.32 324.25 3146.8 

 
40K – 85Rb 784.59 6901.9 14665.7 

808.02 2965.4 6301.2 

 
40K – 133Cs 769.02 -447.55 -1488.5 

869.39 1315.1 4373.7 

 938.03 874.32 2907.9 

 
40K – 223Fr 710.69 1679.1 9371.3 

768.16 83.92 468.34 

821.35 2238.6 12493.6 

 
85Rb – 133Cs 789.61 -1249.0 -1954.9 

873.68 1605.7 2513.1 

1130.2 606.26 948.91 

 
85Rb – 223Fr 694.61 -1102.1 -2894.8 

790.47 -178.31 -468.34 

822.21 3627.3 9527.4 

 
133Cs – 223Fr 616.13 -373.45 -626.69 

809.34 -2885.3 -4841.8 

 878.82 744.24 1248.91 

 

 

in the cold atom experiments. In Fig. 1, we show the ratios of the above isotopes as function of wavelength λ. In 

this figure, the red, green, blue, pink, neon blue and yellow coloured curves corresponds to the 7Li, 23Na, 40K, 
85Rb, 133Cs, and 223Fr atoms respectively. As a practice, the magic wavelengths which are extremely close to the 

resonances are not taken into account. We also found that the width of the matches in the wavelength range of 

300-500 nm is very narrow and their corresponding polarizability values are also small. Hence, we have omitted 



all possible matches at wavelengths below 500 nm.  Similarly, we have omitted the matches at the higher 

wavelengths above 1200 nm that are adjoining to the resonances.  From the figure, we can see that there is one  

magic wavelength at 549.09 nm for the 7Li and 23Na atoms and this supports for a blue or a dark detuned trap for 

simultaneous optical trapping. Similarly, for a pair of 7Li and 40K atoms, magic wavelength λ is located at 808.02 

nm and for the 7Li and 85Rb atoms, we find there are two magic wavelengths at 786.79 nm and 807.92 nm 

supporting red detuned traps. We also find magic wavelengths for the 7Li and 133Cs atoms around 864 nm and 907 

nm, both supporting the red detuned traps. Magic wavelengths at 720.12 nm and 820.49 nm occur for the 

simultaneous trapping of the 7Li and 223Fr atoms with effectively null differential Stark shifts. Similarly, at least 

two magic wavelengths were located for the other combinations of the alkali-metal atoms. In the same figure, we 

can also clearly observe that simultaneous trapping of the 7Li, 40K and 85Rb atoms are possible at the magic 

wavelength of 808.13 nm. Using these species, it would be interesting to study dynamics of a boson-fermion-

boson mixture.  

 

       

 
   

     

 

The wavelengths for which Eq. (4) is satisfied are tabulated in Table 2 for different combinations of a pair of 

species for optically trapping of 7Li, 23Na, 40K, 85Rb, 133Cs, and 223Fr alkali atoms oscillating with the same 

frequency. It is worth mentioning here that all wavelengths are given in vacuum. It can be clearly seen in the table 

that we get a set of 32 magic wavelengths for all the combinations of the considered alkali atoms in the wavelength 

range 600-1200 nm. Out of these thirty two, seven wavelengths supports blue detuned traps while the rest of the 

wavelengths are supporting the red detuned traps. These seven magic wavelengths supporting blue or dark detuned 

traps includes 549.09 nm for the pair 7Li – 23Na, 769.02 nm for the pair 40K – 133Cs, 789.61 for the pair 85Rb – 
133Cs, 694.61 nm and 790.47 nm for the pair 85Rb – 223Fr, 616.13 nm and 809.34 nm for the pair 133Cs – 223Fr  

 

 

4 Conclusion 

 

In the foregoing work, we have investigated the ratios of the frequency dependent electric dipole 

polarizabilities to the atomic weights of the alkali atoms in the infrared spectral region. The electric dipole 

polarizabilities were evaluated by calculating the important electric dipole matrix elements using a relativistic 

coupled-cluster method. The non-dominant core and core-valence correlation contributions were estimated by the 

random phase approximation and a third order relativistic many-body perturbation theory respectively. The net 

values of the polarizabilities are compared with the available experimental and theoretical results and are found 

Figure 1. The ratios of frequency dependent polarizabilities to the atomic weights 𝛼 (𝜆) 𝑚⁄  of the 7Li, 
23Na, 40K, 85Rb, 133Cs, and 223Fr alkali atoms as functions of wavelength λ (in nm) . 



to be in good agreement. By plotting the ratios of the frequency dependent electric dipole polarizabilities to the 

atomic weights against wavelength, the oscillation frequencies for the alkali atoms are identified at which their 

ground states can experience same amount of Stark shifts when they are trapped simultaneously in a common 

optical lattice. This knowledge of trapping simultaneously heteronuclear alkali atoms with the effectively null 

differential stark shifts would be of immense interest to the experimentalists for carrying out many high precision 

experiments using these atoms; especially in the context of studying dynamic properties of bosonic and fermionic 

species mixtures. 
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