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We develop a formalism relating nonlocal current continuity to spatial symmetries of subparts in discrete
Schrödinger systems. Breaking of such local symmetries hereby generates sources or sinks for the associated
nonlocal currents. The framework is applied to locally inversion-(time-) and translation-(time-) symmetric one-
dimensional photonic waveguide arrays with Hermitian or non-Hermitian effective tight-binding Hamiltonians.
For stationary states the nonlocal currents become translationally invariant within symmetric domains, exposing
different types of local symmetry. They are further employed to derive a mapping between wave amplitudes
of symmetry-related sites, generalizing also the global Bloch and parity mapping to local symmetry in discrete
systems. In scattering setups, perfectly transmitting states are characterized by aligned invariant currents in
attached symmetry domains, whose vanishing signifies a correspondingly symmetric density. For periodically
driven arrays, the invariance of the nonlocal currents is retained on period average for quasi-energy eigenstates.
The proposed theory of symmetry-induced continuity and local invariants may contribute to the understanding
of wave structure and response in systems with localized spatial order.

I. INTRODUCTION

Symmetry under spatial transformations is a simple yet fun-
damental concept underlying the description of most systems
in contemporary physics as the origin of conserved quantities.
In quantum theory and wave mechanics, symmetry-induced
conservation laws are extended from continuous to discrete
transformations in terms of commutation of the correspond-
ing operators with the Hamiltonian, which in turn dictates the
spatial structure of stationary states. Ubiquitous paradigms are
reflection (P) or finite translation (K) symmetry imposing def-
inite parity or Bloch momentum on Hamiltonian eigenstates,
which then provide the basis for understanding phenomena
such as selection rules of level transitions in atoms [1] or the
formation of band structure in crystals [2]. In intricate lattice
systems of intense current interest such as topological insula-
tors [3], Weyl semimetals [4], and Lieb lattices [5], state local-
ization and transport properties are also predominantly traced
back to broken or unbroken spatial symmetries in combination
with the operation of time reversal (T ). The significance of
broken spatiotemporal symmetries has further been addressed
for driven quantum systems [6, 7] in relation to directional
transport [8].

Since symmetries are naturally addressed with respect to
commutation with the global system Hamiltonian, they are
usually regarded dichotomously as broken or unbroken. Nev-
ertheless, in a composite system the Hamiltonian elements
may retain a certain spatial symmetry locally in a subdomain
of configuration space although it is broken globally; we re-
fer to this case as a ‘local symmetry’ (LS). Although there
is clearly a remnant of the considered symmetry in the cor-
responding subsystem, it is not evident how to track this in-
formation in the eigenstates of the Hamiltonian since it gen-
erally does not commute with the LS operation. At the same
time, LSs are actually inherently paramount to a variety of
systems such as aperiodic lattices with long-range order [9–
12], partially disordered media [13–15], and single complex
molecules [16, 17]. A typical example are also generic solid
state nanostructures [18], where unavoidable impurities and
defects (usually modeled as P-symmetric) separate the host
crystal into finite K-symmetric parts. LS may further be
present by design in artificial devices like, e. g., multilay-

ered photonic setups [19, 20], acoustic waveguides [21, 22],
or magnonic systems [23], due to restrictions of finiteness or
functionality. In fact, even global spatial symmetry is gener-
ally rendered local as soon as a system’s immediate environ-
ment is included in the description.

The spatial structure of stationary states in continuous,
one-dimensional (1D), locally symmetric scattering potentials
was recently pinpointed within the framework of symmetry-
adapted nonlocal currents (NLCs) [24–26]: At any real fre-
quency, two distinct NLCs are spatially constant within sub-
domains of local P or K symmetry. They provide a mapping
of field amplitudes between LS related points, thus general-
izing the mapping through parity or Bloch factors for global
symmetry [25]. The NLCs were further linked to perfectly
transmitting states [27] and proposed as a natural order pa-
rameter for spontaneous symmetry breaking in non-Hermitian
PT -symmetric systems [28, 29], as well as observed experi-
mentally in lossy acoustic setups [30].

The stationary translational invariance of the NLCs sug-
gests that they are governed by a continuity equation incor-
porating the associated symmetry transform. In the case of
global space reflection in continuous systems, the conserva-
tion of a symmetry-adapted two-point Schrödinger current has
been shown under the combination of P with time reversal
T [31–33], and can be derived alternatively via gauge invari-
ance of a nonlocal Lagrangian [37]. The underlying global
PT symmetry has gained increased attention since it admits
real discrete spectrum for non-Hermitian systems [38, 39] in
parametric regions where density loss and gain are balanced
[40], and has also been intensively investigated in wave scat-
tering [34, 41–44]. General non-Hermitian Hamiltonians are
of particular interest in discrete models, where the coupling
between sites constitutes an additional degree of freedom for
design and control [45, 46]. A reliable platform of applicabil-
ity is provided by photonic waveguide arrays, which are well
described by an effective discrete Schrödinger equation with
tight-binding Hamiltonian [34, 47].

In discrete models, already the local current becomes a two-
point quantity, naturally defined to flow on the ‘link’ between
two lattice sites [35, 36]. The question is then raised of how
to formulate discrete conservation laws for nonlocal quanti-
ties entailing different links. At the same time, discrete arrays
are ideal for implementing global or local spatial symmetries,
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by adjusting the onsite Hamiltonian elements or the inter-site
hoppings. As an example, in a certain class of discrete struc-
tures with ‘hidden’ symmetries in the state space [48], con-
served quantities from global operators commuting with the
Hamiltonian can be identified. Partial PT symmetry along
a given coordinates has also been implemented for coupled
oscillator systems [49], in the form of dimer arrays featuring
synchronous Bloch-Zener oscillations [50], or in synthetic lat-
tices with solitonic excitations [51]. In view of the above, con-
necting discrete nonlocal link currents to general symmetry
transformations restricted to lattice subdomains would con-
stitute a framework to establish a relation between field state
properties and LS.

In the present work, we combine the concept of local sym-
metry transformations with that of nonlocal current continuity
for discrete—generally non-Hermitian—Schrödinger models.
We thereby identify the breaking of LSs as sources for the
NLCs flowing along transformation related links. In this way,
the proposed framework unifies the treatment of Hermitian
and non-Hermitian setups in the context of LS and its break-
ing, for arbitrary imposed boundary conditions. Further, the
NLCs are given in operator form, making the extension to
multiple links per site straightforward. With photonic waveg-
uide arrays in mind, we apply the framework to 1D tight-
binding Hermitian and non-Hermitian lattice systems with lo-
cal S or ST symmetry, respectively, with S = P (inversion)
or K (finite translation). The evolution of the associated LS-
adapted nonlocal charge is then given in terms of the NLCs
at LS domain boundaries. Together with a defined dual NLC,
mapping relations are derived which relate the amplitudes of
general states at symmetry-transformed sites and connect the
NLCs with the local current. It is then demonstrated how do-
mainwise constant NLCs of stationary states reveal different
types of LS encoded in arbitrarily irregular eigenstates, gen-
eralized also to periodically driven arrays. Finally, the density
profile of perfectly transmitting scattering states is shown to
be characterized by NLCs in terms of its LS.

The paper is organized as follows. In Sec. II we introduce
the concept of LSs and the corresponding local site permuta-
tions. Section III is devoted to the discrete nonlocal current-
density continuity and its relation to LSs. In Sec. IV we
address the properties of NLCs in stationary states, derive
symmetry-induced amplitude mapping relations and the con-
nection to the local current, and generalize the NLC to driven
arrays. In Sec. V we discuss the cases of complete, overlap-
ping, and gapped LS, and provide examples of invariant NLCs
in non-Hermitian and driven finite arrays. In Sec.VI we con-
sider the NLCs in scattering states, derive their relation to per-
fect transmission and illustrate their invariance in locally sym-
metric non-Hermitian scatterers. Section VII concludes with
future perspectives.

II. LOCAL SYMMETRY OPERATIONS

To define the concept and explicit form of a LS opera-
tion in a 1D discrete model, we start by considering a single-
particle, time-independent Hamiltonian Ĥ represented on N
localized site excitations |n〉, n = 1, 2, . . . , N , with onsite
potential elements vn = Hnn = 〈n|Ĥ|n〉 and hopping ele-
ments hn,n′ = Hnn′ = 〈n|Ĥ|n′〉 from site n′ to n 6= n′. The
temporal evolution of a quantum state

|ψ〉 =

N∑
n=1

ψn |n〉 (1)

FIG. 1. Sketch of a 1D finite lattice in the form of a photonic wave-
guide array which is (a) locally inversion (P) symmetric about a
center α or (b) translation (K) symmetric with period L, for sites
n within a domain D (solid blue line), together with the correspond-
ing close-coupling Hamiltonian matrix H and local transformation
(site permutation) matrix PD or KD, respectively. PD maps D to
itself, while KD performs a cyclic shift permutation by L sites on
U = D ∪ L, where L (solid purple line) is the rightmost period in U
(dotted blue line).

is then governed by the Schrödinger equation (SE)

i∂t |ψ〉 = Ĥ |ψ〉 (2)

where we set ~ = 1. Such a discrete model is widely used
to describe coherent electron transport in 1D lattice potentials
like the ones induced in quantum dot arrays, but also as a fi-
nite difference approximation to the continuous SE by choos-
ing appropriate (typically equal) hopping values. In particular,
Eq.(2) effectively also describes light propagation in photonic
waveguide arrays within the paraxial approximation [34, 47]
for small lateral wave vector components. 1D versions of such
a photonic array are schematically depicted in Fig. 1. Time
t is here represented by the longitudinal spatial coordinate
z along the waveguides, and energy E is accordingly repre-
sented by the light propagation constant along z. Onsite po-
tentials vn correspond to the refractive indices of waveguides,
while the hoppings hn,n′ are proportional to the overlap of the
light field localized in waveguides n, n′ and thereby mapped
to their distance. Remarkable agreement with experimental
results is achieved already in the tight-binding approximation
[52] with hn,n′ = 0 for |n− n′| > 1, which we will focus on
in the following.

Given the above framework for a discrete 1D Schrödinger
model, we consider a bijective mapping SD : D→ D̄ given by
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SD : n→ n̄ = SD(n) =

{
PD(n) = 2α− n
KD(n) = L+ n

, (3)

which performs a local inversion (P) through a center α or
translation (K) by a length L of sites n ∈ D to sites n̄ ∈ D̄,
where the domain D ⊆ N is generally a subset of the total
set N of all sites. Suppose now that the discrete system de-
scribed by the Hamiltonian elements Hmn remains invariant
under this site mapping, that is,

Hm̄n̄ = Hmn ∀m,n ∈ D, (4)

so that SD is a symmetry transformation of the system. We
then say that the system possesses a local symmetry in the
union U ≡ D ∪ D̄. A LS is thus contrasted with a global
symmetry of the system for which D = N. Locally P- and K-
symmetric photonic arrays are depicted in Fig. 1 (a) and (b),
respectively [53]. PD maps a domain D to itself, so that D =
D̄ = U, whileKD shifts D by L sites, so that U = D∪L where
L are the rightmost L sites in U (for L 6 D); see Fig.1.

With the (symmetry) mapping SD transforming the site in-
dices n, we correspondingly define an operator

Σ̂D =

N∑
n=1

σ̂n;D, σ̂n;D = |n〉 〈SD(n)| = |n〉 〈n̄| (5)

which replaces the wave amplitude ψn with ψn̄ for the basis
ket |n〉 when acting on a state |ψ〉 (cf. Eq.(1)),

Σ̂D |ψ〉 =

N∑
n=1

ψn̄ |n〉 ≡ |ψ̄〉 , (6)

since the basis {|n〉} is assumed orthonormal (〈m|n〉 = δmn),
so that we can symbolically write the action as an amplitude
mapping Σ̂D : ψn → ψn̄, with Σ̂D = P̂D, K̂D, in analogy with
the local site mapping in Eq.(3) for SD = PD,KD. The asso-
ciated matrix ΣD then has elements [ΣD]mn = 〈m|Σ̂|n〉 =
δm̄n, as depicted in Fig.1: PD performs a (partial) mirror per-
mutation of the sites within D, while KD shifts sites within D
by L—we choose [ΣD]mn = δm̄−D,n for m ∈ L so that the
last L sites in U are mapped to the first L ones. The permu-
tation matrix thus acts on the whole array but permutes only
sites amplitudes within the domain U where the LS of the sys-
tem resides while leaving sites outside U unchanged. Note
that multiple symmetry domains Dd (d = 1, 2, . . . ) may in
general be present, with corresponding centers αd or periods
Ld. The total symmetry domain is then the (generally discon-
nected) set D =

⋃
d Dd, with the mapping for each separate

Dd entering Eq.(3). Different types of LS will be addressed in
Sec.V A.

Symmetry of a system under a transformation is usually as-
sociated with the commutation of the corresponding symme-
try operator with the Hamiltonian. In the case of global sym-
metry, that is, D = N in the present setting (with N =∞ im-
plied for translation symmetry), the Hamiltonian indeed com-
mutes with the matrix ΣD and the energy eigenstates are also
eigenstates of the symmetry operation with the corresponding
eigenvalues: Under inversion or translation the wave ampli-
tudes are mapped to ψn̄ = λψn with the parity λ = ±1 or the
Bloch phase λ = eikL (k being the quasimomentum) as pref-
actors, respectively. In the case of a LS, although the system
remains invariant under the site permutation, the associated
operator generally does not commute with the Hamiltonian,

[Σ̂D, Ĥ] 6= 0. (7)

The reason is the change in coupling of the domain D to its
surroundings: The end sites of D in a 1D array are not coupled
to the same sites after the local permutation, and so the trans-
formed Hamiltonian H̄ ≡ Σ†HΣ (recall that Σ−1 = Σ† for
any permutation matrix) generally contains altered nonzero
hopping elements H̄mn 6= Hmn for m ∈ D and n /∈ D;
cf. Eq. (4). As outlined in App. A, for a non-Hermitian Ĥ it
becomes relevant to combine the spatial transformation with
time reversal T , and the corresponding local SDT symmetry
is expressed by Hm̄n̄ = H∗mn for m,n ∈ D, while generally
[Σ̂DT̂ , Ĥ] 6= 0.

We here raise question if the presence of symmetries in the
system are in some way imprinted on the structure of its states,
even if those symmetries are not global but of finite extent.
The aim is thus to find a characterization of the field amplitude
configuration in terms of a quantity which follows the under-
lying LSs of the system. To do so, in the following section we
turn to the notion of nonlocal current-density continuity in its
discrete form and adapt it to the LS framework.

III. DISCRETE NONLOCAL CURRENT-DENSITY
CONTINUITY

With respect to the spatial transformation SD, we gener-
alize the local discrete current-density continuity, outlined in
App.B, to a nonlocal form by replacing the local density oper-
ator ρ̂n with σ̂n = |n〉 〈n̄| from Eq.(5) (we drop the subscript
D from now on). The latter is now identified with a nonlocal
density operator corresponding to the off-diagonal part of the
site-represented density operator ρ̂ = |ψ〉 〈ψ| associated with
the transformation S, so that

σn ≡ 〈ψ|σ̂n|ψ〉 = 〈n̄|ρ̂|n〉 = ψ∗nψn̄ (8)

constitutes a symmetry-adapted nonlocal density in state ψ Its
sum over n yields the total ‘nonlocal charge’

Σψ = 〈ψ|Σ̂|ψ〉 =
∑
n

σn, (9)

also known as ‘quasipower’ [54] in globally PT -symmetric
photonic systems, in analogy to the usual charge (i. e. quan-
tum probability), or power in photonics, Iψ = 〈ψ|Î|ψ〉 =∑
n ρn (Î being the identity operator). Using the SE, the tem-

poral evolution of σn is given by

∂tσn = qn − i(vn̄ − v∗n)σn = qn + βnσn, (10)

with βn ≡ (vn̄ − v∗n)/i characterizing the onsite asymmetry,
and where qn = q+

n + q−n assigned to site n is the sum of the
nonlocal currents defined by

iq±n ≡ iq±n,S ≡ iqn,n±1;S =

ψ∗nhS(n),S(n±1)ψS(n±1) − ψ∗n±1h
∗
n,n±1ψS(n) (11)

for a local transformation S = SD given in Eq.(3), with S(n±
1) = n̄∓1 and n̄±1 for S = P (inversion) andK (translation),
respectively. Considering Hermitian hoppings, hm,n = h∗n,m,
these four-site currents q±n,P and q±n,K can be written as the
expectation values

q±n,S = 〈ψ|q̂±n,S |ψ〉 (S = P,K) (12)

of the corresponding nonlocal current operators

q̂±n,P =
1

i
(σ̂n,PĤ

± − Ĥ±σ̂n,P), (13a)

q̂±n,K =
1

i
(σ̂n,KĤ

± − Ĥ∓σ̂n,K), (13b)
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FIG. 2. Nonlocal current flow on pairs of S-related links for
(a) inversion S = P and (b) translation S = K trans-
form. Solid (dotted) lines indicate the term ψ∗nhS(n),S(n±1)ψS(n±1)

(ψ∗n±1h
∗
n,n±1ψS(n)) entering each upper (+) and lower (−) NLC

q±n,S (S = P,K) on the links into a site pair n, n̄; see Eq.(11). Inset:
The translation NLC reproduces the local link current j±n for n̄ = n.

in analogy with Eq. (B4), with the transformation type P or
K entering σ̂ here explicitly indicated, Ĥ± being the up-
per/lower hopping operator (see App.B). Outside the domain
U of the mapping where n̄ = n, the translation current re-
produces the usual current, q̂±n=n̄,K = ĵ±n , and so Eq. (10) re-
produces the local current-density continuity in Eq. (B1). For
both P and K, the total current operator is given by

q̂n = q̂+
n + q̂−n =

1

i
[σ̂n, Ĥ − V̂ ], (14)

where V̂ = Ĥ − Ĥ+ − Ĥ− is the diagonal part of the Hamil-
tonian. Note here that, like the usual currents j±n , the q±n
can be seen as link currents, though not flowing along one
link but along the two ones corresponding to the hoppings
hS(n),S(n±1) and h∗n,n±1 entering Eq. (11). This nonlocal
‘flow’ is illustrated in Fig.2.

Using the transformation matrices ΣD = PD,KD (depicted
in the example of Fig. 1), the q±n = 〈ψ|q̂±n |ψ〉 in Eq. (11) for
the whole setup N can be written as the components of an N -
entry column vector q± = [q±1 q±2 · · · q

±
N ]> given by (cf.

Eqs.(13a) and (13b))

iq±P = d[ψ†]PDH
±ψ − d[ψ†H±]PDψ, (15a)

iq±K = d[ψ†]KDH
±ψ − d[ψ†H∓]KDψ (15b)

for local P,K-transformation, respectively, where ψ =
[ψ1 ψ2 · · · ψN ]> and d[a] denotes theN×N diagonal matrix
with the components of (row or column) vector a along its di-
agonal. The above expression for the q±n becomes convenient
when evaluating them for a given Hamiltonian and (numeri-
cally computed) state amplitudes ψn, as will be done in the
following sections.

For a given site transformation S, the form of the nonlo-
cal continuity equation (10) is similar to Eq. (B1) with the
loss/gain function γn replaced by βn which characterizes the
sources for the nonlocal density σn. For a system with S-
symmetric onsite potential, vn̄ = vn or [V̂ , Σ̂] = 0, we have
βn = γn and the sources (sinks) of σn are represented by
the gain (loss) of ρn at individual sites n like in Eq.(B1), and
q̂n = [σ̂n, Ĥ]/i like in Eq.(B3). Those sources and sinks van-
ish if the potential is real, but if the vn are not S-symmetric,
then in Eq. (10) there is a contribution to βn from the po-
tential differences between S-related sites. In other words,

locally broken spatial potential symmetries act as sources
for the associated nonlocal density. If a system has locally
ST -symmetric non-Hermitian onsite potential, vn̄ = v∗n or
[V̂ , Σ̂T̂ ] = 0, then βn = 0 within the symmetry domain D
and Eq. (10) reduces to ∂tσn = qn. This means that the net
NLC qn vanishes within D for stationary states, in contrast
to jn which may vary spatially for γn 6= 0. As shown in
App.C, an alternative nonlocal continuity equation can finally
be established for a bitemporal nonlocal density and associ-
ated current by projecting σ̂ |ψ〉 onto the time-reversed state
T |ψ〉 = |ψT 〉 instead of |ψ〉 in Eq.(8).

The relation of stationary NLCs to LSs will be elaborated
on in the next section. To see first the impact of the sys-
tem symmetry on a general (nonstationary) state |ψ〉 via the
NLCs, let us consider the evolution of the nonlocal charge
(see Eq. (9)) within a subdomain D ⊆ N, denoted ΣD

ψ , which
obeys (cf. Eq.(10))

∂tΣ
D
ψ = QD +

∑
n∈D

βnσn, (16)

where QD =
∑
n∈D qn is the total net NLC within D.

Now, if the hoppings of the system are SDT -symmetric,
hS(n),S(n±1) = h∗n,n±1, then from the NLC expression (11)
we get, in general,

q±n∓1,S = −η∗n∓1,nq
∓
n,S (S = P,K) (17)

where we define the hopping ratio

ηm,n =
hm,n
hn,m

(18)

between the hopping elements in opposite directions on the
link (m,n), here with m = n ± 1. For equidirectional hop-
pings (ηm,n = 1) within D, QD thus equals the sum q∂D of
currents q±m on links above/below sites m of the upper/lower
boundaries ∂D± of D,

QD = q∂D ≡
∑

m∈∂D±
q±m, (19)

since the upper and lower NLCs cancel out on each link within
D. Hence, if also the potential is SDT -symmetric (βn∈D = 0),
then the temporal change ∂tΣD

ψ in Eq.(16) is affected only by
those boundary currents q∂D.

Recall that D may be disconnected, as a union of distinct
subdomains Dd as mentioned above, entailing equally many
q±m pairs at its boundary points. In the special case of global
PT -symmetry in D = N, we have βn = 0 but also q∂D = 0
since the boundary currents q−1 , q

+
N vanish for the isolated

array (where h1,0 = hN+1,N = 0 by definition). Thus
QD=N = 0 in Eq.(19) and thereby ∂tΣN

ψ = 0, reproducing the
well-known constancy of the nonlocal charge (quasipower) in
systems with PT -symmetric potential [31, 54].

IV. STATIONARY STATE INVARIANTS AND AMPLITUDE
SYMMETRY MAPPING

Having established the concept of nonlocal discrete conti-
nuity in the above operator form and adapted it to symmetry
mappings, we will now use the NLCs to show how LSs of the
lattice system are encoded into its stationary states. For an
eigenstate

|φ〉 =
∑
n

ane
−iEt |n〉 = e−iEt |a〉 (20)
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of the Hamiltonian, Ĥ |φ〉 = E |φ〉, with generally complex
eigenvalue E = E◦ + iΓ/2 (E◦, Γ ∈ R) if the Ĥ is (effec-
tively) non-Hermitian [55], Eq.(10) yields

qn + (βn − Γ )σn = 0. (21)

Thus, at sites with ST -symmetric onsite elements (βn = 0),
a stationary state |φ〉 with Γ = 0 has vanishing sum of NLC
amplitudes,

qn,S = q+
n,S + q−n,S = 0 (S = P,K) (22)

following a nonlocal form of a quantum Kirchhoff law. For
ST -symmetric hoppings hn,n±1, the above equation can be
combined with Eq.(17) to obtain

q±n,S = η∗n,n∓1 q
±
n∓1,S (S = P,K) (23)

for consecutive nonlocal link currents. Thus, in a connected
domain D where the system has ST -symmetric Hamiltonian
elements , obeying Eq. (A4), the NLC q+

n,S (q−n,S ) accumu-
lates the hopping ratios as a prefactor when traversing the
domain forwards (backwards). For complex Hermitian hop-
pings, ηn,n∓1 = e2iϕn,n∓1 and the currents accumulate a
Peierls-like hopping phase factor along D. If the hoppings are
ST -symmetric and equidirectional, hm,n = hn,m (generally
complex, as may be the case in photonic arrays [56] depending
on the host medium), the q±n,S are explicitly given by

iq±n,P = hn,n±1(a∗nan̄∓1 − a∗n±1an̄), (24a)

iq±n,K = hn,n±1(a∗nan̄±1 − a∗n±1an̄), (24b)

and are translationally invariant (spatially constant) in D for
a stationary state with real E.

To establish a connection between S-transformations and
the state structure via NLCs (see Sec. IV B below), it is con-
venient to introduce a dual NLC q̊±n,S , as described in App.D.
For a stationary state, it has the same spatial part as the bitem-
poral NLC in Eq.(C3) with q̊±n = qT±n e−2iEt. Both qT±n and
q̊±n are invariant in a locally S-symmetric domain for an en-
ergy eigenstate, as shown in Apps.C and D, respectively. We
focus on the equal-time NLCs q±n and q̊±n in the remainder of
the paper.

A. Nonlocal invariants in S(T )-symmetric domains and
corresponding stationary states

Let us now consider the NLCs q±n and q̊±n in the concrete
case of equidirectional hoppings hn,n±1 = hn±1,n, and
distinguish some basic properties as follows:

(i) In a stationary state |φ〉 with real energy E, local PDT -
symmetry (vn̄=2α−n = v∗n, hn̄,n̄±1 = h∗n,n∓1) or local KDT -
symmetry (vn̄=n+L = v∗n, hn̄,n̄±1 = h∗n,n±1) yields spatially
constant corresponding currents

q±n,S = q±D,S (S = P,K) (25)

for all n ∈ D with hn,n±1 = hn±1,n. In particular for PDT
symmetry it can be shown that q±D,P vanishes for a state vector
φ whose part φD = {φn∈D} is a local PT ‘eigenstate’, and
vice versa, that is,

φ∗n̄ = λD,PT φn, n ∈ D ⇐⇒ q±D,P = 0, (26)

with unimodular ‘eigenvalue’, |λD,PT | = 1, which in turn
corresponds to locally symmetric density ρn within D. In fact,
this applies for arbitrary PDT -symmetric hoppings, since no
hopping ratio is accumulated in Eq.(23) for zero current. For
the (local) PT eigenstate above it further holds that

λD,PT q̊
±
n,P = −j±n = j∓n̄ , (27)

connecting the dual nonlocal current with the local one.

(ii) For local PD-symmetry (vn̄=2α−n = vn, hn̄,n̄±1 =
hn,n∓1) or local KD-symmetry (vn̄=L+n = vn, hn̄,n̄±1 =
hn,n±1), the dual (time-dependent) quantities q̊±n,S are spa-
tially constant in D,

q̊±n,S = q̊±D,S (S = P,K). (28)

We underline that those invariants exist also for non-Hermitian
SD-symmetric potentials, e. g. with (locally) symmetric loss
profile or ‘unbalanced’ loss/gain elements. In analogy to
Eq.(26), q̊±D,P vanishes iff the partφD is a local P ‘eigenstate’,

φn̄ = λD,P φn, n ∈ D ⇐⇒ q̊±D,P = 0, (29)

now with eigenvalue λD,P = ±1, and then also

λD,P q
±
n,P = j±n = j∓n̄ (30)

holds in D.

(iii) For a general state |ψ〉, q±n and q̊±n are PDT -symmetric
and PD-antisymmetric by construction, respectively,

q±n,P = q∓∗n̄,P and q̊±n,P = −q̊∓n̄,P . (31)

For equidirectional PDT - or PD-symmetric hoppings we fur-
ther have that

q±n̄∓1,P = −q±∗n,P or q̊±n̄∓1,P = q̊±n,P (32)

within D, respectively, for arbitrary onsite elements vn.
Thus, the |q±n,P | or q̊±n,P are then locally symmetric about the
center α (that is, about the shifted center α ∓ 1

2 if assigned
to sites) for any complex potential profile, regardless of its
symmetry. If also the potential is PDT -symmetric, then
Eqs. (25) and (32) imply that stationary NLCs are imaginary
in D for real E: q±n,P ∈ iR.

(iv) For an eigenstate (Bloch state) |φk〉 of the finite translation
operator K̂ with wavefunction φkn = eiknχkn, where χkn =
χkn+L, the associated NLC equals the local current times the
Bloch factor while its dual vanishes,

q±n,K = j±n e
ikL, q̊±n,K = 0. (33)

This applies for energy eigenstates of globally K-symmetric
systems of period L with symmetry domain D = N, including
finite ring structures (where site n = N is coupled to site
n = 1). Recall here that a KT -symmetric potential, where
the q±n,K above may be spatially constant, has period L only if
it is real (whereby it is K-symmetric), in which case also the
j±n are conserved.

(v) The NLCs for a forward translation K+(n) = n̄ = n +
L in a general state |ψ〉 are related to those for a backward
translation K−(n) = n− L from the mapped site n̄ by

q±n,K+ = −q∓∗n̄,K− , q̊±n,K+ = −q̊∓n̄,K− (34)
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FIG. 3. Symmetry-induced domain amplitude mapping: Within a
locally P-symmetric subdomain (blue line) of a 1D array, the am-
plitude at site n is mapped to its image at n̄, as indicated by arrows
together with the quantities required for the mapping. (a) Current
mapping via Eq. (36) in terms of translation invariant local currents
j±n and NLCs q±n , q̊±n evaluated at n = α using aα and aα±1 (red
line). Dotted contour on end sites indicate current flow to ensure
j±n 6= 0. (b) Summation mapping via Eq.(38) in terms of amplitudes
and couplings up to the domain center α (green line) and the domain
invariant q±α .

for KT - and K-symmetric equidirectional hoppings, respec-
tively. Thus, for a stationary state (with real E), although the
q±n,K+ are constant only in the subdomain D of a locally KT -
symmetric domain U = D ∪ L (see Fig. 1), we can assign
−q∓∗n,K− = q±n−L,K+ = q±D,K+ to (links from) sites n in the
last period L, and similarly for K symmetry and the q̊±n,K.
This way the symmetry is expressed by nonlocal invariants
throughout the whole domain U.

B. Amplitude mapping and current connection

The wave amplitude ψS(n) at the transformed site is re-
lated to that of the original one ψn and its conjugate via the
q±n,S , q̊

±
n,S , j

±
n through the general identity

ψS(n) =
1

j±n

(
q±n,S ψn − q̊

±
n,S ψ

∗
n

)
, (35)

holding for arbitrary Ĥ , where both the upper and lower sign
in ± can be chosen; see derivation in App. E. If the poten-
tial vn is both SDT - and SD-symmetric (that is, real and SD-
symmetric), then both q±n,S = q±D,S and q̊±n,S = q̊±D,S , as well
as j±n = j±D , are spatially constant within D for a stationary
state |φ〉. Hence, Eq.(35) becomes

φS(n) =
q±D,S

j±D
φn −

q̊±D,S

j±D
φ∗n (36)

for all n in D, providing a linear mapping relation from φn, φ
∗
n

to φS(n) with constant coefficients q±D,S/j
±
D and q̊±D,S/j

±
D

which can be evaluated for any link (n, n ± 1) in D. This
mapping is illustrated in Fig. 3 (a). Note that the same sta-
tionary mapping (36) would be arrived at by formulating the
identity in Eq. (35) using the bitemporal NLC qT±n,S instead of
q̊±n,S , as explained in App.E.

This mapping is clearly not applicable for real spatial com-
ponents an of |φ〉 in D (or trivially complex through a com-
mon prefactor), since the j±D then vanish. At the same time,
real an yield equimodular q±n,S and q̊±n,S , which in turn coin-
cides quite generally with vanishing local current. Indeed, a
general identity connecting the nonlocal and local currents on
links to sites n and n̄ = S(n) is (see App.E)

|q±n,S |
2 − |̊q±n,S |

2 = j±n j
±s
S(n) (37)

with the sign s = −,+ for S = P,K, respectively, implying
j∓P(n) = jP(n),P(n±1) and j±K(n) = jK(n),K(n±1). This cur-
rent connection holds also for j±n = 0, in which case q̊±n,S =

e2iθnq±n,S , where θn is the phase of the general wavefunction
ψn = |ψn|eiθn , as can easily be checked. For a stationary state
we further have that j±n j

±
S(n) = s(j±n )2 ≡ s(j±U )2 within a

Hermitian domain U 3 n,S(n). Thus, the wave amplitudes in
different local ST or S symmetry domains Dd (d = 1, 2, . . . )
in a globally Hermitian system are interrelated by common
differences |q±D1,S |

2 − |̊q±D1,S |
2 = |q±D2,S |

2 − |̊q±D2,S |
2 = · · · =

s|j±N |2 through Eq.(37) for S = P,K.
Considering S-symmetry, the mapping relation (36) can

be seen as a generalization of the parity and Bloch theorems
(which map amplitudes to a symmetry-related site via the as-
sociated eigenvalue) from global to local P- andK-symmetry,
respectively, where breaking of the global symmetry adds an
admixture of the complex conjugate φ∗n to the mapping. Thus,
using the NLCs, local symmetry can be used to facilitate
the computation of spatial parts of eigenstates (knowing their
symmetry-related parts) even in the case where symmetry un-
der a given transformation is broken at domain boundaries.
Taking the continuum limit with lattice constant ` → 0 (set-
ting all hoppings equal), Eq. (36) reproduces the generalized
Bloch and parity theorems of Ref. [25] for stationary states.
Those are here extended to non-Hermitian Hamiltonians with
variable hoppings and are shown to follow from the general
identity (35) for arbitrary states. The usual (global) versions
are recovered for D = N; see App.E.

C. Summation amplitude mapping

While the current connection (37) holds for any Ĥ and |ψ〉,
the mapping identity (35) is only for nonzero jn, as realized
for scattering setups (see Sec.VI) or bound setups with sources
and/or sinks (see V B).

As shown in App.E, the NLCs can be used to map also am-
plitudes without using the (potentially vanishing) local current
jn, in the form of a general summation mapping; see Eq.(E7).
In the case of real amplitudes an of a stationary state within
an odd-sized domain D, locally PT -symmetric around α, we
obtain the mapping

an̄ = an

(
1− iq+

D

α−1∑
m=n

1

amh∗m,m+1am+1

)
(38)

with constant NLC q+
D in D (with the upper sign selected

here). The image amplitudes an̄ can thus be determined
from multiple an’s, as illustrated Fig. 3 (b). The same can
be done for an odd-sized P-symmetric domain using q̊+

D and
am, hm,m+1 in Eq.(38). In other cases (e. g. P(T ) symmetry
with even D, or K(T ) symmetry), Eq. (E7) yields the am-
plitude mapping provided that the quotient an̄0

/an0
can be

previously determined.

D. Invariants in periodically modulated systems

For a time-dependent Hamiltonian Ĥ(t) there are no sta-
tionary eigenstates and so no spatially invariant NLCs in sym-
metry domains. In the case, however, of a periodic modulation
with frequency ω,

Ĥ(t) = Ĥ(t+ τ), τ = 2π/ω, (39)
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the Schrödinger equation (2) admits solutions of the form

|ψµ(t)〉 = e−iεµt |φµ(t)〉 , |φµ(t)〉 = |φµ(t+ τ)〉 , (40)

where the real quasienergies εµ are defined up to multiples
of 2π. Being quasi-stationary eigenstates of the modified
Hamiltonian operator ĤF = Ĥ − i∂t with eigenvalues εµ,
the periodic Floquet modes |φµ(t)〉 suggest the existence of
a type of nonlocal invariants within spatially symmetric do-
mains, in analogy to those for stationary states of a static Ĥ .
Indeed, integrating the nonlocal continuity Eq. (10) in a Flo-
quet state |ψµ〉 over one period τ for a potential vn(t) (as-
sumed real for simplicity) which is locally S-symmetric at any
t, vn̄(t) = vn(t), we obtain

q̄n;µ ≡ q̄+
n;µ + q̄+

n;µ = [σn;µ(t) ]
τ
0 = 0 (41)

since σn;µ(t) = 〈ψµ(t)|σ̂n|ψµ(t)〉 is periodic, where

q̄±n;µ =
1

τ

∫ τ

0

dt q±n;µ(t) (42)

are the period-averaged NLCs in state |ψµ〉. Just like in
the case of static Ĥ , we have q̄±n∓1;µ = q̄∓n;µ for equidirec-
tional (assumed real) S-symmetric hoppings hS(n),S(n±1) =

hn,n±1, so that the q̄±n;µ are spatially constant in the domain of
symmetry D; cf. Eq. (23). This generalizes the characteriza-
tion of the LSs by associated invariants to 1D systems driven
periodically with arbitrary strength. Like their static coun-
terpart, the period invariants q̄±n;µ also exist independently of
boundary conditions; they will be illustrated in an example
with bound Floquet modes in Sec.V C.

V. NONLOCAL CURRENTS OF BOUND EIGENMODES

Having established the existence of symmetry-induced sta-
tionary 1D invariants, we now address their occurrence in
bound systems. We first illustrate the various types of LS
in 1D, then show how the NLCs relate to symmetry break-
ing in globally ST -symmetric non-Hermitian setups, and fi-
nally give an example of invariants in a periodically mod-
ulated array. Lengths, field amplitudes and H-elements are
measured in units of ` (lattice constant), a◦ (amplitude unit)
and ε (H-element unit), respectively, which are in turn set to
unity, ` = a◦ = ε = 1.

A. Types of local symmetry

To illustrate different types of symmetry, we consider an ar-
ray of N = 15 sites with real onsite elements vn = un and
hoppings hn,n±1, so that the mode amplitudes aνn of an eigen-
state |φν〉 =

∑
n φ

ν
n |n〉 =

∑
n a

ν
ne
−iEνt |n〉 with eigenvalue

Eν (ν = 1, 2, . . . , N ) can also be chosen real. The NLCs

q±n;ψ =
∑
ν

|cν |2q±n;ν +
∑
ν

∑
µ6=ν

c∗νcµq
±
n;νµ (43)

in a general state (wavepacket) |ψ〉 =
∑
ν cν |φν〉 are

composed of a linear combination of the q±n;ν of in-
dividual modes ν as well as mixed-mode currents
iq±n;νµ ≡ φν∗n hS(n),S(n±1)φ

µ
S(n±1) − φν∗n±1h

∗
n,n±1φ

µ
S(n)

(S = P,K) which oscillate with frequency Eν − Eµ.
All general statements of Secs. III and IV about NLCs of

general states |ψ〉 apply to q±n;ψ , while, in particular, the
stationary currents q±n;ν are additionally translation invariant
in a corresponding LS domain D. In the following, we discuss
the different types of local P- and K-symmetry in terms of
the example arrays shown in Fig. 4 together with the locally
invariant q±n;ν for selected modes |φν〉 as well as the PD- and
KD-matrices producing them via Eq.(15).

(a) Global symmetry
In the case of global symmetry, there is a connected maximal
symmetry domain U = N which extends over the complete
setup. We call a (local) symmetry maximal [12] if the cor-
responding domain U = D ∪ D̄ is the largest one with the
given center α (for P symmetry) or period L (for K symme-
try). In the case of global P symmetry, shown in Fig. 4 (a,i),
the corresponding permutation matrix PD = PN is the usual
anti-diagonal unit matrix (upper inset), and the q±n;ν vanish
for any mode |φν〉 due to its definite parity (see Eq. (26)). If
N contains a subdomain D1 which is locally PD1

-symmetric,
then its image P(D1) under the global inversion has oppo-
site invariants q±P(D1);ν = −q±D1;ν , as seen in the lower panel
of Fig. 4 (a,i) together with the corresponding local inversion
matrix (lower inset).

We call a finite system ‘globally’ K-symmetric here if it is
periodic in U = D∪L = N, i.e. consisting of repeated copies
of its last period L, as in Fig.4 (a,ii). While the q±n;ν in L differ
from those in D, we assign the backward invariants −q∓∗n̄,K−
(see Eq.(34)) to L in order to illustrate the KD-symmetry. As
seen in the lower panel of Fig.4 (a,ii), a different period leads
to different NLCs.

(b) Complete local symmetry
In the case of complete LS (CLS), the setup is exactly covered
by more than one maximal non-overlapping symmetry
domains Ud (of size Dd > 1), that is, N = U =

⋃
d Ud with

Ud∩Ud′ = ∅, as exemplified in Fig.4 (b). The corresponding
PD- and KD-matrices are block-diagonal with the blocks
being local inversion and translation permutation matrices.
The local order of the Hamiltonian is here completely mapped
to the domain invariants q±Dd;ν which thus expose the sym-
metry information encoded in the states |φν〉. Note that, for
both local P and K symmetry, this information is otherwise
not at all visible by the mode amplitude profiles alone for
an arbitrary CLS setup. The concept of CLS may serve to
characterize order between the limits of perfect periodicity
and uncorrelated disorder in extended systems, alternatively
to quasiperiodicity (or deterministic aperiodicity) [12].

(c) Overlapping local symmetry
The case of overlapping LS refers to the existence of different
symmetry domains of the same setup with common sites,
that is, there are (composite) LS domains U =

⋃
d Ud and

U′ =
⋃
d U′d with Ud 6= U′d but Ud ∩ U′d 6= ∅ for some

Ud,U′d. Examples of non-CLS setups with overlapping
P- and K-symmetric domains are shown in Fig. 4 (c,i) and
(c,ii), respectively. Note that overlapping P-symmetric
domains with common center α or K-symmetric domains
with common period L have equal invariant currents q±n;ν ,
respectively. In general, a setup may contain mixed local P
and K symmetries in different domains which in turn may
overlap, and the concept of overlapping LS may be used to
analyze order in complex systems at different scales [12].
If overlapping LS domains occur in a CLS system, then we
speak of different CLS decompositions of the system. As
has been shown for continuous models [27], scattering setups
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FIG. 4. Types of local symmetry (LS) and corresponding local permutation matrices for (i) inversion and (ii) translation transforms for finite
1D arrays of N = 15 sites. Plotted quantities (indicated in legend) are: real onsite potential un (dark gray), real hoppings hnm between sites
(light gray), eigenmode amplitudes φνn (orange), 10i times imaginary NLC q+

n,ν of mode ν (purple). (a) Global symmetry within U = N,
where N covers the complete system, (b) complete LS (CLS) in non-overlapping subdomains Dd ⊂ N =

⋃
d Dd, (c) overlapping LS for

two different LS operations, and (d) gapped symmetry within U = N. Eigenmodes (i) ν = 8, 7, 9, 7 and (ii) ν = 6, 10, 8, 6 for (a,b,c,d),
respectively, were chosen with visibly distinct q+

Dd as a criterion. In (a,i) and (a,ii) the q+
n,S for a LS transform are additionally shown. In order

to illustrate their domainwise constancy, the (upper) NLCs are plotted at the sites n below the links (n, n + 1) they are defined on. In (ii),
backward invariants −q∓∗

n̄,K− are plotted in the last period of each LS domain; see Eq. (34). Solid vertical lines indicate LS domains, dotted
lines the local (i) inversion points αd and (ii) translation lengths Ld. Shaded areas indicate lack of symmetry under the considered transform.
All plotted quantities are dimensionless, with each panel row being of height 1/2, as indicated on the upper left in (a,i).

with multiple complete local P-symmetry decompositions
can enable the design of transparency at multiple incoming
frequencies.

(d) Gapped (local) symmetry
If the Hamiltonian elements in one (or more than one) subdo-
main(s) of a LS domain are modified so that they break the
considered symmetry, then the original LS domain becomes

disconnected, or ‘gapped’, as illustrated in Fig.4 (d). The q±n;ν

are then spatially constant in the symmetric subparts of D out-
side the gap(s), but generally unequal in different subparts
(recall that their constancy pertains from Eq. (23) for a con-
nected LS domain). In the case of gapped P symmetry, how-
ever, the identity (32) yields equal q±n;ν at symmetry-related
subparts for real amplitudes an, despite intervening gaps, as
seen in Fig. 4 (d,i) with equal (vanishing) q+

n;ν at the left and
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right ends. In the case of gapped K symmetry, gaps induce
distinct constant q±n;ν’s in each unperturbed part. The exam-
ple in Fig. 4 (d,ii) shows the constancy of q+

n;K+ (with period
L = 9) before the gap, equal to the −q+

n;K− shown after the
gap. The blocks of the associated Σ-matrix corresponding to
gaps are diagonal, yielding q+

n;ν = j+
n;ν = 0 in the gaps for

K transformations. Note that the gaps may as well be locally
symmetric under another transformation (e. g. P-symmetric
about their center), thus yielding a nested LS, which can be
expressed through locally constant q±n;ν’s by accordingly mod-
ifying those permutation matrix blocks.

B. Nonlocal currents in PT - and KT -symmetric
non-Hermitian arrays

We now proceed to demonstrate some properties of eigen-
mode NLCs for minimalistic examples of globally PT - and
KT -symmetric non-Hermitian arrays, as shown in Fig.5, and
in particular their relation to spontaneous symmetry breaking.
The non-Hermiticity is implemented by complex onsite po-
tentials, while the hoppings are taken to be real and equidirec-
tional.

Global PT symmetry is known to allow for parameter
regimes of loss/gain elements γn where a subspace of com-
mon eigenstates |φν〉 of Ĥ and P̂ T̂ with real Ĥ-eigenvalues
exists, originating essentially from the balance between loss
and gain in density. The rest of Ĥ-eigenstates are ‘sponta-
neously’ symmetry-broken non-P̂ T̂ -eigenstates, which come
in P̂ T̂ -related pairs |φν〉 , |φν′〉with complex conjugate eigen-
values Eν , E′ν . We now notice that the PT -unbroken modes
are naturally distinguished by vanishing of the corresponding
constant NLCs q±n,P , as follows from Eq. (26) for the case
D = N of global symmetry. This is illustrated in Fig.5 (i) for a
PT -symmetric N = 5-site array with two loss/gain parame-
ters γ, η, where a real central onsite energy v is added to break
the ±E◦ν symmetry of the Ĥ-eigenvalues Eν = E◦ν + iΓν/2
shown in Fig. 5 (a,i). As we see, all q+

N;ν vanish within the
γ-range (for fixed η) corresponding to the unbroken phase of
real Eν in Fig.5 (a,i).

In the PT -broken phase of complex Eν , the q±n;ν are not
spatially constant, since q±n∓1;ν = q∓n;ν 6= q±n;ν for Γν 6= 0

(and βn = 0) in Eq.(21). While generally q±n;ν 6= 0 in thePT -
broken phase, the remnant of PT symmetry in the occurrence
of PT -related eigenmode pairs is expressed by vanishing sum
of NLCs: By its definition, q±n;ν will be opposite q±n;ν′ in the
paired eigenstate |φν′〉 = P̂ T̂ |φν〉 with E′ν = E∗ν ,

q±n;ν + q±n;ν′ = 0. (44)

Summing separately the q±n;ν along the array, the total up-
per/lower NLCs Q±D;ν =

∑
n∈D q

±
n;ν (here D = N) in state

|φν〉 each serve as a single parameter which distinguish PT -
unbroken (Q±D;ν = 0) from PT -broken (Q±D;ν 6= 0) modes
for a given setup configuration. This is seen in Fig.5 (c,i) for
Q+

D;ν (note that Q±D;ν ∈ iR due to Eq.(32)). The PT symme-
try remnant in the broken phase may further be expressed by
the vanishing sum of Q±D;ν over all modes,

∑
ν Q
±
D;ν = 0.

The nonlocal charge (quasipower) ΣD
ψ = 〈ψ|Σ̂|ψ〉 for a

general state |ψ〉 was shown in Sec. III to remain constant in
time (longitudinal direction) t under under global PT sym-
metry (D = N) following from the vanishing total NLC
QN = Q+

N + Q−N = 0. In particular for the eigenmodes |φν〉
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FIG. 5. Real (solid) and imaginary (dotted) part of (a) spectrum
Eν , (b) spatially resolved upper NLCs iq+

n;ν (offset by site in-
dex n), and (c) total upper NLC iQ+

D;ν within D, in the modes ν
of a (i) PT -symmetric array with {vn} = {iη, iγ, u,−iγ,−iη},
{hn,n+1} = {h, 2h, 2h, h} where u = η = 0.06 and h = 0.1, and
a (ii) KT -symmetric array with {vn} = {0, u + iγ, 0, u − iγ, 0},
{hn,n+1} = {h, 2h, h, 2h} where u = 0.15 and h = 0.1, for vary-
ing loss/gain parameter γ. Vertical lines indicate exceptional val-
ues of γ where transitions from complex to real eigenvalues Eν oc-
cur, corresponding to transitions from complex to (i) zero q+

n,P and
(ii) imaginary q+

n,K in the respective modes. Note that q+
N,P = 0

identically in (b,i) since it ‘flows’ on the nonexisting links (0, 1) and
(N,N + 1). By convention, D ≡ {1, 2} in (ii); see text.

addressed here, we have

ΓνΣ
N
ν = ∂tΣ

N
ν = QN;ν = 0, (45)

which shows that the nonlocal charge ΣN
ν is zero in PT -

broken eigenmodes with Γν 6= 0.
The PT symmetry of Ĥ is not a necessary condition for

the occurrence of real Eν [57], which we now exploit to
show the induced invariance of translation NLCs q±n,K in a
KT -symmetric example array. Specifically, we implement
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a non-Hermitian version of the Su-Schrieffer-Heeger model
[58], which can be considered as a special case of the non-
Hermitian Aubry-André-Harper model proposed in Ref. [59],
in an array of odd sizeN where the hoppings areK-symmetric
with period L = 2 and the potential is simultaneously KT -
and PT -symmetric. The latter property enables the presence
of loss/gain-balanced eigenmodes with realEν [59]. Since the
array does not consist of an integer number of periods, we set
D ≡ {1, 2, . . . , N − L− 1}, in which Hm,n = Hm+L,n+L.

In Fig. 5 (ii) the q+
n,K are shown for N = 5 and a single

site pair with loss/gain γ supporting a phase of real Eν ; see
Fig. 5 (a,ii). Real onsite energies v are added to break the
±E◦-symmetry of the spectrum. As seen in Fig. 5 (b,ii), for
each eigenmode the γ-region with real Eν is distinguished by
a spatially constant and imaginary q+

n,K;ν , where −q−∗n,K− =

q+
n−L,K+ is assigned to the last three sites N \ D = {3, 4, 5};

recall Eq.(34). Outside this γ-region, the q±n,K;ν vary along the
array and have a real part, signifying the spontaneous break-
ing of loss/gain balance in the eigenstates. In analogy to the
PT -symmetric case above, though, a remnant of the symme-
try of the system can be expressed in the broken phase by the
imaginary sums

∑
ν Q
±
D;ν ∈ iR, as anticipated by the Q+

D;ν in
Fig. 5 (c,ii). The characteristic of imaginary NLCs in the un-
broken phase thus survives in the sum of total NLCs within D
over all modes.

In the above non-Hermitian setup examples, we chose ar-
rays with globalPT (orKT ) symmetry which enable the pos-
sibility of a completely real eigenspectrum, in order to reveal
the connection of the NLCs to the transition between phases
of unitary and nonunitary evolution when varying loss/gain
strengths. In particular, we saw that the NLCs vanish for all
eigenstates in thePT -unbroken phase, corresponding to glob-
ally symmetric eigenstate densities. As seen from Eq. (26),
however, the NLCs could also be used as indicators for locally
symmetric density of any given eigenstate. In a completely lo-
cally PT -symmetric array (i. e. decomposable into different,
non-overlapping PT -symmetric domains), the simultaneous
vanishing of all the attached domains’ NLCs may thus aid in
the engineering of selected real eigenvalues induced by bal-
anced gain and loss, even though the setup is globally PT -
asymmetric.

C. Period invariants of bound Floquet states

The invariance of period-averaged NLCs q̄±n;µ in Floquet
states, derived in Sec. IV D, applies for arbitrary boundary
conditions and symmetry (under P or K, potentially com-
bined with T ). Their continuous counterpart was very recently
shown to expose defects in locallyK-symmetric potentials un-
der periodic boundary conditions [60]. We here exploit the
discrete tight-binding form of Ĥ to drive the hoppings of a
locally P-symmetric array in time, corresponding to periodi-
cally modulated [61, 62] photonic waveguides; alternatively,
the onsite potential could be driven [63].

We consider a Hermitian array of N = 12 sites with LS
controlled by a scaling parameter s multiplying the real po-
tential un on sites n = 4, 5, 6, 10; see Fig. 6 (a). For s = 1
the setup has CLS, with two 6-site P-symmetric subdomains
D1 and D2, which is broken for s 6= 1. With any type of pe-
riodic driving applicable, we here choose an global in-phase
harmonic modulation of relative amplitude f = 1/2 on the
hoppings,

hn,n±1(t) = (1 + f sinωt)h◦n,n±1; n, n± 1 ∈ N, (46)
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FIG. 6. (a) Setup with N = 12 sites composed of two domains
D1, D2 which are locally P-symmetric for the value s = 1 of a
scaling parameter s multiplying the onsite potentials u3, u4, u5, u10

(colored green), with periodically modulated hoppings hn,n±1(t) =
(1 + 1

2
sinπt/8)hn,n±1(0). (b) Time evolution over one period τ of

the NLC in Floquet mode µ = 7 associated with the local inversions
PD1 , PD2 . (c) Period averaged NLC for varying scaling parameter
s, showing the domainwise constancy in the case s = 1 of local
symmetry.

with frequency ω = π/8. The Floquet modes |φµ(t)〉 of the
system are computed with the Floquet matrix method [64] in-
cluding a total of 6 sidebands. The upper NLCs q+

n;µ(t) in
the Floquet state with µ = 7 (chosen simply to yield dis-
tinctly varying NLCs) are shown in Fig. 6 (b) for the CLS
case s = 1. As is seen, at any instant t we have that
iq±n̄∓1;µ(t) = [iq±n;µ(t)]∗ in each P-symmetric subdomain
from Eq. (32), which clearly holds also for the present dy-
namical NLCs. What is not directly anticipated from the time
evolution is that their averages q̄±n;µ over a period τ are real
and spatially constant within D1 and D2, as was established in
Sec.IV D.

The profile of the period-averaged NLCs in relation to LS
is illustrated in Fig. 6 (c) by continuously varying s. For
s < 1 the system has no symmetry around α1 in D1, and the
|q̄+
n∈D1;µ| are symmetric on the links around α1. The subdo-

main D2, where only one site is modified by s, has a gapped
P symmetry, and the |q̄+

n∈D2;µ| are spatially constant in the
subdomain D2 \ {9, 10} (i. e., only |q̄+

9;µ| ≡ |q̄9,10;µ| on the
central link across α2 deviates from the rest). In both domains
we see that |q̄+

n;µ| becomes spatially constant in the limit of
CLS when s = 1. Alternatively to the bound array considered
here, an interesting perspective would be to study the behav-
ior of NLCs in driven scattering setups where, e. g. Floquet
bound states [65] may arise in the energy continuum.
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VI. NONLOCAL CURRENTS IN STATIONARY
SCATTERING

In the previous section the NLCs and their invariance in LS
domains were investigated in various types of bound setups
with discrete eigenspectra. We now apply the framework of
NLCs to stationary scattering, where the energy E (longitudi-
nal propagation constant for photonic waveguides) is a given
input parameter, to demonstrate their domainwise invariance
and relation to transmission in discrete structures with LSs.

In the following, we will focus on (local)P-symmetric scat-
terers, whose corresponding NLCs are to be related to perfect
transmission (T = 1) of composite setups. We first consider
a general scatterer localized in a domain D with transmission
and left (right) reflection amplitudes t and r (r′ ), respectively,
and ingoing plane wave amplitude c+< (c−>) on the left (right).
As detailed in App.F, the NLC under PD on the first links on
the left (l) and right (r) of the scatterer takes the form

ql−1,l = q∗r+1,r = 2h sin k× (47){
(1− r̊∗̊r′) c̊∗+̊c− − |t|2 c̊+̊c∗− − r̊∗t |̊c+|2 − t∗̊r′ |̊c−|2

}
,

where c̊+ ≡ ζ+αc+<, c̊− ≡ ζ−αc−> and r̊ ≡ ζ−2αr are the
ingoing and reflection amplitudes, respectively, for the same
scatterer shifted to the origin (α→ 0), with ζ = eik for quasi-
momentum k away from the scatterer.

A. Local P symmetry and perfect transmission

Let us now assume the scatterer to be P-symmetric within a
connected domain D and Hermitian with equidirectional hop-
pings, meaning that q+

D = ql−1,l ∈ iR is translation invariant
along D. We then also have that r̊ = r̊′ from the P symme-
try of the scatterer (around the origin) and 1 − |r|2 = |t|2,
t∗̊r′ = −̊r∗t from the unitarity of the S-matrix (see App.F), so
that the NLC expression reduces to

q+
D = q−∗D = 2h sin k×{
|t|2

(̊
c∗+̊c− − c̊+̊c

∗
−
)
− r̊∗t

(
|̊c+|2 − |̊c−|2

) }
, (48)

where we note that r̊∗t ∈ iR. This expression shows how
the q±D depend on the characteristics t, r and position α of the
scatterer (domain D) as well as the amplitudes incident on it.

At the center k = 0 and edges k = ±π of the leads’
Brillouin zone, the scattering NLCs vanish generically. Away
from those k-points, q±D = 0 and thereby symmetric density
ρn in D (see Eq. (26)) can be achieved by tuning the ingoing
amplitudes to satisfy

(
|̊c+|2 − |̊c−|2

)
/Im[̊c∗+̊c−] = ±2|t|/|r|

for r̊∗t ∈ iR±. For example, this is satisfied for c̊+ = 1 and
|̊c−| =

√
2 − 1 at all E for which arg c̊− = ± arcsin |r/t|.

A special situation occurs for S-matrix eigenstates, in which
c̊+ = ±̊c− and thus q±D = 0 for any t, r. For a globally P-
symmetric (about α = 0) Hermitian scatterer, those states
are simultaneously P̂ eigenstates with eigenvalues λP = ±1

and P̂ T̂ eigenstates with eigenvalues λPT = eiϑλ where
ϑλ = −2 arg(c) − arg(t ± r) (note that |t ± r| = 1 in this
case).

In the most common setting for a single scatterer, however,
there is only one incoming wave from the left (̊c− = 0) or
from the right (̊c+ = 0). In this case, from Eq. (48) q±D = 0
only if the scatterer is transparent at the given k, r = 0, and
vice versa (or if t = 0, which strictly only occurs for singular
potentials in unbiased 1D systems, in contrast to Fano trans-
mission zeros when multiple interference paths are available
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FIG. 7. Scattering off a locally P-symmetric Hermitian array com-
posed of three LS domains: DA and DB each containing a scat-
terer with Hamiltonian parameter w (top sketch), and an interven-
ing free propagation domain DC . Reflection magnitudes (a1) |rA|
of DA, (a2) |rB | of DB , and (a3) |r| of the composite array D =

{DA,DC ,DB}, as well as quantities (a4) ||r′A| − |r∗B ||1/2, (a5)
|(arg r′A − arg r∗B) mod 2π|/2π, and (a6) ||qA| − |qB ||1/2, which
vanish at unit transmission (PTR, r = 0), for varying w and k. An
sPTR (aPTR) occurs at w, k where r′A = r∗B = 0 ( 6= 0), in which
case |qA| = |qB | = 0 (6= 0), indicated by � ( �). (b1) Transmis-
sion |t|2 and NLCs qA,B,C (offset by 1 and scaled by overall max-
imum) in varying k for w ≈ 0.1687 and (b2) density |ψn|2 (offset
by 1, 2, 3) at k-values indicated by �,4, 4 in zoomed inset of (b1)
where qA = qB = qC = 0 (corresponding to the sPTR in (a)),
qA = 0 ≈ qC , qA = 0, respectively. |ψn|2 is PDX -symmetric when
qX = 0 (X = A,B,C). (c1) |t|2 and qA,B forw ≈ 0.1254 and (c2)
|ψn|2 at k indicated by � in inset where qA = qB 6= 0 correspond-
ing to the aPTR in (a); green dashed line shows arg[tζ2(α2−α1)]/π.
DA (DB) is here augmented symmetrically by 1 (2) site(s) into D′A
(D′B).

[67]). Thus, perfect transmission T = 1 is accompanied by a
PD-symmetric density ρn within D (PDT -symmetric ψn;E up
to a phase).

The assumption c̊−(+) = 0 for left (right) incidence is
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compatible with the connection to another, generally differ-
ent, locally symmetric scatterer on the right (left) of D which
is also transparent at the same k. By adjusting the Hamilto-
nian parameters, a CLS setups may be assembled from multi-
ple, simultaneously transparent scatterers in LS domains Dd
(d = 1, 2, . . . ), with the state density following the LS of
the setup. We refer to such a state as a ‘symmetric’ perfect
transmission resonance (sPTR); an example is illustrated in
Fig. 7. We here have two scatterers localized in domains DA
and DB , connected via a free (with h, u like in the leads) gap
DC , with their scattering properties shown in Fig.7 (a). As we
see in Fig. 7 (b), the vanishing of the individual q+

A , q
+
B , q

+
C

reveals the k at which the density ρn is locally symmet-
ric in DA,DB ,DC , respectively, and an sPTR occurs when
q+
A = q+

B = q+
C = 0.

In contrast to an sPTR, transparency (T = 1) may also oc-
cur in a state whose density does not follow any LS of the
setup, which we refer to as an ‘asymmetric’ PTR (aPTR).
To see the relation of the NLCs to the occurrence of an
aPTR, we consider a Hermitian setup of two different scat-
terers D1 and D2 with corresponding scattering matrices S1

and S2. The total S-matrix has elements r = r1 + pt′1r2t1,
r′ = r′2+pt2r

′
1t
′
2, and t = t′ = pt1t2, where p = (1−r2r′1) ac-

counts for all orders of multiple reflections between the scat-
terers. The condition |t| = 1 for a PTR leads to |r′1 − r2|2 =

−4|r′1||r2| sinϑ′1 sinϑ2, with ϑ
(′)
1,2 being the phases of r

(′)
1,2,

which in turn is equivalent to

r′1 = r∗2, (49)

as can be seen geometrically in the complex plane. Thus, in
the special case |t1| = |t2| = 1, the phases ϑ′1, ϑ2 are arbitrary,
while (ϑ′1 + ϑ2) mod 2π = 0 must hold for |t1| = |t2| 6= 1
[19]. If both scatterers are P-symmetric about their centers, it
additionally holds that r̊∗dtd ∈ iR (d = 1, 2), and it can then
be shown that

t = ±ζ2(α1−α2) (50)

at the PTR. That is, the phase of the transmission amplitude
depends (up to π) only on the distance between the centers of
any two arbitrary but locally P-symmetric scatterers.

Assuming the scatterers to be P-symmetric, each will also
have spatially constant NLC q±Dd ∈ iR (d = 1, 2) at a given
E. As shown in App.H, at a PTR it then holds that

q+
D1

= ±q+
D2
, (51)

the sign being determined by the details of a given setup. This
is demonstrated in the example setup of Fig. 7 (c), featuring
an aPTR where the nonzero NLCs q+

D1
≡ q+

A and q+
D2
≡ q+

B
cross. The PTR relation in Eq. (50) can also be derived using
Eq.(51); see App.H.

To summarize, if the setup of two LS scatterers is perfectly
transmitting, then it always holds that |q+

D1
| = |q+

D2
|, with

two possible cases with respect to the symmetry of ρn: (i)
If |q+

D1
| = |q+

D2
| = 0, then we have an sPTR with ρn being P-

symmetric in the LS domains. (ii) If |q+
D1
| = |q+

D2
| 6= 0, then

we have an aPTR and ρn is asymmetric with respect to the
LS domains. The NLCs thus connect the transport properties
of globally asymmetric systems to the spatially resolved pro-
file of the scattering state amplitude with respect to its possi-
ble LSs. In composite CLS setup of multiple scatterers, there
may be parts of locally symmetric and asymmetric ρn at a
PTR indicated by zero and nonzero equal NLC invariants, re-
spectively.
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FIG. 8. Scattering off a locally PT -symmetric non-Hermitian
array D = {DA,DB} with onsite elements {vn}X =
{0,−iγX , 0,+iγX , 0} (X = A,B) and common hoppings
{hn,n+1} = 0.1×{1.0, 1.5, 1.5, 1.0}. (a1) Quantity |T−1|−

√
RR′

of D and NLCs (a2) q+
A/i of DA and (a3) q+

B/i of DB for unit
incoming amplitude from the left, in varying k and γB for fixed
γA = 0.15. The colormap is normalized to 1 in (a1) and truncated
at ±1 in (a2,a3); it scales with the power of 1/4 to increase contrast.
(b) Density |ψn|2 (◦) and spatially resolved NLCs q+

n (�) for local
PDA,B transforms, q+′

n (O) and q̊+′
n (M) for global P transform, for

γB = γA ≡ γ (global PT symmetry) at k = π/3 indicated by
upper dotted line in (a1). (c) Same as (b) but for γB = −γA ≡ γ
(global P symmetry) at k = 0.6π indicated by lower dotted line in
(a1).

B. Invariants in locally PT -symmetric scattering

We close this section by addressing the NLCs of scatter-
ing states in non-Hermitian setups. Since the energy is here
a free input parameter which is chosen real, the translation
invariance of the NLCs in locally PT -symmetric domains is
manifest for any choice of loss/gain parameters. In the case of
a PT -symmetric scatterer, the S-matrix elements are subject
to the generalized unitarity relation [66]

|t|2 − t∗

t
r̊ r̊′ = 1 ⇒ |T− 1| =

√
RR′ (52)

for t 6= 0, with t∗r, t∗r′ ∈ iR. The general expression (47) for
the NLC then becomes

q+
D = q−∗D = 2h sin k×{
|t|2

(̊
c∗+̊c− − c̊+̊c

∗
−
)
− r̊∗t |̊c+|2 − r̊′t∗ |̊c−|2

}
, (53)

which further reduces to Eq. (48) if the PT -symmetric scat-
terer is also Hermitian. A PT -unbroken phase for a globally
PT -symmetric, two-terminal scattering setup may be identi-
fied as the parametric region of Ĥ with unimodular S-matrix
eigenvalues λ1,2

S at given energy [42]. Indeed, for S-matrix
eigenstates, where c

−(+)
<(>) = λ1,2

S c
+(−)
<(>), the NLC becomes

q+
D = q−∗D = 2h sin k̊c+∗< c̊−>

(
1− |λ1,2

S |
2
)
, (54)

yielding a P̂ T̂ eigenstate when |λ1,2
S | = 1 since then q±D = 0.

The latter condition, however, can be met in Eq. (53) also
for non-S-eigenstates in dependence of the incoming ampli-
tudes c̊+<, c̊

−
> for a given S(E). The crossing from zero to
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nonzero NLC thus provides an extended identification of a
PT ‘phase transition’ in scattering beyond S-matrix eigen-
states [28], identical to that of bound systems (as discussed
above in Sec.V B).

More importantly, the vanishing of NLCs can be employed
to identify configurations with locally PT -invariant states,
that is, where Eq. (26) is fulfilled in a PT -symmetric sub-
domain of the setup. As an example, in Fig. 8 we con-
sider a non-Hermitian setup of two attached domains DA,
DB with loss/gain parameter pairs ±γA, ±γB , respectively.
The setup is designed such that it is globally PT -symmetric
(P-symmetric) for γB = γA (γB = −γA). As we see in
Fig.8 (a1), there are values of γB 6= γA where Eq.(52) is ful-
filled at certain energies (see white contours), such that the
system behaves as being PT -symmetric in terms of its S-
matrix. Interestingly, it is possible to fulfill Eq. (52) at all
k with a locally PT -symmetric setup for appropriately cho-
sen loss/gain parameters, as seen for the present setup for
γB = γA/3 = 0.05 (lower horizontal white line in Fig.8 (a1)).
In Fig. 8 (a2) and (a3) we see that the NLCs q+

A and q+
B , cor-

responding to local PT -symmetry in DA and DB , vanish at
different contours in the (k, γB)-plane, revealing the occur-
rence of locally symmetric density embedded into the globally
PT -asymmetric system.

Leaving a more comprehensive investigation of NLCs in re-
lation to scattering properties of locally PT -symmetric setups
for future work, we focus now on their spatial constancy in
1D domains. This is illustrated in Fig.8 (b) and (c), where the
considered setup is, apart from locally PT -symmetric, also
globally PT - and P-symmetric, respectively. At the cho-
sen generic k-values, the density profile |ψn|2 is completely
asymmetric under any of those symmetry transformations at
the chosen (generic) k-values. For the local P transforms in
DA and DB , the domainwise constancy of the associated NLC
q+
n reveals the local PT symmetry of Ĥ encoded in the scat-

tering state. Note that this is achievable because E is set real
as an input parameter, in contrast to non-Hermitian bound 1D
systems where local PT symmetry typically does not sup-
port real eigenenergies. In Fig. 8 (b), the constant NLC q+′

n

(associated with global P transform) reflects the global PT
symmetry, while the dual NLC q̊+′

n is (varying but) symmet-
ric; see Eq. (32). In Fig.8 (c), we have the opposite situation:
q+′
n is symmetric, while the constant q̊+′

n reflects the global P
symmetry, even in the presence of loss and gain.

VII. CONCLUSIONS AND PERSPECTIVES

A discrete nonlocal current-density continuity formalism
was developed to relate localized spatial symmetries to
Schrödinger wave properties in Hermitian and non-Hermitian
lattice systems. Sources and sinks of the nonlocal currents
(NLCs) are identified in the breaking of the local symme-
tries (LSs), with the associated charge evolution governed by
the NLCs at symmetry domain boundaries. For stationary
states, the symmetry-adapted NLCs are translationally invari-
ant in one-dimensional finite domains with S(T )-symmetric
sub-Hamiltonians, where S = P (inversion) or K (transla-
tion) is potentially combined with T (time reversal). These
invariant NLCs reflect the local symmetries of generic single-
particle lattice Hamiltonians encoded into arbitrarily irregu-
lar field profiles, and enable the mapping between wave am-
plitudes of symmetry-related sites in finite domains. We il-
lustrated the NLC invariance in cases of complete, overlap-
ping, and gapped domainwise symmetry, as well as for non-

Hermitian (locally) PT - and KT -symmetric (scattering) sys-
tems with balanced gain and loss. In scattering setups, the
NLCs were further shown to classify perfect transmission res-
onances with respect to their spatially resolved density pro-
file, being symmetric (asymmetric) in adjacent locally sym-
metric lattice subdomains with equal and zero (nonzero) NLC
magnitude. Further, in periodically driven setups the NLC in-
variance was shown to be retained for quasi-stationary (Flo-
quet) states on period-average, thus revealing LSs also far
from equilibrium. To summarize, the developed theoretical
framework generalizes the concept of global symmetries with
globally induced (state-independent) properties to local sym-
metries with locally induced (state-dependent) properties of
lattice wave excitations.

We have here utilized photonic waveguide arrays as an ap-
plicational platform since they are well described by a discrete
Schrödinger equation with nearest neighbor couplings. The
formalism and general results apply equally to other lattice
systems modeled effectively by a discrete Schrödinger equa-
tion, like superlattice nanostructures or quantum dot arrays
[18]. For stationary states the applicability is further broad-
ened to generic wave mechanical systems described by a dis-
cretized Helmholtz equation, such as e. g. granular acoustic
media with domainwise homogeneities [68]. In the limit of
large site density with constant inter-site hopping, the same
formalism can be equally employed for spatially continuous
systems (with the lattice used as a numerical grid), treating
simulations of, e. g., photonic multilayer devices [19, 20] or
acoustic waveguides [21, 22].

The generic character of the proposed framework, based on
a continuity equation, Eq.(10), allows for a unified description
of LS in Hermitian and non-Hermitian setups, independently
of the boundary conditions imposed. Further, the present oper-
ator formulation of the NLCs, expressed in Eq.(13), enables a
straightforward extension beyond nearest neighbor couplings
or to higher dimensions, simply by including the additional
couplings into the hopping operators Ĥ± accordingly. In gen-
eral, the net NLC assigned to a site with (multidimensional)
index n will then consist of the sum of nonlocal link currents
iqSnm = ψ∗nhS(n,m)ψS(m) −ψS(n)h

∗
n,mψ

∗
m over connected

sitesm for a given symmetry operation S, defined in analogy
with the 1D NLCs in Eq.(11). A thorough account on symme-
try considerations and associated NLCs in planar discrete sys-
tems, where rotations and plane reflections add to the possible
S-transforms, is presented in Ref. [69]. There, also the con-
nectivity of sites under general local transformations plays a
decisive role in defining NLCs [70]. Multidimensional diver-
gence naturally prevents individual qSnm from being spatially
constant along a selected dimension, just as is the case for
the usual current. NLC invariance does apply if the sites m
above represent next-nearest or (selected) remote neighbors
along a single dimension, as is effectively the case, e. g., for
zigzag chains with embedded scatterers [71] or discrete heli-
cal structures [72], respectively. Extended locally symmetric
domains in such setups will then be distinguished by constant
NLCs in arbitrary stationary states. The domainwise invariant
stationary NLCs may further be generalized to discrete inter-
acting systems where the interaction itself is represented by a
locally ST -symmetric function on the lattice sites. A promis-
ing case would be the discrete version of self-induced PT -
symmetric potentials [37, 54] in lattice subdomains, with the
mean-field nonlinear term ρn = |ψn|2 replaced by the nonlo-
cal density σn = ψ∗nψn̄. Finally, an intriguing prospect would
be to investigate local dynamical symmetries, i. e. time rever-
sal or translation symmetries within finite temporal intervals,
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potentially combined with local spatial symmetries, and their
implications for nonequilibrium states. With the above per-
spectives, we believe that the developed connection between
discrete nonlocal continuity and local symmetries may con-
tribute to the understanding of wave structure and response in
discrete systems with localized regularities.
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Appendix A: Combination of spatial symmetry
with time reversal

We extend the defined local spatial transformations to their
combination with the operation of time-reversal T : t → −t,
represented here as usual by an antiunitary operator T̂ = T̂−1

performing complex conjugation [73],

T̂ : i→ −i; T̂ i T̂ = −i, (A1)

in the spatial representation. Time-reversal thus acts on a state
in the basis {|n〉} as

T̂ |ψ〉 (t) =
∑
n

ψ∗n(−t) |n〉 ≡ |ψT 〉 (A2)

and transforms the Hamiltonian as T̂ ĤT̂ = Ĥ∗ (defined by
〈m|Ĥ∗|n〉 = H∗mn). The latter becomes relevant for complex
onsite elements

vn ≡ un + i
γn
2

(un, γn ∈ R), (A3)

where positive (negative) γn models the gain (loss) rate of the
state density at site n (as clarified in the next section), while
complex hoppings hn,n′ = |hn,n′ |eiϕn,n′ with Peierls phase
ϕn,n′ generally arise from the presence of gauge fields (effec-
tively also in 1D systems [56]). If the Hamiltonian obeys (cf.
Eq.(4))

Hm̄n̄ = H∗mn ∀m,n ∈ D, (A4)

then we will call the system locally ST -symmetric, that is,
PT -symmetric or KT -symmetric within the finite spatial do-
main U = D ∪ D̄. Note here that we treat (local) non-
Hermiticity, expressed through the γn, solely as an effective
simple model to express gain or loss of density from or to the
surrounding medium, rather than a fundamental description of
the physical system.

Appendix B: Local discrete continuity equation

In equivalence to the Schrödinger equation (2) for a general
state |ψ〉, the temporal evolution of the local density ρn =
〈ψ|ρ̂n|ψ〉 = ψ∗nψn fulfills the discrete continuity equation

∂tρn = jn − i(vn − v∗n)ρn = jn + γnρn, (B1)

with ρ̂n ≡ |n〉 〈n| being the local density operator in the
Schrödinger picture, where jn = j+

n + j−n is the sum of the
magnitudes

j±n ≡ jn,n±1

=
1

i

(
ψ∗nhn,n±1ψn±1 − ψ∗n±1h

∗
n,n±1ψn

)
(B2)

of the currents j±n flowing inwards from sites n ± 1 to site
n. Under the assumption of Hermitian hoppings, h∗n,n±1 =
hn±1,n, the total current magnitude can be written as the ex-
pectation value jn = 〈ψ|ĵn|ψ〉 of a current operator

ĵn = ĵ+
n + ĵ−n =

1

i
[ρ̂n, Ĥ] (B3)

assigned to site n. Note that the discrete form of the cur-
rent divergence entering the continuity equation is generally
given by the sum of the projections jnm = jnm · enm of the
link currents jnm from point rm to point rn onto their direc-
tions enm, scaled by the distance |rn − rm| [36]. The local
(referring to site n) continuity equation (B1) shows that the
imaginary part 2γn of the onsite element vn acts like a source
(γn > 0) or sink (γn < 0) of density ρn at site n, in addition
to the inflow of current jn. The partial link current operators
producing the j±n can be written as [35] ĵ

±
n = ρ̂nv̂

± + v̂∓ρ̂n
in terms of the partial velocity operators v̂± = 1

i [r̂, Ĥ
±] with

r̂ =
∑
n rnρ̂n being the position operator, such that the oper-

ators producing the projections j±n are given by

ĵ±n =
1

i
(ρ̂nĤ

± − Ĥ∓ρ̂n). (B4)

Here, the Ĥ± are the ‘hopping operators’ with matrix ele-
ments 〈n|Ĥ±|m〉 = hn,mδn±1,m, that is, the upper/lower di-
agonal of the tridiagonal matrix H in the tight-binding case.

Appendix C: Bitemporal nonlocal current

Projecting σ̂ |ψ〉 onto the time-reversed state T |ψ〉 = |ψT 〉
instead of |ψ〉 in Eq.(8) yields a bitemporal nonlocal ‘density’

σTn ≡ 〈ψT |σ̂n|ψ〉 = ψn(−t)ψn̄(t). (C1)

Using the SE, the evolution of σTn can be shown to obey the
continuity equation

∂tσ
T
n = qTn − i(vn̄ − vn)σTn = qTn + ξnσ

T
n , (C2)

now with asymmetry function ξn ≡ (vn̄ − vn)/i and with
bitemporal net NLC qTn = qT+

n + qT−n flowing into site n,
where

iqT±n ≡ iqT±n,S ≡ iq
T
n,n±1;S = (C3)

ψn(−t)hS(n),S(n±1)ψS(n±1)(t)− ψn±1(−t)hn,n±1ψS(n)(t),

defined in similarity to the NLCs in Eq. (11). Under the as-
sumption of equidirectional hoppings, Hmn = Hnm, the qT±n,S
are given by

qT±n,S = 〈ψT |q̂±n,S |ψ〉 (S = P,K) (C4)

which resembles an expectation value as in Eq. (12), though
with projection onto |ψT 〉. The potential asymmetries ξn
again act like sources for the dual NLC, with ξn = βn for
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real vn. In contrast to Eq. (10), however, an ST -symmetric
potential now yields ξn = −γn, with the sources (sinks) for
ρn representing sinks (sources) for σTn . An S-symmetric po-
tential (ξn = 0), on the other hand, leads to vanishing qTn,S for
energy eigenstates within a symmetry domain D, even in the
presence of unbalanced loss and/or gain where qn,S may vary
spatially.

For an energy eigenstate, a local invariance analogous to
that of q±n,S can be derived also for the bitemporal NLCs qT±n,S
in a locally S-symmetric domain. The associated continuity
equation (C2) reduces to

qTn + ξnσ
T
n = 0 (C5)

for an energy eigenstate |φ〉, so that the Kirchoff law qT+
n,S +

qT−n,S = 0 holds in a domain D with S-symmetric potential,
that is, with ξn∈D = 0. If also the hoppings are S-symmetric
in D, then qT±n∓1,S = −ηn∓1,nq

T∓
n,S from Eq.(C3), yielding

qT±n,S = ηn,n∓1 q
T±
n∓1,S (S = P,K) (C6)

for n, n ± 1 ∈ D, in analogy to Eq. (17). Thus, for equidi-
rectional hoppings (ηn,n∓1 = 1) the qT±n,S are translation in-
variant within the S-symmetric domain D, while accumulat-
ing a Peierls-like phase along it for complex Hermitian hop-
pings. Note that the above applies also to complex eigenener-
gies E, since the ‘width’ Γ is absent in Eq.(C5), and thereby
to general non-Hermitian arrays with locally S-symmetric on-
site loss/gain elements.

Finally, with the substitution {σn, qn, η∗m,n} →
{σTn , qTn , ηm,n}, the considerations on the nonlocal charge
evolution in Eq.(16) can be equally applied to the evolution of
a bitemporal nonlocal charge ΣD,T

ψ =
∑
n∈D σ

T
n . This is then

constant in time for a globally P-symmetric (non-Hermitian)
array D = N with unit hopping ratios where, e. g., only lossy
elements γn < 0 are present.

Appendix D: Dual nonlocal current

We introduce the ‘dual’ NLC q̊±n as an equal-time alterna-
tive to the bitemporal NLC qT±n,S , defined by

iq̊±n ≡ iq̊±n,S ≡ iq̊n,n±1;S =

ψnhS(n),S(n±1)ψS(n±1) − ψn±1hn,n±1ψS(n), (D1)

where ψm ≡ ψm(t), in similarity to Eq. (11) but with
ψn, ψn±1hn,n±1 replacing their complex conjugates in q±n,S .
For equidirectional hoppings, they can be expressed via the
NLC operators as

q̊±n,S = 〈ψ∗|q̂n,S |ψ〉 (S = P,K) (D2)

by projecting onto the complex conjugated state |ψ∗〉 ≡∑
n ψ
∗
n |n〉 (that is, without the time reversal t → −t applied

for |ψT 〉). In contrast to the q±n,S and qT±n,S , the q̊±n,S are time-
dependent even for a stationary state (with Γ = 0) through the
harmonic factor e−2iEt, and do not obey a nonlocal continu-
ity equation like Eqs.(10) and (C2). Their conditional spatial
constancy for an energy eigenstate |φ〉 in an S-symmetric do-
main D can, nevertheless, be derived directly noticing that

i(q̊+
n,S + q̊−n,S)− (vn − vn̄)φnφn̄ =

(angn̄ − gnan̄) e−2iEt = 0 (D3)

by using the close-coupling equations

0 = hn,n−1an−1 + (vn − E)an + hn,n+1an+1

≡ gn, n ∈ N. (D4)

expressed at transform-related points n and n̄ = S(n). In
Eq. (D4), pertaining from the time-independent Schrödinger
equation Ĥ |φ〉 = E |φ〉, the set of sites N covers the system
of interest: For an isolated system closed boundary conditions
a0 = aN+1 = 0 are imposed by setting h0,1 = hN,N+1 = 0,
while a scattering setup is realized by appending homoge-
neous semi-infinite chains with vn = v and hn,n+1 = h on
the left (n < 1) and right (n > N ) of the given array.

The LS condition (4) together with Eq. (D3) and Eq. (D1)
then lead to q̊±n = ηn,n∓1 q̊

±
n∓1, just like in Eq. (C6). Indeed,

since q̊±n = qT±n e−2iEt for an energy eigenstate, it will have
the same spatial characteristics as the stationary qT±n .

Appendix E: Derivation of general mapping relations and
current connection

The NLCs q±n,S and their duals q̊±n,S for a general state |ψ〉
can be expressed together via a matrix product acting on a
column vector of amplitudes in D̄, as

i

[
q±n,S
q̊±n,S

]
=

[
ψ∗n ψ∗n±1h

∗
n,n±1

ψn ψn±1hn,n±1

]
(E1)

×
[
hS(n),S(n±1) 0

0 −1

] [
ψS(n±1)

ψS(n)

]
for arbitrary Hamiltonian, with S = P,K. For nonzero lo-
cal currents j±n , the first matrix above (with determinant ij±n )
is invertible and we can solve for the symmetry-transformed
amplitudes to obtain[

ψS(n±1)

ψS(n)

]
=

1

j±n

[
h−1
S(n),S(n±1) 0

0 1

]
(E2)

×
[
ψn±1hn,n±1 −ψ∗n±1h

∗
n,n±1

ψn −ψ∗n

] [
q±n,S
q̊±n,S

]
.

The lower equation above yields the mapping relation in
Eq. (35) from ψn, ψ

∗
n to ψS(n), where the upper (+) or lower

(−) NLCs can be equally used. The upper equation yields
the mapping relation between the sites adjacent to n,S(n)
using the same (correspondingly upper or lower) NLCs, pro-
vided that the involved hoppings are real and S-symmetric,
hS(n),S(n±1) = hn,n±1 = h∗n,n±1. Multiplying Eq.(E2) from
the left by the row vector

i[−hS(n),S(n±1)ψ
∗
S(n), h

∗
S(n),S(n±1)ψ

∗
S(n±1)]

we arrive the current identity in Eq.(37). Note that for locally
S-symmetric and real equidirectional hoppings hn,n±1 =
h∗n,n±1 = hS(n),S(n±1) (n ∈ D), also the neighboring am-
plitudes at n ± 1 and S(n ± 1) are related via the same cur-
rents (now with corresponding sign in ±); see Eq. (E2). In
other words we have j±n ψS(n) = [q±n,S ,−q̊

±
n,S ][ψn, ψ

∗
n]> =

[q±n∓1,S ,−q̊
±
n∓1,S ][ψn, ψ

∗
n]>, so that the S-transformed am-

plitudes at n,S(n) are related by both ± NLCs ‘flowing’ on
either of the attached link pairs (n, n± 1), (S(n),S(n± 1));
see nonlocal ‘flow’ in Fig.2.

Using the bitemporal NLC qT±n,S instead of q̊±n,S would also
lead to a mapping relation analogous to Eq.(35), though map-
ping ψn(−t), ψ∗n(t) to ψS(n)(t) and involving accordingly a
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bitemporal local current

ijT±n ≡ ψ∗n(t)hn,n±1ψn±1(−t)− ψ∗n±1(t)h∗n,n±1ψn(−t).
(E3)

In the case of a stationary state |φ〉 (with realE), the stationary
mapping relation of Eq.(36) is identically recovered, since the
temporal factors e−iEt are factored out.

The global version of the parity or Bloch theorem, φP(n) =

±φn or φK(n) = eikLφn, from the mapping relation (36)
is recovered directly by inserting Eqs. (29),(30) or Eq. (33)
with D = N for a parity or Bloch eigenstate, respectively
(or Eqs. (26),(27) for a PT eigenstate). Note that, to avoid
j±n = 0 for P eigenstates, a non-Hermitian P-symmetric sys-
tem can be considered, subsequently taking the limit of van-
ishing loss/gain to reproduce the Hermitian case.

We finally derive the general form of the summation map-
ping relation leading to Eq. (38) as a special case. Assuming
PT -symmetric hoppings hS(n),S(n±1) = h∗n,n±1 for n ∈ D,
we notice that the NLCs q±n for a state |ψ〉 can be written
(times i) as

iq±n = h∗n,n±1

(
ψ∗n∆

±ψn̄ − ψn̄∆±ψ∗n
)

(E4)

= h∗n,n±1ψ
∗
nψ
∗
n+1∆

±
(
ψn̄
ψ∗n

)
, (E5)

with the forward/backward discrete difference operator ∆±

defined here by

∆±ψf(n) = ψf(n±1) − ψn (E6)

for any mapping f(n) (set to f(n) = n or f(n) = n̄ = S(n)
above). Summing the discrete quotient difference [74] in
Eq. (E5) from site n to n0 ∓ 1 for a given site n0 and solv-
ing for the mapped amplitude ψn̄ we obtain

ψn̄ = ψ∗n

(
ψn̄0

ψ∗n0

− i
n0∓1∑
m=n

q±m
ψ∗mh

∗
m,m±1ψ

∗
m±1

)
, (E7)

applicable for nonzero ψn0
, ψm, ψm±1.

The summation mapping presented here holds also for zero
jn, implying real hn,n+1 for real an in a stationary state |φ〉,
and can thus be seen as a complement to the current mapping
in Eq. (35). For real an within a locally PT -symmetric do-
main D with odd number of sites D, choosing the fixed point
to be the symmetry center n0 = α (so that an̄0

= an0
) simpli-

fies the above expression to Eq.(38).

Appendix F: Nonlocal currents from scattering amplitudes

To simulate scattering of an incident monochromatic wave
on a localized potential in the discrete system, we attach semi-
infinite chains with real constant onsite elements vn = v and
hoppings h±n = h on the left (n 6 0) and right (n > N +
1) of the N -site scatterer. In the homogeneous chain leads,
stationary solutions of the SE (2) are linear combinations of
plain wave states |±〉 e−iEt where 〈n|±〉 = e±ikn ≡ ζ±n

with quasimomentum k for energies obeying the dispersion
relation

E = v + 2h cos k. (F1)

For ‘biased’ setups with different lead Hamiltonians (vn<1 6=
vn>N and/or h±n<1 6= h±n>N ) the plain wave states are flux

normalized by the respective factor [h sin k]1/2 with k given
by the lead dispersion; we here consider unbiased setups with
equal v, h in the two leads for simplicity. The spatial ampli-
tudes an of a scattering state |ψE〉 are expanded in the plain
waves of the leads as (ζ = eik)

an =

{
c+< ζ

+n + c−< ζ
−n, n < 1

c+> ζ
+n + c−> ζ

−n, n > N
(F2)

on the left and right of the scatterer, respectively. The compu-
tation of the amplitudes an along the scattering region as well
as the output amplitudes c−<, c

+
< for a given input is presented

in compact form in App.G.
An incoming plain wave with unit amplitude from the left,

setting c+< = 1, c−> = 0 (from the right, setting c+< = 0, c−> =
1), is reflected with amplitude c−< = r (c+> = r′) and trans-
mitted with amplitude c+> = t (c−< = t′). These scattering
amplitudes define the scattering matrix S which maps general
input amplitudes to their output in the |±〉 basis,[

c−<

c+>

]
= S

[
c+<

c−>

]
, S =

[
r t′

t r′

]
. (F3)

The reflection and transmission coefficients are given by R =
|r|2 and T = |t|2, respectively, with R + T = 1 dictated by
current conservation in the absence of (imbalanced) loss and
gain.

For a (local) P transform, the NLC on the first links on the
left and right of a scatterer localized in a domain D can gener-
ally be written in terms of the in- and outgoing amplitudes in
the |±〉 basis as

ql−1,l = q∗r+1,r = 2h sin k
(
c̊+∗< c̊−> − c̊−∗< c̊+>

)
= ih(ζ∗ − ζ)

[
c+<

c−<

]†
A†Λ A

[
c+>

c−>

]
, (F4)

where Λ =
[

0 1
−1 0

]
and c̊±<(>) = ζ±αc±<(>) correspond to a

shift of the scatterer by−α to the origin via the matrix A(α) =
d[ζ+α, ζ−α], with the center α of D taken to coincide with the
center of inversion (we suppress the subscript P in q±n;P from
here on). Note that, since the scattering matrix S connects
|±〉-amplitudes, the above expression for the NLC remains
essentially the same for a continuous system: The discreteness
of the system enters merely through the factor h(ζ − ζ∗) =
2ih sin k, which is replaced by ik in the continuum limit (with
real h) where the NLC becomes a two-point quantity q(x, x̄).

Substituting the outgoing amplitudes c−<, c
+
> from Eq. (F3),

the NLC above takes the form of Eq. (47) in the main text,
where it is used that t = t′ in general [66, 75] for nonsingular
Hamiltonians.

Appendix G: Computation of scattering state for arbitrary
input and scatterer type

Augmenting the scatterer domain N by two lead sites on
each side (n = −1, 0 and n = N + 1, N + 2 in the present
indexing), we can solve the close-coupling equations (D4) for
the outgoing plane wave amplitudes c−<, c

+
> as well as the site

amplitudes

a ≡ [a1, a2, . . . , aN ]> (G1)
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along the scatterer by sparse matrix multiplication and inver-
sion of size N + 2. Specifically, using the asymptotic ansatz
(F2) for the two sites on either side of N, we rearrange the
Schrödinger system ofN+2 next-neighbor equations to solve
for c−<, c

+
> and a in the form of the column vector c−<
a
c+>

 = − [WZ ]
−1

 (h∗ζ∗ + ṽ)ζ+l c+<
ζ<>

(h∗ζ∗ + ṽ)ζ−r c−>

 . (G2)

Here, l (r) is the index of the lead site attached to the leftmost
(rightmost) scatterer site, ṽ = v − E, and

ζ<> =

 h∗ζ+lc+<
0N−2

h∗ζ−rc−>

 , Z =


ζ−l+1 0>N 0
ζ−l 0>N 0
0N IN 0N
0 0>N ζr

0 0>N ζr+1

 , (G3)

with 0N being a 1×N row vector of zeros and IN the N ×N
unit matrix. The (N + 2) × (N + 4) matrix W is the (N +
2)× (N + 2) block of H − EI corresponding to the domain
{l,N, r}, augmented by the column [h 0 · · · 0]> on the left and
[0 · · · 0 h]> on the right.

With the scatterer domain defined as N = {1, 2, ..., N} we
here have l = 0 and r = N + 1. In the case N = 1 of a single
site scatterer, ζ<> reduces to a single element

ζ<> = h∗(ζ+lc+< + ζ−rc−>). (G4)

Note also that for biased setups, the ṽ, h and k entering the top
(bottom) row elements in Eq.(G2) are accordingly replaced by
those of the left (right) lead; in the present work we consider
unbiased setups.

The above method is essentially equivalent to propagating
the input signal via the resolvent (lattice Green function) of the
effective lead-coupled Hamiltonian of the scattering region.
Here, however, we explicitly solve outgoing |±〉-amplitudes
and combine them compactly into a column vector with the
spatially resolved field in the scatterer domain N. This for-
mulation of the scattering problem has an advantage over a
standard site-by-site transfer matrix method in that the scat-
terer can be of arbitrary type: Keeping a two-terminal geome-
try, the scatterer may contain, e. g., side-coupled sites or a 2D
cluster of interconnected sites. No explicit single-node trans-
fer matrices propagating the wave along the scatterer need to
be specified, rather the complete Hamiltonian under appropri-
ate indexing is utilized directly.

Appendix H: Derivation of Eqs.(50) and (51)

Assuming the two scatterers in D1 and D2 to be P-
symmetric, each will have spatially constant NLC q±Dd ∈ iR
(d = 1, 2) at a givenE. Using the general expression (F4), the
NLCs in D1 can be written as

q+
D1

= −q−D1
= ih(ζ∗ − ζ)×[

c+

rc+

]†
A†Λ A C

[
c+

c−

]
, C = p

[
t1 r′1t

′
2

r2t1 t′2

]
, (H1)

in terms of the global in- and outgoing |±〉-amplitudes c+ =
c+<, c− = c−>, where the ‘connection’ matrix C was used to
eliminate the amplitudes between the scatterers (note that the
D1 and D2 may be directly attached in the above formulation).
Considering now the case of a PTR (r = 0, r′1 = r∗2) under left
incidence only (c−> = 0), the upper NLC becomes

q+
D1

= ±2ih sin k
|r1|
|t1|
|c+|2. (H2)

On the other hand, its difference from q+
D2

is generally given
by

q+
D1
− q+

D2
= ih(ζ∗ − ζ)× (H3)

pt1

{(
1− t∗ζ2(α1−α2)

)
ζ−2α1 r2 − ζ2α1 r∗

}
|c+|2

for left incidence. In the case of a PTR, applying conditions
(49) and (50) necessarily leads to Eq. (51) for Eq. (H3) to be
consistent with Eq.(H1), recalling that r̊∗dtd ∈ iR±.

The PTR condition in Eq. (50) for two scatterers can, fi-
nally, be derived using the domain NLCs. Indeed, the relation
between NLCs and transparency of a two-scatterer setup can
be verified for a setup with a gap of two ‘free’ sites c − 1, c
(vc−1 = vc = v, hc−1,c = h) between D1 and D2, for which
an explicit calculation yields

q+
D1

= t ζ2(α2−α1)q+
D2

(H4)

for |t| = 1. Since the q+
D1
≡ q+

l−1;PD1
, q+

D2
≡ q+

r;PD2
are con-

stant and imaginary, we have that t ζ2(α2−α1) = ±1, which is
Eq.(50).
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