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Abstract

In this paper we consider a distributed coordination
game played by a large number of agents with finite
information sets, which characterizes emergence of a
single dominant attribute out of a large number of
competitors. Formally, N agents play a coordination
game repeatedly which has exactly N Nash equilib-
ria and all of the equlibria are equally preferred by
the agents. The problem is to select one equilibrium
out of N possible equilibria in the least number of
attempts. We propose a number of heuristic rules
based on reinforcement learning to solve the coordi-
nation problem. We see that the agents self-organize
into clusters with varying intensities depending on
the heuristic rule applied although all clusters but
one are transitory in most cases. Finally, we char-
acterize a trade-off in terms of the time requirement
to achieve a degree of stability in strategies and the
efficiency of such a solution.

Keywords : Majority games, adaptation, rein-
forcement learning, distributed coordination, self or-
ganization.
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1 Introduction

Understanding collective behavior of large-scale
multi-agent systems is an important question in the
econophysics and the sociophysics literature [1,2]. Of-
ten in social and economic worlds, we find emergence
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and evolution of global characteristics that cannot be
explained in terms of fundamental properties [3]. We
find examples of particular social norms or technolo-
gies that become more popular than their competi-
tors, which are not necessarily worse in terms of at-
tributes. Similarly, norms and opinions emerge as an
equilibrium through reinforcement among the social
and economic agents [4]. Leaders emerge in the politi-
cal context through a complicated process of competi-
tion and interaction among millions of individuals [5].
In this paper, we present a simple multi-agent game
to study the emergence of one dominant attribute out
of many potential competitors through complex and
adaptive interactive processes ( [1];see also Ref. [6]).

We focus on two properties of large scale interac-
tion. One, agents can coordinate to specific choices
from a number of potentially identical choices which
may also be interpreted as emergence of coopera-
tion [7] and two, such coordination may take time
to arrive at but once arrived, can be quite stable.
Therefore, we address the dynamic (and potentially
non-equilibrium) process through which coordination
takes place as well as the stability of the eventual
equilibrium [5]. We consider a prototype model to
study this kind of situations. In particular, we con-
sider a simple coordination game with N agents and
N choices. Individual agents aim to converge to a
single universally chosen outcome; i.e., the game can
be thought of as a majority game.

In the language of game theory, this relates to the
idea of equilibrium selection. In our game, there
are N possible pure strategy Nash equilibria, each of
which is equally attractive to the agents. The ques-
tion is how, in the absence of communication, do the
agents converge to only one equilibrium? Naturally,
we do not allow a central planner to dictate the solu-
tion as that would make the problem trivial as well
as unrealistic.

In our model, agents play the game repeatedly and
they always want to be in the majority. We first
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present several strategies based on näıve learning that
allow the agents to solve this coordination problem
in a distributed manner [8]. We next assume that
the agents want to minimize their cost of experi-
mentation, i.e., to come up with some fixed strat-
egy as soon as possible even if it results in not be-
ing in the absolute majority. This leads to a trade
off between the degree of stability (time to attain
an approximate fixed rule of thumb) and the effi-
ciency of the solution i.e., degree of coordination. We
propose multiple heuristic strategies for coordination
that solves the problem to different degrees. We pro-
pose a Polya scheme following the famous Polya’s urn
model, which allows us to interpolate between multi-
ple types of reinforcment learning processes [9].

This paper is intimately related to the literature
of minority game [10–12] and the generalization of
the minority game that goes by the name of Kolkata
Paise Restaurant (KPR) problem [13,14]. In the mi-
nority game, there are N agents and 2 options to
choose from. The agents’ objective is to be in the
minority. KPR problem extended this to a minority
game with N agents and N options labeled restau-
rants. In spirit of Ref. [15], multiple attempts were
made to propose strategies that uses finite informa-
tion sets with bounded rationality. Interested readers
can refer to Ref. [16] for a comprehensive review. The
model we propose is the exact opposite of the multi-
choice minority game. Both are examples of large
scale distributed coordination problems that study
competing agents employing adaptive strategies with
limited learning. [17].

In this paper, we show that agents converge to spe-
cific choices due to reinforcement learning. In par-
ticular, depending on the degree of reinforcement,
agents may be get stuck to different choices creating
clusters of different sizes. Clustering behavior has
been studied in the context of minority games [18].
Here, such behavior also implies that due to reinforce-
ment, non-equilbrium configurations may also survive
and hence, it is not necessarily a ‘winner-take-all’ sce-
nario. Finally, we show that if the agents value not
only coordination but also the time requirment to
achieve absolute coordination, then there would be
a trade-off in terms of efficiency and stability of the
final solution.

Figure 1: Payoff matrix of the coordination game
with 2 players. Both A,A and B,B are equilibria.

2 N-agent coordination game

We consider N agents and M options. Time is dis-
crete and at every point of time, each agent makes
a choice about which among the M options to use.
To fix the idea, one can imagine each option to rep-
resent one restaurant which an agent will visit in a
time slice. Therefore, each of the N agents’ strategy
is to choose a restaurant to visit in each time slice.
Any given restaurant can accommodate a maximum
of N agents in any particular time slice. The agents’
objective is to stay in majority, i.e., the agents would
like to move to a restaurant which has higher num-
ber of agents. In principle, N may not be equal to
M . To impose symmetry on the problem, we assume
N = M , i.e., the number of agents is equal to the
number of restaurants.

We also emphasize here that the game is neces-
sarily non-cooperative and no communication is al-
lowed among the agents. The information set for all
agents is constrained to only their history and par-
tial knowledge about past evolution of the restaurant
occupancies. Naturally, allowing full set of history
across all restaurants to be available to the agents
would immediately solve the problem as the agents
can employ a strategy that in time slice 1 they choose
randomly and in the next time slice, they move to the
restaurant that attracted most number of agents in
the first time slice. To have a non-trivial solution,
we allow only partial set of history to be available
to the agents. We elaborate on the specifics of the
information sets for each type of strategies below.

Fig. 1 shows the payoff matrix for a general con-
vergence game for two players. Both players have
strategies A and B i.e., they may choose to visit ei-
ther restaurant A or restaurant B. If both of them
decide to visit the same restaurant (either A or B),
then the outcome for both would be better than if the
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chose different restaurants. A couple of points may
be noted. This game is a simplified version of the fa-
mous Battle of Sexes game (see for example, [19] for
a textbook treatment). The Battle of Sexes game al-
lows two players, in which agents aim to converge to
a single restaurant although they differ in their pref-
erences over the restaurants. In this paper we assume
a multi-agent multi-choice scenario with 2 ≤ N <∞
agents, but assume that all agents have identical pref-
erence over the restaurants.

The agents decide on their strategies based on at-
tractiveness of a restaurant. We define attractiveness
(A) of a restaurant as the number of agents that have
chosen that restaurant. Thus attractiveness depends
on the information set that the agent possess. Nat-
urally, at any given time slice, it is not possible to
know how many other agents are choosing a given
option.

For the sake of completeness, we define Nash equi-
libria for the coordination game. A Nash equilibrium
is defined as a strategy collection such that given ev-
ery other agent’s strategy each agent is weakly better
off by not switching to a different strategy. For our
purpose this description suffices. For a textbook de-
scription, see [19]. From Fig. 1 it can be verified that
there are two pure-strategy Nash equilibria, viz. both
go to either restaurant A or both go to B. In a gen-
eral N -agent game, there would be N pure strategy
Nash equilbria.

It may be noted that Nash equilibrium is an equi-
librium description and a static concept. It does not
explain how one equilibrium would be chosen from
many candidate equilibria in reality. So the essential
question is how do agents coordinate to converge on
one equilibrium out of N possible choices, in absence
of any information about what the other agents are
thinking?

We specify a set of strategies below that solves this
problem using finite sets of information and in certain
cases, with no information about the other agents.

3 Heuristic Updating Strategies

In this section, we present a set of updating strategies
that the agents may employ in the coordination game.
These can be thought of as rule-of-thumb strategies.
In particular, they do not exhaust all possible strate-
gies, but provides a comprehensive set that is useful
for solving the game.

In the following, we define a strategy of an agent

Figure 2: Simulation results for the ‘No learning’
strategy. Number of time slices required for con-
vergence, averaged over 10 parallel simulations.T (N)
denotes the time of convergence with N number of
agents. The vertical bars shows standard deviation
of the of simulation results. In the inset, we plot
T (N)/N as a function of the system size N , which
stabilizes around 8.5. Thus time required for conver-
gence scales linearly with N .

as a vector of probabilities that she assigns to the
restaurants i.e. each of the elements of the vec-
tor would represent the probability with which she
chooses one restaurant. Formally, we denote the i-th
agent’s strategy at time slice t as {pijt} for j ∈ N .
Learning is introduced as updating the probability
vector based on success of failure in the past.

3.1 No learning

We begin with a No Learning strategy. This entails
zero probability updating and represents a baseline
case.

3.1.1 Zero updating

This strategy has two parts. Consider any generic
time slice t. First, the i-th agent (i ∈ N) assigns the
following probability to the restaurants,

pijt =
1

N
. (1)

Naturally, this would lead to a randomly distributed
allocation of agents across restaurants. In particu-
lar, [?] shows that the occupancy fraction i.e. the
number of restaurants occupied as a fraction of the
total number N , would be 63.5%. So the first part is
far from sufficient to ensure coordination.

3



Figure 3: Simulation results for the ‘No learning’
strategy. This strategy leads to convergence linearly
with time. On y-axis we plot the number of people in
the restaurant with largest (red), 2nd largest (black)
and 3rd largest (blue) no. of agents. On the x-axis
we plot time.

The second part of the strategy allows the agent
at time slice t, to make a comparison between the
choice made at time slice t and the restaurant she
is at time slice t. Because attractiveness depends on
the number of agents in a restaurant, we denote the
j-th restaurant’s attractiveness at time slice t by Ajt.
Therefore, an agent’s strategy who is at restaurant k
is to go to restaurant j if

Ajt ≥ Akt, (2)

else, the agent stays at k.

Information required: The information set of the
i-th agent who is at restaurant K at the t-th time
slice comprises Akt and Ajt where j is the outcome of
random selection scheme (Eqn. 1) for the i-th agent.
Note that it entails gathering information about the
j-th restaurant that the i-th agent has not visited at
time slice t, implying that we are allowing for local
information. In principle, one can imagine that the
agents may have to pay a cost to gather that infor-
mation. This is a point we will later take on in fuller
details.

Results: We present simulation results in Fig. 2
and Fig. 3. Fig. 2 shows the time required for abso-
lute convergence T (N) i.e. the minimum number of
time slices required for all agents to converge at one
restaurant, as a function of the number of agents N .
It shows a linear trend with a coefficient about 8 on

an average. In the inset, we show the ratio T (N)/N
as a function of N which fluctuates around 8 after an
initial steep rise. In the main diagram, we also pro-
vide an estimation of the standard deviation across
O(10) number of simulations.

Fig. 3 shows the dominance of one restaurant
over others (we show the second and the third most
populated ones) over time in one simulation with
N = 1000. The second and the third most crowded
restaurant initially starts attracting more agents be-
fore decaying completely in terms of the number of
agents as the dominant one becomes absolutely dom-
inant and attracts all agents.

These results show that symmetry-breaking occurs
due to stochastic choices. All restaurants start off
by being equally popular. But at the end, only one
of them emerges as the most popular choice and all
other restaurants have no agents.

3.2 Learning Strategies

In this section, we introduce updating rules based on
success and failures of the past choices.

3.3 Ex-ante knowledge

This is a direct extension of the previous strategy. At
each time slice, the i−th agent (i ∈ N) makes a choice
of restaurants using a probability vector {pijt} ∀ j ∈
N . Then she compares the attractivenesses of the
chosen restaurant and the restaurant she is currently
in, and moves to the one with higher attractiveness
in the next time slice. Finally, the i-th agent updates
her probability vector based on the attractiveness.
This last step of probability updating differentiates
the strategy from the No Learning strategy.

We call this strategy ex-ante as the agents can de-
cide whether or not to move to a chosen restaurant
by gathering information about attractiveness of the
current restaurant and the newly chosen one. Later
in Sec. 3.5 we study a case with ex-post updating
that relaxes this assumption.

We extend the strategy under consideration in mul-
tiple dimensions. In the first case, agents reward for
higher attractiveness and punishment for lower at-
tractiveness. Formally, higher attractiveness implies
that the agent would assign higher weight in the prob-
ability vector and would reduce weight for restaurants
with lower attractiveness. This strategy we label as
symmetric in updating.

In the second case, the agents only reward higher

4



attractiveness. We label this strategy as asymmetric
updating. Further, we consider the cases where the
agents are allowed to choose more than one restaurant
to pick the best option. Formally, the information set
increases to k choices per agent, where k = 1, 2, 3, . . .
etc. Naturally, setting k = N makes the problem
trivial. So we concentrate on cases with sufficiently
small values of k.

Below we describe the strategies in details.

3.3.1 Symmetric updating

Consider agent i where i ∈ N , at any generic time
slice t. Suppose she is at restaurant r and given her
probability vector {pijt}, she probabilistically picks
restaurant l. If Alt < Art, she stays at restaurant r.
Else, she moves to restaurant l.

Simultaneously, the agent updates probability of
restaurants l and r such that the one with higher at-
tractiveness will gain in probability by a fraction (f1)
while the other will decrease by fraction (f2). Natu-
rally, the resulting sum is normalized to 1. Formally,
if Alt < Art,

pij(t+ 1
2
) =

{
pijt + f1(1− pijt) for j = r,

pijt − f2(pijt) for j = l.

If Alt = Art,

pij(t+ 1
2
) = pijt for j ∈ N ,

and if Alt > Art,

pij(t+ 1
2
) =

{
pijt + f1(1− pijt) for j = l,

pijt − f2(pijt) for j = r.

Finally, probabilities are normalized:

pij(t+1) = pij(t+ 1
2
)/

∑
i

pij(t+ 1
2
).

Information required: The information set is
identical to the No Learning strategy for k = 1. For
higher values of k, we allow the agents to have more
information about the occupancy of the restaurants
in the previous time slice to make a comparison.

Results: Fig. 4 shows the simulation results for
this strategy wih N = 1000. On the x-axis, we plot
the restaurants and on the y-axis, we plot the number
of agents that goes to the restaurants ni for all restau-
rants i.e. for all i ∈ N . We show two snapshots. One

Figure 4: Simulation results for ‘ex-ante updating’
strategy with symmetric reinforcements (success is
rewarded (f1 = 1) and failure is punished (f2 = 0.1)).
We present two snapshots (left column at t = 5000
and right column at t = 10000) of possible evolutions
of the system with N = 1000 agents. The rows show
the results for different values of the information sets,
k = 1, k = 2 and k = 3. As is evident, with increasing
size of the information set, convergence occurs faster.

at time slice t = 5000 and the other at t = 10000.
The three rows show the distribution of agents under
three different information sets, k = 1, 2, 3.

The first thing to notice is that the dynamics be-
comes considerably slow. Even after 10000 time slices
(for N = 1000), attaining coordination is very dif-
ficult as the panels on the right in Fig. 4 show
very clearly. However, we note that convergence
is guaranteed. As an explanation, consider a case
with distribution of agents across all restaurants as
(501,499,0,....,0). Given the current strategy, only the
first restaurant can attract agents and the second one
can only lose agents however slow the process might
be.

The next important feature is that by increasing
the information set even by limited amount (going
from k = 1 to 2 and 3) drastically improves degree
of coordination although the dynamics becomes slow
after a certain point. For example, in the bottom
row, we see that the distribution changes very slowly
going from t = 5000 to t = 10000.

Therefore, we see that for a long time there are
clusters of agents in different restaurants before all
collapse into one giant cluster i.e. absolute conver-
gence takes place. Such clustering behavior is transi-
tory.
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3.3.2 Asymmetric updating

Consider agent i at time t in restaurant r, probabilis-
tically picking another restaurant l. If Alt < Art, she
stays at restaurant r. Else, she moves to restaurant
l. The asymmetric updating scheme differs from the
symmetric scheme in the way she updates the prob-
ability vector {pijt}.

If there is a difference between attractiveness of the
current restaurant and the probabilistically picked
one, the agent assigns a higher weight to the more
attractive option and reduce weight for every other
restaurants. Formally, if Alt < Art

pij(t+ 1
2
) =

{
pijt + f(1− pijt) if j = r

(1− f)pijt otherwise.

If Alt = Art,

pij(t+ 1
2
) = pijt for j ∈ N,

and if Alt > Art

pij(t+ 1
2
) =

{
pijt + f(1− pijt) if j = l

(1− f)pijt otherwise.

Finally, probabilities are normalized:

pij(t+1) = pij(t+ 1
2
)/

∑
i

pij(t+ 1
2
).

Information required: This strategy requires ex-
actly the same set of information as the symmetric
updating strategy.

Results: Fig. 5 presents the simulation results
with the asymmetric updating strategy for f = 0.25.
The results are comparable to the symmetric updat-
ing scheme. We see that the dynamics becomes slow.
As we expand the information set from k = 1 to 2
and 3, convergence takes place much faster in the ini-
tial phase. But after a while, it becomes slow for all
information sets. But again with sufficient number of
iterations, absolute convergence takes place.

Therefore, we see that for a long time there are
clusters. But as with the symmetric updating, this
behavior is transitory. By varying the parameter f
we studied the dynamics before convergence. Fig.
6 presents simulation results for two different values
of f with multiple information sets (k = 1, 2, 3). in
order to quantify the degree of stability before con-
vergence, we compute the average of the maximum

Figure 5: Simulation results for ‘ex-ante updating’
strategy with asymmetric reinforcements where only
success is rewarded (f = 0.25). We present two snap-
shots (left column at t = 5000 and right column at
t = 10000) of possible evolutions of the system with
N = 1000 agents. The rows show the results for dif-
ferent values of the information sets, k = 1, k = 2
and k = 3. As is evident, with increasing size of the
information set, convergence occurs faster as was the
case with the symmetric updating rule.

Figure 6: Simulation results for ‘ex-ante updating’
strategy with asymmetric reinforcements with f =
0.1 and 0.9 and three information sets, k = 1, 2 and
3. We show the evolution of the average of the max-
imum probability that the agents assign to any one
restaurant at all time slices. With high reinforcement
(f = 0.9), the maximum probability converges much
faster than with low reinforcement (f = 0.1).
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probabilities that the agents assign to any restau-
rant. With smaller values of f (f = 0.1), the average
probability goes up very fast compared to larger val-
ues (f = 0.9). Also, with bigger information sets,
the average of the maximum probabilities rise slower
than with smaller information sets. This is consis-
tent with the finding that coordination occurs much
faster with bigger information sets, as that requires
multiple switching to ensure convergence. Naturally,
with switching happening at a higher frequency leads
to lesser reinforcements to specific restaurants.

3.4 Reinforcement learning through
Polya’s urn model

We introduce a new strategy using the Poly’s urn
model ( [9]) that effectively captures reinforcement
learning. Let us define

φ =
mn

N −m
(3)

where m is a tunable parameter taking discrete values
within 0 and N . We denote the number of times the
i-th agent has visited restaurant j before time slice t,
by nijt. Then the probability of choosing restaurant
j is given by

pijt =
1 + φnijt

N + φ
∑
nijt

. (4)

Intuitively, this is an extension of the basic No Learn-
ing strategy (which would require pijt = 1/N) by em-
bedding reinforcement learning through Polya’s urn
model.

Information required: The required information
set for the i-th agent is derived only from the full
sequence of success of the agent at different restau-
rants. It is reasonable to assume that the agents keep
track of their own visits. Also note that at any time
slice, the agent does not require any information from
a restaurant that she is not visiting as was required
with the earlier strategies. This is possible because
there is no comparison involved. The probabilistic
strategies are devised based on historical success.

Results: Fig. 7 presents numerical results for dif-
ferent values of m (see Eqn. 3) with N = 500 and t =
5000. In the left panel, we show the number of restau-
rants occupied (nocc) with at least one agent for differ-
ent values of the factor m and at different time slices
t. Clearly when m = 0, the Polya’s scheme would

Figure 7: Left panel: Evolution of the number of
restaurants (nocc) occupied as function of Polya fac-
tor m from 0 to 495 for N=500, t=5000. In the limit
m → N , there is infinite reinforcement. We can an-
alytically show that the occupancy ratio in that case
would be 63.2%. In the other limit m → 0, it con-
verges to the No Learning strategy and hence ma-
jority problem is solved in linear time as we have
shown in Fig. 2. Right panel: Evolution of fraction
of restaurants (focc) occupied as function of Polya
factor m from 5 to 495 for N = 500, t = 500 to 5000.
As is evident, for small m the number of restaurants
occupied is very small and in the other extreme, the
occupancy ratio is close to 63.2% (≈ 318/500) which
corroborates earlier results.

converge to No Learning case and absolute conver-
gence occurs. This implies only one restaurant would
be occupied. This can be seen from the figure by
looking at the bars for different time slices by fixing
m = 0. In the other extreme with m = N−5 (for sim-
ulations, we can not set m = N), we see that around
318 restaurants out of 500 have been occupied. This
is consistent with the notion that setting the factor
m very close to N leads to infinite reinforcement im-
plying if an agent goes to one restaurant, she would
stick there for the rest of the time slices. So effec-
tively, the choices in the first time slice itself deter-
mines the distribution of agents across restaurants as
that distribution will never change because of infinite
reinforcement. It is easy to show that as the agents
are starting with uniformly distributed probabilities
(piuj0 = 1/N), in the first time slice 63.2% of the
restaurants would be occupied. We are skipping the
derivation of this fraction. Interested readers can re-
fer to [?]. One can easily verify that 318/500 is close
to 63.5% and hence this validates our results. The
right panel in the same figure shows the fraction of
restaurants occupied i.e. focc = nocc/N . The results
are perfectly consistent with the left panel.

We also note that having m = N in Polya’s scheme
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(i.e. infinite reinforcement) is identical to assuming
f = 1 in the asymmetric updating strategy. Thus in
the limit, these two strategies are exactly identical.
This strategy allows us to interpolate between a wide
spectrum of reinforcement by changing the factor m.
In particular, it allows us to cover the same range as
are separately done by the symmetric and asymmetric
updating strategies.

3.5 Ex-post knowledge

In the case of ex-ante knowledge in Sec. 3.3, we
studied strategies where the agents can obtain infor-
mation about the newly chosen restaurant’s attrac-
tiveness and make a comparison between the chosen
restaurant’s and the current restaurant’s attractive-
ness. However, this might be a costly activity to know
the attractiveness of another restaurant before actu-
ally visiting it. In the present section, we study the
same set of strategies where the agents can obtain in-
formation about attractiveness only after she moves
to the chosen restaurant. An important distinction
from the earlier cases is that the present strategy al-
lows for regret. After the agent moves to a new restau-
rant, she comes to know about its attractiveness and
hence cannot do comparison prior to switching. Up-
dating the probability vector happens the same way
depending on relative attractiveness as was done in
Sec. 3.3.

3.5.1 Symmetric updating

Consider agent i where i ∈ N , at any generic time
slice t. Suppose she is at restaurant r and given her
probability vector {pijt}, she probabilistically picks
restaurant l. After knowing both Alt and Art, proba-
bility vector pijt is updated exactly the same way as
in Sec. 3.3.1. To avoid repetition, we are skipping
the probability updating schemes.

Information required: The required information
comes from the restaurants that the agent has visited.
Hence, there is no external information acquired.

Results: Fig 8 shows the simulation results in the
top panels for f1 = 1 and f2 = 0.1. We show results fr
two time slices, at t = 5000 and t = 10000. As in the
earlier case, this strategy is also quite slow but even-
tually converges to a single restaurant in the limit.
Naturally, this is slower than the ex-ante knowledge
case.

Figure 8: Simulation results for ‘ex-post updating’
strategy with symmetric (top panels, f1 = 1 and
f2 = 0.1) and asymmetric (bottom panels, f = 0.5)
reinforcements. On the x-axis, we plot the identity of
the restaurants. Symmetric updating leads to higher
crowding for the restaurants.

3.5.2 Asymmetric updating

Similar to above, consider agent i ∈ N , at any generic
time slice t. Suppose she is at restaurant r and
given her probability vector {pijt}, she probabilis-
tically picks restaurant l. After knowing both Alt

and Art, probability vector pijt is updated exactly
the same way as in Sec. 3.3.2.

Information required: Required information
comes solely form the restaurants she visited and
hence no external information is acquired.

Results: Simulation results have been reported in
the lower panels of Fig. 8 and Fig. 9. We see that the
result for distribution of agents across the restaurants
are qualitatively similar to those in the case of sym-
metric updating except that coordination is poorer
as there are many restaurants with small numbers of
agents.

We study the degree of stability of the transient
clusters thus formed in Fig. 9. For higher values of
f , the average over maximum probabilities rises quite
fast compared to lower values of f though eventually
their behavior is similar.
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Figure 9: Simulation results for ‘ex-post knowledge’
strategy with asymmetric reinforcements with f =
0.1 and 0.9 for a system size N = 1000. We show
the evolution of the average of the maximum prob-
ability that the agents assign to any one restaurant
at all time slices. With high reinforcement (f = 0.9),
the maximum probability converges much faster than
with low reinforcement (f = 0.1), similar to the case
of ’ex-ante updating’ strategies.

4 Self-organization and coordina-
tion

In the present section, we discuss the extent to which
self-organization occurs in the multi-agent system
that solves the coordination problem.

4.1 Emergence of coordination

We have seen that some of the strategies especially
those which require ex-ante information or knowl-
edge can in principle be thought of as requiring some
costs to be payed in order to acquire the information.
Also realistically, the agents might have a trade-off
in terms of how quickly they can converge to a so-
lution versus the efficiency of the solution. That is
they may find it useful to be in majority, not neces-
sarily absolute majority, at a lower time to reach the
solution.

A parallel theme is that initially all restaurants are
identical. But with absolute convergence, only one of
them emerge as the winner. This can be interpreted
as how a specific social norm may emerge from mul-
tiple possibilities that are a priori equally likely.

Thus emergence of absolute coordination has two
contributing factors that can be potentially costly.
The first one is obviously the cost of lack of coor-

Figure 10: Simulation results for ‘ex-ante’ and ‘ex-
post’ strategies with asymmetric reinforcements with
f = 0.5 and 0.5 for a system size N = 1000. Top
panels show evolution of coordinaiton across agents
with ‘ex-ante knowldge’ and bottom panels show the
same with ‘ex-post knowledge’.

dination. The second one is the cost of waiting to
reach coordination. This can be most clearly seen in
the clustering behavior where multiple choices survive
as the agents achieve partial coordination reasonably
fast.

4.2 Cluster formation

We have already seen that clustering behavior can
be transient but in almost all cases they are very
slowly evolving. This implies that we observe clus-
ters of agents in different restaurants for a very long
time. Fig. 11 shows four instances of probability
density function of clusters. We tracked choices of
N = 1000 agents over t = 10, 000 time slices. We as-
sumed all four cases (ex-ante, ex-post and symmetric-
asymmetric) with the previosly mentioned parame-
ter values. The resulting probability density func-
tion has been averaged over O(10) number of sim-
ulations. Both ex-ante and ex-post with symmetric
updating rules (panels (a) and (c)) show strong clus-
tring behavior whereas the other two cases show very
moderately distributed clusters (panel (b): fit with
exponential distribution with paramter value 4.8564;
panel (d): fit with gamma distribution with paramter
values 2.7103, 1.3834).
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Figure 11: Size distribution of clusters (N = 1000,
T = 104, averaged over O(10) parallel simluations).
Panel (a): Ex-ante knowledge with symmteric up-
dating (inset: power law fit in log-log plot), panel
(b): Ex-ante knowledge with asymmteric updating,
fitted with exponential distibution, Panel (c): Ex-
post knowledge with symmteric updating (inset: log-
log plot shows the discontinuity in the distribution),
Panel (d): Ex-post knowledge with asymmteric up-
dating (inset: fitted with a gamma distribution).

4.3 Efficiency and cost of waiting

As discussed before, the agents may have a cost to ex-
ecute the strategies and hence if there are strategies
that takes very long time to reach a state of absolute
convergence, the agents may prefer less efficient so-
lution i.e. smaller clusters, if that is achievable soon
enough. We study this trade-off in Fig. 12 which
plots the number of time slices required by the aver-
age over maximum probabilities to reach at least 0.8
versus the percentage of restaurants occupied. The
variable in the y-axis represents the cost in terms
of waiting time. The variable in the x-axis repre-
sents the cost in terms of inefficiency of the solution
(smaller percentage occupancy would be more effi-
cient). We plot the trade-off by simulating a system
of N = 500 agents with the Polya updating scheme
(m = 50, 75, 100, . . ., 475, 495). the values on the
x-axis shows the occupancy at the time slice when
< Pmax > reaches 0.8.

The trade-off is clearly seen in terms of cost mini-
mization. A lower waiting cost leads to higher occu-
pancy and hence to inefficiency and vice versa. This
is a very useful feature of the model to understand
the trade-off between the waiting cost to arrive at an
allocation and the accuracy of the allocation.

Figure 12: Trade-off in efficiency and time of con-
vergence with Polya updating scheme. Simulation
results show a clear monotonic decay for N = 500.

5 Summary

In this paper, we study a model of distributed coor-
dination in the context of a multi-agent, multi-choice
system. We consider a game with multiple Nash equi-
librium all of which are equally likely. The basic prob-
lem is to find which equilibrium will materialize if the
agent engage in repeated interaction and how quickly
can they converge to the equilibrium. Essentially, we
solve the problem of equilibrium selection through
distributed coordination algorithms.

We propose a number of strategies based on dif-
ferent types of näıve learning. In particular, rein-
forcement learning via Polya’s urn model provides a
very useful benchmark. We show that the system
self-organizes with very slow dynamics and transient
clusters. Finally, we characterize a trade-off between
waiting cost to attain an allocation and the accuracy
of the allocation. With lower waiting costs (stability
is attained sooner), efficiency of the solution is low
and the opposite is also true.

This problem sheds light on complexity of equilib-
rium selection and may provide an useful model for
multi-agent coordination and collective dynamics in
general.
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