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It is well known that the field equations of teleparallel theory which is equivalent to

general relativity (TEGR) completely agree with the field equation of general relativity

(GR). However, TEGR has six extra degrees of freedom which spoil the true physics. These

extra degrees are related to the local Lorentz transformation. In this study, we give three

different tetrads of flat horizon space-time that depend only on the radial coordinate. One of

these tetrads contains an arbitrary function which comes from local Lorentz transformation.

We show by explicate calculations that this arbitrary function spoils the calculations of

the conserved charges. We formulate a skew-symmetric tensor whose vanishing value put a

constraint on the arbitrary function. This constraint makes the conserved charges are free

from the arbitrary function.

1 Introduction

In the theory of GR, the gravitational field is gained by the curvature of space-times. Par-

ticles are obliged by the curvature of the space-times to move on geodesics. Therefore, the

theory of GR is indeed geometrized by the gravitational field. The theory of GR has some

constraints on the classical level. The forecasts of GR are in agreement with the experimen-

tal data accessible till now. Unification of the main four forces has continued as a favorite
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subject in physics. Because of the unknown attitude of GR at the quantum level, the sci-

entistic community required the unified theory. For this purpose, Einstein did his attempt

which was failed. In this research, we study his suggested theory, which is called TEGR as

an alternative theory of gravitational field in the absence of unifying it with quantum theory.

The TEGR is established on Weitzenböck geometry [1]. In this theory torsion behaves

as a force on objects. Therefore, in TEGR, there is no geodesics but only force equations

[2]. The GR theory is characterized mathematically by Einstein’s field equations, in which

the geometry of the space-time is described by one side and the physics of the space-time

is described by the other side. To find a solution in GR is not an easy task, therefore,

we demanded certain symmetry constraints on the space-time metric. The significance of

symmetries is understandable in GR owing to the laws of conservation of matter in the

space-time which can be studied and realized with the aid of the symmetry constraints [3].

The TEGR theory is identical to GR. The GR theory is a geometric theory constructed

on the Levi-Civita connection, that has curvature and zero torsion. However, TEGR employs

anther connection. This connection is given by Weitzenböck which is defined on a space so

that is globally flat, i.e., has zero curvature. This connection is known as a Weitzenböck

connection and has a vanishing Ricci tensor but non-trivial torsion. This connection is

employed to construct a Lagrangian built on a gravitational scalar named as the torsion

scalar, T . The dynamics of this Lagrangian are equal to GR and this follows from the result

R = −T − B,

with R being Ricci scalar and B is a boundary term linked to the divergence of the torsion.

Due to the fact that B is a total derivative, it does not contribute to the equations of motion

and therefore, the Lagrangian of TEGR is equal to that of GR.

The aim of this study is to discuss the effect of the extra degrees of TEGR on the true

physics and how one can fix these degrees so that they do not contribute to the true physics.

In §2, an introduction to TEGR theory is presented. In §3, several tetrad fields having flat

horizons are given and application to the field equations of TEGR is explained. New analytic,

solutions are derived in §3. In §4, calculation of the conserved quantities of each solution

have been carried out and we have shown how the unphysical extra degrees contribute to

the true physics. In §5, we gave a skew-symmetric tensor which constrains the extra degree

and shows the effect of this tensor on the acceleration components of an observer at infinity.

Main results are discussed in final section.
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2 Introduction to TEGR theory

Teleparallel theory equivalent to general relativity considers as another construction of GR

of Einstein. The main entity of TEGR theory is the tetrad fields† (eiα). In TEGR theory,

the metric can be built using the tetrad: gαβ = λije
i
αe

j
β, with λij = diag(1,−1,−1,−1)

being the Minkowskian metric, thus the symmetric connection , Levi-Civita , Γ̊α
βγ can

be constructed. Nevertheless, it is likely to build Weitzenböck non-symmetric connection

Γα
βγ = ei

α∂γe
i
β [1]. The Weitzeinböck spacetime is labled as a pair (M, eµ), whereas M

is a D-dimensional manifold and eβ (β = 0, · · · , 3) are D-linear independent vector defined

globally on M . The covariant derivative of the tetrad using Weitzenböck connection is

vanishing, i.e. ∇
α
eiβ ≡ 0. Therefore, the vanishing of the covariant derivative of the tetrad

identifies the auto parallelism or absolute parallelism restriction. Actually, the operator ∇α

has a big issue, that is not invariant under local Lorentz transformations (LLT). The issue

permits all LLT invariant quantities to rotate freely at each point of the space [4]. Thus,

the symmetric metric is not able to guess one form of tetrad field; therefore, the additional

degrees of freedom have to be restricted such that one physical frame can be identified. The

Weitzenböck connection is has a vanishing curvature however it has a torsion defined by

Tα
βγ := Γα

βγ − Γα
γβ. (1)

The contortion is defined as

Kαβ
γ := −1

2

(

Tαβ
γ − Tβα

γ − Tγ
αβ
)

. (2)

In the TEGR one can construct three Weitzenböck invariants: I1 = T αβγTαβγ , I2 = T αβγTβαγ

and I3 = TαTα, where Tα = Tβ
αβ . We next define the invariant T = A1I1 + A2I2 + A3I3,

where Ak, k = 1, 2, 3 are constants [4]. When A1 = 1/4, A2 = 1/2 and A3 = −1 the

invariant T will be identical with Ricci scalar R(̊Γ), up to divergence term. In this sense, the

teleparallel gravity will be identical with GR. The torsion scalar of TEGR is defined as

T := Tα
βγS

βγ
α , (3)

with Sα
βγ being the superpotential tensor defined as

Sα
βγ :=

1

2

(

Kβγ
α + δβαT

ργ
ρ − δγαT

ρβ
ρ

)

. (4)

The tensor Sα
βγ is skew symmetric tensor in the last two indices.

The identity between torsion scalar and Ricci one is given by

R(̊Γ) = −T(Γ) − 2 ∇αT
βα

β , (5)

†The Greek symbols indicate the elements of tangent space and Latin components indicate the symbols

of the spacetime.
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such that the covariant derivative is with regard to the symmetric connection, i.e. Levi-

Civita. The total derivative term is the one on the second term on the right-hand side

of the above equation. Therefore, there will be no contribution of the divergence term to

the variation of the scalar torsion T instead of the Ricci scalar. In this sense, the torsion

and Ricci scalars are identical. Despite the quantitative equivalence, they, T an R, are

qualitatively not equivalent. For instant, Ricci scalar tensor is invariant under LLT whilst

the divergence term ∇αT
βα

β is not invariant and therefore the torsion scalar. Therefore, the

theory of TEGR action is not form invariant with respect to LLT [5, 6, 7].

The action of the gauge gravitational field Lagrangian is given by [8, 9]

S =
M2

Pl

2

∫

|e| [(T− 2Λ) + LM(ΦA)] d4x, (6)

with LM being the Lagrangian of matter fields ΦA and MPl being the mass of Planck, that

is connected to gravitational constant G through MPl =
√

~c/8πG. In this study we use the

units G = c = ~ = 1 and |e| = √−g = det (eiα). Making variation of Eq. (6) regard to the

tetrad fields eiα give the following field equations [8]

∂β(eSi
αβ) = 4πeei

β(tβ
α +Θβ

α), (7)

with Si
αβ = ei

ρSρ
αβ, being the (pseudo) tensor tα

β and

tα
β =

1

16π
[4|rmT ρ

γαSρ
βγ − δβα(T− 2Λ)], (8)

is the energy-momentum tensor

Θα
β = eiα

(

−1

e

δLM

δeiβ

)

. (9)

As the tensor Si
αβ is anti-symmetric, i.e Si

αβ = −Si
βα, this leads to ∂α∂β(eSi

αβ) ≡ 0 [4].

Therefore,

∂β
[

eei
ρ(tρ

β +Θα
β)
]

= 0.

The pseudo-tensor tβα is disappeared in the theory of GR. To prob its behavior we see that

the previous equation leads us to the conservation

d

dt

∫

V

eei
α(t0α +Θ0α)d

3x = −
∮

Σ

[eei
α(tjα +Θjα)] dΣ

j .

The integration of the previous equation is carried out on 3-dimensional volume limited by

the surface. Therefore, tα
β represent the energy-momentum tensor of the gravitational field

[8].
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3 Flat transverse solutions

We apply the TEGR field equations (7) to the first flat transverse section which gives the

following tetrad written in cylindrical coordinate (t, r, φ, z) as:

(

eiµ
)

=

















a(r) 0 0 0

0 b(r) 0 0

0 0 r 0

0 0 0 r

















,

(10)

Substituting from (10) into (3) we calculate torsion scalar as

T = −2(2a′r + a)

r2ae2
, (11)

where a′ := da(r)
dr

. Using (10) in (7) we get

Θ0
0 =

Λr2e3 + 2rb′ − b

2r2e3
, Θ1

1 =
Λr2e2a− 2ra′ − a

2r2e2a
,

Theta2
2 = Θ3

3 =
Λre3a− rba′′ + ra′b′ + ab′ − ba′

2re3a
.

(12)

The solution of the above differential equation has the form

a(r) =
c1
√
Λr3 + 3c2√

r
, b(r) = ∓

√
3r√

Λr3 + 3c2
, (13)

The second flat transverse section tetrad is given by

(

e1
i
µ

)

=

















a(r) 0 0 0

0 b(r) cosφ −r sinφ 0

0 b(r) sinφ r cos φ 0

0 0 0 r

















.

(14)

Tetrad (14) is related to (10) by a rotation matrix given by

(

Λi
j

)

=

















1 0 0 0

0 cosφ − sinφ 0

0 sin φ cos φ 0

0 0 0 r

















.

(15)
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Substituting from (14) into (3) we evaluate the torsion scalar as

T = −2(rba′ + ab− 2ra′ − a)

r2ae2
. (16)

Using (14) in (7) we get get the same differential equation given by Eq. (12) which have the

same solution given by Eq. (13).

The third flat transverse section tetrad is given by

(

e3
i
µ

)

=

















−a(r)L −Hb(r) cosφ −rH sinφ 0

a(r)H cosφ b(r)(sin2 φ+ L cos2 φ) r sinφ cosφ(L− 1) 0

a(r)H sinφ b(r) sinφ cosφ(L− 1) r(cos2 φ+ L sin2 φ) 0

0 0 0 r

















,

(17)

where L =
√
1 + H2 and H is an arbitrary function of r. This arbitrary function perseveres

the flat horizon of tetrad (17). Tetrad (17) is related to (10) by a LLT matrix given by

(

Λ1
i
µ

)

=

















−L −H cosφ −H sinφ 0

H cosφ sin2 φ+ L cos2 φ sin φ cosφ(L− 1) 0

H sinφ sinφ cosφ(L− 1) cos2 φ+ L sin2 φ 0

0 0 0 1

















.

(18)

Substituting from (17) into (3) we evaluate the torsion scalar as

T =
2(baH2 + ba+ rbH2a′ + rba′ − abL− bLra′ + rabHH′ − aL− 2ra′L))

r2ae2L
. (19)

Using (17) in (7) we get the same differential equation given by Eq. (12) which have the

same solution given by Eq. (13). Therefore, the field equations (7) are not able to give a

specific form of the arbitrary function H as expected due to the fact that the field equations

(7) are equivalent to GR. In the next section we are going to discuss the physical relevance

of each tetrad.

4 Conserved quantities and intuitive of Einstein-Cartan

theory

There are many modifications of GR. In the frame of theoretical physics, the theory of

Einstein-Cartan (EC), which is identified as “Einstein-Cartan-Sciama-Kibble theory”, is
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classic gravitation theory like GR in which its connection has no skew symmetric part.

Thus, in EC, the torsion tensor can be accompanied to the spin of the matter, by the same

pattern the curvature is joined to the momentum and energy of the matter. Actually, spin

of matter using non-flat spacetime demands that the torsion tensor does not vanishing but

be a variable, i.e., stationary action. The theory of EC deals with the torsion tensor and

metric as independent which give the right extension of conservation law in the existence of

the gravitational field. The EC theory constructed by Élie Cartan in [10] and recently it has

many application [11]. The Lagrangian of EC has the form [12]:

L(ϑi, Γj
k) = − 1

2κ

(

Rij ∧ ηij − 2Λη
)

, (20)

with ϑi being the co-frame one form, Γ j
k being the connection, κ and Λ are the gravitational

and the cosmological constants. The Lagrangian given by Eq. (20) is a form invariant under

diffeomorphism and Lorentz local transformation [12]. Carrying out the principle of least

action to equation (20) we get [12, 13]

Ei := − 1

2κ

(

Rjk ∧ ηijk − 2Ληi
)

, Hij :=
1

2κ
ηij , (21)

where ηij is a two form given in the Appendix A, Ei is the energy-momentum and Hij is

the rotational gauge field momentum. The momentum of translation and the spin take the

following form

Hi := − ∂L
∂Ti

= 0, Eij := −ϑ[i ∧Hj] = 0. (22)

The minimally coupling of matter is supposed such that ∂LMatter

∂Ti = 0 and ∂Lmatter

∂Ri
j

= 0.‡ The

conserved current is given by [12]

[ξ] =
1

2κ
d
{

∗
[

dk + ξ⌋
(

ϑi ∧ Tj

)]}

, where

k = ξiϑ
i, and ξi = ξ⌋ϑi, (23)

where ∗ is defined as the Hodge duality and ξ is an arbitrary vector field ξ = ξi∂i. ξ
i in this

study are four parameters ξ0, ξ1, ξ2 and ξ3. Because this study is in the frame of theory

of TEGR which is equivalent to GR, thus, torsion is nil and conserved charge, Eq. (23), is

given by

Q[ξ] =
1

2κ

∫

∂S

∗dk. (24)

Expression (24) was given by Komar [14]–[18] and is invariant under diffeomorphism.

The coframe ϑ1

i of solution (13) using tetrad (10) has the form:

ϑ0̂ = adt, ϑ1

1̂ = bdr, ϑ1
2̂ = rdθ, ϑ1

3 = rdφ. (25)

‡ The derivative of the coframe vanishes if ξ is a Killing vector field, i.e. Lξϑ
i= 0 [12].

7



By using equation (25) in equation (24) we obtain

k = a2ξ0dt− b2ξ1dr − r2[ξ2dθ + ξ3dφ]. (26)

Total derivative of Eq. (26) gives

dk = 2[aa′ξ0(dr ∧ dt) + rξ2(dθ ∧ dr)− rξ3(dr ∧ dφ)]. (27)

From the inverse of (25) using (27) in (24) and taking the Hodge-duality to dk, we get

Q[ξt] = Q[ξr] = Q[ξθ] = Q[ξφ] = 0. (28)

Equation (28) indicates in clear way that the total conserved charge of (13) are nil. Carrying

out the same procedure to tetrads (14) and (17) we get the same result of Eq. (28). Thus,

equation (24) must redefined to get a well defined value, i.e. Eq. (24) needs a regularization.

5 Regularization using relocalization

Expression (24) is form invariant under diffeomorphism and Lorentz local transformation.

However, it is demonstrated that plus to diffeomorphism and Lorentz local transformation

there exists other defect in the form of conserved quantities. This defect lies in equations of

motion which permit a relocalization [12]. Therefore, conserved quantities can be altered us-

ing relocalization. Relocalization appeared from amercement of the gravitational Lagrangian

through a total derivative term has the form

S′ = S + dΦ, where Φ = Φ(ϑ
i
,Γi

j ,Ti,Ri
j), (29)

with Γi
j is a 1-form connection. The second term in Eq. (29), i.e. dΦ, amendments the

boundary part of the Lagrangian, premitting the equations of motion to be in a covariant

form ( [12] and references therein). It has been explained that the total conserved charges

could be regularized by applying a relocalization procedure. It has been explained that to

solve the odd result derived in Eq. (28), one has to employ relocalization given by the

boundary expression that appears in the Lagrangian. We use the relocalization in the form

Hij → H ′
ij = Hij − 2βηijklR

kl,

that is originated from the modification of the Lagrangian [12]

L → S ′ = S + βdΦ,

where

H ′
ij =

(

1

2κ
− 4βΛ

3

)

ηij − 2βηijkl

(

Rkl − Λ

3
ϑkϑl

)

. (30)
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Assuming β, which exists in Eq. (30) has the value 3
8Λκ

in 4-dimension to confirm the

cancelation of the vanishing value (that comes from inertia) which exists in Eq. (28). Thus,

the conserved charges after regularization has the form [12, 19, 20]

J [ξ] = − 3

4κΛ

∫

∂S

ηijklΞ
ijW kl, (31)

with Wij is the Weyl 2-form described by

Wij =
1

2
Ckl

ijϑk ∧ ϑl, (32)

where Cij
kl = ei

µej
νekαe

l
βCµν

αβ is the Weyl tensor and Ξij is denoted by

Ξij =
1

2
ej⌋ei⌋dk. (33)

The conserved currents J [ξ] given by Eq (31) are form invariant under diffeomorphism and

Lorentz local transformation. These currents J [ξ] are linked to the vector field ξ on the

spacetime manifold.

calculating the necessary components of Eq. (31) we get

Ξ01 = − a′ξ0
b

, Ξ13 = −ξ3
b
. (34)

Using Eq. (34), we get the value of ηijklΞ
ijW kl in 4-dimension in the form

ηijklΞ
ijW kl =

2
√
3c1c2ξ0(2Λr

3 − 3c2)

3r3
. (35)

Substituting Eq. (35) in (31) we get

J [ξt] =

√
3

2
ξ0πc1c2 +

(

1

r3

)

, J [ξr] = J [ξz] = J [ξφ] = 0. (36)

Equation (36) shows that the two constants c1 and c2 may take the values c2 = 2√
3π

and

c2 = M in which total mass and angular momentum takes the form [21, 22]

E = M +

(

1

r

)

, J [ξr] = J [ξz] = J [ξφ] = 0. (37)

Repeat the same calculation we get the non-vanishing components Ξij of tetrad (14) to

have the form

Ξ01 =
a′ cosφξ0

b
, Ξ02 = −a′ sin φξ0

b
, Ξ13 = −cos φξ3

b
, Ξ23 = −sin φξ3

b
.

(38)

Using Eq. (31), we get the value of ηijklΞ
ijWkl in 4-dimension in the same form of Eq.

(35) which gives the same conserved quantities as given by Eq. (37).
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The survive components Ξij of tetrad (17) are

Ξ01 = −ξ0a
′[(2H2 + 1) cos2 φ+ L sin2 φ]

b
, Ξ02 = −ξ0a

′ sinφ cosφ(2H2 + 1− L)

b
, Ξ03 = −ξ3 cosφH

b
,

Ξ12 =
ξ0a

′H sinφ(2[L− 1] cos2 φ+ 1

b
, Ξ13 =

ξ3(sin
2 φ+ cos2 φL)

b
, Ξ23 =

ξ3 sinφ cosφ(L− 1)

b
. (39)

Using Eq. (31), we get the value of ηijklΞ
ijW kl in 4-dimension in the form

ηijklΞ
ijW kl =

2
√
3c1c2ξ0(2H

2[L− 1] sin2 φ cos2 φ− 2H2 − 1)(2Λr3 − 3c2)

3r3
. (40)

Substituting Eq. (40) in (31) we get

J [ξt] =

√
3c1c2ξ0(2H

2[L− 1] sin2 φ cos2 φ− 2H2 − 1)(2Λr3 − 3c2)

4r3
, J [ξr] = J [ξθ] = J [ξφ] = 0.

(41)

Equation (41) shows that the arbitrary function H which describes inertia contributes to the

true physics.

6 Physical constrains on the inertia

As we discussed in the previous sections that we have three tetrad fields reproduce the same

metric. The TEGR field equations give the same solution of the two unknown functions

however, they can not able to give any specific form of the arbitrary function. Also we have

shown that the scalar torsion depend on the tetrad as is known in the literature which means

that it is not local Lorentz transformation. In the previous section we try to calculate the

conserved quantities and show that they depend on the inertia. In this section, we are going

to assume specific form of skew-tensor and see if this tensor will help in solving the above

problem or not? It is well known that the field equations of f(T ) is non-symmetric [23]–[35]§

S(µν)
ρT,ρ f(T )TT −

[

e−1eaµ∂ρ (bea
αSα

ρν)− T α
λµSα

νλ
]

f(T )T − 1

4
gνµ(f(T )− 2Λ) = 4πTνµ,

S[µν]
ρT,ρ f(T )TT = 0. (42)

Therefor, in TEGR the skew-symmetric is satisfied automatic due to the fact that fTT = 0.

Now let us check if the skew symmetric tensor

S[µν]
ρT,ρ, (43)

is vanishing for the above tetrad fields or not? For the first tetrad given by Eq. (10) Eq.

(43) is satisfied automatic. Therefore, tetrad (10) we call it a physical tetrad. For the second

tetrad field, given by (14), Eq. (43) is satisfied identically.

§We will denote the symmetric part by ( ), for example, A(µν) = (1/2)(Aµν +Aνµ) and the antisymmetric

part by the square bracket [ ], A[µν] = (1/2)(Aµν −Aνµ).
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Using Eq. (43), we get for the third tetrad field, Eq. (17), the following non-vanishing

components:

S[10]1T
,1 =

H cosφ

2L3/2abr4

(

b

[

r2abL4a′′ + r2Ha2bL4
H

′′ − r2bL4a′2 − raa′L2(rL2b′ − b[rHH′ − L
2])

−a2[rb′L2(rHH′ + L
2)− b(r2H′2 − 2L2)]

]

− 2L3/2[r2ab(b+ 2)a′′ − r2b(b+ 2)a′2 − raa′(r(b+ 4)b′ + b2 + 2b)

−a2(rb′(b+ 2) + 2b2 + 2b]

)

,

S[20]1T
,1 =

H sinφ

2L3/2ab2r3

(

b

[

r2abL4a′′ + r2Ha2bL4
H

′′ − r2bL4a′2 − raa′L2(rL2b′ − b[rHH′ − L
2])

−a2[rb′L2(rHH′ + L
2)− b(r2H′2 − 2L2)]

]

− 2L3/2[r2ab(b+ 2)a′′ − r2b(b+ 2)a′2 − raa′(r(b+ 4)b′ + b2 + 2b)

−a2(rb′(b+ 2) + 2b2 + 2b]

)

. (44)

Solution of Eq. (44) has the form

H = ±
√
1− 9r4c22Λ− 27rc22c1

3c2
√

r(r3Λ + 3c1)
. (45)

Equation (45) is a solution of Eq. (44) and when we use it Eq. (41) we get

E = M +

(

1

r

)

. (46)

which is identical with Eq. (37). This means that the solution of the skew-symmetric tensor

removes the inertia from the true physics.
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7 Discussion and conclusion

We have discussed the TEGR theory and its 6 extra degrees of freedom. For this purpose we

have studied three tetrad fields, with the flat horizon, reproduce the same metric. The first

tetrad field has two unknown functions and the field equations of TEGR give an analytic form

of these functions. The conserved quantities of this tetrad are calculated and we have got

a finite conserved quantity in the temporal coordinate after using the Regularization using

relocalization. We coined this tetrad as the physical tetrad. The reason for this name comes

from the fact that we have defined a skew-symmetric tensor that is must vanish identically

in the framework of TEGR. The first tetrad satisfied this property.

For the second tetrad which is obtained from the first one by multiplied it by a rotation

matrix. We have calculated the scalar torsion of this tetrad and have shown that the scalar

torsion is not invariant under local Lorentz transformation. We have calculated the field

equations and show that they are not different from the first tetrad and consequently the

solution of the two unknown functions are the same as of the first tetrad. The discussion of

the conserved quantities and the skew-symmetric tensors are the same of the first tetrad.

For the third tetrad, we have shown that it is related to the first tetrad through a

local Lorentz transformation that contains an arbitrary function, H. We have calculated

the scalar torsion of this tetrad and have shown that it depends on the arbitrary func-

tion. As usual, the field equations of TEGR can not fix any form of the arbitrary function.

We have calculated the conserved quantities of this tetrad and have shown that the tem-

poral component of the coordinate depends on the arbitrary function. This shows in a

clear way that the inertia contributes to the true physics. We have calculated the skew-

symmetric tensor of this tetrad and have shown that some of its components are not van-

ishing. We have solved these non-vanishing components and have derived a form of the

arbitrary function. When we have substituted this solution in the form of the conserved

quantities we have shown that the energy will coincide with the value of the physical tetrad.

Appendix A

Notation

The indices i, j, · · · are the (co)-frame components whilst µ, ν, · · · are the holonomic spacetime

coordinates. The hats 0̂,1̂, · · · c indicate special frame components. The exterior product

is denoted by ∧. The interior product of ξ and Ψ is described by ξ⌋Ψ. The vector dual to

the 1-forms ϑi is labeled by ei and their inner product satisfy ei⌋ϑj = δi
j . Employing local

coordinates xµ, we have ϑi = eiµdx
µ and ei = ei

µ∂µ where eiµ and ei
µ are the components

covariant and contravariant of the tetrad fields. The volume η := ϑ0̂ ∧ ϑ1̂ ∧ ϑ2̂ ∧ ϑ3̂ defines

4-form. Moreover, we can altered

ηi := ei⌋η =
1

3!
ǫijkl ϑ

j ∧ ϑk ∧ ϑl,
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where ǫijkl is totally antisymmetric with ǫ0123 = 1.

ηij := ej⌋ηi =
1

2!
ǫijkl ϑ

k ∧ ϑl, ηijk := ek⌋ηij =
1

1!
ǫijkl ϑ

l.

Finally, we can define

ηijkl := el⌋ηijk = el⌋ek⌋ej⌋ei⌋η,

which is the tensor density of Levi-Civita. The following useful identities

ϑi ∧ ηj := δijη, ϑi ∧ ηjk := δikηj − δijηk, ϑi ∧ ηjkl := δijηkl + δikηlj + δilηjk,

ϑi ∧ ηjkln := δinηjkl − δilηjkn + δikηjln − δijηkln

are holds using the η-forms.

The line element ds2 := gijϑ
i
⊗

ϑj is defined by the spacetime metric gij .

Appendix B: Calculations of Weyl tensor and the object W µν

The non-vanishing components of Weyl tensor using solution of tetrad (10) have the

form:

C0101 = −C0110 = C1010 = −C1001 =
−
√
3c1c2
r3

,

C0202 = −C0220 = C0303 = −C0330 = C2020 = −C2002 = C3030 = −C3003 =
−
√
Λr3 + 3c2c1c2

2r5/2
,

C1212 = −C1221 = C1313 = −C1331 = −C2112 = C2121 = −C3113 = C3131 =
−
√
3c1

2r3/2
√

Λr3+3c2
,

C2323 = −C2332 = −C3223 = C3232 = −c1
r
. (47)

The non-vanishing components of W µν are given by

W 01 = −
√
3c1c2
r3

(dr ∧ dt)], W 02 = −c1c2
√
Λr3 + 3c2
2r5/2

(dθ ∧ dt),

W 03 = −c1c2
√
Λr3 + 3c2
2r5/2

(dφ ∧ dt), W 12 = −
√
3c1

2r3/2
√
Λr3 + 3c2

(dr ∧ dθ),

W 13 = −
√
3c1

2r3/2
√
Λr3 + 3c2

(dr ∧ dφ), W 23 = −c1
r
(dθ ∧ dφ).

(48)

By the same method we can calculate the non-vanishing of Weyl tensor and of the object

W µν of the second and third tetrad.
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[7] M. Krššák, and E. N. Saridakis, Class. Quantum Grav. 33 (2016), 115009.

[8] J. W. Maluf, Journal of Mathematical Physics, 35 (1994), 335. Castello-Branco, phys.

Rev. D65 (2002), 124001.

[9] J. W. Maluf, J. F. da Rocha-Neto, T. M. Tor̀ıbio and K. H. Castello-Branco, Phys. Rev.

D65( 2002), 124001.

[10] E. Cartan, C. R. Acad. Sci. (Paris) 174 (1922), 593.

[11] E. Cartan.Ann. c. Norm. 40 (1923), 325; ibid. 41 (1924), 1.

[12] Y. Obukhov and G. F. Rubilar, Phys. Rev. D74 (2006), 064002.
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[32] G. Cognola, E. Elizalde, S. D. Odintsov, P. Tretyakov and S. Zerbini, Phys. Rev. D 79

(2009), 044001.

[33] P. Wu and H. Yu, Phys. Lett. B 692 (2010) 176.

[34] R.-J. Yang, Eur. Phys. J. C 71 (2011), 1797.
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