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We report on the generation of an intermittent wave field driven by a horizontally moving wave
maker interacting with Faraday waves. The spectrum of the local gravito-capillary surface wave
fluctuations displays a power-law in frequency for a wide range of forcing parameters. We compute
the probability density function of the local surface height increments, which show that they change
strongly across time scales. The structure functions of these increments are shown to display power-
laws as a function of the time lag, with exponents that are nonlinear functions of the order of the
structure function. We argue that the origin of this scale-invariant intermittent spectrum is the
Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some
interpretations are proposed to explain the appearance of this intermittent spectrum.

PACS numbers: 47.27.eb, 47.20.-k, 47.35.-i, 05.45.-a,

I. INTRODUCTION

The nature, generation, properties and evolution of
turbulent fields in extended out-of-equilibrium systems
is the subject of continuous research due to its implica-
tions in transport of conserved quantities across scales
in fluid dynamics, condensed matter, plasma and astro-
physics. In the case of wave systems, this research has
been strongly driven by the development of the tools of
Wave Turbulence (WT) [1]. WT deals with the long
time out-of-equilibrium statistical properties of disper-
sive waves in weakly nonlinear interaction, in which in-
jection and dissipative scales are clearly separated, and
energy is transferred without loss among scales (in the
so-called inertial window). In the WT framework, waves
are thus solely described by their scale-invariant station-
ary spectrum of wave amplitudes Sη(f) = 〈|ηf |2〉 ∝ f−ν ,
where f is the frequency and ν the Kolmogorov-Zakharov
(KZ) exponent. This spectrum has been theoretically
predicted, numerically computed and experimentally ob-
served in gravity [2–5] and capillary [6–8] surface waves
in fluids, bending waves in elastic plates [9, 10], and non-
linear optics [11, 12]. Applications of WT to a larger
number of other fields can be found in [1].

It may seem that WT is a robust and complete theory
that can be applied on any weakly dispersive nonlinear
wave system, but this is not the case as it is almost never
valid over all length scales [13]: there is a breakdown of
WT at very large or very low wave numbers. When the
breakdown occurs, a new type of spectrum develops, as
well as new properties of the turbulent fluctuations [14],
which are different from the WT prediction. This type
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of breakdown spectrum, which is named after Phillips
seminal work on the breakup of gravity surface waves
by wind forcing [15], has been observed in-situ on the
sea surface, in very large tanks [16, 17] and in laboratory
experiments [5, 18]. It has been generalized to other situ-
ations where WT breaks down [19] such as the generation
of rough sea foam in the ocean [20] and the d-cone spec-
tra in vibrating elastic plastes [21]. It has also motivated
new ideas on the spectra generated by singularities [22]
to describe the properties of fluctuating wave fields.

WT can also break down when the locality of inter-
actions between wave vectors is forbidden. In the WT
framework, a conserved quantity is transported by lo-
cal interactions in wave vector space from large scales to
small scales. However, this is not always achieved in real
systems. Kelvin waves in superfluids are known to inter-
act non locally through the Biot-Savart equation [23, 24].
In strongly magnetized plasma, it has been proven that
its dynamics is dominated by the nonlinear, nonlocal in-
teraction between the large scale condensate and small
scales [25–27]. Wave turbulence in quantum field theory
(QCD) can also be described by nonlocal interactions in
momentum space [28].

Here, we present an experimental study of intermit-
tency in which spatially extended standing waves of wave
vector ko (Faraday waves) interact nonlinearly with a
random set of long waves generating a scale invariant
wave spectrum which differs from the KZ predictions
for gravity wave turbulence or capillary wave turbulence.
The local measurement of the wave amplitude field dis-
plays singular events which can be related to singularities
generated due to the advection Faraday waves by random
surface gravito-capillary waves. In this configuration, the
local temporal fluctuations of the surface wave ampli-
tude η(t) display a power-law spectrum Sη(f) = 〈|ηf |2〉
(i.e., the Fourier transform of the autocorrelation func-
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tion of η(t)) over more than half a decade for a wide
range of forcing parameters. The observed spectrum
Sη(f) ∝ f−5 differs from the one predicted by the WT
theory Sη(f) ∝ f−4. This wave field displaying this
spectrum is intermittent, which is shown by computing
the probability density function (PDF) of the local verti-
cal height increments and their corresponding structure
functions. The PDFs change strongly across time scales,
increasing their flatness. The structure functions of these
increments display power-laws as a function of the time
lag, with exponents that are not linear with the order
of the structure function. We argue that the origin of
this scale-invariant intermittent spectrum is the Faraday
wave pattern breakup due to its advection by the propa-
gating gravity waves.

II. EXPERIMENTAL SETUP

(1)

(2)

(3)

(4)

(5)
(6)

FIG. 1: (color online) Schematic of the experimental setup.
(1) Square cell, (2) Vertical shaker, (3) Horizontal shaker, (4)
Accelerometer, (5) Wave-maker, (6) Capacitive wire gauge.

The experimental setup is depicted in Fig. 1. A plex-
iglass square cell (lateral dimensions Lx = Ly = 10 cm
and height Lz = 4.5 cm) is filled with distilled water up
to a height h = 3 cm. The experimental cell with the
working fluid is mounted on an electromagnetic shaker
driven sinusoidally by a function generator via a power
amplifier. The vertical modulation of the acceleration
a(t) = a sin (2πfct) is measured by a piezoelectric ac-
celerometer via a charge amplifier. The accelerometer is
fixed to the base of the cell, allowing the measurement
of the imposed modulation with a resolution of 0.1 m/s2.
For a given excitation frequency fc, when the accelera-
tion modulation a surpasses a certain threshold ac, stand-
ing waves develop on the fluid surface oscillating at fc/2
through a parametric instability: the so-called Faraday
waves [29]. These standing waves interact with a set of

propagating waves generated by the horizontal motion of
a rectangular plunging acrylic wave maker (6 × 13 cm2)
set at 1.5 cm inward from one of corners of the cell and
driven by another electromechanical shaker via a power
amplifier. The wave maker is excited with random noise
supplied by a function generator filtered in a frequency
range 2−5 Hz by means of a band-pass filter. The output
colored noise has a standard deviation Vr ∈ [0.69, 1.30] V.
The local wave height η (t) is measured 5 cm away from
the wave maker with a capacitive wire sensor, plunging
perpendicular to the fluid surface at rest and adjoined to
the experimental cell. The capacitance of the wire gauge,
which changes linearly with the fluid level, is measured
using a LRC circuit and a DSP Lock-in amplifier [30]
(time constant 0.3 ms and a 24 dB/oct roll-off). The lin-
ear sensing range of the wire gauge allows measurements
from 10 µm up to 30 mm with 80 mV/mm sensitivity.
The data of both the fluid level and the vertical accel-
eration is recorded through a NI acquisition card and
then analyzed in Matlab. In the experiments reported
in this Letter, the acquisition time is 1 h, the acquisition
frequency is fadq = 1 kHz, the excitation frequency is
fc = 20 Hz and a ∈ [1, 2] m/s2.

III. PROBABILITY DENSITY FUNCTION AND
FREQUENCY POWER SPECTRUM

In the case where only Faraday waves are excited by
vertical vibrations (once the critical acceleration to de-
velop the parametric instability ac = 1.08 m/s2 is sur-
passed), η(t) displays a discrete set of excited frequen-
cies: the harmonics of the fundamental parametric wave
frequency fc/2. At fc = 20 Hz, the typical wavelength
of the standing pattern is 1.5 cm. In these experimental
runs, the vertical acceleration was set to a = 1.57 m/s2

(ε = (a − ac)/ac = 0.45). In the case where only ran-
dom waves are excited by the horizontal motion of the
wave maker, no WT spectra (either for gravity or capil-
lary waves) develop due to the low forcing intensity [5].
The typical wavelengths of the random waves in the fre-
quency forcing range are between 6 to 16 cm, and these
waves are deep water waves [2].

In the case where random waves are placed in inter-
action with Faraday waves, the probability density func-
tion (PDF) of the wave amplitude, displayed in Fig. 2,
is Gaussian, which shows that nonlinearities in the wave
amplitude are small. Besides, a scale invariant spectrum
Sη(f) ∝ f−5 develops from fc to 90 Hz. This type of
spectrum is observed for ε > 0 (when the parametric in-
stability has already set in the experimental system) and
for a large range of Vr (in particular the one reported
here for ε = 0.45). In Fig. 3a we show Sη(f) for the
three configurations described above. For the last two
cases, for frequencies larger than 90 Hz, dissipation over
the wire gauge is relevant, which changes the slope of the
spectra.

Two important comments related to the observation
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FIG. 2: (color online) Probability density functions of the
local amplitude fluctuations height η/ση for the case where
random gravity waves interact with Faraday waves (◦). A
normal curve (continuous line) is plotted for comparison.

of this scale-invariant spectrum must be noticed. First,
although such a large value of ε may sustain droplet ejec-
tion in Faraday waves [31] this is not observed in our ex-
periments (either alone or coupled to randomly excited
gravity waves). Thus, no wave breaking is observed. Sec-
ond, experimental runs with similar values for h, fc, Vr,
ac were also performed on a larger cylindrical container
(30 cm in diameter), displaying the same scale-invariant
spectrum. Data from these runs is not presented here
because, due to large size and weight of the experimen-
tal cell, an off-axis motion appeared once the parametric
waves were coupled with the random ones, which lead to
a slow change in the acceleration modulation delivered
by the shaker and inhomogeneities of the wave pattern.

In the case where random waves are placed in in-
teraction with Faraday waves, the signal presents some
“anomalies”, which are not displayed in the other two
cases. An example of this is shown in Figure 4. It
can be seen that these events do not display disconti-
nuities in η(t) nor in its derivative, but they do display
a strongly erratic behavior. We believe the appearance
of these events is responsible for the f−5 spectrum, as it
was already observed in [32], though a thorough analysis
is required to conclude on this point.

The steep spectrum might arise due to a couple of dif-
ferent reasons. First, fine size effects could occur. As
it has been shown [33–35], in finte size systems some
quantized wavelengths cause a depletion of pure reso-
nances, making the spectrum steeper. However, as we
explained above, in our system, the f−5 spectrum is
observed in either the small container (where we can
fit one half of the largest available wavelength) or the
larger one (where we can fit 2 times the largest available
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FIG. 3: (color online) a: Log-log plot of the spectra Sη(f) for
Faraday waves, random waves, and interacting random and
Faraday waves as a function of frequency f . The continuous
line is a f−5 best fit slope. b: Compensated spectra Sη(f)×f5

for interacting random and Faraday waves.

wavelength). A second reason, might be the presence of
nonlinear coherent structures, such as breaking or sharp-
crested waves [22]. Depending on the spatial dimension-
ality of the structures, the spectrum might be f−4 (coin-
ciding with WT), or f−5, the Phillips’ spectrum. These
structures are known to provide the main mechanism for
dissipation of energy and to be related also to the phe-
nomenon of intermittency [18]. In our case, though, we
do not observe wave breaking nor droplet ejections. This
discrepancy between theory and experiments reminds us
of others works on gravity wave turbulence [36–39], and
on flexural wave turbulence on a metallic plate [40–44],
that have shown that the occurrence of dissipation at all
scales causes the energy flux to be non constant through
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FIG. 4: (color online) a: Temporal trace of the local surface
wave amplitude of randomly excited waves in interaction with
parametrically excited waves over a temporal window of ∆t =
5 s for Vr = 1.0 V and ε =0.45. The zoomed region shows one
of the “anomalies” in the signal, which we believe yield the
f−5 spectrum. b: Temporal trace of the local surface wave
amplitude of randomly excited waves over a temporal window
of ∆t = 5 s for Vr = 1.0 V.

the scales, in contrast to the WT assumptions, thus mak-
ing the inertial window ill-defined, leading to a steeper
spectrum. Non-local interactions might also be respon-
sible for the steep spectrum. It is known that the in-
teraction of a slow mode with the small scales can be
interpreted as a condensate state that displays a steep
spectrum [45]. The determination of the actual reason
for the development of the observed f−5 spectrum re-
quires further studies.

IV. INTERMITTENCY

When a singularity spectrum develops, the statistical
properties of the wave field should be affected and in-
termittency may appear (as in the case of the break-
down of WT). To probe this hypothesis, we calculate
the higher-order cumulants of η(t) when it displays the
f−5 spectrum. Due to the steepness of the spectrum,
to probe intermittency at least third degree increments

δ
(3)
τ η(t) = η(t+3τ)−3η(t+2τ)+3η(t+ τ)−η(t) have to

be computed to remove the local linear trends in the time
lag τ coming from the differentiable part of η(t) [46]. Ac-
cordingly, in order to study the intermittent properties
of the signal η(t), we computed the structure functions
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FIG. 5: (color online) a: Normalized structure factors

S
(4)
p (τ)/S

(4)
p (0) for p = [1, 2, 3, 4, 5]. They all show a power-

law behavior in the inertial window 5.6 ms < τ < 25 ms (be-
sides, the behavior is the same for different values of d). b:

Exponents ζ
(d)
p as a function of p for d = 1, 2, 3 and 4, obtained

by fitting power laws S
(d)
p (τ) ∼ τ ζ

(d)
p . Continuous lines are

best fits following the quadratic relation ζ
(d)
p = c

(d)
1 p− 1

2
c
(d)
2 p2.

For d = 1 and 2, the quadratic parameter is negligible. Fit-

ting ζ
(4)
p with the above relations yields c

(4)
1 = 2.21 and c

(4)
2 =

0.32.

of degree d and order p, S
(d)
p (τ) = 〈|δ(d)τ η(t)|p〉. In the

case of a power-law spectrum Sη(f) ∝ f−ν (such as the

one we observed with ν = 5), S
(d)
p (τ) is expected to be

scale as τ ζ
(d)
p , and in particular S

(d)
2 (τ) ∼ τν−1. In Fig-

ure 5a we show the behavior of S
(4)
p (τ) = 〈|δ(4)τ η(t)|p〉. It

is observed that the structure factors are indeed power-
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laws as a function of τ (for any degree d). Thus, we

can compute the exponents ζ
(d)
p as a function of p for

d = 1, 2, 3 and 4 by best fitting a power law in the in-
terval 5.6 ms < τ < 25 ms (the inertial window). These
exponents are shown in Fig. 5b. It can be observed
that for d = 1 and 2, a linear relationship is obtained
between the exponent and p, which shows the differen-
tiable part of the η(t). However, when we look at the
higher-degree exponents we realize that these exponents
are non-linear functions of p, which is a clear signature
of the intermittent nature of the wave system. Moreover,
these exponents are in good agreement with the theoret-

ical prediction ζ
(d)
p = c

(d)
1 p − 1

2c
(d)
2 p2 [46]. Additionally,

we note that whereas using d = 1 or 2 the exponents
lead to an underestimated value of ν = 5, the exponents

ζ
(3)
2 =3.58 and ζ

(4)
2 = 3.79, which show that by increasing

d one approaches the observed spectral exponent. An-
other feature of the intermittent nature of the acquired
signal can be observed by computing the PDFs of the

normalized increments δ
(d)
τ η(t) for different values of τ .

In our case, since we concluded above that we should

use d = 4, we computed δ
(4)
τ η(t) for different time lags

τ and with them we calculated their PDFs, which are
shown in Fig. 6. We note that their shapes deform con-
tinuously as the time lag τ changes, showing an evolution
across scales. Within the inertial window, for small τ the
tails of the PDF show a very mild slope which decreases

for larger values of δ
(4)
τ η(t), while for larger τ the tails

become much steeper. This effect reaffirms the previous
results on the intermittent nature of the wave field, which
shows larger fluctuations for smaller time lags (i.e. small
scale intermittency). Thus, the observed wave field dis-
plays a scale-invariant power-law spectrum between 20
and 90 Hz and it is intermittent at small scales.

The origin of this intermittent wave field lies in the
interaction between the random and parametric waves.
The randomly moving piston generates gravity waves
which distort the pattern of Faraday waves, changing lo-
cally its amplitude and wavelength, and even creating
defects. These distortions pass over the wire gauge, os-
cillating at a much larger frequency than the random
wave that act as low frequency carriers. In that sense,
it follows the same idea developed by Phillips [15], but
without the need of wave breaking. In fact, no wave
breaking nor droplet ejection was observed in the exper-
imental runs. It must be noticed that a similar spectrum
can be constructed by following the amplitude defects of
Faraday waves which are self-generated as a is increased
above the threshold of defect turbulence [32]. This sug-
gests a connection between the observed spectrum and
the spectrum of wave amplitudes in the defect-mediated
dynamics of pattern forming systems. In those systems,
non locality is needed to generate turbulent states. In our
experimental configuration it is observed that the control
parameter range for the appearance of this scale-invariant
spectrum is very large and insensitive to the values of fc,

ac (as long as is large enough to sustain Faraday waves
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FIG. 6: (color online) Semilog plot of PDFs of the nor-

malized increments δ
(4)
τ η(t)/〈|δ(4)τ η(t)|2〉1/2 as a function of

δ
(4)
τ η(t)/〈|δ(4)τ η(t)|2〉1/2 for time lags time 6.3 ms < τ < 25 ms.

Curves are displaced by a multiplying factor for better pre-
sentation. The arrow shows the direction of increasing τ .

over the random ones) and Vr, which shows the robust-
ness of this type of spectrum.

V. CONCLUSION

In conclusion, we have shown that a simple tabletop
experiment can display a power-law spectrum driven by
singularities when a standing wave pattern arising from a
parametric instability is coupled with randomly excited
gravity waves. The wave field generated by this coupling
is intermittent as it can be observed by the nonlinear de-

pendence of the ζ
(d)
p exponents on the order p, and by the

change in the shape of the PDF of the normalized incre-

ments δ
(d)
τ η(t) when τ changes. Some questions related

to the wave field spectrum remain unanswered (such as
the possible multifractal structure of the intermittent in-
crements and its structural relation with the breakdown
of WT spectrum, or the mechanisms involved behind
the steep spectrum). To answer some of them, spatio-
temporal measurements will be needed. Work is being
performed in that direction.
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[9] G. Düring, C. Josserand, and S.Rica Phys. Rev. Lett. 97,
025503 (2006).

[10] N. Mordant Phys. Rev. Lett. 100, 234505 (2008); A.
Boudaoud, O. Cadot, B.Odille, and C. Touz, Phys. Rev.
Lett. 100, 234504 (2008).

[11] S. Dyachenko, A. Newell, A. Pushkarev, and V. Za-
kharov, Physica D 57, 96 (1992), C. Connaughton et al,
Phys. Rev. Lett. 95 236901 (2005).

[12] U. Bortolozzo, J. Laurie, S. Nazarenko, and S. Residori,
J. Opt. Soc. Am B 26 (12) 22802284 (2009).

[13] L. Biven, S.V. Nazarenko, and A.C. Newell, Physics Let-
ters A 280 2832 (2001).
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