
ar
X

iv
:1

60
9.

00
25

9v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

7 
D

ec
 2

01
6

Inhomogeneous diffusion and ergodicity breaking induced by global memory effects
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We introduce a class of discrete random walk model driven by global memory effects. At any time
the right-left transitions depend on the whole previous history of the walker, being defined by an
urn-like memory mechanism. The characteristic function is calculated in an exact way, which allows
us to demonstrate that the ensemble of realizations is ballistic. Asymptotically each realization is
equivalent to that of a biased Markovian diffusion process with transition rates that strongly differs
from one trajectory to another. Using this “inhomogeneous diffusion” feature the ergodic properties
of the dynamics are analytically studied through the time-averaged moments. Even in the long time
regime they remain random objects. While their average over realizations recover the corresponding
ensemble averages, departure between time and ensemble averages is explicitly shown through their
probability densities. For the density of the second time-averaged moment an ergodic limit and the
limit of infinite lag times do not commutate. All these effects are induced by the memory effects. A
generalized Einstein fluctuation-dissipation relation is also obtained for the time-averaged moments.

PACS numbers: 05.40.-a, 02.50.-r, 87.15.Vv, 05.40.Fb

I. INTRODUCTION

Random walks dynamics are one of the more simple
non-equilibrium models which found application in di-
verse kind of problems arising in physics, biology, econ-
omy, etc. In their standard Markovian formulation [1, 2],
the second moment of these diffusive processes grows lin-
early in time, a property shared by Brownian motion.
Anomalous (sub and super) diffusive processes [3, 4] de-
part from the linearity condition.

The temporal dependences of the moments of a ran-
dom walk are defined from an ensemble of realizations.
Nevertheless, single particle tracking microscopy permits
to define the moments from an alternative temporal mov-
ing average performed with only one single trajectory [5–
7] . From a physical point of view, this technique allow us
to ask about the ergodic properties of a diffusion process,
even when it does not have a stationary state.

In different tracking experiments performed with bio-
physical arranges [7–10] it was found that the diffusion
coefficient (which parametrizes the time-averaged second
moment) becomes a random object that assumes differ-
ent values for each realization. This distribution of diffu-
sion coefficients renders the process inhomogeneous in the
sense that in an ensemble of simple diffusers each one has
a different diffusion coefficient [11]. In addition to this
feature, the time-averaged second moments are charac-
terized by a subdiffusive behavior. Both properties lead
to weak ergodicity breaking, that is, in contrast to strong
ergodicity breaking, time and ensemble averages differs
even when the system is able to visit the full available
phase space. These striking experimental results can be
captured through a continuous-time random walk model
with waiting time distributions characterized by power-
law behaviors [11–13]. These results triggered the study

of the ergodic properties of diverse anomalous diffusion
process [14–26] from a similar perspective.
The main goal of this paper is to explore if the inho-

mogeneous property of a diffusion process (asymptotic
randomness of the time-averaged moments) jointly with
its associated weak ergodicity breaking [11, 12] may also
be induced by the presence of strong memory effects in
the stochastic dynamics. Specifically, we are interested
in globally correlated dynamics, where the walker transi-
tions depend on its whole previous history or trajectory.
It is known that globally correlated stochastic dynam-

ics lead to anomalous diffusion processes [27–35]. On the
other hand, we remark that the interplay between mem-
ory effects and weak ergodicity breaking was study previ-
ously such as for example in correlated continuous-time
random walk models [36, 37], single-file diffusion [38], and
fractional Brownian-Langevin motion [39]. Here, we con-
sider a different kind of memory processes. The model
consist in a random walker whose transitions depend on
the whole previous history of transitions. The right-left
jump probabilities are defined by an urn-like mechanism
[40–44], which does not fulfill the standard central limit
theorem [44]. The ensemble dynamics becomes superdif-
fusive (ballistic). Furthermore, in contrast with other
correlation mechanisms, here each realization is asymp-
totically equivalent to those of a biased Markovian walker
but with (random) transition rates that assume different
values for each realization. This property leads to ran-
dom time averages and its associated ergodicity breaking.
We consider a diffusive non-stationary dynamics (the

statistics is not invariant under a time shift). Similarly to
the case of continuous-time random walks (see for exam-
ple Refs. [12] and [45]), the studied model yields statisti-
cal laws for ergodicity breaking which are different from
those obtained from dynamics with a stationary state,
case analyzed in Ref. [46]. In addition, here a gener-
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alized Einstein fluctuation-dissipation relation is estab-
lished [12, 47, 48] for the time-averaged moments.
The paper is outlined as follows. In Sec. II we in-

troduce the stochastic dynamics that defines the glob-
ally correlated random walk. Its ensemble properties
are studied through its characteristic function, which al-
lows us to calculate its moments and probability evolu-
tion. In Sec. III the time-averaged moments and the
ergodic properties are analyzed. In Sec. IV a general-
ized Einstein relation is obtained from the time-averaged
moments. Section V is devoted to the Conclusions. Cal-
culus details that support the main results are provided
in the Appendixes.

II. GLOBAL CORRELATED RANDOM WALK

DYNAMICS

We consider a one-dimensional random walk where
both the time and position coordinates are discrete. In
each discrete time step (t → t+ δt) the walker perform a
jump of length δx to the right or to the left. For simplic-
ity, time is measured in units of δt. Then, t = 0, 1, 2, · · · .
The stochastic position Xt at time t is

Xt = X0 +

t
∑

t′=1

σt′ . (1)

Here, X0 is the initial position, and σt = ±δx is a random
variable assigned to each step. The stochastic dynamics
of the variables {σt′}tt′=1 is as follows. At t = 1 (first
jump or transition) the two possible values are chosen
with probability

P (σ1 = ±δx) = q±, (2)

where the weights satisfy q+ + q− = 1. The next
values are determinate by a conditional probability
T (σ1, · · ·σt|σt+1) [49] that depends on the whole previ-
ous jump trajectory: σ1, · · ·σt.
Different memory mechanisms can be introduced

through T (σ1, · · ·σt|σt+1), such as for example in the ele-
phant random walk model [27–29]. Here, we analyze an
alternative urn-like dynamics [46], where

T (σ1, · · ·σt|σt+1 = ±δx) =
λq± + t±
t+ λ

. (3)

In this expression, λ is a positive free dimensionless pa-
rameter. Furthermore, t+ and t− are the number of times
that the walker jumped (up to time t) to the right and
to the left respectively, t = t+ + t−. Hence, with prob-
ability λ/(t + λ) the walker jumps to right or to the
left with weights q+ and q− respectively. Complemen-
tarily, the jump is chosen in agreement with the weights
t±/(t+ λ), which gives the dependence of the dynamics
over the whole previous jump trajectory.
Notice that in the limit λ → ∞ independent random

variables with probability q± are obtained. Hence, the

stochastic dynamics becomes an usual memoryless ran-
dom walk. In the limit λ → 0, the random variables σt

assume the same value as σ1. Therefore, a deterministic
behavior follows after the first jump.
Given the transition probability (3), the set of random

variables {σt} is interchangeable [44]. Therefore, their
joint probability density is invariant under arbitrary per-
mutation of its arguments. In consequence, the probabil-
ity of the variables σt (jump length) is independent of t,
P (σt = ±δx) = q±. The average jump length reads

〈σ〉 ≡

∫

dσP (σ)σ = δx(q+ − q−). (4)

Then, for q+ 6= q− a biased random walk is obtained,
〈σ〉 6= 0. The second jump moment is

〈σ2〉 ≡

∫

dσP (σ)σ2 = δx2. (5)

Notice that both statistical moments are finite.
The initial condition X0 jointly with the transition

probability (3) completely define the stochastic dynam-
ics. Below, we characterize its statistical properties.

A. Characteristic function

The stochastic process Xt can be described through

xt ≡ Xt −X0 =

t
∑

t′=1

σt′ , (6)

which measures the departure with respect to the initial
condition X0. Its characteristic function is defined by

Qt(k) ≡ 〈exp(ikxt)〉 . (7)

Here, 〈· · · 〉 denotes an average over an ensemble of re-
alizations. A close recursive relation for Qt(k) can be
obtained as follows. At time t+ 1, it can be written as

Qt+1(k) =

〈

eikxt

∑

σ=±δx

T (σ1, · · ·σt|σ)e
ikσ

〉

. (8)

Here, we taken into account that the random variable
σt+1 is chosen in agreement with T (σ1, · · ·σt|σt+1). No-
tice that the average includes all possible random values
of {σi}i=t

i=1, which in turn define all possible realizations
of xt. From Eq. (3), we get

Qt+1(k) = Qt(k)
λ

t+ λ

∑

µ=±

qµe
ikδxµ (9)

+
1

t+ λ

∑

µ=±

〈

eikxt tµ
〉

eikδxµ ,

where for shortening the expression we defined δx± ≡
±δx. Given that xt = δx(t+ − t−), the derivative of the
characteristic function (7) can be written as

d

dk
Qt(k) = iδx

〈

eikxt(t+ − t−)
〉

. (10)
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Hence, after writing eikδxµ = cos(kδxµ) + i sin(kδxµ), by
using that t = t+ + t−, and q+ + q− = 1 [50], Eq. (9)
straightforwardly leads to the closed recursive relation

Qt+1(k) = cos(kδx)Qt(k) +
1

t+ λ
sin(kδx)

1

δx

d

dk
Qt(k)

+i(q+ − q−)
λ

t+ λ
sin(kδx)Qt(k). (11)

This is the main result of this section. It completely
characterizes the probability and moments of xt.
We notice that in the limit λ → 0, the characteris-

tic function is Qt(k) = 〈exp(iktσ1)〉 = q+ exp(iktδx) +
q− exp(−iktδx), which consistently satisfies Eq. (11)
with λ = 0. In fact, after the first event, the next ones
assume the same value, xt = tσ1 [see Eq. (3)]. In
the limit λ → ∞, the solution of Eq. (11) is Qt(k) =

〈exp(ikσ1)〉
t
= [q+ exp(ikδx) + q− exp(−ikδx)]t, which

corresponds to the characteristic function of a Marko-
vian random walk where the steps σt are independent
random variables.

B. Moments behavior

From the characteristic function Qt(k), the moments
can be obtained by differentiation as

〈xt〉 = −i
d

dk
Qt(k)

∣

∣

∣

∣

k=0

, 〈x2
t 〉 = −

d2

dk2
Qt(k)

∣

∣

∣

∣

k=0

.

(12)
For the first moment, Eq. (11) lead to the recursive

relation

〈xt+1〉 = 〈xt〉

[

1 +
1

t+ λ

]

+
λ

t+ λ
〈σ〉, (13)

where the average jump length 〈σ〉 is given by Eq. (4).
The solution of this equation is

〈xt〉 = 〈σ〉t = δx(q+ − q−)t. (14)

Hence, the bias induced by (q+ − q−) leads to a linear
increasing of 〈xt〉.
For the second moment, it follows the recursive relation

〈x2
t+1〉 = 〈x2

t 〉

[

1 +
2

t+ λ

]

+
2λ

t+ λ
〈xt〉〈σ〉 + 〈σ2〉, (15)

whose solution is given by

〈x2
t 〉 =

〈σ2〉

1 + λ
(t2 + tλ) +

〈σ〉2λ

1 + λ
(t2 − t). (16)

From Eqs. (14) and (16), the second centered moment
reads

〈x2
t 〉 − 〈xt〉

2 =

[

〈σ2〉 − 〈σ〉2

1 + λ

]

(t2 + tλ). (17)

Hence, the memory effects leads to a superdiffusive be-
havior, which in the asymptotic time regime becomes
ballistic. The ballistic regime is valid at any time when
λ → 0. Consistently, in the limit λ → ∞ (memoryless
case) it follows

〈x2
t 〉 − 〈xt〉

2 = [〈σ2〉 − 〈σ〉2]t, (18)

which corresponds to an expected standard diffusive be-
havior.

C. Probability evolution

After Fourier inversion, the characteristic function
leads to a recursive relation for the probability Pt(x) of
xt. We get [51]

Pt+1(x) = W+
t Pt(x− δx) +W−

t Pt(x+ δx), (19)

where

W±
t =

1

2

{

1±
1

t+ λ

[

(
x∓ δx

δx
) + λ(q+ − q−)

]}

. (20)

The evolution (19), which is valid for t ≥ 1, describes
a hopping process with transitions W±

t . In the limit
λ → ∞, it follows W±

t = q±, recovering a standard
random walk. For finite λ, the memory effects appears
through W±

t . Furthermore, for Xt the hopping also de-
pends on the initial condition (x → X − X0), non-
Markovian property shared by the elephant random walk
model [27].
An interesting aspect of the evolution (19) is given by

its continuous limit. It follows by taking the limits in
which both the length jump (δx → 0) and the time in-
terval between jumps (δt → 0) vanish. Then, we can
approximate (for simplicity the (dimensional) continuous
time is also denoted by t)

Pt(x∓ δx) → Pt(x)∓ δx
∂

∂x
Pt(x) +

δx2

2

∂2

∂x2
Pt(x), (21)

jointly with

Pt+1(x)− Pt(x) → δt
∂

∂t
Pt(x). (22)

Introducing these approximations in Eq. (19), it follows
the equation

∂

∂t
Pt(x) = D

∂2

∂2x
Pt(x)−

1

t+ tλ

∂

∂x
[xPt(x)]

−
tλ

t+ tλ
V

∂

∂x
Pt(x), (23)

where the parameters are

D ≡
1

2

δx2

δt
, V ≡ (q+ − q−)

δx

δt
, tλ ≡ λδt. (24)
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The Fokker-Planck equation (23) corresponds to a
Brownian particle driven by a harmonic potential with
spring constant 1/(t+ tλ). A similar result was obtained
in Ref. [27] for the elephant random walk model.
In the limit λ → ∞, Eq. (23) becomes

∂

∂t
Pt(x) = D

∂2

∂2x
Pt(x)− V

∂

∂x
Pt(x). (25)

Consistently, this equation corresponds to the probability
evolution of a Brownian particle with diffusion coefficient
D and subjected to a constant force proportional to V.
The evolution Eq. (23) also leads to a superdiffu-

sive ballistic process. Its solution can be written as
[Pt=0(x) = δ(x)]

Pt(x) =

√

1

2πσ2
t

exp

[

−
(x− V t)2

2σ2
t

]

, σ2
t ≡ 2

D

tλ
t(t+tλ).

(26)
Hence, the (time dependent) harmonic potential is un-
able to induce a (time independent) stationary state. In
the limit λ → 0, the previous solution reads Pt(x) =
δ(x− V t).

III. INHOMOGENEOUS DIFFUSION AND

ERGODICITY BREAKING

The ergodic properties of a time series X(t) associated
to an arbitrary random walker can be analyzed through
the time-averaged moments [11, 12], which are definedby
the following temporal moving average

δκ(t,∆) ≡

∫ t−∆

0
dt′[X(t′ +∆)−X(t′)]κ

t−∆
. (27)

Here, ∆ is called the lag (or delay) time, and κ is a nat-
ural number, κ = 1, 2, · · · .
For ergodic diffusion processes, in the limit of increas-

ing times, δκ(t,∆) recovers the ensemble behavior of the
corresponding moments, that is

δκ(∆) ≡ lim t→∞δκ(t,∆) = 〈[X(∆)−X(0)]κ〉. (28)

Here, the initial condition X(0) follows from the transla-
tional invariance of Eq. (27). A weaker condition can be
formulated by demanding the equality of the asymptotic
behaviors (∆ → ∞) of both terms in Eq. (28).
Non-ergodic process do not fulfill Eq. (28). In par-

ticular, inhomogeneous diffusion corresponds to the case
in which δκ(t,∆), even in the long time limit, becomes
a random object that assumes different values for each
particular realization. Below we study the time-averaged
moments δκ(t,∆) for the random walk introduced in the
previous section.

A. Asymptotic randomness

For the proposed model, given that the perma-
nence time in each state is finite, a central ingredi-

ent that determines its ergodic properties is the asymp-
totic behavior (limt→∞) of the transition probability
T (σ1, · · ·σt|σt+1 = ±δx). For the urn model, Eq. (3), it
is known that it converges to random values f± [43, 46],
that is,

lim
t→∞

T (σ1, · · ·σt|σt+1 = ±δx) = f±, (29)

where 0 ≤ f± ≤ 1 and f+ + f− = 1. In each particu-
lar realization f± assume different random values. Their
probability density P(f±) is a Beta distribution [43, 46]

P(f±) =
Γ(λ)

Γ(λ+)Γ(λ−)
f
λ+−1

+ f
λ−−1

− , (30)

where λ± ≡ λq±, and Γ(x) is the Gamma function. For
clarity, these results are rederived in Appendix A. The av-

erage over realizations of f± is 〈f±〉 =
∫ 1

0
df+ P(f±)f± =

q±. For alternative memory mechanisms, such as that as-
sociated to the elephant random walk model [27–29], the
previous randomness is absent [46].
The convergence of the transition probability to ran-

dom values straightforwardly lead to an inhomogeneous
diffusion process. In fact, each realization becomes equiv-
alent to that of a biased Markovian random walk process
with transition rates f±. The bias arises because (even
when q+ = q−) in general f+ 6= f−.
In the limit λ → ∞, from Eq. (30) it follows P(f±) =

δ(f± − q±), implying that the fractions f±, at any stage
of the diffusion process, assume deterministically the val-
ues q±. This case corresponds to the absence of memory
and leads to a standard diffusion process [defined by Eq.
(18)].
The asymptotic property (29) implies that at

large times the time-averaged moment δκ(∆) =
lim t→∞δκ(t,∆) becomes a random variable. In fact, its
average over realizations can be written as

〈δκ(∆)〉 = 〈δκ(∆, f±)〉 =

∫ 1

0

df+ P(f±)δκ(∆, f±). (31)

In this expression δκ(∆, f±) corresponds to the
(asymptotic) time-averaged moment corresponding to
a memoryless random walk with transition rate
T (σ1, · · ·σt|σt+1 = ±δx) = f±. Given the ergodicity of
this kind of dynamics, under the replacements q± → f±,
t → ∆, from Eqs. (28) and Eq. (14) we get

δ1(∆, f±) = ∆δx(f+ − f−). (32)

Similarly, taking the limit λ → ∞ (memoryless case) and
under the same replacements, from Eq. (16) we get

δ2(∆, f±) = δx2{(f+−f−)
2∆2+[1−(f+−f−)

2]∆}. (33)

Eqs. (32) and (33) define the random values (written
in terms of f±) that assume the time-averaged moments
(27) in the long time limit. In order to check these results,
in Fig. 1 we plot δ1(t,∆) for the global correlated random
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FIG. 1: Different realizations (full lines) of the first time-
averaged moment δ1(t,∆) [Eq. (27)] corresponding to the
globally correlated random walk dynamics defined by Eq. (3).
The parameters are λ = 2, q+ = 0.8, q− = 0.2, and t =
200. The dotted (black) line corresponds to the analytical
expression (34), which gives the ensemble mean value.

walk defined by Eq. (3). From each generated realiza-
tion, δ1(t,∆) is obtained from its definition Eq. (27).
Consistently with the analysis, each curve (for ∆ < t)
can be very well fitted by the approximation (32), that
is, a linear behavior in ∆ is observed.
In Fig. 2, for a unbiased random walk (q1 = q2),

we plot different realizations corresponding to the sec-
ond time-averaged moment δ2(t,∆). Consistently with
Eq. (33) a quadratic behavior is observed for ∆ < t.
For both δ1(t,∆) and δ2(t,∆) the behaviors predicted

by Eqs. (32) and (33) loss their validity when ∆ ≈ t.
In fact, in both figures an appreciable deviation can be
observed in that regime. The fraction of (lag) time ∆
over which that happens diminishes for increasing t.

B. Ergodicity in mean value

The previous figures explicitly show that, contrarily
to ergodic dynamics, here the memory effects lead to a
randomness of the time-averaged moments. Their aver-
age over an ensemble of realizations can be performed
by using the probability distribution (30). Using that

〈f±〉 =
∫ 1

0
df+ P(f±)f± = q±, Eq. (32) leads to

〈δ1(∆)〉 = ∆〈σ〉. (34)

Furthermore, using that
〈

(f+ − f−)
2
〉

= [1 + λ(q+ −
q−)

2]/(1 + λ), from Eq. (33) it follows

〈δ2(∆)〉 =
〈σ2〉

1 + λ
(∆2 +∆λ) +

〈σ〉2λ

1 + λ
(∆2 −∆). (35)

The last two expressions, under the replacement ∆ → t
recover Eqs. (14) and (16) respectively. Thus, the first

0 50 100 150 200
0
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10
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x103

FIG. 2: Different realizations (full lines) of the second time-
averaged moment δ2(t,∆) [Eq. (27)] corresponding to an un-
biased globally correlated random walk dynamics. The pa-
rameters are λ = 2, q+ = q− = 1/2, and t = 200. The dot-
ted (black) line corresponds to the analytical expression (35),
which gives their ensemble mean value.

two moments satisfy the ergodicity condition (28) only
when averaged over realizations The validity of both re-
sults, Eqs. (34) and (35), was checked numerically. In
Fig. 3, the solid black lines are defined by these equa-
tions, while the circles correspond to an average over re-
alizations, such as those shown in Figs. (1) and (2).
Interestingly, the previous property is also valid for

higher time-averaged moments,

〈δκ(∆)〉 = lim t→∞〈δκ(t,∆)〉 = 〈[X(t)−X(0)]κ〉|t=∆.
(36)

Thus, in terms of the characteristic function (7) they can
be written as

〈δκ(∆)〉 = i−κ dκ

dkκ
Q∆(k)

∣

∣

∣

∣

k=0

. (37)

The equality (36) is demonstrated in Appendix B. We
notice that for an arbitrary stochastic signalX(t) we may
consider the equality (36) as a definition of ergodicity in
mean value.

C. Probability densities

While the asymptotic value δκ(∆) = lim t→∞δκ(t,∆)
of the time-averaged moments is random, Eq. (36) say
us that their average over realizations recover the ensem-
ble behavior. Therefore, we can affirm that the random
walker is ergodic in average. The lack of ergodicity is
given by the random nature of δκ(∆). In fact, higher
moments 〈[δκ(∆)]n〉 (n ≥ 2) can not be related with
the ensemble behavior. In order to characterize the lack
of ergodicity, we introduce the normalized (asymptotic)
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FIG. 3: Average over realizations of the first (a) and second
(b) time-averaged moments δ1(t,∆) and δ2(t,∆). The param-
eters are the same than in Figs. 1 and 2 respectively. The
circles correspond to a numerical average performed with 103

realizations. The full lines correspond to Eqs. (34) and (35)
respectively.

time-averaged moments

ξκ ≡ lim
t→∞

δκ(t,∆)

〈δκ(t,∆)〉
=

δκ(∆, f±)

〈δκ(∆)〉
, (38)

their probability density being denoted by P (ξκ). Ergod-
icity in probability density corresponds to the absence of
randomness,

P (ξκ) = δ(ξκ − 1). (39)

For κ = 1, from Eqs. (32) and (34) we get

ξ1 =
(f+ − f−)

(q+ − q−)
, (40)

which is a random variable independent of ∆. It charac-
terizes the asymptotic (random) bias of the globally cor-
related random walk. Its probability distribution, from
Eq. (30) reads

P (ξ1) =
1

N
|δq|(1 + δqξ1)

λ+−1(1− δqξ1)
λ−−1. (41)

Here, δq ≡ q+−q−, and as before λ± = λq±. The normal-
ization constant is N = 2λ−1Γ(λ+)Γ(λ−)/Γ(λ). The den-
sity has support in the interval defined by |ξ1| ≤ 1/|δq|,
and consistently with the definition (38) satisfies 〈ξ1〉 =
∫ +1/|δq|

−1/|δq| P (ξ1)ξ1dξ1 = 1. Furthermore, for λ < ∞ it de-

parts from Eq. (39).
In Fig. 4 we plot a set of probability densities P (ξ1)

jointly with their numerical versions. They were determi-
nate from a set of realizations such as those shown in Fig.
1. The analytical expressions fit very well the numerical
results. Depending on the memory parameter λ, the den-
sity develops very different dependences. For increasing
λ, the density is peaked around one [see Fig. 4(d)], which
indicates that the ergodic regime is approached.
The second normalized moment [κ = 2 in Eq. (38)],

from Eq. (33) can be written as

ξ2 = a(f+ − f−)
2 + b, (42)
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FIG. 4: Probability density P (ξ1) corresponding to the nor-
malized first time-averaged moment, Eq. (38) with κ = 1. The
full lines correspond to the analytical result Eq. (41). The
circles correspond to a numerical simulations with 104 real-
izations. The parameters are q+ = 0.8, q− = 0.2, ∆ = 100,
and t = 1000. In (a) λ = 1, (b) λ = 2, (c) λ = 10, and in (d)
λ = 40.

where a and b are functions that also follows from Eq.
(33) and only depend on ∆ and λ. From Eq. (30) we get
the probability density

P (ξ2) =
1

N

1

|a|

√

a

ξ2 − b

(

1−
ξ2 − b

a

)
λ
2
−1

. (43)

The variable ξ2 take values in the interval (b, a +
b). Consistently with Eq. (38), it satisfies 〈ξ2〉 =
∫ a+b

b
P (ξ2)ξ2dξ2 = b+ a/(1 + λ) = 1.

For an unbiased random walk, q+ = q− = 1/2, we
obtain N = 2λ−1Γ2(λ/2)/[Γ(λ)], while from Eq. (35) it
follows

a =
(∆− 1)(1 + λ)

∆ + λ
, b =

1 + λ

∆+ λ
, (44)

which satisfy the previous condition b+ a/(1 + λ) = 1.
In the limit λ → ∞ (with finite ∆), the density P (ξ2)

becomes a delta Dirac function

lim
λ→∞

P (ξ2) = δ(ξ2 − 1), (45)

which corresponds to the ergodic regime. This results
follow straightforwardly from Eqs. (42) and (30). On
the other hand, in the limit ∆ → ∞ (with finite λ), the
parameter a goes to 1 + λ, while b vanishes. Hence,

lim
∆→∞

P (ξ2) =
1

N

√

1

(1 + λ)ξ2

[

1−
ξ2

1 + λ

]
λ
2
−1

. (46)

From here, it is simple to proof that both kind of limits
do not commutate,

lim
∆→∞

lim
λ→∞

P (ξ2) 6= lim
λ→∞

lim
∆→∞

P (ξ2). (47)
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FIG. 5: Probability density P (ξ2) corresponding to the nor-
malized second time-averaged moment, Eq. (38) with κ = 2.
The full lines correspond to the analytical result Eq. (43).
The circles correspond to a numerical simulations with 5×104

realizations. The parameters are q+ = q− = 1/2, and
t = 1000. In (a) λ = 1, ∆ = 10, (b) λ = 2, ∆ = 10, (c)
λ = 10, ∆ = 10, and in (d) λ = 40, ∆ = 500.

In fact,

lim
∆→∞

lim
λ→∞

P (ξ2) = δ(ξ2 − 1), (48)

while from Eq. (46) we get the Gamma density

lim
λ→∞

lim
∆→∞

P (ξ2) =

√

1

2πξ2
exp

[

−
ξ2
2

]

. (49)

In spite of this difference, notice that the previous two
probability densities lead to 〈ξ2〉 = 1.
In order to check the previous results, in Fig. 5 we plot

P (ξ2) obtained numerically from a set of realizations such
as those shown in Fig. 2. For λ . 1, the distribution as-
sume a U -like form [Fig. 5(a)]. For higher values of λ,
added to the power-law behavior predicted by Eq. (43)
[Fig. 5(b)], P (ξ2) approaches a delta Dirac function [Fig.
5(c)] centered in ξ2 = 1, Eq. (45). When ∆ ≫ λ, the
distribution approaches the limit defined by Eq. (46),
Fig. 5(d), which in the scale of the plot is almost indis-
tinguishable from the behavior (49). Therefore, Fig. 5
(c) and 5(d) explicitly show the fact that in general the
ergodic limit and the limit of infinite delay times do not
commutate for the normalized moments.

D. Correlations between time-averaged moments

In the previous section we characterized the probabil-
ities densities of the asymptotic first and second time-
averaged moments. It is interesting to note that these
objects are correlated between them. In fact, from

Eqs. (32) and (33) it is possible to obtain the relation
δ2(∆, f±) = [δ1(∆, f±)]

2(1− 1/∆)+ δx2∆, which implies
that

lim
t→∞

δ2(t,∆) = lim
t→∞

[δ1(t,∆)]2
(

1−
1

∆

)

+ δx2∆. (50)

Therefore, in the long time limit, the realizations of
δ1(t,∆) and δ2(t,∆) becomes proportional. The real-
izations shown in Figs. (1) and (2) are consistent with
this relation, which is strictly valid in the limit t → ∞.
In spite of this fact, due to their different scaling with
∆, in the long time regime their probabilities densities
develop very different behaviors [see Eqs. (41) and (47)].
Relations like that defined by Eq. (50) also appear in
higher time-averaged moments. In fact, for all of them,
their asymptotic behavior can always be written in terms
of the random variables f±.

IV. GENERALIZED EINSTEIN RELATION

The diffusion coefficient of a normal random walk pro-
cess can be related to its mobility. This coefficient gives
the proportionality between the force and the average ve-
locity of the walker when submitted to an external field.
This is the well known Einstein (fluctuation-dissipation)
relation [1–3]. For the present model, it is not possible to
establishing a similar relation in terms of the ensemble
behavior. In fact, the different time dependences of the
first two moments [see Eqs. (14) and (17)] confirm this
limitation. Given the ergodicity in mean value defined by
Eq. (36) the same drawback applies to the asymptotic
time-averaged moments. Nevertheless, from the correla-
tion defined by Eq. (50) we realize that such kind of rela-
tion can be obtained by introducing a centered (second)
time-averagedmoment (second time-averaged cumulant),
defined as

δ∗2(t,∆) ≡ δ2(t,∆)− [δ1(t,∆)]2. (51)

Here, δκ(t,∆) (κ = 1, 2) are the usual time-averaged mo-
ments, Eq. (27). Denoting its asymptotic value as

δ∗2(∆) ≡ lim
t→∞

δ∗2(t,∆), (52)

its average over an ensemble of realizations can be written
as

〈δ∗2(∆)〉 = 〈δ∗2(∆, f±)〉 , (53)

where δ∗2(∆, f±), from Eqs. (32) and (33), reads

δ∗2(∆, f±) = δx2[1− (f+ − f−)
2]∆. (54)

In contrast to δ2(∆, f±) [Eq. (33)], here a linear de-
pendence with ∆ is obtained. Similarly, using that
〈

(f+ − f−)
2
〉

= [1 + λ(q+ − q−)
2]/(1 + λ), the average

over realizations becomes

〈δ∗2(∆)〉 = δx2 λ

1 + λ
[1− (q+ − q−)

2]∆. (55)
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The case q+ = q− and q+ 6= q− define the unforced
and forced (driven) dynamics respectively. Taking a di-
mensional delay time (∆ → ∆/δt), from the previous
expression and Eq. (34) it follows

〈δ∗2(∆)〉q+=q−
= 2D∗∆, 〈δ1(∆)〉q+ 6=q−

= V∆, (56)

where the (average) diffusion and (average) velocity co-
efficients are [compare with Eq. (24)]

D∗ ≡
1

2

δx2

δt

λ

1 + λ
, V ≡

δx

δt
(q+ − q−). (57)

They can be related as

D∗ =
λ

1 + λ

δx

2

V

(q+ − q−)
, (58)

which defines an Einstein-like relation. In fact, it relates
the diffusion coefficient corresponding to the centered
(second) time-averaged moment of the unforced dynam-
ics with the velocity of the first time-averaged moment
for the forced case, Eq. (56).
The standard Einstein relation involves a thermody-

namic temperature [1–3]. Here, this dependence can
be introduced by assuming that the probabilities q± are
given by a Boltzmann exponential factor (activated pro-
cess) q± = exp[±δxF/2kT ]/Z [3], where F is the exter-
nal force, T the temperature, k the Boltzmann constant,
while Z guarantee the normalization q+ + q− = 1. Thus,

q+ − q− = tanh

[

δxF

2kT

]

. (59)

In the limit F → 0, Eqs. (58) and (59) lead to

D∗ =
λ

1 + λ
kT

(

V

F

)

. (60)

In the limit λ → ∞, it follows the standard Einstein rela-
tion (see for example equation (5.3) in Ref. [3]). In fact,
V/F is the (average) mobility. For finite λ, the standard
result is modified by the memory of the dynamics, which
introduces the factor λ/(1+λ). Furthermore, notice that
the generalized relation (60) does not characterize the
ensemble dynamics. In fact, it can only be established
in terms of the time-averaged moments [Eq. (56], which
satisfy

〈δ1(∆)〉q+ 6=q−
=

1 + λ

λ

(q+ − q−)

δx
〈δ∗2(∆)〉q+=q−

. (61)

From Eq. (59) this relation can be written as (F → 0)

〈δ1(∆)〉F 6=0
=

1 + λ

λ

F

2kT
〈δ∗2(∆)〉F=0

. (62)

A similar property was also found for subdiffusive
continuous-time random walk models [12] and others
anomalous diffusion processes [47, 48].

V. SUMMARY AND CONCLUSIONS

We introduced a discrete random walk model driven
by global memory effects, where each walker step de-
pends on the previous number of performed left-rigth
transitions, Eq. (3). After obtaining a recursive rela-
tion for its characteristic function, we obtained its firsts
moments. Given that the memory mechanism may in-
duce a bias, the first moment has a linear dependence
with time, Eq. (14). The second moment, event in ab-
sence of bias, develops a superdiffusive ballistic behavior,
Eq. (16). In a continuous time-space limit, the proba-
bility density is governed by a (non-Markovian) local in-
time Fokker-Planck equation [Eq. (23)], being defined by
an effective harmonic oscillator potential with a strength
constant inversely proportional to the elapsed time.
In the long time regime each realization is equivalent

to that of a biased Markovian walker with transitions
rates that differs from realization to realization. This
kind of asymptotic inhomogeneous diffusion is induced
by the memory effects. Consequently, and similarly to
the case of subdiffusive continuous-time random walks,
the time-averaged moments [Eq. (27)] become random
objects [Figs. (1) and (2)] with a time independent statis-
tics. Their average over realizations recover the ensemble
behavior obtained from the characteristic function [Fig.
(3)]. Nevertheless, due to their intrinsic randomness,
characterized through their probability densities [Figs.
(4) and (5)], the diffusion process is nonergodic. For the
second-averaged moment we find that the ergodic limit
and the limit of large delay times do not commutate [Eq.
(47)]. Added to their randomness, we showed that in gen-
eral the time-averaged moments are correlated between
all them.
Due to the different time dependences of the first

and second moments, it is not possible to establish an
Einstein-like relation for the ensemble dynamics. Nev-
ertheless, we showed that a generalized relation can be
formulated after introducing a centered (second) time-
averaged moment (second time-averaged cumulant), Eq.
(51). In contrast with the standard result, the relation
between the corresponding (average) diffusion and (av-
erage) mobility coefficients is modified by the memory
control parameter [Eqs. (58) and (60)].
The present results, as well as the analyzes performed

in Refs. [36–39], confirm that different kind of memory
processes may lead to weak ergodicity breaking, in par-
ticular that characterized by random time-averaged mo-
ments (inhomogeneous diffusion). It is expected that the
same kind of results arise in continuous (time and space)
random walk models with finite residence times and fi-
nite average jump lengths. On the other hand, conditions
that guarantees that a memory mechanism leads (or not)
to ergodicity breaking are not known. General criteria for
solving this issue, as well as the interplay between global
memory effects an divergent residence times, jointly with
the validity of the Einstein relation, are interesting ques-
tions that emerge from the present analysis.
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Appendix A: Probability density of the asymptotic

transition probabilities

Here, we derive the probability density (30)
of the asymptotic transition probabilities, f± =
limt→∞ T (σ1, · · ·σt|σt+1 = ±δx), Eq. (29).
The joint probability P (σ1, · · ·σt) of obtaining the ran-

dom values σ1, · · ·σt, by using Bayes rule, can be written
as

P (σ1, · · ·σt)=P (σ1)T (σ1|σ2) · · · T (σ1, · · · , σt−1|σt).
(A1)

Given the transition probability Eq. (3), it is simple to
check that P (σ1, · · ·σt) only depends on the number of
times t± that the values ±δx were chosen. From this
interchangeability property, the probability Pt(t+, t−) of
getting t± times the values±δx after t steps (t = t++t−),
can be written as

Pt(t+, t−) =
t!

t+!t−!

Γ(λ)

Γ(t+ λ)

Γ(t+ + λ+)

Γ(λ+)

Γ(t− + λ−)

Γ(λ−)
,

(A2)
where the property Γ(n + x)/Γ(x) = x(1 + x)(2 +
x) · · · (n−1+x) was used. The combinatorial factor takes
into account all realizations with the same numbers t±.
In the limit x → ∞ it is valid the Stirling approxima-

tion Γ(x) ≈
√

2π/xe−xxx, which in the same limit leads
to Γ(x + α)/Γ(x) ≈ xα. Using that n! = Γ(n + 1), and
applying the previous approximations to Eq. (A2), in
the limit t → ∞ it follows

Pt(t+, t−) ≈
Γ(λ)

tλ−1

t
λ+−1

+

Γ(λ+)

t
λ−−1

−

Γ(λ−)
. (A3)

By performing the change of variables t± → tf±, and by
using that, due to normalization t = t++t−, there is only
one independent variable (f++f− = 1), the previous ex-
pression straightforwardly leads to the Beta distribution
Eq. (30).

Appendix B: Ergodicity in mean value

Here, we demonstrate the validity of Eqs. (36) and
(37). Their fulfilment imply that the random walk is
ergodic in mean value. The demonstration has a close
relation with the de Finetti representation theorem for
dichotomic variables [40, 44]. In the present context, we
notice that the probability Pt(t+, t−) [Eq. (A2)] can be
written as

Pt(t+, t−) =

∫ 1

0

df+ P(f±)Pt(t+, t−, f±). (B1)

Here, P(f±) is given by Eq. (30) while Pt(t+, t−, f±)
is the counting probability for independent variables
σi = ±δx with transition probability T (σ1, · · ·σt|σt+1 =
±δx) = f±. Therefore, it is

Pt(t+, t−, f±) ≡
t!

t+!t−!
f
t+
+ f

t−
− . (B2)

Given that the characteristic function Qt(k) [Eq. (7)]
can be written as

Qt(k) =

t
∑

t±=0

Pt(t+, t−) exp[ikδx(t+ − t−)], (B3)

where t+ + t− = t, Eq. (B1) allows us to write Qt(k) as
an average over the variables f±

Qt(k) =

∫ 1

0

df+ P(f±)Qt(k, f±), (B4)

where Qt(k, f±) is the characteristic function for inde-
pendent variables with transition probabilities f±,

Qt(k, f±) = [f+e
+ikδx + f−e

−ikδx]t. (B5)

Given that asymptotically the realizations of the random
walk converge to that of a memoryless process with tran-
sition rate T (σ1, · · ·σt|σt+1) = f± [Eq. (29)], in each re-
alization the (asymptotic) statistics of [x(t′+∆)−x(t′)],
which define the integral defining δκ(t,∆) [Eq. (27)],
does not depends on t and is defined by Eq. (B5) un-
der the replacement t → ∆. The relation Eq. (37) is a
straightforward consequence on this result and Eq. (B4).
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