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An increasing number of human activities are studied using data produced by individuals’ ICT
devices. In particular, when ICT data contain spatial information, they represent an invaluable
source for analyzing urban dynamics. However, there have been relatively few contributions inves-
tigating the robustness of this type of results against fluctuations of data characteristics. Here, we
present a stability analysis of higher-level information extracted from mobile phone data passively
produced during an entire year by 9 million individuals in Senegal. We focus on two information-
retrieval tasks: (a) the identification of land use in the region of Dakar from the temporal rhythms
of the communication activity; (b) the identification of home and work locations of anonymized
individuals, which enable to construct Origin-Destination (OD) matrices of commuting flows. Our
analysis reveal that the uncertainty of results highly depends on the sample size, the scale and the
period of the year at which the data were gathered. Nevertheless, the spatial distributions of land
use computed for different samples are remarkably robust: on average, we observe more than 75%
of shared surface area between the different spatial partitions when considering activity of at least
100,000 users whatever the scale. The OD matrix is less stable and depends on the scale with a
share of at least 75% of commuters in common when considering all types of flows constructed from
the home-work locations of 100,000 users. For both tasks, better results can be obtained at larger
levels of aggregation or by considering more users. These results confirm that ICT data are very
useful sources for the spatial analysis of urban systems, but that their reliability should in general
be tested more thoroughly.

INTRODUCTION

Massive amounts of geolocalized data are passively
and continuously produced by individuals when they
use their mobile devices: smart phones, credit cards,
GPSs, RFIDs or remote sensing devices. This del-
uge of digital footprints is growing at an extremely
fast pace and represents an unprecedented opportu-
nity for researchers, to address quantitatively chal-
lenging questions, in the hope of unveiling new in-
sights on the dynamics of human societies. Many
fields are concerned by the development of new tech-
niques to handle these vast datasets, and range from
applied mathematics, physics, to computer science,
with plenty of applications to a variety of disciplines
such as medicine, public health and social sciences for
example.

Although data resulting from the use of informa-
tion and communications technologies (ICT) have the
advantage of large samples sizes (millions of observa-
tions), and high spatio-temporal resolution, they also
raise new challenging issues. Some are technical and
related to the storage, management and processing of
these data [1], while others are methodological, such
as the statistical validity of analysis performed on such
data. For example, in the case of mobile phone data,
researchers have often no control and limited informa-
tion regarding the data collection process, which obvi-
ously deserves other purposes than scientific research.
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Various hidden biases can affect these data used to
study the spatial behavior of anonymized individu-
als, and consequently observing the world through the
lenses of ICT data may therefore lead to possible dis-
tortions and erroneous conclusions [2]. It is thus cru-
cial to perform statistical tests and to develop meth-
ods in order to assess the robustness of the results ob-
tained with ICT data. In the research community that
studies human mobility in urban contexts [3–6], efforts
in this sense have been made in recent years, notably
by cross-checking results [7] obtained with ICT data
and with more traditional data sources [7–13]. These
comparisons cover different topics, such as the anal-
ysis of daily mobility motifs [8], the distribution of
population at different scales [7, 10], the estimation of
commuting flows [7, 9, 11, 13], and the identification
of land uses [7, 12]. However, the robustness of results
to sample selection, scale or sample size has, up to our
knowledge, never been studied so far.

In the following, we present two examples of such
uncertainty analysis on higher-level spatial informa-
tion extracted from mobile phone metadata, which
were produced in Senegal in 2013 [14]. We concen-
trate on two information-retrieval tasks: first, we eval-
uate the uncertainty when inferring land use from the
rhythms of human communication [15–19]; second, we
quantify the uncertainty when identifying individuals’
most visited locations [7, 12, 20, 21]. We conclude
by mentioning possible future steps in order to assess
more clearly the relevance of various ICT data sources
for studying a variety of urban dynamics.
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Figure 1. Spatio-temporal uncertainty propagation while inferring land use from mobile phone activity. (a) Map of the
region of Dakar displaying the three clusters according to their land use. Colors vary from white to the most recurrent cluster
identified in the random samples. The color saturation depends on the number of times the zone was classified as the most
recurrent cluster. The color code is red for Residential, blue for Business, green for Nightlife and orange for other types of
land use. (b) Temporal patterns associated with the three clusters. The solid lines represent the average temporal profile
computed over the random extractions, while the dashed lines represent one standard deviation. These results were obtained
at the Voronoi scale for 50 independent random extractions of 150,000 users mobile phone activity during one week.

STUDY AREA AND DATA DESCRIPTION

We focus here on the region of Dakar, Senegal.
The mobile phone data consists in call detail records
(CDR) of phone calls and short messages exchanged
by more than 9 million of anonymized Orange’s cus-
tomers. They were collected in Senegal in 2013, and
were released to research teams in the framework of
the 2014 Orange Data for Development challenge [14].
We use in this study the second dataset (SET2) that
was made available by Orange, and which contains
fine-grained location data on a rolling 2-week basis at
the individual level. For each of the 25 two-weeks pe-
riods, a sample of about 300,000 mobile phone users
were randomly selected at the country scale. When-
ever one of these individuals uses his/her mobile phone
during the two-week period, the time and his/her po-
sition (at the level of serving cell tower) are recorded.
These information can be used to study human activ-
ity and mobility patterns in the region of Dakar, that
is here divided into 457 zones. This spatial partition
is the Voronoi tessellation constructed from the loca-
tion of phone antennas in the city, chosen as nodes.
Each Voronoi cell thus approximates the activity zone
served by the antenna located at its center (see Figure
S1a).

INFERRING LAND USE FROM MOBILE
PHONE ACTIVITY

Functional network of the city

Geolocalized ICT data have been widely used to
infer land use from human activity [15–19]. The ba-
sic idea is to divide the region of interest into zones,

extract a temporal activity signal for each of these
zones, and then cluster together zones that display
similar signals. Each of the resulting clusters then
corresponds to a certain type of activity (Residential,
Commercial, . . . ). We used here the functional ap-
proach proposed in [19]. This method takes as input,
for each zone, a signal composed of 168 points (24h
× 7 days), each value corresponding to the number
of users located in this zone, at this hour of the day,
this day of the week. These signals are then normal-
ized by the total hourly activity, in order to subtract
trends introduced by circadian rhythms. A Pearson
correlation matrix between zones is then computed.
Two zones whose activity rhythms are strongly cor-
related in time will have a high positive correlation
value. This similarity matrix can be represented by
an undirected weighted network, which is then clus-
tered using the Infomap community detection algo-
rithm [22]. This method has the advantage to be
non-parametric (the number of clusters is not fixed
a priori).

Signal extraction and sampling strategy

In order to apply this functional approach to the
region of Dakar, we first need to define a method for
sampling and aggregating spatially the users’ mobile
phone activity as extracted from the raw data. In this
dataset, the mobile phone activity in Senegal during
the year 2013 has been divided into 25 two-weeks pe-
riods that we separate into 50 time windows of one
week. For each week, we build the users’ temporal
mobile phone activity by relying on the following cri-
teria: each individual counts only once per hour. If
a user is detected in k different zones within a given
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Figure 2. Uncertainty when inferring land use from mobile phone activity. (a) Area covered by the different land use
types, expressed as a percentage of the total surface. The values have been averaged over 50 random extractions, and the
error bars represent one standard deviation. (b) Probability density function of the shared surface area between each pair of
spatial distributions according to the type of land use. These results were obtained at the scale of the mobile phone towers
(Voronoi tesselation), and they are based on the comparison of 50 × 50 independent samples with 150,000 signals.

1-hour time period, each registered position will count
as (1/k) ‘units of activity’ for each of these k zones.
It is important to note that only signals containing
activity in the region of Dakar have been considered.
At the end of the process, we obtain the temporal sig-
nal of about 160,000 users per week, a value that is
quite stable over the 50 weeks. These temporal sig-
nals can then be averaged into a temporal signal of
activity for each zone allowing us to identify different
land use type in the region of Dakar by applying the
above method. Note that since in the original dataset
the year is divided into two-weeks periods and that a
user could appear in two or more two-weeks periods,
several signals of a same user (during different weeks)
can be observed among the 50 weeks of activity.

We also need to define a sampling strategy for as-
sessing the robustness of land use identification with
respect to sample selection. In order to analyze and
compare spatial distributions of land use obtained
with different samples of individual temporal signals,
we needed to ensure that these samples are indepen-
dent (i.e. no signals in common) and also that they
are evenly distributed across the entire year. For ex-
ample, if we want to compare two spatial distribu-
tions of land use based on two independent samples
composed of 150,000 signals (i.e. individuals) each,
we will draw at random two independent samples of
3,000 signals (individuals) for each week. We will then
spatially and temporally aggregate the signals over the
50 weeks in order to obtain two independent aggregate
signals, each composed of 3,000 × 50 distinct individ-
ual signals. We then apply the functional approach
described above for extracting the spatial partitions
of land use, and for investigating the uncertainty of

these partitions to individuals’ sample selection. The
influence of the sample size or the scale on the uncer-
tainty can also be investigated by varying the num-
ber of signals for each random extraction, and/or by
spatially aggregating them over spatial grids made of
regular square of varying (parameterized) sizes.

Spatial propagation of uncertainty

As a first step, we applied the functional approach
on 50 independent random extractions of 150,000 in-
dividual signals across the entire year, at the scale of
the Voronoi cells (mobile phone towers locations), by
using the sampling strategy described in the previous
section. Three clusters of zones emerged systemati-
cally, covering on average 95% of the total surface.
The remaining 5% correspond to other clusters with
no clear patterns, probably associated with some lo-
cal punctual events. We show on Figure 1b the aver-
age temporal profiles along with the variability around
this average, for each of these three clusters. Each
of the clusters can be roughly associated to a typi-
cal rhythm of human activity, and consequently to a
characteristic land use:

• A Residential activity profile, corresponding to
a high probability of mobile phone use during
early mornings, evenings and week end days.

• A Business cluster, displaying a significantly
higher activity from 9am to 5-6pm during week-
days.

• A Nightlife activity profile, characterized by a
high activity during night hours (1am-4am).
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The Nightlife cluster (in green) covers the area of
the international airport, and also the neighborhood
of ‘La Pointe des Almadies’, where mainly wealthy
people live and where are located most of the rich
nightclubs. The Business cluster covers Dakar’s cen-
tral business district (‘Le Plateau’ ), where one finds
companies’ headquarters, and where the port is also
located. Finally, the Residential cluster covers the
rapidly growing parts of the Dakar peninsula, which
profits from the highway construction. It is worth
noting that the different land use types identified
in this study are consistent with the ones obtained
with another mobile phone dataset in Spain [19], ex-
cept that in the case of Dakar, the method is not
able to distinguish between industrial (or logistic) and
leisure/nightlife activities (see [19] for more details).

As can be observed in Figure 2a, the area covered by
the different types of land use is quite stable over the
50 samples, with the Residential land use type rep-
resenting on average about 50% of the total surface,
while we observe about 20% and 25% for the Business
and Nightlife clusters, respectively. Nevertheless, the
stability of the proportion does not imply that they
follow the same spatial distribution from one sample
to another. In order to test the stability, we computed
the proportion of surface area shared by two spatial
distributions pl and p′l of a given type l, as obtained
with two different samples. The expression for this
quantity is

S = 2
Apl∩p′l

Apl
+Ap′

l

, (1)

where Apl
denotes the surface area of spatial distri-

bution pl. Note that in our case Apl
≃ Ap′

l
(Figure

2a). Similarly, we can define the total surface area
shared by two spatial partitions p and p′ (with the
same number and type of land use) of the region of
interest,

S∗ =
∑lApl∩p′l

∑lApl

. (2)

The results are displayed in Figure 2b. The simi-
larities between the 50 different spatial partitions is
globally high, with on average 80% of shared surface
area. The agreement is larger for the Residential and
Business clusters with an average shared surface area
around 90%, against 75% for the Nightlife land use
type. This is probably due to the more episodic char-
acter of the nightlife activity, implying a smaller sta-
tistical reliability of the results. A map of the region
of Dakar displaying the uncertainty associated with
the land use identification is shown in Figure 1a. The
colors represent the different land use types, and each
zone has been assigned its recurrent cluster type over
the 50 land use identifications. The color saturation
is then related to the uncertainty, quantified by the
number of times the zone was classified as a given re-
current cluster: the color is darker if the uncertainty
is low, paler otherwise. Most of the zones have been

assigned to the same clusters more than 80% of the
time.

Influence of scale and sample size on the
uncertainty

The identification of land use from mobile phone
activity seems to be quite robust to the sampling of
individuals. So far we considered communication data
of 150,000 users, available at their maximal spatial res-
olution, that is the locations of the mobile phone car-
rier’s antennas. But what about the influence of spa-
tial scale and sample size on this uncertainty? In or-
der to answer this question, we applied the same func-
tional approach, but this time by (a) varying the num-
ber of individual signals of each random extraction
(from 25,000 to 300,000, by step of 25,000) and (b)
aggregating them spatially over spatial square grids
with cells of side length equal to 1, 2 or 3 km (Figure
S1) (the spatial aggregation is based on the area of the
intersection between the Voronoi and the grid cell) .
We performed the comparison between 100 pairs of in-
dependent samples for different population sizes, and
spatial resolutions/grid sizes. The results are shown
in Figure 3.
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Figure 3. Influence of spatial scale and sample size. To-
tal shared surface area S∗ between land use partitions as a
function of the sample size and for different spatial scales
(Voronoi cells, and square grid cells of resp. 1, 2 and 3 km
side length). In almost every case, the values displayed have
been averaged over 100 independent comparisons. See Fig-
ure S3a for more details, while the full distributions are shown
on Figure S2 in Appendix.

Interestingly, the Nightlife cluster does not sys-
tematically emerge, especially when considering small
sample sizes at the ‘Voronoi scale’. In these cases, only
two clusters are detected, the Nightlife activity cluster
is mixed with Residential and Business activity clus-
ters. As it can be observed in Figure S3 in Appendix,
at least 100,000 individuals signals need to be aggre-
gated to detect three clusters in more than 90% of the
random sample extractions. This quantity falls down
at 60% for sample population sizes of 75,000, about
15% for 50,000 and 0 for 25,000. We note that it never
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happened when the signals have been spatially aggre-
gated. Considering only the partitions for which three
clusters were detected, we observe that the percent-
age of share surface area increases when the data are
spatially coarse-grained, and also with the number of
individuals taken into account, revealing the existence
of a typical scale. The order of this scale seems to be
here of the order 100,000, above which we obtain more
than 75% similarity between the land use spatial par-
titions. Coarse-graining the spatial resolution by pro-
jecting the data on grids of larger cells plays also an
important role, allowing us to reduce the uncertainty
when small samples are considered. As expected, the
variability of the uncertainty tends to increase with
the grid cell side length (see Figure S2 in Appendix).

Temporal variations

We considered so far samples uniformly distributed
across the entire year, but comparisons of samples
extracted from different time windows (i.e. commu-
nication activity recorded at different periods of the
year) can also be performed in order to identify po-
tential temporal variations. We therefore considered
12 consecutive time windows of four weeks (from the
first week of January to the last week of Novem-
ber). For each possible pair of time-windows, we per-
formed comparisons between 100 pairs of independent
samples, each constituted of 150,000 signals (at the
Voronoi scale). Figure 4 shows the average shared
surface area, standardized by the average shared sur-
face area across the entire year.
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Figure 4. Temporal variations. Standard shared surface
area between spatial partitions of land use extracted for dif-
ferent time windows (four weeks periods, from the first week
of January to the last week of November). The standardiza-
tion is performed by subtracting the average shared surface
area obtained by comparing 50 independent samples based
on 150,000 signals drawn at random across the entire year
(Figure 2b). The values have been averaged over 100 inde-
pendent comparisons based on 150,000 signals obtained at
the Voronoi scale.

We observe that, in most cases, the shared surface

area is close to the one obtained on average for the
entire year. As expected it is globally lower for the
comparisons inside the same time window, and higher
for the comparisons of partitions extracted for distinct
time windows. It is also worth noting that similarity
between time periods decreases with the time elapsed
between them, and that the land use patterns identi-
fied in the first half of the year seems to be more sim-
ilar than the ones observed in the second half of the
year. It is however not clear whether these changes
are due to changes in the city structure itself, or to
seasonal variations. The most unexpected result is
the change of behavior observed in summer during
the weeks 7 and 8 (from the end of June to the mid-
dle of August) showing a similarity always lower than
the average, -15 points in the worth case. This can be
explained by the change of activity generally observe
in summer. This information should be nevertheless
taken into account when analyzing this type of data.

IDENTIFYING HOME AND WORK
LOCATIONS FROM MOBILE PHONE

ACTIVITY

Extracting individuals’ most visited locations

Geolocalized ICT data are also widely used to iden-
tify the most visited locations of an individual, allow-
ing to extract the origin-destination (OD) matrices of
commuting flows, a fundamental object in mobility
studies. A very simple heuristic used in most meth-
ods is the following: the most visited place of an indi-
vidual in the late afternoon/evening and in the early
morning is used as a proxy for his/her place of resi-
dence, while the most visited location during working
hours is a proxy for his/her workplace (or main ac-
tivity place). This simple assumption has allowed the
accurate determination of mobility flows at interme-
diate geographical scales for a variety of cities world-
wide (see for example [7, 9, 11, 12]). However, the
robustness of the results obtained with such a simple
heuristic, with respect to sample selection, has never
been investigated.

For each of the 25 two-weeks periods and for each
user, we apply the following procedure to extract the
home and work locations:

• First, the hours of activity are divided into two
groups, daytime hours (between 8am and 5pm
included) and nighttime hours (between 7pm
and 7am included). Only days of the week from
Monday to Thursday are taken into account,
that is to say 8 days in total over two weeks.

• We then apply a first filter by considering only
users who were active at least Nd days (out of 8)
during daytime and Nd days during night time.

• A second filter is then applied to keep only
users who have been ‘active’, in total during the
two weeks, at least Nh 1-hour periods during
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Figure 5. Influence of the parameters. Number of reliable users (a) and fraction of users living and working in the same
zone (b) as a function of δh and for different values of Nh (Nd = 4). Only people living and working in the region of Dakar
have been considered here. These results have been averaged over the 25 two-weeks periods, and error bars represent one
standard deviation. The vertical bars indicate the value δ = 1/3. Similar plots for different value of Nd ranging from 1 to 8
are shown in Figures S4 and S5 in the Appendix.

daytime, and Nh 1-hour periods during night-
time.

• For each hour of activity, the most frequently
visited zone during this hour is identified (based
on his/her geolocalized mobile phone activity).

• For both groups of hours (daytime and night-
time), we identify the zone in which the user
has been localized the highest number of hours.

• A third and last filter is also implemented to
select only users whose fraction of hours spent at
‘home’ and ‘work’ are larger than a fraction δh
of the total number of locations visited during
nighttime and daytime, respectively.

• Finally, only individuals living and working in
the region of Dakar are considered as reliable
users.

The last filter allow us to adjust the degree of con-
fidence in the identification of the main nighttime
(‘Home’) and daytime activity (‘Work’) locations. A
low value of δh allows us to maximize the number
of reliable users (Figure 5a), with the risk of includ-
ing places of main activity where the user has spent
very little time. On the contrary, a high value of δh
will make us keep only users moving very little during
nighttime and/or daytime, and who therefore may not
be representative of the variety of mobility patterns at
a small scale. As it can be observed in Figure 5b, these
users are generally people living and working in the
same area. Based on these considerations, we chose
to fix δh to 1/3 which seems to be a good interplay,
allowing us to remove users exhibiting irregular mobil-
ity patterns during the time period, while preserving
the commuting network structure in the Dakar region.

The behavior of δh on the number of reliable users
and the fraction of intra-zonal flows (users living and
working in the same area) is independent of Nh and
Nd (see Figures S4 and S5). These two first filters
are applied to discard users having a mobile phone
activity that is too low, and/or not sufficiently stag-
gered over the two-weeks period. Two time scales have
been considered, Nh for the hours and Nd for the days.
The goal is to combine these two parameters to select
users having a significant number of hours ‘in activity’
spread over a number of days large enough to guar-
anty the reliability of the information provided by the
most visited locations extraction process. We were
not able to identify any criteria for calibrating these
two parameters, and we have therefore decided to fix
the value of Nd to 4 days (half of the time period) and
the value of Nh to 12 hours. Combined with a value of
δh = 1/3, this results in keeping around 50,000 reliable
users for each two-weeks period (Figure 5a). Later,
we will analyze more systematically how the value of
Nh impact the uncertainty in the OD estimation and
its topological structure.

The source code used to extract most visited loca-
tions from individual spatio-temporal trajectories is
available online [23].

Sampling strategy and similarity metrics

Sampling strategy

Similarly to the land use identification, we need a
sampling strategy for assessing the robustness of the
OD extracted with respect to the sample selection,
and we use independent samples of equal sizes drawn
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Figure 6. Uncertainty when inferring home-work locations from mobile phone activity. Boxplots of the comparisons
between 100 independent ODs according to Nh. (a) λc (all flows). (b) λ∗c (only inter-zonal flows). (c) λl. (d) λd. ODs have
been extracted at the Voronoi scale from independent samples composed of 150,000 reliable users’ home-work locations (with
Nd = 4 and δh = 1/3). The whiskers correspond to the minimum and maximum of the distributions.

at random across the 25 two-weeks periods. For exam-
ple, for comparing two ODs retrieved from two inde-
pendent samples of 150,000 reliable users’ home-work
locations, we draw at random two independent sam-
ples of size 6,000 for each of the two-weeks period.
Here also, we evaluate the influence of the sample size
and of the spatial resolution on the uncertainty, by
varying the number of signals extracted at each ran-
dom extraction and/or by spatially aggregating the
signals over spatial grids of varying sizes.

Similarity metrics

The resulting commuting networks can be com-
pared using several similarity metrics, such as the one
described in [24]. We consider two commuting net-
works T and T ′, where Tij is the number of users
living in zone i and working in zone j, and we will use
three different metrics, that encode different network
properties. First, the common fraction of commuters,
noted λc, varying from 0 (when there is no overlap)
to 1 (when the two networks are identical) is given by

λc =
2∑i,j min(Tij , T ′ij)
∑i,j Tij +∑i,j T

′

ij

. (3)

With this first metric, the similarity is calculated
considering all flows, without distinction between the

intra-zonal flows and the inter-zonal flows. The first
type of flows tends to gather a large part of the com-
muters distributed over a limited number of links
whereas the latter are usually less stable and more
difficult to estimate. To take into consideration these
different types of flows we will also consider, as a sim-
ilarity metric, the common fraction of commuters, λ∗c ,
based only on the users living and working in two dif-
ferent places (i ≠ j).

Second, we will consider the common fraction of
links, λl, that measures similarity in the networks’
topological structure, and is calculated as

λl =
2∑i,j 1Tij>0 ⋅ 1T ′ij>0

∑i,j 1Tij>0 +∑i,j 1T ′ij>0

. (4)

Third, we measure the common share of commuters
according to the distance, λd, assessing the similarity
between commuting distance distributions and given
by

λd =
∑k min(Nk,N

′

k)
N

, (5)

where Nk stands for the number of users with a com-
muting distance ranging between 2k − 2 and 2k kms
(k ranging from 1 to ∞) and N for the total number
of users.
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Figure 7. Influence of spatial scale and sample size. Similarity metrics as a function of the sample size, according to various
spatial scales (Voronoi cells and regular square grid of cells of 1, 2 and 3 km side length). (a) λc (all flows). (b) λ∗c (only
inter-zonal flows). (c) λl. (d) λd. The values displayed have been averaged over 100 independent comparisons with Nd = 4,
Nh = 12 and δh = 1/3. The same figure displaying the full distribution instead of the average is available in Figure S7 in
Appendix.

Uncertainty analysis

Boxplots of the similarity metric values obtained
by comparing 100 independent ODs based on 150,000
reliable users’ home-work locations are displayed in
Figure 6. We first concentrate on the influence of Nh

on the uncertainty and on the networks’ topological
structure, and we observe that the only metrics re-
ally affected by the number of hours of activity is the
share of links λl, which increases linearly with Nh.
This is an expected behavior since the constraint on
the number of hours in activity selects the most reg-
ular individuals and reduces the noise, decreases the
number of links, and coherently produces more robust
ODs. The effect of Nh on the other similarity metrics
is quite negligible, particularly on the similarity be-
tween commuting distance distributions λd. The val-
ues of λc and λ∗c move up and down with the number
of links (Figure S6 in Appendix) but the fluctuations
stay reasonably small, 0.01 point for the λc and 0.02
point for λ∗c . The fact that the number of links in-
creases for values of Nh ranging from 5 to 15 is not
trivial (Figure S6 in Appendix). It is even more sur-
prising to see that this increase is due to the growth
of the number of links of small sizes (between 2 and
10 commuters) that are not able to counterbalance

the falls of the number of very small (1 user) and big
links (more than 10 users). These changes of network
structure are not easy to understand and would prob-
ably necessitate more information about commuting
in Senegal to be investigated more thoroughly.

Regarding the uncertainty, the results are not com-
pletely conclusive, the commuting networks show
a good agreement with around 79% of commuters
in common (considering both inter- and intra-zonal
flows), but with a value that falls down to 50% when
only inter-zonal flows are considered. This decrease of
similarity can be explain by the fact that intra-zonal
flows represent 60% of the commuters distributed on
a number of links that is bounded by the number of
zones, whereas inter-zonal flows are generally smaller
since they represent less commuters distributed on a
higher number of links. This is why when we remove
the intra-zonal flows which are usually easier to es-
timate, we increase the uncertainty. The λl values
are also quite low, between 45% and 51% of links are
in common between the different networks according
to the value of Nh. An encouraging result is that
the common part of commuters according to the dis-
tance is very high, showing around 99% of similarity
between the commuting distance distributions. How-
ever, it is important to keep in mind that these mixed



9

results are obtained with a few thousand users for each
two-weeks commuting network, drawn at a high spa-
tial resolution with an average surface area equal to
0.5 km2.

Influence of scale and sample size

The effect of the spatial resolution and sample sizes
on the similarity metrics can be investigated by vary-
ing the number of reliable users’ home-work most vis-
ited locations to build the ODs and/or by aggregating
them spatially using grid cells of different sizes (see [7]
for more details about the aggregation method based
on the area of the intersection between the Voronoi
and the grid cells). As it can be observed in Figure
7, increasing the sample size and/or the scale greatly
improve the results. Here again, considering at least
100,000 reliable users seems to be a good trade-off
and ensure a common part of commuters larger than
75%. The most significant improvement comes from
the spatial aggregation, which at least double λ∗c and
λl values and allow us to obtain λc values almost al-
ways larger than 0.85. There is one exception, though,
with λl that seems to be independent from the spatial
aggregation scale used.

Temporal variations

The effect of temporal variations on the uncertainty
of OD estimates can be investigated by considering 12
consecutive time windows of four weeks (from the first
week of January to the last week of November, see
section on land use detection). In this case, ODs are
based on 50,000 reliable users’ home-work most vis-
ited locations, determined at the Voronoi scale. The
similarity metrics have been standardized by subtract-
ing the average metrics values across the entire year.
Figure 8 shows the results obtained with the com-
mon part of commuters λc (similar results obtained
with the other metrics are shown on Figure S8 in Ap-
pendix). As in the case of land use identification, the
values are close to the average, lower for the inter time
windows comparisons than for the intra comparisons.
We also observe that the results are more stable after
summer holidays, during the second half of the year.
An evolution of the commuting networks over time
can be observed with a decrease of the similarity met-
rics values as the time elapsed between time periods
increases.

Sampling of points along individual trajectories

In order to go further, for each of the 25 two-weeks
periods and for each user, we identified the home and
work locations for each of the two weeks considered
independently, by following the procedure described
above with Nd = 2 (half of the time window) and
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Figure 8. Temporal variations. Standard λc between ODs
extracted for different time windows (four weeks periods,
from the first week of January to the last week of Novem-
ber). The standardization has been obtained by subtracting
the average λc obtained by comparing 100 independent sam-
ples based on 50,000 reliable users’ home-work most visited
locations drawn at random across the entire year. The results
have been averaged over 100 independent comparisons based
on 50,000 reliable users’ home-work most visited locations at
the Voronoi scale. Plots of the other similarity metrics are
available in Figure S8 in Appendix.

δh = 1/3. This allowed us to assess the influence of
the sampling of points along individual trajectories
when identifying the home and work locations. We
then compared the locations identified for each of the
two-weeks period according to the value of Nh. While
the effect of Nh on the level of accuracy is quite low,
it is however important to note that the level of accu-
racy in the estimate of home location tends to increase
with Nh. Considering the high spatial resolution and
the small time window, a good agreement is obtained,
with an accuracy of around 84% for home (average
over the 25 two-week periods) and 78% for work (Fig-
ure 9). Moreover, 50% of the inaccurate locations are
less than 2 kms distant from each other. We can there-
fore conclude that the identification of users’ home
and work locations from mobile phone activity also
shows a high level of robustness to sample selection.

DISCUSSION

Data passively produced through information and
communications technologies have been increasingly
used by researchers since the middle of the 2000’s and
our understanding of number of aspects of human mo-
bility has already been deeply renewed thanks to these
new data sources. More generally, the longitudinal
tracking of anonymized individuals opens the door to
an enhanced understanding of social phenomena that
could not be studied empirically at such scales before.
However, these data obviously suffer from a number
of biases [2], which include in particular sample selec-
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Figure 9. Percentage of accuracy in home and work lo-
cations’ estimation according to Nh. Results have been
averaged over the 25 two-weeks time windows. The thin
lines represent one standard deviation.

tion. Systematic tests are then required to character-
ize statistical validity, along with cross-checks between
various data sources.

This in mind, we performed two uncertainty anal-
ysis of results obtained with mobile phone data pro-
duced by millions of anonymized individuals during
an entire year. In the first part of the analysis, we
assessed the uncertainty when inferring land use from
human activity, estimated from the number of mobile
phone users present in different parts of the city, at
different moments of the week. A good agreement
was obtained between land uses identified from inde-
pendent and randomly selected samples of individuals
mobile phone activity during one week. We showed
that samples should be composed of at least 100,000
individual signals of activity in order to ensure that
there is at least 75% of shared surface area between
the spatial partitions of land uses automatically re-
trieved, whatever the level of spatial aggregation of
the data. In the second part of the analysis, we inves-
tigated the influence of sample selection on the iden-
tification of users’ home and work locations. We first
examined the impact of the selection of users on the
journey-to-work commuting networks extracted at the
city scale. In our case-study of the city of Dakar, we
showed that the level of uncertainty is largely depen-
dent on the spatio-temporal resolution, and that good
results were reachable with a reasonable level of spa-
tial aggregation. We then analyzed the effect of the

sampling of locations along mobile phone users’ tra-
jectories on the identification of their home and work
locations. Most of the locations identified with dif-
ferent samples were the same, or very close to one
another. Finally, we also showed that in both cases
the uncertainty varies according to the period of the
year at which the data were gathered, particularly in
summer for the land use identification.

A useful and natural extension to this work would
be to compare the results obtained in this study with
traditional mobility data sources such as surveys or
census data, particularly to calibrate the parameters
of the home-work most visited location identification
process. It was unfortunately not possible to obtain
such data from the Senegal census, but this type of
analysis should be done whenever possible.

For these two spatial information retrieval tasks,
our results suggest that the level of uncertainty asso-
ciated with sample selection is globally low. Further
work in this direction include the reproduction of such
uncertainty analysis with other datasets coming from
different countries and data sources. An important
aspect of the rapidly growing ‘new science of cities’
[25], which heavily relies on new data sources, is to be
able to reproduce results with different datasets, and
to characterize and control to what extent the infor-
mation provided by different sources are biased in a
particular direction.

More studies in this spirit need to be done to
strengthen the foundations of the field dedicated to
the understanding of urban mobility and urban dy-
namics through ICT data. From a publication point
of view, trying to reproduce previous results with dif-
ferent data sources, or to estimate the robustness of
previously published results, might not be as appeal-
ing as proposing new measures and models, but is
crucially important as well.
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González, and V. Colizza. On the Use of Human Mo-
bility Proxies for Modeling Epidemics. PLOS Comput
Biol, 10(7):e1003716, 2014.

[10] P. Deville, C. Linard, S. Martin, M. Gilbert, F. R.
Stevens, A. E. Gaughan, V. D. Blondel, and A. J.
Tatem. Dynamic population mapping using mobile
phone data. Proceedings of the National Academy of
Sciences, 111(45):15888–15893, 2014.

[11] L. Alexander, S. Jiang, M. Murga, and M. C.
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Martonosi, J. Rowland, and A. Varshavsky. Identify-
ing Important Places in People’s Lives from Cellu-
lar Network Data. In Kent Lyons, Jeffrey Hightower,
and Elaine M. Huang, editors, Pervasive Computing.
Springer Berlin Heidelberg, 2011.

[22] M. Rosvall and C. T. Bergstrom. Maps of random
walks on complex networks reveal community struc-
ture. Proceedings of the National Academy of Sci-
ences, 105(4):1118–1123, 2008.

[23] https://github.com/maximelenormand/Most-
frequented-locations.

[24] M. Lenormand, A. Bassolas, and J. J. Ramasco. Sys-
tematic comparison of trip distribution laws and mod-
els. Journal of Transport Geography, 51:158–169,
2016.

[25] M. Batty. The New Science of Cities. MIT Press,
2013.



12

APPENDIX

Index

1
(a) (b)

(d)(c)

Figure S1. Map of the Dakar region. The white area represents the region of interest and the dark gray area represents the
sea. Three scales of geographic units are represented. (a) Voronoi cells. (b) Grid cells (1× 1 km2). (c) Grid cells (2× 2 km2).
(d) Grid cells (3 × 3 km2).
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Figure S2. Influence of scale and sample size. Boxplots of the total share surface area as a function of the sample size
according to the spatial scale. (a) Voronoi cells. (b) Grid cells (1×1 km2). (c) Grid cells (2×2 km2). (d) Grid cells (3×3 km2).
These results are based on 100 independent comparisons. The whiskers correspond to the minimum and maximum of the
distributions.
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Figure S3. Influence of the sample size (at the Voronoi scale) on the number of clusters. (a) Fraction of random
extractions for which three clusters were detected. (b) Boxplots of the share surface area for comparisons for which the number
of clusters detected in the two independent samples were two. The whiskers correspond to the minimum and maximum of the
distributions.
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Figure S4. Influence of the parameters on the number of reliable users. Number of reliable users as a function of δh and
according to Nh and Nd. Only people living and working in the region of Dakar have been considered. The values have been
averaged over the 25 weeks, and the error bars represent the standard deviation.
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Figure S5. Influence of the parameters on the fraction of intra-zonal flows. Fraction of users living and working in the
same zone as a function of δh and according to Nh and Nd. Only people living and working in the region of Dakar have been
considered. The values have been averaged over the 25 weeks, and the error bars represent the standard deviation.
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Figure S8. Temporal variations variations. Standard similarity metrics between ODs extracted at different time windows
(four weeks periods, from the first week of January to the last week of November). (a) λ∗c . (b) λl. (c) λd. The standardization
has been obtained by subtracting average values obtained by comparing 100 independent samples based on 50,000 reliable
users’ home-work most visited locations drawn at random across the entire year. The values have been averaged over 100
independent comparisons based on 50,000 reliable users’ home-work most visited locations at the Voronoi scale.
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