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Abstract
The motion of a viscous drop is investigated when the interface is fully covered with a stagnant layer of

surfactant in an arbitrary unsteady Stokes flow for the low surface Péclet number limit. The effect of the
interfacial slip coefficient on the behavior of the flow field is also considered. The hydrodynamic problem is
solved by the solenoidal decomposition method and the drag force is computed in terms of Faxen’s laws using
a perturbation ansatz in powers of the surface Péclet number. The analytical expressions for the migration
velocity of the drop are also obtained in powers of the surface Péclet number. Further instances corresponding
to a given ambient flow as uniform flow, Couette flow, Poiseuille flow are analyzed. Moreover, it is observed
that, a surfactant-induced cross-stream migration of the drop occur towards the centre-line in both Couette
flow and Poiseuille flow cases. The variation of the drag force and migration velocity is computed for different
parameters such as Péclet number, Marangoni number etc.

1 Introduction

The motion of drops and bubbles is a common phenomenon understanding which is important to realize many
industrial and chemical applications. Some properties such as deformability, inertia, and external (thermal or
chemical) gradients influence the migration of drops. The variation of temperature or the presence of surfactants
causes variations in the interfacial gradient. Young, Goldstein and Block [1] were the first to study the flow past
a drop by considering thermal effects. Subramanian and Balasubramaniam [2] have computed the drag force
in terms of Faxen’s laws by considering the thermal effects in an axisymmetric Stokes flow. Subramanian [3]
calculated the settling velocity of a drop by considering thermal effects in a steady axisymmetric flow. The
unsteady motion of a vertically falling liquid drop in an axisymmetric flow has been analyzed by Chisnell [4].
Dill and Balasubramaniam [5] have studied the thermocapillary migration of a drop in an axisymmetric unsteady
Stokes flow. Choudhuri and Padmavathi [6] have calculated the drag and torque in terms of Faxen’s laws for an
oscillatory Stokes flow past a drop. Choudhuri and Raja Sekhar [7] have obtained the thermocapillary drift of a
spherical drop in a steady arbitrary Stokes flow. Ramachandran et al. [8] discussed the impact of interfacial slip
on the dynamics of a drop in a Stokes flow by using a numerical approach based on the boundary integral method.
Ramachandran and Leal [9] studied the effect of interfacial slip on the drop deformation in a steady Stokes flow
by using Navier slip boundary conditions. Mandal et al. [10] computed the shape of a drop by considering the
interfacial slip effect in an arbitrary steady Stokes flow by using Lamb’s solution.

While these works are mostly on the migration of viscous drops in pure ambient viscous flows, or in presence
of thermocapillary effects, there are also studies concerned with the effect of surfactants on the motion of drops
and bubbles in creeping flows. Surfactants are surface active agents that are adsorbed at a fluid-fluid interface
or at a liquid-gas interface, where they typically lower the interfacial tension and cause a Marangoni effect. It is
observed that even a small amount of surfactant can reduce the terminal velocity of a drop. For example, Levan
∗rajas@maths.iitkgp.ernet.in
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and Newman [11] studied the effect of surfactants on the terminal velocity of a drop in an axi symmetric flow.
Along the interface, the surfactant is governed by a convection-diffusion equation. Holbrook and LeVan [12]
and Holbrook and LeVan [13] have used a collocation method to solve the convection-diffusion problem for
high Péclet numbers and studied the retardation of drop motion when the surfactant is present. Sadhal and
Johnson [14] studied the flow past a drop which is partially coated with a stagnant layer of surfactant for large
surface Péclet number. Many authors have examined the effect of soluble and insoluble surfactants on the motion
of drops using various numerical techniques (Ref. [15, 16]). Stone [17] derived a convection-diffusion equation
for the surfactant transport along a deforming interface. Stone and Leal [18] used a numerical treatment to
analyze the effect of surfactants on the deformation and breakup of a drop. Hanna and Vlahovska [19] discussed
the surfactant-induced migration of a drop in an unbounded Poiseuille flow for large Péclet numbers. A simplified
CFD simulation was performed to study the influence of surfactants on the rise of bubbles by Fleckenstein and
Bothe [20]. Recently, Pak et al. [21] calculated the migration of a drop in a steady Poiseuille flow at low surface
Péclet numbers.

The migration of a non-deforming clean spherical viscous drop at zero Reynolds number in a pressure driven
flow moves only along the flow direction (Ref. [22]), i.e., there can be no cross migration in the absence of inertia
and deformation on a clean spherical drop. It is experimentally observed that, for three dimensional Poiseuille
flow and for Couette flow, the migration due to deformation occurs towards the center line (Ref. [23–25]). The
cross migration due to inertial effects is also studied by many authors (Ref. [26, 27]). It is also found that the
surfactant redistribution can also cause the cross stream migration of drops (Ref. [19, 21, 28]). Recently, Mandal
et al. [10] have studied the effect of interfacial slip on the cross migration of a drop in an unbounded Poiseuille
flow. However, these studies are restricted to steady case and ambient Poiseuille flow. We are generalizing the
problem to an unsteady arbitrary ambient flow, by considering the effects of interfacial slip as well as surfactant
concentration effects.

We are interested in the case of arbitrary Stokes flow past drops which is challenging due to its three di-
mensional nature. Note that the corresponding drag and torque can be obtained in a compact form similar to
Faxen’s laws. For example, the recent study by Choudhuri and Raja Sekhar [7] discussed thermocapillary mi-
gration of a viscous spherical drop and obtained the corresponding Faxen’s laws. Consequently, Sharanya and
Raja Sekhar [29] have addressed thermocapillary migration of a spherical drop in an arbitrary unsteady Stokes
flow. We are motivated by these studies and consider the motion of a viscous spherical drop whose interface is
covered with a stagnant layer of surfactant in an arbitrary unsteady Stokes flow. The arbitrary Stokes flow case
is considered by Pak et al. [21], where they restrict the flow to be steady, and the surfactant coating the whole
interface. The slip reduces the deformation of a drop in a shear-type flow (Ref. [8, 9]). Also, it is noted that due
to this slip condition the disturbance flow produced by a drop is expected to be weakened in magnitude. In our
present case, we attempt a more generalized problem of an arbitrary transient Stokes flow past a drop for low
surface Péclet number. Also, we take into account the effect of interfacial slip on the flow. We solve the problem
for any given ambient flow and consider some special cases to validate our results.

The objective of our present paper is to analyze the behavior of the flow when the interfacial slip effect and
the surfactant concentration effect occurs for low surface Péclet numbers. We use the solenoidal decomposition
method to solve the unsteady Stokes equations, which is motivated by the general solution proposed by Venkata-
laxmi et al. [30]. We use slip boundary conditions to see the effect of interfacial slip on the flow behavior which
has been previously used by Ramachandran et al. [8] and Ramachandran and Leal [9]. If we denote the surfac-
tant concentration as Γ, we assume that Γ is governed by a convection-diffusion equation [14, 17, 31]. We find
the surfactant concentration up to second order for an arbitrary Stokes flow, i.e., up to O(Pe2s) (Ref. [21]). We
observe area-specific surfactant distribution on the interface of the drop. We also solve for the flow fields and
obtain the settling velocity of the drop. We compute migration velocity corresponding to surfactant coated drop
in Poiseuille flow and Couette flow and make some observations on the cross flow migration.

2 Problem Statement and Mathematical Formulation

We consider the motion of a liquid drop of radius a and viscosity µi in an unsteady Stokes flow, suspended in
another unbounded Newtonian fluid of viscosity µe (see Fig. 1). Let the velocity of the fluid inside the drop
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Figure 1: Geometry of the problem

be ~vi and the velocity of the fluid outside the drop be ~ve. We assume that the settling velocity of the drop is
U, which we determine later. The presence of a small amount of surface-active agents (surfactants) causes the
variation in interfacial tension which influences the migration of the drop. We analyze the problem when the
surfactant concentration effects and interfacial slip effects are considered. Surfactants are surface-active agents
that lower the interfacial tension between two liquids. We neglect the inertial terms under negligible Reynolds
number assumption. We assume a low surface Péclet number Pes. Further, we assume that the dimensional
interfacial tension, σ∗, depends in an affine way on the dimensional surfactant concentration, Γ∗, i.e.,

σ∗ = σ −RTΓ∗,

where σ is the interfacial tension when the interface is clean, R is the gas constant and T is the absolute tempera-
ture (Ref. [21]). We non-dimensionalize the lengths by the drop radius a, velocities by the characteristic velocity
scale of the background flow, Uc, time by its characteristic time scale tc and the surfactant concentration by its
equilibrium value when the distribution is uniform, Γeq. The pressure is non dimensionalized by µUc

a .
We assume that the flow inside and outside the drop is governed by the unsteady Stokes equations and the

continuity equations which are given in the non dimensional form as follows:

for r < 1

βi
∂~vi

∂t
= −~∇pi + ~∇2~vi; ~∇.~vi = 0, (2.1)

and for r > 1

βe
∂~ve

∂t
= −~∇pe + ~∇2~ve; ~∇.~ve = 0. (2.2)

In the above equations, βe = a2

νetc
and βi = a2

νitc
represent the unsteadiness parameters corresponding to the flow

inside and outside the drop respectively, which we assume to be unity, i.e., tc = a2

νj
.
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We assume that the velocity field far from the drop approaches the undisturbed background flow, ~v∞, i.e.,

~ve → ~v∞ as r →∞, (2.3)

which together with some pressure field p∞ satisfies the unsteady Stokes and continuity equations.
The surfactant transport is governed by an unsteady convection-diffusion equation, (Ref. Stone [17] and

Sadhal and Johnson [14]), which is given in the non dimensional form as follows

Prs
∂Γ

∂t
+ Pes

[
~∇s.(Γ~vs) + Γ(~v.n̂)~∇s.n̂

]
= ~∇2

sΓ, (2.4)

where ~vs = ~ve.t̂ is the velocity component tangential to the surface of the drop and Pes = aUc
Ds

is the surface
Péclet number which measures the importance of convection relative to diffusion. Here Ds is the dimensional
surface-diffusion constant. Prs = νe

Ds
is the Prandtl number which is dimensionless and is defined as the ratio

of momentum diffusivity to surfactant diffusivity. Eq. (2.4) includes the convective and diffusive contribution
to the surfactant transport and a source-like contribution accounting for the variation of surfactant concentration
resulting from the local changes in the interfacial area. (Ref. [17]).

We solve the problem in a reference frame which is moving with the velocity of the drop, U, in which the
drop appears to be stationary (see Fig. (1)). In this moving frame, the velocity fields inside and outside the drop
are given respectively by

~ui = ~vi − U,

~ue = ~ve − U.

One can observe that, these velocity fields also satisfy the unsteady Stokes and continuity equations given by

for r < 1

∂~ui

∂t
= −~∇pi + ~∇2~ui; ~∇.~ui = 0, (2.5)

and for r > 1

∂~ue

∂t
= −~∇pe + ~∇2~ue; ~∇.~ue = 0. (2.6)

The external velocity ~ue is expected to meet the following far field condition in the reference frame

~ue → ~u∞ = ~v∞ − U as r →∞. (2.7)

We follow the physical interpretations discussed by various authors [2,32–34] and adopt the following kinematic
boundary conditions on the surface of the drop in non-dimensional form:

Vanishing normal component of the velocities, i.e.,

~ue.n̂ = 0; ~ui.n̂ = 0, (2.8)

Slip in the tangential component of velocities, i.e.,

~ue.t̂− ~ui.t̂ = ατ e
n̂t̂
, (2.9)

Tangential stress balance, i.e.,

τ e
n̂t̂
− µτ i

n̂t̂
= Ma~∇sΓ.t̂, (2.10)

Since the stress fields and the surfactant concentration on the surface of the drop remain the same in both the
laboratory frame and the moving frame, the tangential stress balance takes the same form as in both reference
frames. We note that the surfactant transport equation given in Eq. (2.4) simplifies to

Prs
∂Γ

∂t
+ Pes

[
~∇s.(Γ~us)

]
= ~∇2

sΓ, (2.11)

in the moving reference frame. Here ~us is the velocity tangential to the surface of the drop in the moving frame.
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3 Method of solution

We expand the velocity and pressure fields, surfactant concentration and migration velocity as a regular pertur-
bation expansion for low surface Péclet number (Pes � 1), i.e.,[

~ue, ~ui, pe, pi,Γ,U
]

=
[
~ue0, ~u

i
0, p

e
0, p

i
0,Γ0,U0

]
+ Pes

[
~ue1, ~u

i
1, p

e
1, p

i
1,Γ1,U1

]
+Pe2s

[
~ue2, ~u

i
2, p

e
2, p

i
2,Γ2,U2

]
+O(Pe3s). (3.1)

Since the boundary value problem defined in Eqs. (2.5) to (2.10) is independent of the perturbation parameter
Pes, the velocity and pressure fields at all orders satisfy similar equations with the corresponding quantities as:
leading order (~u0, p0), first order (~u1, p1), and second order (~u2, p2) etc. For brevity, we do not repeat these
equations here.

3.1 Representation of velocity

By eliminating the pressure from the unsteady Stokes equations, one can verify that the velocity fields inside and
outside the droplet satisfy

~∇2

(
~∇2 − ∂

∂t

)
~uj = 0 for j = i, e. (3.2)

By using the general solution for the unsteady Stokes equation together with the equation of continuity, we can
have the following representation for the velocity and pressure fields (see [30])

~uj = ~∇× ~∇× (rχj) + ~∇× (rηj), (3.3)

pj = pj∞ + ρj
∂

∂r

(
r
(
~∇2χj − ∂χj

∂t

))
, (3.4)

where the scalars χj and ηj are solutions of

~∇2

(
~∇2 − ∂

∂t

)
χj = 0, (3.5)

(
~∇2 − ∂

∂t

)
ηj = 0. (3.6)

Here r is the position vector and p∞ is a constant. Hence, the problem can now be handled in terms of the scalars
χj and ηj . Accordingly, the boundary conditions in terms of χj and ηj are given by

Vanishing normal component of the velocity

χe = χi = 0 on r = 1 . (3.7)

Slip in the tangential component of velocity

∂χe

∂r
− ∂χi

∂r
= α

∂2χe

∂r2
, ηe − ηi = α

∂

∂r

(
ηe

r

)
on r = 1 . (3.8)

Tangential stress balance

∂

∂θ

(
∂2χe

∂r2
− µ∂

2χi

∂r2

)
= Ma

∂Γ

∂θ
on r = 1 , (3.9)
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∂

∂φ

(
∂2χe

∂r2
− µ∂

2χi

∂r2

)
= Ma

∂Γ

∂φ
on r = 1 , (3.10)

∂

∂r

(
ηe

r

)
= µ

∂

∂r

(
ηi

r

)
on r = 1. (3.11)

Finite velocity and pressure fields inside the drop require that

χi <∞, ηi <∞. (3.12)

3.2 Leading order problem

The zeroth order surfactant transport equation corresponding to the general case given in (2.11) is

Prs
∂Γ0

∂t
= ~∇2

sΓ0 . (3.13)

In order to obtain the leading order surfactant concentration Γ0, we express Γ0 in terms of spherical harmonics,
i.e.,

Γ0 =

∞∑
n=0

R0
n(θ, φ)e−λ

2t/Prs , (3.14)

where

Rn(θ, φ) =
n∑

m=0

(
E0
nm cos mφ+ F 0

nm sin mφ
)
Pmn (cos θ), (3.15)

are the spherical harmonics, Pmn (η) are associated Legendre polynomials and E0
nm, F 0

nm have to be determined
such that Γ0 satisfies (3.13). Substituting the above expression (3.14) in (3.13), we obtain n(n+ 1) = −λ2/Prs.
This is possible only when n = 0 and λ = 0 since we have λ2 > 0. Therefore we have that Γ0 is a constant,
which we take as unity, i.e., Γ0 = 1.

We represent the far-field ambient flow in terms of χ∞0 and η∞0 , given by

χ∞0 =

∞∑
n=1

[
α0
nr
n + β0nfn(λer)

]
Sn(θ, φ)eλ

2
et, (3.16)

η∞0 =

∞∑
n=1

[
γ0nfn(λer)

]
Tn(θ, φ)eλ

2
et, (3.17)

where

S0
n(θ, φ) =

n∑
m=0

Pmn (η)
[
A0
nm cos mφ+B0

nm sin mφ
]
, (3.18)

T 0
n(θ, φ) =

n∑
m=0

Pmn (η)
[
C0
nm cos mφ+D0

nm sin mφ
]
, (3.19)

are spherical harmonics, and α0
n, β0n, γ0n, A0

nm, B0
nm, C0

nm and D0
nm are the known coefficients. These co-

efficients are controlled by the choice of the ambient flow. For example, in case of uniform ambient flow,
χ∞0 = 1

2r cos θeλ
2
et, η∞0 = 0; and hence α0

1 = 1
2 , α0

n = 0 for n 6= 1, β0n = 0, γ0n = 0, A0
10 = 1, A0

nm = 0
for n 6= 1 or m 6= 0, B0

nm = 0, C0
nm = 0 and D0

nm = 0. Here, fn(λjr) and gn(λjr) (j = i, e) are modified
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spherical Bessel function of first and second kind, respectively. Note that, for the bounded solution as t→∞, we
require λ2j < 0. In the presence of the spherical drop, the resultant flow due to the disturbance can be represented
as general solution of Eqs. (3.5) and (3.6) as follows,

for r < 1

χi0 =
∞∑
n=1

[
ᾱ0
nr
n + β̄0nfn(λir)

]
S0
n(θ, φ)eλ

2
i t, (3.20)

ηi0 =
∞∑
n=1

[
γ̄0nfn(λir)

]
T 0
n(θ, φ)eλ

2
i t, (3.21)

and for r > 1

χe0 =
∞∑
n=1

[
α0
nr
n +

α̂0
n

rn+1
+ β0nfn(λer) + β̂0ngn(λer)

]
S0
n(θ, φ)eλ

2
et, (3.22)

ηe0 =

∞∑
n=1

[
γ0nfn(λer) + γ̂0ngn(λer)

]
T 0
n(θ, φ)eλ

2
et, (3.23)

where ᾱ0
n, β̄0n, γ̄0n, α̂0

n, β̂0n, γ̂0n are the unknown coefficients which are to be determined subject to the boundary
conditions (3.7) to (3.12), and λi, λe are the amplification factors corresponding to the flow inside and outside of
the drop which can be found if the initial conditions are provided (Ref. [30]). Moreover, the far field condition
turns out to be χe0 → χ∞0 and ηe0 → η∞0 as r → ∞. The unknown coefficients can be expressed in terms of the
known ambient flow variables using the boundary conditions. We present these details in Appendix A.

The zeroth order drag force experienced by a spherical drop can be computed using the formula

~D =

∫ π

θ=0

∫ 2π

φ=0

¯̄τ.n̂ dS, (3.24)

where dS represents the surface element, n̂ is the unit normal to the boundary of the drop, r is the position vector
and ¯̄τ is the stress tensor. We have computed zeroth order thermocapillary drift in case of transient Stokes flow
past a viscous drop, and expressed in terms of Faxen’s laws, given by

~D0 = 4πλ2eα̂
0
1

(
A0

11î+B0
11ĵ +A0

10k̂
)
eλ

2
et. (3.25)

Note that the above structure in terms of the known vector (A0
11, B

0
11, A

0
10) is due to the spherical harmonics

S0
n(θ, φ) given in (3.18). Corresponding to a given ambient flow, one can determine the coefficient α̂0

1. For
example, in case of uniform ambient flow, we have n = 1 and the corresponding expression for α̂0

1 can be
obtained using α̂0

n given in Appendix A. Consequently from Eq. (3.25), we have the following expression for the
drag force

~D0 = 2π

[
Y + µX + αP

W + µZ + αG
[~u0∞]0 +

V + µU + αH

W + µZ + αG
[~∇2~u0∞]0

]
. (3.26)

The above quantity depends on µ = µi

µe , the ratio of the viscosities, and α the dimensionless slip coefficient.

Since Γ0 = 1, ~∇sΓ0 vanishes and the tangential stress becomes continuous. Hence at leading order, we do not
observe any influence of the surfactant. The expanded form of the quantities X,Y, P,G,Z,W,U, V,H etc., are
given in Appendix B. It may be noted that the above compact form is due to the following relations

[~u0∞]0 = (2α0
1 +

2

3
λeβ

0
1)(A0

11î+B0
11ĵ +A0

10k̂)eλ
2
et,
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[~∇2~u0∞]0 =
2

3
λ3eβ

0
1(A0

11î+B0
11ĵ +A0

10k̂)eλ
2
et,

[~∇× ~u0∞]0 =
2λe
3
γ01(C0

11î+D0
11ĵ + C0

10k̂)eλ
2
et.

One may observe that, when the slip coefficient in the zeroth order drag force is equal to zero (i.e., α = 0), then
the drag force reduces to

~D0 = 2π

[
Y + µX

W + µZ
[~u0∞]0 +

V + µU

W + µZ
[~∇2~u0∞]0

]
. (3.27)

In the context of thermocapillary migration of a spherical drop, Sharanya and Raja Sekhar [29] obtained an
expression for the drag force exerted on the spherical drop. The above expression (3.27) agrees with their results
when the thermocapillary effects are neglected. Table (1) gives some additional understanding in this regard.
Note that the zeroth order drag force given in (3.26) is with respect to a reference frame which is moving with a
velocity U0. Therefore the drag force in the laboratory reference frame in terms of a given ambient hydrodynamic
field is given by

~D0 = 2π

[
Y + µX + αP

W + µZ + αG
([~v0∞]0 − U0) +

V + µU + αH

W + µZ + αG
[~∇2~v0∞]0

]
, (3.28)

where U0 is the zeroth order migration velocity which is yet to be determined.

The force balance in the absence of gravity when the flow is transient is given by (Refs. [2, 4]),

M
dU
dt

= ~D, (3.29)

where M = 4
3πρi is the mass of the drop with unit radius. Here, ρi is the density of the drop. From the above

equation (3.29), we have the leading order force balance as follows

M
dU0

dt
= ~D0 . (3.30)

On using the expression for the drag given in (3.28) (general case), this would enable us to obtain the following
expression for the migration velocity of the drop

U0 =
3

2ρi + ρe

[
Y + µX + αP

W + µZ + αG
[~v0∞]0 +

V + µU + αH

W + µZ + αG
[∇2~v0∞]0

]
(

3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
. (3.31)

We may observe that, when the slip coefficient is zero, the above zeroth order migration velocity reduces to the
one that is obtained by Sharanya and Raja Sekhar [29] provided thermal effects are neglected. In this case, we
have

U0 =
3

2ρi + ρe

[
Y + µX

W + µZ
[~v0∞]0 +

V + µU

W + µZ
[∇2~v0∞]0

]
(

3

2ρi + ρe

Y + µX

W + µZ
+ λ2e

)−1
. (3.32)

If we consider the limiting case of no oscillations in the hydrodynamic flow field, i.e., λi = λe = 0, and zero slip
coefficient, i.e., α = 0, then the zeroth order terminal velocity reduces to

U0 = [~v∞]0 +
µ

4 + 6µ
[~∇2~v∞]0, (3.33)

which is exactly matching with the one that is obtained by Pak, Feng and Stone [21].
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3.2.1 Stationary drop

If we assume that the drop is stationary, then we have ~v∞ = ~u∞. In this case, the zeroth order drag force is given
by

~D0 = 2π

[
Y + µX + αP

W + µZ + αG
[~v0∞]0 +

V + µU + αH

W + µZ + αG
[~∇2~v0∞]0

]
, (3.34)

which agrees with the corresponding result that is obtained by Choudhuri and Padmavati [6] when the slip
coefficient is zero (Ref. Table (1)).

3.3 First-order correction

The first order surfactant transport equation due to the expansion (3.1) and Eq. (2.11) is given by

Prs
∂Γ1

∂t
+ ~∇s.~u0s = ~∇2

sΓ1, (3.35)

where ~u0s is the zeroth order tangential velocity vector on the drop surface. Assuming that the surfactant con-
centration is oscillatory, i.e., Γ1(θ, φ, t) = Γ1(θ, φ)e−iωt = Γ1(θ, φ)e−l

2t/Prs , Eq. (3.35) reduces to

(~∇2
s + l2)Γ1 = ~∇s.~u0s. (3.36)

In order to obtain the first order surfactant concentration Γ1, we express Γ1 in terms of spherical harmonics, i.e.,

Γ1 =
∞∑
n=1

R1
n(θ, φ)e−l

2t/Prs , (3.37)

where

R1
n(θ, φ) =

n∑
m=0

(
E1
nm cos mφ+ F 1

nm sin mφ
)
Pmn (cos θ), (3.38)

are the spherical harmonics, and E1
nm, F 1

nm have to be determined such that Γ1 satisfies the Eq.(3.37). Since
~∇2
sR

1
n(θ, φ) = −n(n+ 1)R1

n(θ, φ), we observe that ~∇2
sΓ1 = −

∞∑
n=1

n(n+ 1)R1
n(θ, φ)el

2t/Prs . The coefficients

in R1
n(θ, φ) can be determined as follows:

∞∑
n=0

n∑
m=0

(−n(n+ 1) + l2)
[
E1
nm cos mφ+ F 1

nm sin mφ
]
Pmn (cos θ)e−l

2t/Prs = ~∇s.~u0s.

(3.39)

This enables us to write the following relations

E1
kjπ

2(k + j)!

(2k + 1)(k − j)!
e−l

2t/Prs =
−1

k(k + 1)− l2

∫ 2π

φ=0

∫ π

θ=0
(~∇s.~u0s)P jk (cos θ)

cos jφ sin θ dθ dφ, (3.40)

F 1
kjπ

2(k + j)!

(2k + 1)(k − j)!
e−l

2t/Prs =
−1

k(k + 1)− l2

∫ 2π

φ=0

∫ π

θ=0
(~∇s.~u0s)P jk (cos θ)

sin jφ sin θ dθ dφ, (3.41)

which implies −l2/Prs = λ2e(< 0) and

E1
nm =

[
(n+ 1)α0

n + β0n (λefn+1(λe) + (n+ 1)fn(λe))

− nα̂0
n + β̂0n ((n+ 1)gn(λe)− λegn+1(λe))

]
×
[
A0
nm

n(n+ 1)

n(n+ 1) + λ2ePrs

]
,

(3.42)
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F 1
nm =

[
(n+ 1)α0

n + β0n (λefn+1(λe) + (n+ 1)fn(λe))

− nα̂0
n + β̂0n ((n+ 1)gn(λe)− λegn+1(λe))

]
×
[
B0
nm

n(n+ 1)

n(n+ 1) + λ2ePrs

]
.

(3.43)

The first-order pressure and velocity fields satisfy the unsteady Stokes and continuity equations. Correspond-
ingly, we express χi1, ηi1, χe1 and ηe1 as follows

χi1 =
∞∑
n=1

[
ᾱ1
nr
n + β̄1nfn(λir)

]
S1
n(θ, φ)eλ

2
i t, (3.44)

ηi1 =

∞∑
n=1

[
γ̄1nfn(λir)

]
T 1
n(θ, φ)eλ

2
i t, (3.45)

χe1 =
∞∑
n=1

[
α1
nr
n +

α̂1
n

rn+1
+ β1nfn(λer) + β̂1ngn(λer)

]
S1
n(θ, φ)eλ

2
et, (3.46)

ηe1 =

∞∑
n=1

[
γ1nfn(λer) + γ̂1ngn(λer)

]
T 1
n(θ, φ)eλ

2
et, (3.47)

where S1
n(θ, φ) and T 1

n(θ, φ) are spherical harmonics of order n. The interfacial surfactant that is coupled via the
boundary conditions (3.9) and (3.10) together with the form of Γ1 given in (3.37) enforces S1

n(θ, φ) = R1
n(θ, φ).

However, we have

T 1
n(θ, φ) =

n∑
m=0

(
E′nm cos mφ+ F ′nm sin mφ

)
Pmn (cos θ). (3.48)

We have given the expressions for the unknown coefficients, α1
n, α̂1

n, β1n, β̂1n, γ1n, γ̂1n, ᾱ1
n, β̄1n and γ̄1n, in Appendix

C. Following a similar approach that is used to solve the leading order problem, we compute the first order drag
given by

~D1 = 2π
[
− Y + µX + αP

W + µZ + αG
U1 +

2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)

× (E1
11î+ F 1

11ĵ + E1
10k̂)eλ

2
et
]
. (3.49)

The force balance M dU1
dt = ~D1 together with the expression for ~D1 given in Eq. (3.49) leads to the first order

migration velocity of the drop

U1 =
3

2ρi + ρe

[
2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)
(E1

11î+ F 1
11ĵ + E1

10k̂)eλ
2
et

]
×
(

3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
, (3.50)

where

E1
11 =

2A0
11

(2 + λ2ePrs)

[
2α0

n + β0n (λef2(λe) + 2f1(λe))− α̂0
n + β̂0n (2g1(λe)− λeg2(λe))

]
,

(3.51)
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F 1
11 =

2B0
10

(2 + λ2ePrs)

[
2α0

n + β0n (λef2(λe) + 2f1(λe))− α̂0
n + β̂0n (2g1(λe)− λeg2(λe))

]
,

(3.52)

and

E1
10 =

2A0
10

(2 + λ2ePrs)

[
2α0

n + β0n (λef2(λe) + 2f1(λe))− α̂0
n + β̂0n (2g1(λe)− λeg2(λe))

]
,

(3.53)

Here we observe that, only three modes of concentration E1
11, F 1

11 and E1
10 are contributing to the drag and

migration velocity. If we consider the special case of steady flow past a droplet, i.e., λe = λi = 0, the first order
migration velocity reduces to

U1 =
2Ma

6 + 9µ+ 18αµ
(e111î+ f111ĵ + e110k̂), (3.54)

where

e1kjπ
2(k + j)!

(2k + 1)(k − j)!
=

−1

k(k + 1)

∫ 2π

φ=0

∫ π

θ=0
(~∇s.~u0s)P jk (cos θ) cos jφ sin θ dθ dφ,

(3.55)

f1kjπ
2(k + j)!

(2k + 1)(k − j)!
=

−1

k(k + 1)

∫ 2π

φ=0

∫ π

θ=0
(~∇s.~u0s)P jk (cos θ) sin jφ sin θ dθ dφ.

(3.56)

In particular,

e111 = A0
11

[
α0
1 (1 + 3αµ)

1 + µ+ 3αµ

]
, (3.57)

f111 = B0
10

[
α0
1 (1 + 3αµ)

1 + µ+ 3αµ

]
, (3.58)

and

e110 = A0
10

[
α0
1 (1 + 3αµ)

1 + µ+ 3αµ

]
. (3.59)

If the slip coefficient α = 0, this result is matching with the one obtained by Pak, Feng, Stone [21].

3.3.1 Stationary drop

If we assume that the drop is stationary, the first order drag force is given by

~D1 = 2π

[
2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)
(E1

11î+ F 1
11ĵ + E1

10k̂)eλ
2
et

]
. (3.60)

11



3.4 Second-order correction

The second order surfactant transport equation is given by

Prs
∂Γ2

∂t
+ ~∇s.(Γ0~u1s + Γ1~u0s) = ~∇2

sΓ1, (3.61)

where ~u0s, ~u1s are the zeroth order and first order tangential velocity components on the drop surface respectively.
Assuming that the surfactant concentration is oscillatory, i.e., Γ2(θ, φ, t) = Γ2(θ, φ)e−iω2t = Γ2(θ, φ)e−l

2
2t/Prs ,

Eq. (3.61) reduces to

(~∇2
s + l22)Γ2 = ~∇s.(Γ0~u1s + Γ1~u0s). (3.62)

In order to obtain the second order surfactant concentration, Γ2, we adopt a similar procedure that is used in
Section. (3.3). We express Γ2 in terms of spherical harmonics, i.e.,

Γ2 =
∞∑
n=1

R2
n(θ, φ)e−l

2
2t/Prs , (3.63)

where

R2
n(θ, φ) =

n∑
m=0

(
E2
nm cos mφ+ F 2

nm sin mφ
)
Pmn (cos θ), (3.64)

and E2
nm, F 2

nm have to be determined such that Γ2 satisfies the Eq.(3.62). Correspondingly, the coefficients
R2
n(θ, φ) can be determined as follows:

E2
kjπ

2(k + j)!

(2k + 1)(k − j)!
e−l

2
2t/Prs =

−1

k(k + 1)− l22

∫ 2π

φ=0

∫ π

θ=0
(~∇s.(Γ0~u1s + Γ1~u0s))

P jk (cos θ) cos jφ sin θ dθ dφ,

(3.65)

F 2
kjπ

2(k + j)!

(2k + 1)(k − j)!
e−l

2
2t/Prs =

−1

k(k + 1)− l22

∫ 2π

φ=0

∫ π

θ=0
(~∇s.(Γ0~u1s + Γ1~u0s))

P jk (cos θ) sin jφ sin θ dθ dφ,

(3.66)

which implies −l22/Prs = λ2e, and

E2
kj =

[
−kα̂2

k + β̂2k ((k + 1)gk(λe)− λegk+1(λe))
] [
E1
kj

k(k + 1)

k(k + 1) + λ2ePrs

]
− (2k + 1)(k − j)!

2π(k + j)!

× e−λ
2
et

k(k + 1) + λ2ePrs

∫ 2π

φ=0

∫ π

θ=0
(~∇s.(Γ1~u0s))P

j
k (cos θ) cos jφ sin θ dθ dφ, (3.67)

F 2
kj =

[
−kα̂2

k + β̂2k ((k + 1)gk(λe)− λegk+1(λe))
] [
F 1
kj

k(k + 1)

k(k + 1) + λ2ePrs

]
− (2k + 1)(k − j)!

2π(k + j)!

× e−λ
2
et

k(k + 1) + λ2ePrs

∫ 2π

φ=0

∫ π

θ=0
(~∇s.(Γ1~u0s))P

j
k (cos θ) sin jφ sin θ dθ dφ. (3.68)

Evaluating the double integral on the right hand side is difficult for any given arbitrary flow. However, these can
be evaluated for a given ambient flow so that we have the second order concentration. Accordingly, we compute
these double integrals for specific cases like uniform flow, Couette flow etc.

12



Once we obtain the second order concentration for a given flow, one can solve the above equations by
following similar procedure that is used to solve the zeroth and first order equations. The second order drag
is given by

~D2 = 2π

[
Y + µX + αP

W + µZ + αG
(−U2) +

2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)

× (E2
11î+ F 2

11ĵ + E2
10k̂)eλ

2
et
]
. (3.69)

The force balance M dU2
dt = ~D2 leads to

U2 =
3

2ρi + ρe

[
2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)
(E2

11î+ F 2
11ĵ + E2

10k̂)e−λ
2
et

]
(

3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
, (3.70)

where X,Y, P,G,Z,W,U, V,H etc., are given in the Appendix B. We therefore, conclude that the second order
migration velocity and drag depend only on three modes of the concentration namely, E2

11,F 2
11 and E2

10. If we
consider the special case of steady flow past a drop, i.e., λe = λi = 0, the second order migration velocity
reduces to

U2 =
2Ma

6 + 9µ+ 18αµi
(e211î+ f211ĵ + e210k̂), (3.71)

where

e2nm =
−1

n(n+ 1)

∫ 2π

φ=0

∫ π

θ=0
(~∇s.(Γ0~u1s + Γ1~u0s))P

m
n (cos θ) cos mφ sin θ dθ dφ,

(3.72)

f2nm =
−1

n(n+ 1)

∫ 2π

φ=0

∫ π

θ=0
(~∇s.(Γ0~u1s + Γ1~u0s))P

m
n (cos θ) sin mφ sin θ dθ dφ.

(3.73)

If the slip coefficient α = 0, this result also agrees with the one that is obtained by Pak et al. [21].

3.4.1 Stationary drop

If we assume that the drop is stationary, the second order drag force is given by

~D2 = 2π

[
2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)
(E2

11î+ F 2
11ĵ + E2

10k̂)eλ
2
et

]
. (3.74)

4 Results and discussion

Now, we present important observations with reference to some special cases such as uniform ambient flow,
Couette flow, etc.

4.1 Uniform ambient flow

Consider a uniform flow along the x−axis, past a liquid drop of unit radius whose center is at its origin. In this
case, ~u∞ = ~u0∞ = îeλ

2
et.

Therefore, the corresponding scalar functions χ∞0 and η∞0 are given by

χ∞0 =
1

2
r sin θ cos φeλ

2
et, η0 = 0.
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Figure 2: Variation of first order surfactant distribution with the time t corresponding to uniform flow, with
λ2e = −0.04, λ2i = −0.04, µ = 5 Ma = 400 and α = 0.1.
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λ2e = −0.04, λ2i = −0.04, µ = 5 Ma = 400 and α = 0.1.
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The above choice indicates that α0
1 = 1

2 , β01 = 0, γ01 = 0 in Eqs. (3.16) and (3.17). Therefore the corresponding
drag on the spherical drop is given by

~D = ~D0 + Pes ~D1 + Pe2s
~D2 +O(Pe3s), (4.1)

where

~D0 = 2π

[
Y + µX + αP

W + µZ + αG

]
eλ

2
etî, (4.2)

~D1 = 2π

[
Y + µX + αP

W + µZ + αG
(−U1) +

2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)
E1

11îe
λ2et

]
, (4.3)

~D2 = 2π

[
Y + µX + αP

W + µZ + αG
(−U2) +

2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)
E2

11îe
λ2et

]
. (4.4)

Here

E1
11 =

2

(2 + λ2ePrs)

(
3g1(λe)λ

2
e (f2(λi) + αµ (−2f2(λi) + f1(λi)λi))

)
δ1

, (4.5)

where

δ1 =
(
2
(
g1(λe)λ

2
e (f2(λi) + αµ (−2f2(λi) + f1(λi)λi)) + g2(λe)λe (f1(λi)µλi (1 + 2α)

− 2f2(λi) (−1 + µ+ 2αµ)) + 3g1(λe) (−f1(λi)µλi (1 + 2α)

+ 2f2(λi) (−1 + µ+ 2αµ)))) , (4.6)

and

E2
11 =

2E11Ma

(2 + λ2ePrs)
(f2(λi) (−3g1(λe) + g2(λe)λe)) /

(
g1(λe)λ

2
e (−f2(λi) + αµ (2f2(λi)− f1(λi)λi))

+ 3g1(λe) (f1(λi)µλi (1 + 2α)− 2f2(λi) (−1 + µ+ 2αµ))

+ g2(λe)λe (−f1(λi)µλi (1 + 2α) + 2f2(λi) (−1 + µ+ 2αµ))) . (4.7)

The migration velocity is given by

U = U0 + PesU1 + Pe2sU2 +O(Pe3s). (4.8)

In this case the zeroth order migration velocity U0, given in Eq. (3.31) reduces to

U0 =
3

2ρi + ρe

[
Y + µX + αP

W + µZ + αG

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
[~v0∞]0,

(4.9)

where ~v0∞ can be obtained from the relation

[~u0∞]0 = [~v0∞]0 − U0

=

(
1− 3

2ρi + ρe

[
Y + µX + αP

W + µZ + αG

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1)
×[~v0∞]0, (4.10)

which implies,

[~v0∞]0 =

[
1− 3

2ρi + ρe

[
Y + µX + αP

W + µZ + αG

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1]−1
eλ

2
etî. (4.11)
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Figure 6: a) Geometry of the problem and velocity vector corresponding to Coutte ambient flow, b) surface
velocity vector field corresponding to Coutte flow

The first order migration velocity U1, given in (3.50) reduces to

U1 =
3

2ρi + ρe

[
2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
E1

11e
λ2etî,

and the second order migration velocity U2, given in (3.70) reduces to

U2 =
3

2ρi + ρe

[
2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
E2

11e
λ2etî.

It may be noted that the corresponding migration velocity is only along the flow direction and avoids cross
migration.

We show the variation of first and second order surfactant distributions with time (figures 2 and 3). Here, we
have noticed that, the surfactant concentration decreases with time.

For a fixed viscosity ratio, the slip parameter reduces the resistance offered by the drop. Accordingly, the
migration velocity increases same is observed in figure (4). It may be noted that surface Péclet number measures
the importance of convection relative to diffusion. Therefore, as Pes increases, migration velocity increases. The
same is observed in figure (4). As the viscosity ratio is increasing, the drop behaves like a solid and hence, the
migration velocity decreases.

It may be noted that Marangoni number is the ratio of surface tension forces to viscous forces. Therefore,
for small viscosity ratios, with increasing Ma, the surface forces dominate and hence, the drag force increases
with the increase of Marangoni number. Accordingly, the migration velocity decreases with Marangoni number.
But, for large viscosity ratios, the viscous forces dominates the surface forces. And hence, migration velocity
increases with increasing Marangoni number. The same is observed in figure (5).

We have observed in figures (2) and (3) as time increases, the both first and second order surfactant concen-
tration decreases as expected.

4.2 Couette flow

Consider a Couette flow past a liquid drop of unit radius whose center is at the origin (see Fig. 6). In this case,
~v∞ = (F (y + L)̂i)eλ

2
et, where L is the distance of the center of the droplet from the point of zero velocity and

F is the shear (Ref. [22]).
Therefore the corresponding scalar functions χ∞0 and η∞0 are given by

χ∞0 =

(
FL

2
rP 1

1 (cos θ) cos φ+
F

36
r2 sin 2φP 2

2 (cos θ)

)
eλ

2
et, η0 = 0.
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Figure 7: Variation of first order surfactant distribution for different time values corresponding to Coutte flow,
with λ2e = −0.04, λ2i = −0.04, µ = 5,Ma = 400, F = 1, t = 1, Pe = 0.01 and α = 0.1.
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Figure 9: Variation of migration velocity with Pes for different slip parameters corresponding to Coutte flow, α,
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The above choice indicates that α0
1 = FL

2 , α0
2 = F

36 , β01 = 0, γ01 = 0 in Eqs. (3.16) and (3.17). Therefore the
corresponding surfactant concentration distribution on the spherical drop is given by

Γ = Γ0 + PesΓ1 + Pe2sΓ2 +O(Pe3s), (4.12)

where

Γ0 = 1, (4.13)

Γ1 =
(
−E1

11 sin θ cos φ+ F 1
22 sin 2φP 2

2 (cos θ)
)
eλ

2
et, (4.14)

Γ2 =
(
−E2

11 sin θ cos φ− F 2
11 sin θ sin φ+ F 2

22 sin 2φP 2
2 (cos θ)

+ F 2
31 sin φP 1

3 (cos θ) + F 2
33 sin 3φP 3

3 (cos θ) + E2
20P

0
2 (cos θ)

+ E2
22 cos 2φP 2

2 (cos θ) + E2
40P

0
4 (cos θ) + E2

44 cos 4φP 4
4 (cos θ)

)
eλ

2
et, (4.15)

where few quantities E1
11, F

1
22 etc. are listed in the Appendix (D).

For an unbounded Coutte flow, the migration velocity of a force free drop is calculated as

U = U0 + PesU1 + Pe2sU2 +O(Pe3s). (4.16)

In this case the zeroth order migration velocity U0, given in Eq. (3.31) reduces to

U0 =
3

2ρi + ρe

[
Y + µX + αP

W + µZ + αG

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
FLeλ

2
etî,

(4.17)

The first order migration velocity U1, given in (3.50) reduces to

U1 =
3E1

11î

2ρi + ρe

[
2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
eλ

2
et,

(4.18)

and the second order migration velocity U2, given in (3.70) reduces to

U2 =
3(E2

11î+ F 2
11ĵ)

2ρi + ρe

[
2Maλ2ef2(λi)g1(λe)

(W + µZ + αG)

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
eλ

2
et.

(4.19)

By symmetry, it is expected that there will be no velocity component in z direction. In case if there is a cross
migration (i.e., motion transverse to the flow direction), the same occurs towards the center line and should be in
y direction (see Fig. (6)). In [21], a detailed explanation on cross migration of a surfactant coated viscous drop
in Poiseuille flow is presented. Similar arguments followed in [10] while discussing migration of deformed drop
with interfacial slip in in an unbounded Poiseuille flow. We also follow similar arguments to show that cross
migration occurs only at second order with respect to the expansion of migration velocity in terms of surface
Péclet number. Here, we have observed that, at leading order, we recover the case of clean spherical drop in an
unbounded Couette flow (characterized by the velocity scale Uc). It is well known that, there can be no cross
stream migration in the absence of inertia, deformation, and surfactant concentration. Accordingly, we observe
that at leading order, there is no cross stream migration. This phenomena can also be supported mathematically as
follows: The dimensional zeroth order migration velocity U∗0 = U0Uc ∝ Uc. If there is a cross stream migration,
for a reversal of the background flow direction (Uc → −Uc), U∗0 also should change the direction. But, the cross
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stream migration should occur towards the center line. Therefore, there is no cross stream migration in leading
order, which implies the symmetry condition at leading order is satisfied (Ref. [21]).

With the similar argument which is given for leading order migration velocity, we can say at first order
also there can not be cross stream migration. We observe the dimensional first order migration velocity U∗1 =
PesU1Uc ∝ PesMaE1

11Uc ∝ PesMaUc, and the product PesMa is independent of Uc. Therefore, U∗1 ∝ Uc.
If there is a cross migration velocity, U∗1.ĵ ∝ Uc, which violates the symmetry requirement that the cross stream
migration direction remains same upon reversal of the background flow direction. Lateral migration is therefore
expected not to occur at leading and first order.

Observing second order migration velocity, we see U∗2 .̂i = Pe2sU2Uc .̂i ∝ Pe2sMaE2
11Uc ∝ Pe2sMa2Uc ∝

Uc, and U∗2.ĵ = Pe2sU2Uc.ĵ ∝ Pe2sMaF 2
11Uc ∝ Pe2sMaUc ∝ U2

c . Therefore, the transverse migration is
invariant upon reversal of the direction of the ambient Coutte flow.

We also noted that, the transverse migration is linearly dependent on L (as E1
11 ∝ L) which respects the

symmetry requirement that the transverse migration direction should reverse its sign when the drop is placed at
the same distance but on the opposite side with respect to the center of the Coutte flow (see Fig. 6). The same is
noted by Pak et al. [21] for the case of Poiseuille flow.

The first order and second order surfactant distributions are plotted with specific values of parameters for
visualization in figures (7) and (8). Here, we have seen as L increases, the concentration increases (since E1

11 ∝
L).

We have observed the variation of axial migration velocity and cross-stream migration velocity for different
parameters. The variation of axial migration is observed in figures (9) and (10). It can be seen that, we have the
cross migration due to the linear term present in the ambient velocity of Coutte flow. And the migration in the
axial direction is due to the constant term present in the Coutte flow. As a consequence, axial migration velocity
in the case of Coutte flow behaves in the same manner as the migration velocity in the case uniform ambient
flow.

We have observed the variation of cross migration velocity with the amplification factor λe in figure (11).
Drop cross migration is oscillating with the amplification factor. From Fig. (12), we have seen that, with the
increasing viscosity ratio, the magnitude of cross migration decreases as expected (as the viscosity ratio increases,
the drop behaves like a solid).

It may be noted that surface Péclet number measures the importance of convection relative to diffusion.
Therefore, as Pes increases, magnitude of migration velocity increases. Also, for a fixed viscosity ratio, the
slip parameter reduces the resistance offered by the drop. Accordingly, the migration velocity increases same is
observed in figure (13). From figure (14), we have observed the ratio of Ux and Uy decreases. From this, we can
say, Uy increases faster than Ux with Péclet number.

4.3 Poiseuille flow

Consider a Poiseuille flow past a liquid drop of unit radius whose center is at origin (Ref. [21, 22] to see
the geometrical setup of the problem). In this case, we calculated the ambient velocity as ~v∞ = ~v0∞ =

−k̂eλ2et
(

1− J0(iλeR)
J0(iλeR0)

)(
1− 1

J0(iλeR0)

)−1
. Here R2 = r2 sin2 θ + b2 + 2br sin θ cos φ, velocity is non-

dimensionalized with the characteristic velocity Ub, which is at a dimensionless distance b from the drop, and R0

is the dimensionless distance to the point of zero velocity of the flow, λe is the amplification factor. We expanded
~v∞ as series form for small λe to get χ∞0 and η∞0 , which are given by

χ∞0 =

[
β12f1(λer)S1(θ, φ) +

∞∑
n=1

αn2r
nSn(θ, φ)

]
eλ

2
et, η∞0 = 0,

where,

α0
1 = −1

2

(
1− 1

J0(iλeR0)

)−1(
1− b2λ2e

4J0(iλeR0)

)
, (4.20)

α0
2 = −

(
1− 1

J0(iλeR0)

)−1( bλ2e
36J0(iλeR0)

)
(4.21)
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α0
3 = −

(
λ2e

120J0(iλeR0)

)(
1− 1

J0(iλeR0)

)−1
(4.22)

β01 =

(
3

2λeJ0(iλeR0)

)(
1− 1

J0(iλeR0)

)−1
(4.23)

Therefore the corresponding surfactant concentration distribution on the spherical drop is given by

Γ = Γ0 + PesΓ1 + Pe2sΓ2 +O(Pe3s), (4.24)

where

Γ0 = 1, (4.25)

Γ1 =
(
E1

10 cos θ + E1
21 cos φP 1

2 (cos θ) + E1
30P

0
3 (cos θ)

)
eλ

2
et, (4.26)

Γ2 =
(
E2

10 cos θ + E2
21 cos φP 1

2 (cos θ) + E2
30P

0
3 (cos θ)

+ E2
11P

1
1 (cos θ) cos φ+ E2

20P
0
2 (cos θ) + E2

22 cos 2φP 2
2 (cos θ)

+ E2
31 cos φP 1

3 (cos θ) + E2
42 cos 2φP 2

4 (cos θ) + E2
51 cos φP 1

5 (cos θ)

+ E2
62 cos 2φP 2

6 (cos θ) + E2
71 cos φP 1

7 (cos θ) + E2
82 cos 2φP 2

8 (cos θ)

+ E2
52 cos 2φP 2

5 (cos θ) + E2
40P

0
4 (cos θ) + E2

60P
0
6 (cos θ)

)
eλ

2
et, (4.27)

where the constants E1
10, E1

21, etc can be computed Eqs. (3.42), (3.43), (3.67) and (3.68).
For an unbounded Poiseuille flow, the migration velocity of a force free drop is calculated as

U = U0 + PesU1 + Pe2sU2 +O(Pe3s). (4.28)

In this case the zeroth order migration velocity U0, given in Eq. (3.31) reduces to

U0 =
3

2ρi + ρe

[
Y + µX + αP

W + µZ + αG
[~v0∞]0 +

V + µU + αH

W + µZ + αG
[∇2~v0∞]0

]
(

3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
,

(4.29)

where

[~v0∞]0 =

(
I0 (bλe)− J0(iλeR0)

(1− J0(λeR0))J0(iλeR0)

)
eλ

2
etk̂. (4.30)

and

[∇2~v0∞]0 =
λ2eI0 (bλe)

I0(λeR0)− I0(λeR0)2
eλ

2
etk̂. (4.31)

If we consider the limiting case of no oscillations in the hydrodynamic flow field, i.e., λi = λe = 0, and zero slip
coefficient, i.e., α = 0, then the zeroth order terminal velocity reduces to

U0 =

(
1− b2

R2
0

− µ

4 + 6µ

4

R2
0

)
k̂, (4.32)

which is exactly matching with the one that is obtained by Pak, Feng and Stone [21].
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The first order migration velocity U1, given in (3.50) reduces to

U1 =
3E1

10k̂

2ρi + ρe

[
2Maλ2ej2(λi)h1(λe)

(W + µZ + αG)

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
eλ

2
et,

(4.33)

and the second order migration velocity U2, given in (3.70) reduces to

U2 =
3(E2

11î+ E2
10k̂)

2ρi + ρe

[
2Maλ2ej2(λi)h1(λe)

(W + µZ + αG)

](
3

2ρi + ρe

Y + µX + αP

W + µZ + αG
+ λ2e

)−1
eλ

2
et.

(4.34)

Similar to the arguments made in Section (4.2), by symmetry, it is expected that there will be no velocity
component in y direction. In case if there is a cross migration, the same occurs towards the center line and should
be in x direction (Ref. [21]). We also follow similar arguments to show that, there is no cross stream migration
in leading order and first order, which implies the symmetry condition at leading order is satisfied (Ref. [21]).

Similarly, observing second order migration velocity, we see U∗2.k̂ = Pe2sU2Uc.k̂ ∝ Pe2sMaE2
10Uc ∝

Pe2sMa2Uc ∝ Uc, and U∗2 .̂i = Pe2sU2Uc .̂i ∝ Pe2sMaE2
11Uc ∝ Pe2sMaUc ∝ U2

c . Therefore, the transverse
migration is invariant upon reversal of the direction of the ambient Poiseuille flow.

4.4 Validation

We have compared our results with some existing literature to validate our results. These are shown in the Table
(1).

5 Conclusions

In this paper, we have considered an arbitrary transient Stokes flow with a given ambient flow past a spherical
drop. We analyzed the effects of surface-active agents on the motion of the drop. We have solved the unsteady
convection-diffusion equation to find the surfactant transport on the surface of the drop for low surface Péclet
number. We have also considered the effects of interfacial slip. We found a closed form expression for drag
and migration velocity in terms of Marangoni number, slip parameter and viscosity ratios up to second order
in the surface Péclet number, i.e., up to O(Pe2s). We have analyzed the variation of surfactants for different
viscosity ratios and Marangoni number. We have observed that the impurities residing on the surface do not
show much effect on the behavior of the drop for increasing viscosity ratios. We considered various special cases
and computed drag and migration velocity up to second order in the surface Péclet number in each case. We have
also compared the results with the existing literature for some limiting cases.
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Table 1: Limiting cases of the magnitude of drag force of the present study to get that of different existing
literature.

Main contribution Limiting cases of current study

to get others as listed

Present

study

Effect of surfactant con-

centration and interfacial

slip α on the unsteady

Stokes flow past a viscous

drop for low Pes (Surface

Péclet numbar).

Pak et

al. [21]

Effect of surfactant con-

centration on the steady

Stokes flow past a viscous

drop for low Pes (Surface

Péclet numbar).

D(Pes,Ma, µ, α → 0, P rs →

0, λe → 0, λi → 0, t) =

D1(Pes,Ma, µ)

Sharanya

and Raja

Sekhar [29]

Thermocapillary migra-

tion of a spherical drop

in an arbitrary transient

Stokes flow

D(Pes → 0,Ma → 0, µ, α →

0, P rs, λe, λi, t) = D2(Ma →

0, µ, Pr, λe, λi, t)

Choudhuri

and Raja

Sekhar [7]

Thermocapillary migra-

tion of a spherical drop

in an arbitrary transient

Stokes flow

D(Pes → 0,Ma → 0, µ, α →

0, P rs → 0, λe → 0, λi →

0, t) = D3(Ma→ 0, µ)

Choudhuri

and Padma-

vati [6]

Oscillatory Stokes flow

past a viscous drop

D(Pes → 0,Ma → 0, µ, α →

0, P rs → 0, λe, λi, t) =

D4(λe, λi, µ)
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A The unknown coefficients (for leading order problem)

The unknown coefficients in (3.20) and (3.23) can be found using the boundary conditions given in (3.7) to (3.12)
which are given as follows:

α̂0
n =

(
−2fn+1(λi)gn+1(λe)α

0
nλe + 2fn+1(λi)g2(λe)µα

0
nλe − 2fn+1(λe)fn+1(λi)gn(λe)β

0
nλe

− 2fn(λe)fn+1(λi)gn+1(λe)β
0
nλe + 2fn+1(λe)fn+1(λi)gn(λe)µβ

0
nλe + 2fn(λe)fn+1(λi)gn+1(λe)µβ

0
nλe

− fn+1(λi)gn(λe)α
0
nλ

2
e − fn(λi)gn+1(λe)µα

0
nλeλi − fn(λi)fn+1(λe)gn(λe)µβ

0
nλeλi

− fn(λe)fn(λi)gn+1(λe)µβ
0
nλeλi + 4fn+1(λi)gn+1(λe)αµα

0
nλe + 4fn+1(λe)fn+1(λi)gn(λe)αµβ

0
nλe

+ 4fn(λe)fn+1(λi)gn+1(λe)αµβ
0
nλe + 2fn+1(λi)gn(λe)αµα

0
nλ

2
e − 2fn(λi)gn+1(λe)αµα

0
nλeλi

− 2fn(λi)fn+1(λe)gn(λe)αµβ
0
nλeλi

− 2fn(λe)fn(λi)gn+1(λe)αµβ
0
nλeλi − fn(λi)gn(λe)αµα

0
nλ

2
eλi
)

/ (−2fn+1(λi)gn(λe)− 4fn+1(λi)gn(λe)n+ 2fn+1(λi)gn(λe)µ+ 4fn+1(λi)gn(λe)nµ

+ 2fn+1(λi)gn+1(λe)λe − 2fn+1(λi)gn+1(λe)µλe + fn+1(λi)gn(λe)λ
2
e − fn(λi)gn(λe)µλi

− 2fn(λi)gn(λe)nµλi + fn(λi)gn+1(λe)µλeλi + 4fn+1(λi)gn(λe)αµ+ 8fn+1(λi)gn(λe)nαµ

− 4fn+1(λi)gn+1(λe)αµλe − 2fn+1(λi)gn(λe)αµλ
2
e − 2fn(λi)gn(λe)αµλi

− 4fn(λi)gn(λe)nαµλi + 2fn(λi)gn+1(λe)αµλeλi + fn(λi)gn(λe)αµλ
2
eλi
)
, (A.1)

β̂0n =
(
2fn+1(λi)α

0
n + 4fn+1(λi)nα

0
n − 2fn+1(λi)µα

0
n − 4fn+1(λi)nµα

0
n + 2fn(λe)fn+1(λi)β

0
n

+ 4fn(λe)fn+1(λi)nβ
0
n − 2fn(λe)fn+1(λi)µβ

0
n − 4fn(λe)fn+1(λi)nµβ

0
n

+ 2fn+1(λe)fn+1(λi)β
0
nλe − 2fn+1(λe)fn+1(λi)µβ

0
nλe − fn(λe)fn+1(λi)β

0
nλ

2
e

+ fn(λi)µα
0
nλi + 2fn(λi)nµα

0
nλi + fn(λe)fn(λi)µβ

0
nλi

+ 2fn(λe)fn(λi)nµβ
0
nλi + fn(λi)fn+1(λe)µβ

0
nλeλi − 4fn+1(λi)αµα

0
n

− 8fn+1(λi)nαµα
0
n − 4fn(λe)fn+1(λi)αµβ

0
n − 8fn(λe)fn+1(λi)nαµβ

0
n

− 4fn+1(λe)fn+1(λi)αµβ
0
nλe + 2fn(λe)fn+1(λi)αµβ

0
nλ

2
e + 2fn(λi)αµα

0
nλi

+ 4fn(λi)nαµα
0
nλi + 2fn(λe)fn(λi)αµβ

0
nλi + 4fn(λe)fn(λi)nαµβ

0
nλi

+ 2fn(λi)fn+1(λe)αµβ
0
nλeλi − fn(λe)fn(λi)αµβ

0
nλ

2
eλi
)
/

(−2fn+1(λi)gn(λe)− 4fn+1(λi)gn(λe)n+ 2fn+1(λi)gn(λe)µ+ 4fn+1(λi)gn(λe)nµ

+ 2fn+1(λi)gn+1(λe)λe − 2fn+1(λi)gn+1(λe)µλe + fn+1(λi)gn(λe)λ
2
e

− fn(λi)gn(λe)µλi − 2fn(λi)gn(λe)nµλi + fn(λi)gn+1(λe)µλeλi

+ 4fn+1(λi)gn(λe)αµ+ 8fn+1(λi)gn(λe)nαµ− 4f2(λi)g2(λe)αµλe

− 2fn+1(λi)gn(λe)αµλ
2
e − 2fn(λi)gn(λe)αµλi − 4fn(λi)gn(λe)nαµλi

+ 2fn(λi)gn+1(λe)αµλeλi + fn(λi)gn(λe)αµλ
2
eλi
)
, (A.2)

ᾱ0
n = −et(λ2e−λ2i )fn(λi)λ

2
e

(
(gn(λe) + 2gn(λe)n)α0

n + (fn+1(λe)gn(λe) + fn(λe)gn+1(λe))β
0
nλe
)

/
(
λi
(
gn(λe)λ

2
e (fn+1(λi) + αµ (−2fn+1(λi) + fn(λi)λi))

+ gn+1(λe)λe (fn(λi)µλi (1 + 2α)− 2fn+1(λi) (−1 + µ+ 2αµ))

+ gn(λe)(1 + 2n) (−fn(λi)µλi (1 + 2α) + 2fn+1(λi) (−1 + µ+ 2αµ)))) , (A.3)

β̂0n = et(λ
2
e−λ2i )λ2e

(
(gn(λe) + 2gn(λe)n)α0

n + (fn+1(λe)gn(λe) + fn(λe)gn+1(λe))β
0
nλe
)

/
(
λi
(
gn(λe)λ

2
e (fn+1(λi) + αµ (−2fn+1(λi) + fn(λi)λi))

+ gn+1(λe)λe (fn(λi)µλi (1 + 2α)− 2fn+1(λi) (−1 + µ+ 2αµ))

+ gn(λe)(1 + 2n) (−fn(λi)µλi (1 + 2α) + 2fn+1(λi) (−1 + µ+ 2αµ)))) , (A.4)
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γ̂0n = γ0n

(
fn+1(λe)λe

(
fn(λi) + etλ

2
eαµ (fn(λi)(−1 + n) + fn+1(λi)λi)µe

)
+ fn(λe)

(
fn+1(λi)µλi

(
−1 +

(
−1 + etλ

2
en
)
α
)

+ fn(λi)(−1 + n)
(

1− µ+
(
−1 + etλ

2
en
)
αµ
)))

/(
gn+1(λe)λe

(
fn(λi) + etλ

2
eαµ (fn(λi)(−1 + n) + fn+1(λi)λi)µe

)
− gn(λe)

(
fn+1(λi)µλi

(
−1 +

(
−1 + etλ

2
en
)
α
)

+ fn(λi)(−1 + n)
(

1− µ+
(
−1 + etλ

2
en
)
αµ
)))

, (A.5)

γ̂0n =
(
et(λ

2
e−λ2i )γ0n(fn+1(λe)gn(λe) + fn(λe)gn+1(λe))λe

(
−1 +

(
−1 + etλ

2
e

)
α
))

/
(
−gn+1(λe)λe

(
fn(λi) + etλ

2
eαµ (fn(λi)(−1 + n) + fn+1(λi)λi)µe

)
+ gn(λe)

(
fn+1(λi)µλi

(
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(
−1 + etλ

2
en
)
α
)

+ fn(λi)(−1 + n)
(

1− µ+
(
−1 + etλ

2
en
)
αµ
)))

. (A.6)

B Symbols

The constants given in (3.26) are given as follows:

X = λ3e{λif1(λi)− 2f2(λi)}g2(λe),

Y = λ3e{λig1(λe) + 2g2(λe)}f2(λi),
P = −µλ3e{−λif1(λi) + 2f2(λi)}{2g2(λe) + g1(λe)},

G = µ{2g2(λe)λe − 6g1(λe) + λ2eg1(λe)}{λif1(λi)− 2f2(λi)},
Z = {λif1(λi)− 2f2(λi)}{λeg2(λe)− 3g1(λe)},
W = {2λeg2(λe)− (6− λ2e)g1(λe)}f2(λi),
S = 3{f2(λe)g1(λe)}{λif1(λi)− 2f2(λi)},
T = 6f2(λi){f2(λe)g1(λe) + f1(λe)g2(λe)},

Q = −3µ{f2(λe)g1(λe) + f1(λe)g2(λe)}{4f2(λi)− 2λif2(λi)},

U = S − X

λ2e
;V = T − Y

λ2e
;H = Q− P

λ2e
.

C The unknown coefficients (for first order problem)

The unknown coefficients given in (3.44) to (3.47) are given by

ᾱ1
n =

(
etλ

2
e−tλ2i fn(λi)Ma (gn(λe) + 2gn(λe)n− gn+1(λe)λe + 2gn(λe)α

+ 4gn(λe)nα− 2gn+1(λe)αλe − gn(λe)αλ
2
e

))
/ (λi (2fn+1(λi)gn(λe) + 4fn+1(λi)gn(λe)n− 2fn+1(λi)gn(λe)µ− 4fn+1(λi)gn(λe)nµ

− 2fn+1(λi)gn+1(λe)λe + 2fn+1(λi)gn+1(λe)µλe − fn+1(λi)gn(λe)λ
2
e + fn(λi)gn(λe)µλi

+ 2fn(λi)gn(λe)nµλi − fn(λi)gn+1(λe)µλeλi − 4fn+1(λi)gn(λe)αµ

− 8fn+1(λi)gn(λe)nαµ+ 4fn+1(λi)gn+1(λe)αµλe + 2fn+1(λi)gn(λe)αµλ
2
e

+ 2fn(λi)gn(λe)αµλi + 4fn(λi)gn(λe)nαµλi

− 2fn(λi)gn+1(λe)αµλeλi − fn(λi)gn(λe)αµλ
2
eλi
))
, (C.1)
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β̄1n = −
(
etλ

2
e−tλ2iMa (gn(λe) + 2gn(λe)n− gn+1(λe)λe + 2gn(λe)α

+ 4gn(λe)nα− 2gn+1(λe)αλe − gn(λe)αλ
2
e

))
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2
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+ 2fn(λi)gn(λe)nµλi − fn(λi)gn+1(λe)µλeλi − 4fn+1(λi)gn(λe)αµ
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2
e

+ 2fn(λi)gn(λe)αµλi + 4fn(λi)gn(λe)nαµλi

− 2fn(λi)gn+1(λe)αµλeλi − fn(λi)gn(λe)αµλ
2
eλi
))
, (C.2)

γ̄1n = 0, (C.3)

α1
n = 0, (C.4)

α̂1
n = (fn+1(λi)gn(λe)Ma)

/ (2fn+1(λi)gn(λe) + 4fn+1(λi)gn(λe)n− 2fn+1(λi)gn(λe)µ− 4fn+1(λi)gn(λe)nµ

− 2fn+1(λi)gn+1(λe)λe + 2fn+1(λi)gn+1(λe)µλe − fn+1(λi)gn(λe)λ
2
e + fn(λi)gn(λe)µλi

+ 2fn(λi)gn(λe)nµλi − fn(λi)gn+1(λe)µλeλi − 4fn+1(λi)gn(λe)αµ

− 8fn+1(λi)gn(λe)nαµ+ 4fn+1(λi)gn+1(λe)αµλe + 2fn+1(λi)gn(λe)αµλ
2
e

+ 2fn(λi)gn(λe)αµλi + 4fn(λi)gn(λe)nαµλi

− 2fn(λi)gn+1(λe)αµλeλi − fn(λi)gn(λe)αµλ
2
eλi
)
, (C.5)

β1n = 0, (C.6)

β̂1n = − (fn+1(λi)Ma)

/ (2fn+1(λi)gn(λe) + 4fn+1(λi)gn(λe)n− 2fn+1(λi)gn(λe)µ− 4fn+1(λi)gn(λe)nµ

− 2fn+1(λi)gn+1(λe)λe + 2fn+1(λi)gn+1(λe)µλe − fn+1(λi)gn(λe)λ
2
e + fn(λi)gn(λe)µλi

+ 2fn(λi)gn(λe)nµλi − fn(λi)gn+1(λe)µλeλi − 4fn+1(λi)gn(λe)αµ

− 8fn+1(λi)gn(λe)nαµ+ 4fn+1(λi)gn+1(λe)αµλe + 2fn+1(λi)gn(λe)αµλ
2
e

+ 2fn(λi)gn(λe)αµλi + 4fn(λi)gn(λe)nαµλi

− 2fn(λi)gn+1(λe)αµλeλi − fn(λi)gn(λe)αµλ
2
eλi
)
, (C.7)

γ1n = 0, (C.8)

γ̂1n = 0. (C.9)

D Coefficients Couette flow

E1
11 =

2FL

(2 + λ2ePrs)

(
3g1(λe)λ

2
e (f2(λi) + αµ (−2f2(λi) + f1(λi)λi))

)
δ1

, (D.1)

F 1
22 =

5Fg2(λe)λ
2
e (f3(λi)(2αµ− 1)− αf2(λi)µλi)

6 (Prsλ2e + 6) δ2
(D.2)

29



where

δ2 = g2(λe)λ
2
e (f3(λi)(2αµ− 1)− αf2(λi)µλi)

+ g3(λe)λe (2f3(λi)(2αµ+ µ− 1)− (2α+ 1)f2(λi)µλi)

+ 5g2(λe) ((2α+ 1)f2(λi)µλi − 2f3(λi)(2αµ+ µ− 1)) , (D.3)

and

E2
11 =

4MaE1
11

(2 + λ2ePrs)

f2(λi) (−3g1(λe) + g2(λe)λe)

δ1
, (D.4)

F 2
11 =

λ2ee
λ2et

5 (2 + Prsλ2e)(
18F 1

22g1(λe)(FL) (−αf1(λi)µλi + f2(λi)(2αµ− 1))
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+
5E1

11Fg2(λe) (−αf2(λi)µλi + f3(λi)(2αµ− 1))
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)
, (D.5)

where

δ3 = g1(λe)λ
2
e (αf1(λi)µλi − 2αf2(λi)µ+ f2(λi))

+ g2(λe)λe ((2α+ 1)f1(λi)µλi − 2f2(λi)(2αµ+ µ− 1))

+ 3g1(λe) (2f2(λi)(2αµ+ µ− 1)− (2α+ 1)f1(λi)µλi) (D.6)

F 2
22 =

6F 1
22f3(λi)Ma (−5g2(λe) + g3(λe)λe)

(Prλ2e + 6) δ2
, (D.7)

F 2
31 =

2λ2ee
λ2et

45 (12 + Prsλ2e)(
−27F 1

22g1(λe)(FL) (−αf1(λi)µλi + f2(λi)(2αµ− 1))

δ3
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11Fg2(λe) (−αf2(λi)µλi + f3(λi)(2αµ− 1))
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)
, (D.8)

F 2
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11(FL)g1(λe) (−αf1(λi)µλi + f2(λi)(2αµ− 1))
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)
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