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ABSTRACT

We explore the transport of energetic particles in two-component turbulence in which the stochastic
magnetic field is assumed to be a superposition of slab and two-dimensional modes. It is known that in
magnetostatic slab turbulence, the motion of particles across the mean magnetic field is subdiffusive.
If a two-dimensional component is added, diffusion is recovered. It was also shown before that in
two-component turbulence, the slab modes do not explicitly contribute to the perpendicular diffusion
coefficient. In the current paper the implicit contribution of slab modes is explored and it is shown

that this contribution leads to a reduction of the perpendicular diffusion coefficient.

This effect

improves the agreement between simulations and analytical theory. Furthermore, the obtained results
are relevant for investigations of diffusive shock acceleration.

Subject headings: diffusion — magnetic fields — turbulence

1. INTRODUCTION

The interaction between energetic particles and a mag-
netized plasma is explored analytically. Examples for
energetic particles are Solar Energetic Particles (SEPs)
and Cosmic Rays (CRs). If such particles move through
space, their motion is usually diffusive and, therefore, a
diffusive transport equation has to be used in order to de-
scribe their motion. The most important terms in such
transport equations are those describing spatial diffusion
along and across a mean magnetic field. Parallel and
perpendicular diffusion coefficients are mostly controlled
by the turbulent magnetic fields of the plasma.

First treatments of perpendicular diffusion were based
on quasi-linear theory (see Jokipii 1966) which can be un-
derstood as a first-order perturbation theory. However,
perturbation theory is usually based on the assumption
that there is a small parameter. It is often stated in the
literature (see, e.g., Schlickeiser 2002) that this small pa-
rameter is the magnetic field ratio B/ By (here § B is the
total turbulent field and By is the mean magnetic field).
Apart from the problem that this magnetic field ratio is
usually not small in astrophysical scenarios, it was shown
in the literature that a small value of 6 B/ By alone does
not justify the quasi-linear approach (see, e.g., Shalchi
2009 for a detailed discussion of the problems associated
with quasi-linear theory).

Because quasi-linear theory is problematic, non-linear
theories have been developed mainly in order to describe
perpendicular diffusion. Some work was already pre-
sented in the seventies of the 20th century (see, e.g.,
Owens 1974). A breakthrough has been achieved by
Matthaeus et al. (2003) where the so-called Non-Linear
Guiding Center (NLGC) theory was presented. The lat-
ter theory agrees well with simulations for a specific tur-
bulence model, namely a so-called two-component model
in which it is assumed that the turbulence can be approx-
imated by a superposition of slab and two-dimensional
modes. However, NLGC theory does often not provide
the correct result. This is in particular the case for slab
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turbulence, two-component turbulence with a dominant
slab contribution, or three-dimensional turbulence with
small Kubo numberd] (see, e.g., Shalchi 2006, Tautz &
Shalchi 2011, and Shalchi & Hussein 2014).

In Shalchi (2010) the Unified Non-Linear Transport
(UNLT) theory was developed. Although the theory is
based on some of the approximations used by Matthaeus
et al. (2003), it contains a very different treatment of
higher order correlations. UNLT theory uses an approach
based on the CR Fokker-Planck equation in order to
avoid simple approximations of such correlations. UNLT
theory provides a non-linear integral equation similar
compared to the NLGC result but it contains different
terms in the denominator. In particular for slab and
small Kubo number turbulence, NLGC and UNLT the-
ories provide completely different results. Furthermore,
UNLT theory contains the Matthaeus al. (1995) theory
for field line random walk as special limit.

UNLT theory provides the correct subdiffusive result
for perpendicular transport in slab turbulence. Further-
more, the theory states that the slab contribution in two-
component turbulence damps out subdiffusively even if a
dominant two-dimensional component is added (see also
Shalchi 2005 and Shalchi 2006). Therefore, slab modes
do not explicitly contribute to the perpendicular diffu-
sion coefficient. It is the purpose of the current paper
to explore the implicit contribution of the slab modes to
the perpendicular diffusion coefficient.

The paper is organized as follows. In Sect. 2 we discuss
different analytical theories for perpendicular diffusion.
In Sect. 3 we developed a non-linear diffusion theory for
two-component turbulence which takes into account the
implicit contribution of the slab modes. In Sect. 4 we
present some analytical approximations which are use-

1 The Kubo number occurs in investigations of three-dimensional
turbulence and is defined as K = ({6Bx)/(lLBo). Here we have
used characteristic lengths scales describing the correlation of the
turbulent fields in the directions parallel and perpendicular with
respect to the mean magnetic field. Furthermore, §B; is the z-
component of the turbulent magnetic field vector and Bg is the
mean field.


http://arxiv.org/abs/1609.05227v1
mailto:andreasm4@yahoo.com

2

ful in order to simplify the new integral equation and in
Sect. 5 we show the perpendicular diffusion coefficients
based on different theories and compare them with each
other. In Sect. 6 we summarize and conclude. Fur-
thermore, we point out which theory should be applied
for two-component and three-dimensional turbulence, re-
spectively.

2. DIFFERENT ANALYTICAL THEORIES FOR
PERPENDICULAR TRANSPORT

In the current section we briefly discuss three non-
linear theories for perpendicular diffusion developed in
the past. Those are the original NLGC theory of
Matthaeus et al. (2003), the Extended Non-Linear Guid-
ing Center (ENLGC) theory of Shalchi (2006), and the
UNLT theory of Shalchi (2010).

2.1. The original NLGC theory

The original NLGC theory was developed based on dif-
ferent assumptions and approximations. In the following
we briefly re-derive this theory. This is necessary to point
out the differences between different theories but some
of the assumptions and approximations used here will be
employed in Sect. 3 in order to achieve a further im-
provement of the analytical description of perpendicular
diffusion.

As starting point we can use the following equation of
motion (see, e.g., Schlickeiser 2002)

5B, [#()]

v (t) = v, (t) Be

(1)
Strictly speaking, the velocity component v, used here
is the corresponding component of the guiding center ve-
locity. Matthaeus et al. (2003) introduced a correction
parameter a in Eq. (). In recent numerical investi-
gations, however, it was shown that a = 1 (see Qin &
Shalchi 2016). A more detailed discussion of this matter
can be found below.

A diffusion coefficient can be calculated by employ-
ing the Taylor-Green-Kubo formula (see Taylor (1922),
Green (1951), and Kubo (1957))

ry = / dt (0, (t)02(0)) (2)

and with Eq. (1) we obtain

1 -+ :
. /O dt (v.(t)0-(0)0B, [#(1)] 6B, [F(0)]) . (3)

To continue, Matthaeus et al. (2003) have employed the
following approximation

(v2(8)v=(0)0B, [Z (1) 0 B; [ (0)])
~ (v:(t)v2(0)) (0B: [# (t)] 6 B; [F (0)]) - (4)

It was shown analytically in several papers (see, e.g.,
Shalchi 2006 and Shalchi 2010) that this type of approx-
imation does not work for slab or slab-like turbulence.
Recent numerical tests have shown that this type of ap-
proximation works well for two-dimensional dominated
turbulence but fails completely for slab dominated tur-
bulence (see Qin & Shalchi 2016).

If approximation (@) is combined with Eq. (@), we
derive

. BL / "t (0. (00:(0)) (6B [70)] 6B [F0))

(5)
For the parallel velocity correlation function we employ
an isotropic exponential modefd

(v2(t)v=(0)) =

To model the magnetic field correlations is more difficult.
First, we replace the turbulent field in Eq. (@) by a
Fourier representation

B, () = / &3k 6B, (E) etkZ (7)

To proceed we employ Corrsin’s independence hypothesis
(see Corrsin 1959)

<5Bm (E) B (E’) eiE-f(t)fiE’-i‘(O)>

<38, (R) o8, (1)) (550~ 50) (g

as well as the assumption of homogeneous turbulence

(582 (F) 8; (1)) = Pun ()5 (F= ) (0

where we have used Dirac’s delta. Furthermore, we have
used the magnetic correlation tensor

P (7) = (35, ()55, (F)). (10
By combining Egs. ()-(I0), we derive

v? > t/A
- dt e~ vt/
Yz /0 ¢

X /d3k Pyo (E) <ekAx> (11)

with AZ(t) = Z(t) — Z(0). To continue we combine Eq.
(1) with an Gaussian distribution with vanishing mean.
In this case the three-dimensional particle distribution
function has the form

2
%e*”/ A (6)

£ (@)= —— 1 1
V2r((a)) \2n((a)?) \2m((A2)?)

X 6_ 2<(Az)2> e_2<(Ay)2> 6_ 2<(AZ)2> . (12)

For the axi-symmetric case this form gives the following
characteristic function

(eFa7) = B @@ (1)

where we have used cylindrical coordinates for the wave
vector. Those are related to Cartesian coordinates via

ki =k,

2 A detailed investigation of velocity correlation functions was
presented in Shalchi (2011). It was shown there, that only if the
pitch-angle Fokker-Planck coefficient is isotropic Dy, = D(1—pu?),
we indeed find an exponential velocity correlation function. In
other cases, however, it is much more complicated to determine
the analytical form of (v (t)v:(0)).



ki=/kZ+ k2,
U =arccot(k, /ky); (14)

Furthermore, we assume that the particle motion along
and across the mean magnetic field is diffusive and, there-
fore, ((Az)?) = 2tr and ((Az)?) = 2tk.. We like to
emphasize that for slab turbulence we have k; = 0 in
Eq. ([@3) and, thus, no assumption has to be made for
the perpendicular motion of the particle as long as slab
turbulence is considered. By combining this set of ap-
proximations and assumptions we can derive from Eq.

8y
. a’v? / 3 PM(E)
L= 3B(2) ’U//\” +’1Lki —|—Ii||kﬁ

(15)

which is a non-linear integral equation for x,. Here we
have also introduced the correction factor a® as it was
done in Matthaeus et al. (2003). In the latter paper it
was suggested that a? = 1/3. Originally this parameter
was introduced in the equation of motion () but it was
shown in Qin & Shalchi (2016) that Eq. () in indeed
valid as it is. Below the reader can find a more detailed
discussion of this matter.

2.2. The extended NLGC theory

One can easily show that for slab turbulence Eq. (IH)
provides a finite diffusion coefficient corresponding to
normal or Markovian diffusion. However, it is well-
known that perpendicular transport in slab turbulence
is subdiffusive (see, e.g., Qin et al. 2002a). Therefore,
the ENLGC theory was developed in Shalchi (2005) and
Shalchi (2006). In the following we present the latter ap-
proach which was developed for two-component turbu-
lence and cannot be used for any full three-dimensional
turbulence model.

Eq. () with the Fourier representation () can be
written as

Vg = Bio /dgk 0B, (E) vze”;'”z. (16)

In the slab model we have by definition 6 B, (Z) = 6 B, (z)
meaning that the turbulent field depends only on the
coordinate along the mean field. For pure slab turbulence

we can use k- = k.z in Eq. ([8) and, therefore, we can
write

d
—A - L [k Lsn, (F)
. B0 ik, dt
The latter equation can easily be integrated over time to
find
3, 1 ikaz(t) }
Az = BO dklk 5B, ()[e 1 (18)

where we have used Az(t) = z(t) —x(0) as well as z(0) =
0. The ensemble averaged square of this formula is

<(A:v)2>:%/d3k k2P, (/2)

0

% {2 _ <eikzz(t)> _ <efikzz(t)>:| (19)

where we have employed again Eqs. () - (I0). Usually
we are interested in the late time limit of the transport.

—ethez, (17)
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In this case, and by assuming that the motion in the
parallel direction is diffusive in that limit, we can employ
the characteristic function of the diffusion equation

<e:tikzz(t)> — e*l{ukﬁt. (20)

It has to be emphasized that we only assumed that paral-
lel transport is diffusive. No assumption was made con-
cerning the perpendicular motion. Therefore, Eq. (9]
can be written as

67’{“ kﬁt) .

<(Aaz)2> = /d%k 2Py (k:) (1 _
i (21)

The tensor components of the slab modes have the form

o(k1)
o Ommn, (22)

Pleb (k) = g*'*(ky)
with m,n = x,y. Here we have used the Kronecker delta
Omn and the Dirac delta §(k.), respectively. The other
tensor components are zero due to the solenoidal con-
straint. Furthermore, we have used the turbulence spec-
trum of the slab modes g*'** (k).

If we combine Eqs. [ZI) and 22), we derive

Ak +o00 a 1 — e—nukﬁt
<(Aﬂc)2> = Bz” / dky g*' b(’fn)T- (23)
0 —00 I

The fraction in this integral has the following property:
If we consider the limit ¢ — oo the exponential goes to
zero and the fraction is finite as long as k| # 0. If k| = 0,
however, the fraction is directly proportional to t — oco.
Therefore, the main contribution to the integral comes
from very small wavenumbers k. Thus we can write in
the limit of late times

A7k +o0 1—
A 2>,\N_, H slab ki =0 / dk
<( x) Y (k) =0) B ey
(24)
The remaining integral yields 2,/7t/x| and, therefore,
we obtain

—fi”kl2t

<(A:1:)2> = 22 g (ky = 0) /7y L. (25)

The field line diffusion coefficient for slab turbulence is
given byl (see, e.g., Shalchi 2009)

ﬂ- sita
T o =0 (26)

and, thus, Eq. ([20) can be written as

<(A3:)2> - 4,{”\/? . (27)

For the spectrum of the slab modes we employ (see, e.g.,
Bieber et al. 1994)

C(s 1
2( )5leab slab s/2 (28)
[1+ (kylsiab)?]

3 For magnetostatic slab turbulence the theory of field line ran-
dom walk is exact. A field line diffusion coefficient kg, is de-
fined via the mean square displacements of magnetic field lines
((Az)?) = 2k Az and, therefore, xkpy, has length dimensions.

RFL =

gslab(k”)
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with the normalization function

1
0= 3 () .

where T'(z) is the Gamma function. Above we have
used the magnetic field strength associated with the slab
modes 0 Bgqp, the slab bendover scale l445, and the in-
ertial range spectral index s. For this spectrum the field
line diffusion coefficient (26]) becomes

6B§lab .
B

krr = 7C(8)lsan (30)

From Eq. (27)) we can see that the mean square displace-

ment increases linearly with v/# corresponding to subd-
iffusion. In the literature this type of transport is usu-
ally called compound diffusion (see, e.g., Kéta & Jokipii
2000, Webb et al. 2006, and Shalchi & Kourakis 2007).
Subdiffusion or compound diffusion was also discussed in
the work of Getmantsev (1963), Fisk et al. (1973), and
Chuvilgin & Ptuskin (1993). Furthermore, it was shown
via test-particle simulations, that this type of transport
can indeed be found in slab turbulence (see, e.g., Qin et
al. 2002a).

In the slab/2D composite model we assume that
the magnetic field is given by 6B () = 0B (2) +
6Bap (x,y) and we assume that the two components are
uncorrelated meaning that(dB; siab (2) 0Bj2p (2,y)) =
0. It was shown before that if a two-dimensional compo-
nent is added, diffusion is recovered (see, e.g., Qin et al.
2002b). Therefore, we assume the following form for the
mean square displacementl]

<(A:v)2> = 20/f + 26 t (31)
where, according to Eq. 27]),

a=2rpry | (32)
s

Very easily one can see that for ¢ — oo, the (subdiffusive)
slab contribution can be neglected compared to the sec-
ond (diffusive) contribution and the diffusion coefficient
k.1 depends only on the properties of the two-dimensional
modes. Below we will show that there can be an implicit
contribution due to slab modes.

Within ENLGC theory, the slab contribution is calcu-
lated as described above, and the two-dimensional con-
tribution as within the original NLGC theory. Therefore,
withing ENLGC theory the perpendicular diffusion coef-
ficient in two-component turbulence is given by

 3B3 v/ N+ rLk?

4 This choice for the mean square displacement is somewhat
ad-hoc. Webb et al. (2009) provided a Chapman-Kolmogorov ap-
proach to particle transport perpendicular to the mean field, in
which the distribution function for magnetic field diffusion was a
Gaussian. A separate propagator for particle transport perpendic-
ular and parallel with respect to the mean field was used. The
mean square displacement for particle transport across the mean
field was given by Eq. (2.73) of that paper. This is similar to
the form used here, but there is a more complicated dependence of

{(Az)?) on time ¢ at intermediate times.

K] (33)

One can easily see that for pure two-dimensional turbu-
lence Eqs. ([H) and (B3) are equivalent. As soon as a
slab contribution is added, however, both theories pro-
vide different results. Like in the original NLGC theory,
one could incorporate a correction factor a? but this is
not done here.

2.3. The UNLT theory

According to Shalchi (2010), the original NLGC theory
fails in general because approximation () is not valid.
This is in particular the case for slab and small Kubo
number turbulence. The latter statement was confirmed
numerically in Qin & Shalchi (2016). Based on the CR
Fokker-Planck equation, Shalchi (2010) developed a non-
linear theory for perpendicular diffusion which does no
longer require the usage of approximation (). The fol-
lowing non-linear integral equation has been found after
lengthy algebra

a2v? P,o (k)
= >k e 34
i 333/ v/ N+ (4/3)k 1L k3 + F(ky, kL) (34)
with 22
v
[
F (k” ) kJ—) = 35Lki : (35)

One can easily see that for two-dimensional turbulence
Eq. (34) agrees with Egs. ([3) and B3] apart from the
factor 4/3. For slab turbulence we find x; = 0 and,
therefore, UNLT and ENLGC theories agree with each
other but not with the original NLGC theory. Whereas
ENLGC theory can only be used for two-component tur-
bulence, UNLT theory should be valid for full three-
dimensional turbulence also. From Eq. ([B4) one can
easily derive the Matthaeus et al. (1995) theory for field
line random walk by considering the limit A\ — oo. Dif-
ferent asymptotic limits of Eq. (B4]) have been derived
and discussed in Shalchi (2015).

3. IMPLICIT CONTRIBUTION OF SLAB MODES

Within the extended NLGC theory the mean square
displacement is given by Eq. (&Il). Obviously there is
a subdiffusive contribution from the slab modes and a
diffusive contribution from the two-dimensional modes.
In the limit ¢ — oo, however, only the latter contribution
remains.

In previous analytical theories such as the ones de-
scribed in Sect. 2, one usually employs ((Ax)?) = 2kt
in the characteristic function. The idea of the current
paper is to use Eq. (BI)) instead of the diffusion approx-
imation. For two-dimensional turbulence Eq. (Il with

([@3) and &I becomes

o= [ g p2o (E)
353 e

x /0 dt e~ (/2 rakl)i-akl Ve (36)

It has to be emphasized that the latter formula is only
valid for two-dimensional turbulence and cannot be used
for full three-dimensional turbulence. Furthermore, the
form (BI)) is only valid in the late time limit. For earlier
times, for instance, one expects a ballistic motion of par-
ticles and for intermediate times there could even be a



diffusive contribution of the slab modes (see, e.g., Jokipii
& Parker 1969, Shalchi 2008, Webb et al. 2009, and Ruf-
folo et al. 2012 for more details). The model used here is
based on the assumption that only late times contribute
to the perpendicular diffusion coefficient.

The time integral in Eq. (B0) is solved by (see, e.g.,
Gradshteyn & Ryzhik 2000)

/OO dt e-Avi-Br — L (€) (37)
0 B
where we have used the parameters
A= ak?, (38)
BZU/)\H +:‘€J_ki, (39)
and A
§= (40)

2VB'
as well as the function
K (&) =1 — m&eS erfe (€). (41)

Here we have also used the complementary error func-
tion. Therewith, Eq. (B8] becomes

v? 3 Pm2mD(E)

3B3 T A

Kl =

The parameter ¢ was defined in Eq. (#0) and becomes

in our case
2 ST
IiFLkJ_ HH/TF

VoA T Rk

1 fiFL)\|\k2
V3 1+)\||)\J_/€2 /3

(43)

where we have used Eq. (B2) and we have replaced
the diffusion coefficients by the corresponding mean free
pathdd. If we employ Eq. (B0) in order to replace the
field line diffusion coefficient of the slab modes, we can

write
= [Tcw

If we replace the diffusion coefficients by the correspond-
ing mean free paths, Eq. ([@2) can be written as

N[ s, P2P(K)

R Lan 0B241
VIR /3 Bj

(44)

Al = —5 —K . 45
+ Bg 1+ )\H)\Lk /3 () (45)
The two-dimensional turbulence model is defined via
R o(kyp) kmk
_ 2D I _ FmFRn
R O

where we have used the two-dimensional turbulence spec-
trum ¢?P (k) which will be discussed below. By com-
bining Eqs. (3]) and {@f) we obtain

AL = "k, GPkL) g (€) (47)
1 = —5 —_— .
B2 J, T+ A\ ALK2 /3
5 The mean free paths are related to the corresponding diffusion
coefficients via A\ = 3k /v and A = 3k /v.
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Shalchi & Weinhorst (2009) proposed the following form
for the spectrum of the two-dimensional modes

2D(s,
9P (k)= 7; 2 B3plap
(kilop)? (48)
1+ (/ﬂ_bD)z](Hq)/?
with the normalization function
I (&te
D(s,q) = ) (49)

20 (554) T (457)
The parameters used in the spectrum are the inertial
range spectral index s, the energy range spectral index
q, and the bendover scale of the two-dimensional modes
lop. With this spectrum, and by employing the integral
transformation « = lapk, , Eq. [@T) becomes

§B3
AL =2D(s, )N 55"

0
> 21 K(§)
« /O - (50)

1+ 22)0F0/2 1 4 /\HM 22

In Sect. 5 we shall evaluate Eq. (B0) for different pa-
rameter values and compare our findings with diffusion
coefficients obtained from the other theories.

4. FURTHER ANALYTICAL CONSIDERATIONS

The important result of the current paper is Eq. (@2]).
Therein the function K (&) is used which is defined via
Eq. (I). It shouldn’t be problematic to incorporate this
function in numerical codes used to evaluate Eq. ({#2)). In
some cases, however, a further analytical simplification
could be convenient. This is done in the following.

The complementary error function has the following
asymptotic limits (see, e.g., Abramowitz & Stegun 1974)

~1-— %5 (51)

1 2 1
et (1-5 ). 2
me(1oam) @
Therefore,we find

K(<1)=1—r¢ (53)

erfc (£ < 1)

and
erfc (£ > 1)

and

K(E>1)~ (54)

262
We can easily see that for increasing £, we find a reduc-
tion of the perpendicular diffusion coefficient. In order to
combine our findings we use the following approximation

K(€)~ —

1+ 22
so that K(§¢ < 1) &= 1 and for £ > 1 we recover Eq.
G4). If Fig. 0 we compare the exact form Il with
approximation Eq. (G3).

If approximation (B3] is combined with Eq. ({2), and
if we use Eq. ([@3]) we find the following integral equation

_ ’02 /dgk Png(E)
LT 3B VN RLK + 2RyRE KL [

(55)

(56)
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F1a. 1.— The function K (£). We show the exact analytical form

given by Eq. I]) (solid line) as well as approximation (53] (dotted
line).

The latter formula has some similarity with the integral
equations discussed in Sect. 2 (see, e.g., Egs. (I5), (33)),
and ([B34)). We like to emphasize that Eq. (Bf) is only
valid for slab/2D turbulence and cannot be used for other
turbulence models such as full three-dimensional mod-
els. The third term in the denominator of Eq. (56l
contains the field line diffusion coefficient kpy. It has
to be pointed out that this is the field line diffusion co-
efficient associated with the slab modes as given by Eq.
B0) and not the total field line diffusion coefficient which
would also contain a contribution of the two-dimensional
modes.

For numerical investigations it is useful to rewrite Eq.

E8) as

§B3
AL =2D(s,9)\|—55"
0
o x4 1
X dx (57)
/0 (1422)0F92 1 4 —)‘3‘1‘52 x? 4yt

where we have used the parameter

_2 )‘ﬁ"€2FL
3m 15p
— 2_7T 2 )\_ﬁ lglab 5B;1lab

[C(s)] —r (58)
3 Bp BBp  Bo
and spectrum [{8)). Eq. (E7) with (B8] is also used in
Sect. 5 to compute the perpendicular mean free path and
the results are compared with other theoretical results as
well.

5. RESULTS

In the current section we compute the perpendicular
mean free path by employing the original NLGC theory
of Matthaeus et al. (2003), the extended NLGC theory
of Shalchi (2006), and we use the modified theory devel-
oped in the current paper by using different approxima-
tions for the function K (). In all cases we calculate the
perpendicular mean free path as a function of the parallel
mean free path. In all cases we have set dB%,, = 0.2B2

10t

10-3 1 L L
102 10t 10° 10* 102

)\H/IZD

F1G. 2.— The perpendicular mean free path A, /lop versus the
parallel mean free path A /lap for g = 0and lap = 0.1l5;4p. Shown

are the results from the original NLGC theory (dash-dotted line),
the extended NLGC theory (dotted line), and the modified ap-
proach developed in the current paper. The latter theory was eval-
uated by using the exact form for the function K(§) (solid line)
and approximation (55) (dashed line).

and 6B2, = 0.8B? as originally suggested in Bieber et
al. (1994).

5.1. The case ¢ =0 and lap = 0.1l54p

The first set of parameter values is based on those used
in Matthaeus et al. (2003). In the latter paper the orig-
inal NLGC theory was compared with test-particle sim-
ulations. The best agreement was achieved by setting
a? = 1/3. In Fig. B we show the original NLGC the-
ory for a? = 1, the extended NLGC theory as well as our
new results. We can clearly see that the extended NLGC
result is smaller than the original NLGC result because
there is no contribution from the slab modes. Further-
more, the implicit contribution from the slab modes re-
duces the perpendicular mean free path further. This is
in particular the case for long parallel mean free paths
corresponding to higher particle rigidities/energies. In
this case the perpendicular mean free path is reduced by
about a factor two compared to the original NLGC result.
This finding can explain the value a? ~ 1/3 suggested by
Matthaeus et al. (2003). We also computed the perpen-
dicular mean free path for ¢ = 0 and lop = lg4p but did
not observe a significant effect.

5.2. The case ¢ = 1.5 and lap = 0.1l54p

Matthaeus et al. (2007) suggested that the spectrum
of the two-dimensional modes is not constant at large
scales corresponding to the energy range. Therefore, we
set ¢ = 1.5 and compute the perpendicular mean free
path as it was done above. Our findings are shown in
Fig. Clearly we can observe a significant difference
between the different theories. For the case considered
here, the implicit contribution of the slab modes reduces
the perpendicular mean free path by about a factor 10 if
compared with the original NLGC theory. However, this
is only the case for very long parallel mean free paths
corresponding to very high particle energies. We can
also see that approximation (Bo) works well.
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Fic. 3.— Caption is as in Fig. [2] but here we have used ¢ = 1.5
and lop = 0.1lg4p to explore the influence of the energy range
spectral index q.
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Fic. 4.— Caption is as in Fig. @ but here we have used ¢ = 3 and
lop = 0.1lg;4p to explore the influence of the energy range spectral
index q.

5.3. The case ¢ =3 and lap = 0.1l54p

As shown above, the energy range spectral index seems
to be important if the implicit slab contribution is taken
into account. Therefore, we further change the param-
eter ¢. Our findings for ¢ = 3 are visualized in Fig. @
Again we find a significant difference between the dif-
ferent theories. Now the influence of the implicit slab
contribution is even larger and, thus, we conclude that
for increasing g we find a stronger effect.

5.4. The case ¢ =3 and lap = lsap

A further important parameter in the theory of per-
pendicular diffusion is the scale ratio lap/lsiqp. Above
we have considered the case of lop = 0.1l44 as it was
used in Matthaeus et al. (2003). In the current para-
graph we assume that the two bendover scales are equal.
Our findings are shown in Fig. [fl Clearly we can see that
now the discrepancies between the different theories are
much smaller. However, there is still a factor 2 or even 3
between the different theoretical results. Again the ob-
served effect can explain the value a? = 1/3 assumed in
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Fi1c. 5.— Caption is as in Fig. [2 but here we have used ¢ = 3
and lop = lg14p to explore the influence of the bendover scales.
Matthaeus et al. (2003). We also made calculations for
smaller values of the magnetic field ratio 6 B/ By to find
that the effect coming from the implicit slab contribution
is weaker.

6. SUMMARY AND CONCLUSION

In the current paper we have revisited the problem
of perpendicular diffusion of energetic particles in two-
component turbulence. Whereas it was shown before
that the slab modes do not explicitly contribute to the
perpendicular diffusion coefficient, we explored the im-
plicit contribution in the current paper. We have derived
the modified non-linear integral equation ([@2]) which can
be approximated by Eq. (B6]). This modification should
provide another improvement compared to the original
NLGC theory developed in Matthaeus et al. (2003) and
the extended NLGC theory of Shalchi (2006). Compared
to earlier versions of the NLGC theory, the modified
equations ([@2)) or (B6]) are not more difficult to evaluate
numerically.

In Figs. we have shown the perpendicular mean
free path versus the parallel mean free path for different
values of the scale ratio lap/lsqp and different values of
the energy range spectral index ¢q. Both mean free paths
are normalized with respect to the two-dimensional ben-
dover scale lop. It can easily be seen that, in general,
the implicit slab contribution reduces the perpendicular
mean free path.

Matthaeus et al. (2003) used ¢ = 0 and lop = 0.1l51ap
in their work and they compared the original NLGC the-
ory with test-particle simulations. They found a differ-
ence between analytical theory and simulations but this
difference can be balanced out by using the correction
factor a? and by setting a? = 1/3. In the current paper
a possible explanation for this value is provided. The im-
plicit contribution from the slab modes reduces the per-
pendicular mean free path as required to achieve agree-
ment with simulations. The correction factor a? is no
longer needed.

For ¢ = 1.5 and ¢ = 3, which is in agreement with the
values suggested by Matthaeus et al. (2007), we find a
stronger effect. In particular for long parallel mean free
paths, a strong reduction of the perpendicular mean free
path can be observed.
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Another parameter which influences the reduction dis-
cussed here, is the scale ratio lap/lsiap. If this ratio is
small, a stronger effect can be observed. For equal ben-
dover scales, however, the perpendicular mean free path
is only about a factor 2 shorter as the one computed by
using the original NLGC theory.

A further theory for perpendicular diffusion was pre-
sented in Shalchi (2010) where the Unified Non-Linear
Transport (UNLT) theory was developed. In the follow-
ing we discuss which theory has to be used for which
case.

e Solar Wind turbulence is often approximated by a
slab/2D composite model which is also known as
two-component turbulence. We suggest to use the
extended NLGC theory with implicit slab contri-
bution developed in the current paper for this spe-
cific turbulence model. This theory is represented
by Eq. (#2) which can be well approximated by
Eq. (B8)

e For full three-dimensional turbulence, the original
NLGC theory, the extended theory and the ap-
proach developed in the current paper cannot be
used. For this case the UNLT theory represented
by Eq. (4)) should provide an accurate description
of perpendicular diffusion. In this case a critical
parameter is the Kubo number (see Shalchi 2015
for more details).

The integral equation derived in the current paper
should provide an accurate analytical description of per-
pendicular diffusion in two-component turbulence. It is
straightforward to include further effects such as dynam-
ical turbulence. In this case another term would occur in
the denominator of Eq. (@2) which would be associated
with the correlation time of the two-dimensional modes.
The situation is more complicated, however, if there is
also a dynamical turbulence effect associated with the
slab modes because in this case the explicit contribu-

tion of the slab modes can be diffusive (see, e.g., Shalchi
2014).

The results obtained in the current paper, and in ana-
lytical theories for perpendicular diffusion in general, are
relevant for several applications:

e To understand the acceleration of particles due to
turbulence (see, e.g., Lynn et al. 2014);

e For solar modulation studies (see, e.g., Alania et
al. 2013, Engelbrecht & Burger 2013, Manuel et
al. 2014, and Potgieter et al. 2014);

e Particle acceleration at interplanetary shocks such
as coronal mass ejection driven shocks (see, e.g., Li
et al. 2012 and Wang et al. 2012);

e To describe the motion of cosmic rays in our own
and in external galaxies (see, e.g., Buffie et al.
2013, Berkhuijsen et al. 2013, Heesen et al. 2014);

e To describe diffusive shock acceleration at interstel-
lar shocks (see, e.g., Ferrand et al. 2014);

In particular for diffusive shock acceleration at super-
nova shock waves, the fact that the perpendicular mean
free path becomes rigidity independent in the high en-
ergy limit, can help to explain the cosmic ray spectrum
(see Ferrand et al. 2014 for more details). In the current
paper we have shown that the perpendicular diffusion co-
efficient can even decrease with increasing rigidity in the
high energy regime. To incorporate this effect in simula-
tions of diffusive shock acceleration at interplanetary and
interstellar shock waves could be important and should
be subject of future work.

A. Shalchi acknowledges support by the Natural Sci-
ences and Engineering Research Council (NSERC) of
Canada.
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