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Abstract 

L shell line and total x-ray production cross sections in 78Pt, 79Au, 82Pb, 83Bi, 90Th, and 92U targets 

ionized by 4-6 MeV/u fluorine ions were measured. These cross sections are compared with 

available theories for L shell ionization using single- and multiple-hole fluorescence and the 

Coster-Kronig yields. The ECPSSR and the ECUSAR theories exhibit good agreement with the 

measured data, whereas, the FBA theory overestimates them by a factor of two. Although for 

the F ion charge states q = 6-8 the multiple-hole atomic parameters do not significantly differ 

from the single-hole values, after an account for the multiple-holes, our data are better in 

agreement with the ECUSAR than the ECPSSR theory. 
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1. INTRODUCTION 

The measurement of emitted x-rays from targets has resulted in major advances in 

radiation[1], plasma [2], atomic and nuclear physics [3], and in particle induced x-ray 

emission (PIXE) technique [4,5].  While PIXE originated and continues using light ions 

such as protons or alphas [6–16],there is an increasing interest to use heavy ions for PIXE 

analysis due to higher cross sections and thereby better sensitivity [17]. While discrepancies 

between theories and experiment were attributed to multiple ionization even with 

protons[18], multiple-ionization effect has been known for decades in L-shell ionization by 

heavier ions [19–34]. However this effect is still rarely addressed for the x-ray emission 

elemental analysis in the aftermath of ionization by such ions. 

The sum of electron capture (EC) from a projectile with the atomic number ZP and direct 

ionization (DI) of a target with the atomic number ZT results in ionization of the target 

atom’s inner shells. In asymmetric collisions, i.e., ZP/ZT << 1, the DI is dominant, whereas, 

for symmetric collisions, i.e., with ZP/ZT approaching 1, the EC process becomes 

increasingly important. As presented in Section 2, the L shell x-ray production cross 

sections have been measured in high ZT-targets ionized by the 76–114 MeV 19F ions. With 

ZP = 9, 0.010 ≤ ZP/ZT ≤ 0.012 and the ratio of the projectile velocity vp =6.351 

[EP(MeV)/AP(u)]1/2 (a.u) to the orbital velocity of the L-shell electrons vT=(ZT–4.15)/2   less 

than 1 i.e., 0.029 ≤ vP/vT ≤ 0.042, the present data are in the asymmetric and slow collision 

regime.  

While expanding on the existing data base with ionization by heavy ions as desired for 

PIXE analysis, the collision regime of the present data allows for a meaningful comparison with 

existing ionization theories as discussed in Section 3. Section 4 addresses effects of the single- 

and multiple-hole atomic parameters required for conversion of ionization to x-ray production 

cross sections, and Section 5 summarizes our findings.  

 

 

2. EXPERIMENTAL DETAILS AND DATA ANALYSIS 

 The L shell x-ray production cross sections in the elements with 78  ZT 92 elements 

using the 19F ions (charge states q = 6+, 7+, 8+) in the 76 – 114 MeV energy range had been 

measured. Heavy ions of F6+ (76 and 84 MeV), F7+ (90 MeV) and F8+ (98, 106 and 114 MeV) 

were obtained from the 15 UD Pelletron accelerator at Inter-University Accelerator Centre, 
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New Delhi. Two silicon surface barrier detectors at  7.5o to the beam direction were used to 

monitor the projectile ions. The chamber was evacuated to about 10-6 Torr and equipped with 

a 5 mm diameter collimator and 6 m Mylar window in front of the Si(Li) detector. In the 

energy range of the measured L x-ray spectra, the energy resolution of the detector was ~200 

eV for the Mn K x rays. A Si(Li) solid state detector (thickness = 5 mm,  diameter = 10 mm, 

25 m Be window from ORTEC, Oak Ridge, Tennessee, USA) was placed in the horizontal 

ion beam plane configuration outside the vacuum chamber at an angle of 125o to the beam 

direction and a distance of 170 mm from the target. The targets were mounted on a steel ladder 

at a 90o angle to the beam direction. The ladder could accommodate up to 24 targets (8 rows 

and 3 columns) each of 11.7 mm diameter and the desired target was brought along the beam 

direction by the horizontal and the vertical movement of the target ladder using the stepper 

motor arrangement. The spot size of the ion beam at the target was ~ 2 mm diameter. The 

spectra were taken at different positions of each target by tiny steering the beam. The thickness 

and the uniformity of these targets were measured by the energy loss method using alpha particles 

from a radioactive decay of  241Am. Targets of 78Pt, 79Au, 82Pb, and 83Bi (thickness ~ 120 g/cm2) 

were prepared on the 20g/cm2 carbon backing using the vacuum deposition technique [35].  Thinner 

and spectroscopically pure (99.999 % pure) targets of ThF4 (48.7 g/cm2) and UF4 (48.6 g/cm2) on 

Mylar backing (thickness = 3 m) procured from Micromatter, Deer Harbor, Washington, USA were 

also used in the present work. The target uniformity was verified to be better than 5%. The beam 

current was kept below 1nA to avoid the pile up effects and the damage to the target. The 

spectra were collected for 30 minutes to 1 hour so as to get good statistical accuracy. 

 

 Figure 1 shows typical L x-ray spectra from the targets of 78Pt, 79Au, 82Pb, 83Bi, 90Th, 

and 92U elements ionized by the 98 MeV 19F ions. These spectra result from ionization of Li (i 

= 1-3) subshells, with which x-ray line peaks correlate viz., LƖ, L1,2, and L2,15,6,7 from the L3 

subshell, the L, L1, and L1,5 from the L2 subshell, and the L3,4 and L2,3,4 from the L1 

subshell. Figure 2 displays L x-ray spectra of 92U target bombarded by the 19F ion beam at 

different energies. The differential L x-ray production cross sections for the major peaks were 

evaluated with 

(1)
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where Nx is the net x-ray counts per second under the L x-ray peak, A is atomic mass (in grams), NA 

is the Avogadro’s number, and Np is the number of incident ions collected in the Faraday cup. The 

ion beam changes its charge state during its passage through the target. The mean distribution in 

charge state of ion beam after passing through the target and its backing is calculated using the 

computer code ETACHA [36]. This code accounts for electron loss, capture, and excitation from and 

to all the subshells based on an independent electron model. The measured charge in the Faraday cup 

using a current integrator has been corrected for the change in the charge state and used for Np with 

the incident charge state in Equation (1). Also in this equation,  t is the target thickness in µg/cm2 ,  

is the absolute detection efficiency (included all absorbing components of the set-up),  and β ≡ [1 –

exp(-μt)]/μt is the correction factor for the absorption of the emitted L x-rays in the present target, 

where μ in cm2/μg is the attenuation coefficient [37] . The β is  0.99 for the target thickness used in 

the present measurements. The energy loss calculation using the SRIM code [38] for the incident 

beam within the target suggests negligibly small energy loss for the target thickness and the beam 

energies used in the present work. For example, 76 and 114 MeV fluorine ion lose 267 and 223 keV 

in Pt, and 104 and 87 keV in U target, respectively. The peak areas, Nx, are evaluated using the 

computer program CANDLE [39]. This software is an improved version of the Levenburg-

Marquardt [40] non-linear minimization algorithms for the peak fitting. The FWHM for the intrinsic 

Lorentzian broadening associated with the L x-ray lines is < 12 eV [41]. The energy calibration of 

the detector is performed before and after the in-beam measurements. Relative efficiency of the x-

ray detector in the energy region of interest is deduced by measuring the fluorescence K x-ray yields 

from various elemental targets excited by the 59.54 keV photons from a point 100 mCi 241Am source, 

which was mounted in the chamber instead of the ion beam. The Cu-Al attenuator of suitable 

thickness is used with the source to remove the low energy 93Np L x-rays and 26 keV- ray emitted 

from the source. Thick targets of 26Fe, 28Ni, 29Cu, 30Zn, 33As, 34Se, 39Y, 40Zr, 41Nb, 42Mo, 46Pd, 47Ag, 

48Cd, 49In, and 50Sn elements were excited by the 59.54 keV photons. The efficiency of the detector 

is calculated from 

KXKX

KX
KX0

t

N4
I




                                                (2)  

where Io is the intensity of the incident photons to be collected into the solid angle Ω and εKX 

is the absorption of the x-rays in air and Mylar window. NKX  is the measured count rate under 

the K x-ray peak, while σKX is calculated as product of the K shell photoionization cross section 
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[42] the fluorescence yield [43,44], and the fractional emission rates [45] for the K and K x-rays. 

As in Eq.(1), t is the thickness of target element and βKX is the absorption correction factor that now 

depends both on the incident θi and emitted angles θe with respect to the normal to the target. This 

self-absorption correction factor, accounting for the attenuation of the incident and the emitted K x-

rays of the target element, is given by 

  
  tcosθμcosθμ

tcosθμcosθμexp1

eeii

eeii
KX




  (3) 

where, μi and μe are the mass-attenuation coefficients for the incident and the emitted x-rays in 

the target calculated using XCOM [37]. A semi-empirically fitted relative efficiency curve is 

generated by taking into account the absorption of the various K x-rays of the target elements. 

Figure 3 shows the absolute efficiency ε of the Si(Li) detector obtained using the calibrated 

radioactive sources of 137Cs and 155Eu. The relative efficiency curve obtained by measuring the 

K x-ray yields is normalized with respect to the absolute source strength to obtain an absolute 

efficiency curve. 

 Although the LƖ line that is weakest in L x-ray spectra is not perfectly isotropic [46–48] 

differential x-ray production cross sections have been measured at an emission angle Ψ = 125o 

where the second-order Legendre polynomial term, P2(cosΨ) ≈ 0.  Thus integrated x-ray 

production cross sections were deduced by multiplying the differential cross sections of Eq.(1)  

by a factor of 4. 

 The percentage error in the measured x-ray production cross sections is about 10-15%. 

This error is attributed to the uncertainties in different parameters used in the analysis, namely, 

the photopeak area evaluation (~ 5% for the LƖ x-ray peak and 3% for the other peaks), ion 

beam current (~ 7%), target thickness (~ 3%). The error in the absolute efficiency values, , is 

5-8% in the energy region of interest.  The measured cross sections taken for an element from 

different locations on the same target are found to agree within the experimental error and their 

weighted average is given in Table 1. 
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3. IONIZATION THEORIES  

Direct ionization (DI) of inner shells can be calculated with the plane wave Born 

approximation (PWBA) [49–51], binary encounter approximation (BEA) [7,52] and semi-

classical approximation (SCA) [53] while the Oppenheimer-Brinkman-Kramers 

formulation of Nikolaev (OBKN) [54] may be used to evaluate electron capture (EC)..The 

sum of the PWBA and OBKN constitute the first Born approximation (FBA) for inner-shell 

ionization  [49–51,54] calculations. An approach that goes beyond the FBA is the ECPSSR 

theory that accounts the energy-loss (E) and Coulomb-deflection (C) of the projectile and 

perturbed-stationary state (PSS) and relativistic (R) nature of the target’s inner shells [55]. 

PSS formulas of the ECPSSR theory were further modified for united and separated atom (USA) 

treatments of the electron wave function to generate the ECUSAR theory [56].  

The theoretical x-ray production cross sections  γβ,α,l,pσx

Lp  for the most commonly 

resolved LƖ, L, L, and L lines are related to the 
Li  (i = 1-3) that are the ionization cross 

sections for the L1, L2, and L3 as  

   lLLLLl Fffff 3332321323121        (4a) 

     333L232L1323121L

x

L Fffff      (4b) 

       333L3323222L331323122212111L

x

L FFfFFfffFfF (4c) 

    222L2212111L

x

L FFfF      (4d) 

The measured L line x-ray production cross sections and the calculated ones using the Li subshell 

ionization cross sections from different theories including the correction for multiple ionization 

(MI) effects, viz., FBA-MI  [49–51,54], ECPSSR-MI [55], and ECUSAR-MI [56] are given in 

Table 1. The theoretical cross sections have been calculated using the Li subshell ionization 

cross sections corresponding to the incident ion charge state. A representative case of Li 

subshell ionization in gold bombarded by different charge states of 19F projectile ions based on the 

FBA  [49–51,54] and ECUSAR [56] is shown  in the Figure 4. Fip (i= 1-3, p = l, α, β, γ) are the 

radiative fractional emission rates. The L x-ray emission rates based on DHS calculation [57] 

and the interpolated values by Campbell and Wang [45] have been used in the present 

measurements. For the two datasets of F3, F1,and F2 values, the difference is 5-8% over the 

atomic range ZT = 50-92, whereas, other values of the emission rates differ from each other by 
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less than 4%. The parameters ωi (i = 1-3) are the fluorescence yields of the Li subshells and fij 

(i<j) are the CK yields for the transition between Li and Lj subshells. The single-hole 

fluorescence ωi
0 and CK yields fij

0 can be obtained from Krause [58] and Chen et al. [59]. As 

given in Table 2, the datasets of ωi
0 and fij

0 significantly differ from each other. For the present 

elements under consideration, the f13
0 (Rec.) values are on the average about 15% lower than 

the f13
0 (DHS) values and ~ 9% higher than the f13

0 (Krause) values. The f12
0(Rec.) values differ 

~ 15% in average higher than the f12
0 (DHS) values and are about half the f12

0(Krause) values. 

The f23
0(Rec.) values from different sets do not differ significantly. The ω2

0(Rec.) and ω3
0(Rec.) 

values agree with the DHS values and are higher from Krause’s values below 10% for the 

present elements. The ω1
0(Rec.) values differ from ω1

0(Krause) values by 0-14% and 

fromω1
0(DHS) by 13-52%. The use of different sets of atomic parameters can change x-ray 

production cross section by ~30%. Recent values of ωi
0 and fij

0compiled by Campbell [43,44] 

for the elements with 25≤Z ≤96 have been used in the present work for singly-ionized atoms.  

 

4.  EFFECT OF SINGLE- AND MULTIPLE-HOLE ATOMIC PARAMETERS ON 

THE CONVERSION OF IONIZATION TO X-RAY PRODUCTION CROSS 

SECTIONS  

Multiple vacancies in the target atom change the atomic parameters by increasing 

fluorescence yields and decreasing CK yields which in turn enhances x-ray production cross 

sections. In the present work, single-hole fluorescence ωi
0 and CK yields fij

0 [43], were 

corrected for multiple ionization using a model prescribed by Lapicki et al. [60]. Each electron 

in a manifold of the outer subshells is ionized with a probability P which is calculated from 

Equation (A3) of  [60] and replacing the projectile atomic number ZP by its charge state q [61], 








 





2

P

2

P

2

v4
1

v2

q
P  (5) 

With  = 0.9. For charge state q, we take the incident charge state of the projectile. The 

ωi
0values corrected for simultaneous ionization in outer subshells are given by 

  1o

i

o

ii )ωP(11ωω


  (6) 

While the fij values for multiple ionization are given by 

2o

ijij P)(1ff  .           (7) 
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Note that the fractional rates Fip remain unchanged because both partial and total non-radiative 

widths are narrowed by identical factors. With Eq. (6) and Eq. (7) , the single-hole fluorescence 

and CK yields change at different ion beam energies and charge states. Fluorescence and CK 

yields for singly- and multiply-ionized 78Pt and 92U elements are given in Table 3. It is clear from 

this table that in the extreme the Li subshell fluorescence yields are enhanced by ~ 15% and 

CK yields are reduced up to ~27% from single-hole to multiple-hole atom in 78Pt. These values 

differ by 2-3% over the range of the ion beam energies and the projectile charge states used in 

the present experiment. 

L-shell line and total x-ray production cross sections, at corresponding energies and 

incident charge state of the fluorine ions, are listed in Table 1 and shown in Figures 5-7.  

Although the connection between observed L x-ray lines and calculated Li subshell ionization 

cross sections depends on a combination of intra-shell coupling and inner shell multiple 

ionization effects [62,63], the data for ionization of comparably heavy targets as ours but by 

significantly slower 4-8 MeV carbon ions [64] show that multiple-ionization is more effective. 

While both effects subside in the 4-6 MeV/amu range of the present experiment, the effect of 

the intra-shell coupling is overshadowed by multiple ionization [64]. Thus in Table 1, ignoring 

the negligible effect the intra-shell coupling, all measured cross sections are compared to the 

predictions of the FBA [49–51,54], ECPSSR [55], and ECUSAR [56] ionization theories 

converted to the x-ray production cross sections using multiple-hole atomic parameters 

calculated with Eqs.(5)-(7).  Within experimental error, the ratios of our data to ECPSSR [55] 

and ECUSAR [56] are practically the same at q = 6+ and q = 7+; at q = 8+ , ECUSAR [56] is 

distinctly better than ECPSSR[55]. After averaging over energies and charge states, for each 

element Table 4 shows the standard deviations of the so calculated x-ray production cross 

sections from our measurements.  For comparison this table also shows the standard deviations 

when the ionization theories are converted with single-hole atomic parameters that are listed in 

Table 3. Theories converted with multiply-ionized atomic parameters are clearly in better 

agreement with our data. 

 

5. CONCLUSIONS 

In the present work, the L x-ray production cross sections of 78Pt, 79Au, 82Pb, 83Bi, 90Th, and 

92U elements for the incident 19F ions of charge states 6+, 7+ and 8+ have been measured. These data 

were compared with the theoretical L x-ray production cross section calculated from the Li (i = 

1-3) subshell ionization cross sections using FBA, ECPSSR and ECUSAR and recently 
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recommended set of the Li (i = 1-3) subshell fluorescence and CK yields with and without 

modifications for the multiple vacancies in the outer shells. While the measured values are 

about two times lower than those calculated using the FBA, exhibit agreement with those based 

on the ECPSSR and ECUSAR calculations. This is particularly so when the fluorescence yields 

are corrected for the outer-shell multiple ionization. Although the ionization cross sections for 

the 19F ions with the 6+, 7+, and 8+ charge states over the ion beam energies used in the present 

work are almost independent of the charge state, the multiple ionization effect is essentially 

equal in the ECPSSR-MI and ECUSAR-MI calculations for q = 6+ and 7+. At q = 8+, the 

ECUSAR-MI agrees better with the data than the ECPSSR-MI theory. 

Singh et al.[28] reported L-x ray production cross sections in gold and bismuth with fluorine 

ions at 83  and 98 MeV of essentially the same charge state as the present data.  While for 79Au their 

total cross sections fluctuate from as much as 7% above ours at 84 MeV to as much as 27% 

below ours at 98 MeV, for 83Bi their measurements are below ours by about 22% at 84 MeV 

and almost 43% below at 98 MeV.  Even with a conservative estimate of 20% for experimental 

errors, the discrepancies between the Singh et al.[28] and our measurements are difficult to 

explain, and suggest that - aside from its inherent interest for comparison with theories and 

PIXE applications - it would be worth for other experimentalists to revisit this collision regime.  
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Figure Captions 

Fig.1 L x-ray spectra from 78Pt, 79Au, 82Pb, 83Bi, ThF4, UF4  bombarded with the 98 MeV 
19F ions. 

Fig.2 L x-ray spectra from 92U (48.6 μg/cm2 UF4 target) bombarded with 76, 84, 90, 98, 

106, and 114 MeV 19F ions,  

Fig.3 Efficiency curve obtained by measuring the K x-rays fluorescence yields from 

targets excited by the 59.54 keV γ-ray photons. Measured values were normalized 

to absolute efficiency obtained using the calibrated 137Cs and 155Eu radioactive 

sources.   

Fig.4 Li subshell ionization in gold bombarded by 19F ions based on the FBA  [49–

51,54] and ECUSAR [56]. 

Fig.5 LƖ, L, L, L and total L x-ray production in 78Pt and 79Au targets bombarded 

by 19F ions according to FBA-MI, ECUSAR-MI, and present measurements.  

Fig.6 LƖ, L, L, L and total L x-ray production in 82Pb and 83Bi  targets bombarded 

by 19F ions according to FBA-MI, ECUSAR-MI, and present measurements. 

Fig.7 LƖ, L, L, L and total L x-ray production in 90Th and 92U  targets bombarded 

by 19F ions according to FBA-MI, ECUSAR-MI, and present measurements. 
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Table 1.   The LƖ, L, L, L, and total L  x-ray production cross section (barn) in elements with 

78ZT92 for incident 19F ions as measured and calculated with ionization cross sections 

according to the FBA  [49–51,54], ECPSSR [55], and ECUSAR [56] converted to x-ray 

production cross sections with atomic parameters modified for multiply-ionized (MI) elements 

[60].  The ratios of the measured to calculated cross sections are listed in the parenthesis. In 

bold print are the best ratios. With q = 6+ and 7+, the ratios of the data to ECUSAR-MI and 

ECPSSR-MI are (within 15% uncertainties of our measurements) statistically similar, while the 

ECUSAR-MI are definitely in closer agreement with the measurements than ECPSSR-MI 

above 100 MeV and q = 8+. 

Element 

19F ion beam  x-ray production cross sections (barn) 

Energy 

(MeV) 

Charge q 

 

 

 qq  

  q 

 
Measured ECUSAR-MI ECPSSR-MI FBA-MI 

78Pt        

LƖ x-ray 76 6+  206 207(1.00) 203(1.01) 417(0.49) 

 84 6+  226 253(0.89) 249(0.91) 474(0.48) 

 90 7+  260 296(0.88) 291(0.89) 534(0.49) 

 98 8+  323 372(0.87) 347(0.93) 678(0.48) 

 106 8+  423 425(1.00) 385(1.10) 737(0.57) 

 114 8+  416 477(0.87) 448(0.93) 794(0.52) 

L x-ray        

 76 6+  4449 4166(1.07) 4092(1.09)  8411(0.53) 

 84 6+  4685 5110(0.92) 5018(0.93)  9567(0.49) 

 90 7+  5749 5975(0.96) 5863(0.98) 10768(0.53) 

 98 8+  7015 7507(0.93) 7009(1.00) 13677(0.51) 

 106 8+  8602 8568(1.00) 7758(1.11) 14872(0.58) 

 114 8+  8811 9624(0.92) 8045(1.10) 16008(0.55) 

L x-ray        

 76 6+  2532 2373(1.07) 2339(1.08)  5169(0.49) 

 84 6+  3037 2962(1.03) 2919(1.04)  5940(0.51) 

 90 7+  3613 3517(1.03) 3463(1.04)  6826(0.53) 

 98 8+  4338   4466(0.971) 4219(1.028)  8593(0.50) 

 106 8+  5507 5169(1.07) 4713(1.17)  9482(0.58) 

 114 8+  6007 5879(1.02) 5576(1.08) 10340(0.58) 

L x-ray        

 76 6+  346 342(1.01) 337(1.03)  776(0.45) 

 84 6+  498 433(1.15) 428(1.16)  898(0.55) 
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 90 7+  481 521(0.92) 514(0.94) 1051(0.46) 

 98 8+  598 667(0.90) 636(0.94) 1315(0.45) 

 106 8+  804 780(1.03) 715(1.12) 1466(0.55) 

 114 8+  883 895(0.99) 855(1.03) 1615(0.55) 

 Total L         

 76 6+  7533   7087(1.06)   6971(1.08) 14773(0.51) 

 84 6+  8377   8758(0.96)   8614(0.97) 16880(0.50) 

 90 7+  10103 10309(0.98) 10131(1.00) 19180(0.53) 

 98 8+  12274 13012(0.94) 12211(1.01) 24263(0.51) 

 106 8+  15337 14941(1.03) 13571(1.13) 26558(0.58) 

 114 8+  16117 16876(0.96) 15924(1.01) 28755(0.56) 

        

        

        

        

        

        

        

 

79Au        

LƖ x-ray        

 76 6+  182 193(0.94) 189(0.96) 395(0.46) 

 84 6+  220 237(0.93) 233(0.94) 450(0.49) 

 90 7+  270 278(0.97) 273(0.99) 508(0.53) 

 98 8+  323 349(0.93) 327(0.99) 643(0.50) 

 106 8+  453 400(1.13) 363(1.25) 701(0.65) 

 114 8+  463 451(1.03) 424(1.09) 757(0.61) 

Lx-ray        

 76 6+  3854 3829(1.01) 3765(1.02)   7849(0.49) 

 84 6+  3921 4713(0.83) 4634(0.85)   8952(0.44) 

 90 7+  5344 5521(0.97) 5421(0.99) 10097(0.53) 

 98 8+  6416 6939(0.93) 6498(0.99) 12775(0.50) 

 106 8+  8632 7948(1.09) 7210(1.20) 13940(0.62) 

 114 8+  9574 8958(1.07) 8437(1.13) 15054(0.64) 

Lx-ray        

 76 6+  2169 2160(1.00) 2130(1.03) 4776(0.45) 

 84 6+  2397 2704(0.89) 2667(0.90) 5504(0.44) 

 90 7+  3265 3216(1.02) 3168(1.03) 6333(0.52) 
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 98 8+  3850 4084(0.94) 3868(1.00) 7945(0.48) 

 106 8+  5382 4742(1.13) 4331(1.24) 8792(0.61) 

 114 8+  6224 5411(1.15) 5141(1.21) 9614(0.65) 

         

Lx-ray        

 76 6+  294 313(0.94) 309(0.95)   723(0.41) 

 84 6+  276 398(0.69) 393(0.70)   839(0.33) 

 90 7+  441 479(0.92) 473(0.93)   983(0.45) 

 98 8+  720 614(1.17) 587(1.23) 1225(0.59) 

 106 8+  791 721(1.10) 662(1.19) 1371(0.58) 

 114 8+  987 830(1.19) 794(1.24) 1513(0.65) 

        

        

Total L         

 76 6+    6499   6494(1.00)   6394(1.02) 13742(0.47) 

 84 6+    6814   8052(0.85)   7928(0.86) 15746(0.43) 

 90 7+    9319   9493(0.98)   9335(1.00) 17920(0.52) 

 98 8+  11309 11987(0.94) 11279(1.00) 22587(0.50) 

 106 8+  15258 13811(1.14) 12565(1.21) 24804(0.62) 

 114 8+  17249 15649(1.10) 14797(1.17) 26938(0.64) 

        

82Pb        

LƖ x-ray        

 76 6+  152 138(1.10) 151(1.01) 327(0.46) 

 84 6+  163 189(0.86) 187(0.87) 375(0.43) 

 90 7+  215 223(0.96) 219(0.98) 425(0.51) 

 98 8+  260 280(0.93) 264(0.98) 533(0.49) 

 106 8+  370 324(1.14) 295(1.25) 586(0.63) 

 114 8+  325 367(0.89) 348(0.93) 637(0.51) 

L x-ray        

 76 6+  3010 2611(1.15) 2858(1.05)   6206(0.49) 

 84 6+  3000 3595(0.83) 3539(0.85)   7122(0.42) 

 90 7+  4202 4228(0.994) 4159(1.010)   8057(0.52) 

 98 8+  4794 5321(0.90) 5015(0.96) 10110(0.47) 

 106 8+  6747 6140(1.10) 5593(1.21) 11110(0.61) 

 114 8+  6799 6971(0.98) 6596(1.03) 12077(0.56) 

 

90.56) 
        

L x-ray        
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 76 6+  1662 1559(1.07) 1605(1.04) 3752(0.44) 

 84 6+  1743 2048(0.85) 2022(0.86) 4354(0.40) 

 90 7+  2455 2445(1.00) 2412(1.02) 5021(0.49) 

 98 8+  2886 3108(0.93) 2961(0.97) 6247(0.46) 

 106 8+  4112 3637(1.13) 3334(1.23) 6962(0.59) 

 114 8+  4415 4181(1.06) 3993(1.11) 7665(0.58) 

L x-ray        

 76 6+  216 236(0.915) 234(0.923)   572(0.38) 

 84 6+  212 302(0.70) 299(0.71)   670(0.32) 

 90 7+  371 366(1.01) 362(1.02)   787(0.47) 

 98 8+  398 470(0.85) 451(0.88)   973(0.41) 

 106 8+  587 556(1.06) 512(1.15) 1097(0.54) 

 114 8+  647 646(1.00) 622(1.04) 1220(0.53) 

Total L         

 76 6+    5039   4544(1.11)   4848(1.04) 10858(0.46) 

 84 6+    5118   6135(0.83)   6047(0.85) 12522(0.41) 

 90 7+    7242   7262(1.00)   7152(1.01) 14290(0.51) 

 98 8+    8338   9180(0.91)   8692(0.96) 17862(0.47) 

 106 8+  11816 10658(1.11)   9734(1.21) 19754(0.60) 

 114 8+  12186 12165(1.00) 11558(1.05) 21598(0.56) 

        

        

83Bi        

LƖ x-ray        

 76 6+  172 142(1.21) 140(1.23) 307(0.56) 

 84 6+  162 176(0.92) 173(0.94) 353(0.46) 

 90 7+  181 207(0.87) 204(0.89) 400(0.45) 

 98 8+  259 261(0.99) 246(1.05) 500(0.52) 

 106 8+  361 301(1.12) 275(1.31) 551(0.66) 

 114 8+  311 343(0.91) 325(0.96) 600(0.52) 

L x-ray        

 76 6+  2963 2648(1.12) 2610(1.14)   5744(0.52) 

 84 6+  2860 3287(0.87) 3238(0.88)   6603(0.43) 

 90 7+  3428 3871(0.89) 3811(0.90)   7476(0.46) 

 98 8+  4730 4873(0.971) 4602(1.028)   9355(0.51) 

 106 8+  6015 5635(1.07) 5138(1.17) 10301(0.58) 

 114 8+  6557 6411(1.02) 6075(1.08) 11220(0.58) 
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L x-ray        

 76 6+  1630 1480(1.10) 1462(1.11) 3465(0.47) 

 84 6+  1648 1868(0.88) 1845(0.89) 4028(0.41) 

 90 7+  2049 2232(0.92) 2203(0.93) 4648(0.44) 

 98 8+  2746 2839(0.97) 2709(1.01) 5767(0.48) 

 106 8+  3638 3329(1.09) 3055(1.19) 6441(0.56) 

 114 8+  4253 3836(1.11) 3668(1.16) 7106(0.60) 

L x-ray        

 76 6+  213 215(0.99) 213(1.00)   530(0.40) 

 84 6+  190 276(0.688) 274(0.693)   622(0.31) 

 90 7+  255 335(0.76) 331(0.77)   731(0.35) 

 98 8+  374 430(0.87) 414(0.90)   902(0.41) 

 106 8+  657 511(1.29) 471(1.39) 1019(0.64) 

 114 8+  596 595(1.00) 573(1.04) 1137(0.52) 

Total L        

 76 6+    4978   4485(1.11) 4425(1.12) 10046(0.50) 

 84 6+    4859   5607(0.87) 5530(0.88) 11607(0.42) 

 90 7+    5913   6645(0.89) 6550(0.90) 13255(0.45) 

 98 8+    8109   8402(0.97) 7972(1.02) 16525(0.49) 

 106 8+  10671   9776(1.09) 8940(1.19) 18313(0.58) 

 114 8+  11717 11185(1.05) 10642(1.10) 20064(0.58) 

        

90Th  
 

  
   

LƖ x-ray        

 76 6+    86   85(1.01)   84(1.02) 203(0.42) 

 84 6+  108 106(1.02) 105(1.03) 235(0.46) 

 90 7+  148 126(1.17) 125(1.18) 267(0.55) 

 98 8+  144 159(0.91) 152(0.95) 328(0.44) 

 106 8+  204 186(1.10) 171(1.19) 366(0.56) 

 114 8+  297 213(1.39) 205(1.45) 403(0.74) 

L x-ray        

 76 6+  1365 1416(0.96) 1401(0.97) 3378(0.40) 

 84 6+  1510 1775(0.85) 1755(0.86) 3923(0.38) 

 90 7+  2411 2104(1.15) 2078(1.16) 4457(0.54) 

 98 8+  2453 2646(0.93) 2534(0.97) 5470(0.45) 

 106 8+  3375 3099(1.09) 2854(1.18) 6095(0.55) 

 114 8+  3717 3554(1.05) 3421(1.09) 6716(0.55) 

L x-ray        
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 76 6+  757   762(0.99)   755(1.00) 1960(0.39) 

 84 6+  807   970(0.83)   961(0.84) 2297(0.35) 

 90 7+  1313 1165(1.13) 1153(1.14) 2662(0.49) 

 98 8+  1346 1479(0.91) 1430(0.94) 3249(0.41) 

 106 8+  1860 1757(1.06) 1628(1.14) 3672(0.51) 

 114 8+  2125 2034(1.05) 1983(1.07) 4098(0.52) 

        

L x-ray        

 76 6+  109 109(1.00) 108(1.01) 299(0.36) 

 84 6+  114 141(0.809) 140(0.814) 353(0.32) 

 90 7+  200 172(1.16) 171(1.17) 418(0.48) 

 98 8+  192 221(0.87) 216(0.89) 508(0.38) 

 106 8+  302 267(1.13) 248(1.22) 582(0.52) 

 114 8+  340 311(1.09) 308(1.10) 658(0.52) 

 Total L         

 76 6+  2318 2371(0.98) 2348(0.99)   5839(0.40) 

 84 6+  2538 2993(0.85) 2961(0.86)   6808(0.37) 

 90 7+  4072 3566(1.14) 3527(1.15)   7804(0.52) 

 98 8+  4136 4505(0.92) 4332(0.95)   9556(0.43) 

 106 8+  5742 5309(1.08) 4901(1.17) 10715(0.54) 

 114 8+  6479 6112(1.06) 5918(1.09) 11876(0.55) 

        

        

92U     
  

 

LƖ x-ray        

 76 6+    97   75(1.29)   74(1.31) 183(0.53) 

 84 6+    91   94(0.97)   93(0.98) 213(0.43) 

 90 7+  194 111(1.75) 110(1.76) 242(0.80) 

 98 8+  203 140(1.45) 134(1.51) 296(0.69) 

 106 8+  262 164(1.60) 152(1.72) 330(0.79) 

 114 8+  293 190(1.54) 182(1.61) 365(0.80) 

L x-ray        

 76 6+  1113 1205(0.92) 1192(0.93) 2955(0.38) 

 84 6+  1250 1513(0.83) 1497(0.84) 3439(0.36) 

 90 7+  1997 1795(1.11) 1774(1.13) 3906(0.51) 

 98 8+  2201 2255(0.976) 2168(1.015) 4767(0.46) 

 106 8+  2871 2649(1.08) 2446(1.17) 5325(0.54) 

 114 8+  3184 3060(1.04) 2942(1.08) 5883(0.54) 

L x-ray        
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 76 6+    603   625(0.965)   620(0.973) 1650(0.37) 

 84 6+    622   798(0.78)   791(0.79) 1944(0.32) 

 90 7+  1084   959(1.13)   950(1.14) 2244(0.48) 

 98 8+  1215 1217(1.00) 1180(1.03) 2730(0.45) 

 106 8+  1605 1450(1.11) 1345(1.19) 3091(0.52) 

 114 8+  1758 1697(1.04) 1645(1.07) 3459(0.51) 

L x-ray        

 76 6+    79   86(0.92)   86(0.92) 244(0.32) 

 84 6+    73 112(0.65) 111(0.66) 291(0.25) 

 90 7+  174 137(1.27) 136(1.28) 342(0.51) 

 98 8+  179 176(1.02) 172(1.04) 416(0.43) 

 106 8+  246 213(1.15) 199(1.24) 478(0.51) 

 114 8+  275 254(1.08) 248(1.11) 542(0.51) 

Total L         

 76 6+  1893 1991(0.95) 1972(0.96)   5032(0.38) 

 84 6+  2036 2517(0.81) 2492(0.82)   5887(0.35) 

 90 7+  3450 3003(1.15) 2970(1.16)   6734(0.51) 

 98 8+  3798 3789(1.00) 3654(1.04)   8208(0.46) 

 106 8+  4984 4476(1.11) 4141(1.20)   9224(0.54) 

 114 8+  5509 5201(1.06) 5017(1.10) 10249(0.54) 

        

 

Table 2. Fluorescence and CK yields for singly-ionized elements. Values listed as 

recommended by Campbell [43,44] are used in the present work. 

Element    Fluorescence yield 

 ω1
0  ω2

0  ω3
0 

 Campbell 

[43,44] 

Krause 

[58] 

Chen et al 

[59] 
 

Campbell 

[43,44] 

Krause 

[58] 

Chen et al 

[59] 
 

Campbell 

[43,44] 

Krause 

[58] 

Chen et al 

[59] 

78Pt 0.114 0.114 0.074  0.344 0.321 0.344  0.303 0.306 0.303 

79Au 0.117 0.107 0.078  0.358 0.334 0.358  0.313 0.320 0.313 

82Pb 0.128 0.112 0.093  0.397 0.373 0.397  0.343 0.360 0.343 

83Bi 0.132 0.117 0.098  0.411 0.387 0.411  0.353 0.373 0.353 

90Th 0.159 0.161 0.139  0.503 0.479 0.503  0.424 0.463 0.424 
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92U 0.168 0.176 0.149  0.506 0.467 0.506  0.444 0.489 0.444 

 

Element CK yield 

 f13
0  f12

0  f23
0 

 Campbell 

[43,44] 

Krause 

[58] 

Chen et al 

[59] 
 

Campbell 

[43,44] 

Krause 

[58] 

Chen et al 

[59] 
 

Campbell 

[43,44] 

Krause 

[58] 

Chen et al 

[59] 

78Pt 0.545 0.500 0.716  0.075 0.140 0.067  0.126 0.124 0.132 

79Au 0.615 0.530 0.711  
0.074 0.140 0.068 

 0.125 0.122 0.129 

82Pb 0.620 0.580 0.708  
0.066 0.120 0.054 

 0.119 0.116 0.123 

83Bi 0.620 0.580 0.703  
0.063 0.110 0.055 

 0.117 0.113 0.121 

90
Th 0.620 0.570 0.659  

0.040 0.090 0.058 
 0.103 0.108 0.106 

92U 0.620 0.570 0.660  
0.035 0.080 0.051 

 0.140 0.167 0.139 

 

Table 3. Fluorescence and CK yields for singly-ionized [43,44] and the ratios of atomic parameters 

for multiply-ionized [60]  to these singly-ionized for 78Pt and 92U. 

Ion beam  Fluorescence yield  CK yield 

Energy (MeV) Charge 

state q 

1 2 3  13 12 23 

Singly-ionized 78Pt      

 0.114 0.344 0.303  0.545 0.075 0.126 

         

Ratios of atomic parameters for multiply [60] to singly [43,44] ionized  78Pt 

 

76 6+ 1.123 1.087 1.096  0.767 0.773 0.770 

84 6+ 1.114 1.078 1.086  0.789 0.787 0.786 

90 7+ 1.140 1.102 1.109  0.736 0.733 0.738 

98 8+ 1.175 1.125 1.135  0.688 0.693 0.690 
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106 8+ 1.167 1.116 1.122  0.710 0.707 0.706 

114 8+ 1.149 1.108 1.116  0.728 0.733 0.730 

         

Singly- ionized 92U 
     

 0.168 0.506 0.444  0.620 0.035 0.140 

 

Ratios of atomic parameters for multiply [60] to singly [43,44] ionized  92U 

76 6+ 1.11 1.07 1.07  0.77 0.77 0.77 

84 6+ 1.10 1.06 1.07  0.80 0.79 0.79 

90 7+ 1.14 1.08 1.09  0.74 0.74 0.74 

98 8+ 1.17 1.09 1.11  0.69 0.69 0.69 

106 8+ 1.15 1.08 1.10  0.71 0.71 0.71 

114 8+ 1.14 1.08 1.09  0.74 0.73 0.71 

 

 

 

Table 4. Standard deviation of the theoretical estimates for singly (SI) and multiply (MI) 

ionized atoms with respect to measured values. The average standard deviation over all six 

target elements is also given. 

 Theory Target 

  

Standard deviation of theories from the present 

experimental results 

 

LƖ L L L L-Total 

ECPSSR-SI Pt 20.4 15.9 20.2 17.1 17.1 

Au 19.5 18.8 21.5 23.2 19.9 

Pb 23.0 18.8 19.8 15.8 18.9 
Bi 34.3 18.8 19.6 27.2 19.5 
Th 22.7 17.3 15.5 18.5 16.8 
U 43.7 16.1 17.6 20.9 18.2 
 Average 27.3 17.6 19.0 20.5 18.4 

ECUSAR-SI Pt 18.5 14.6 22.1 19.9 17.5 

Au 16.3 15.9 19.2 21.4 17.3 

Pb 19.8 16.3 17.2 13.4 16.2 

Bi 29.8 15.4 17.0 24.3 16.3 
Th 21.6 14.9 13.3 16.6 14.6 
U 42.6 14.1 15.2 18.8 16.0 
 Average 24.8 15.2 17.3 19.0 16.3 

ECPSSR -MI Pt 21.8 9.5 11.1 9.7 8.9 

Au 14.4 14.0 15.5 17.3 14.5 

Pb 19.3 14.2 13.8 12.3 13.7 
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Bi 28.5 13.6 13.7 23.7 14.0 
Th 19.5 12.7 10.8 13.8 12.2 
U 40.0 11.8 12.7 16.2 13.4 
 Average 23.9 12.6 12.9 15.5 12.8 

ECUSAR-MI Pt 25.3 10.3 5.1 8.0 6.1 
Au 9.3 9.5 11.1 14.1 9.8 
Pb 17.2 11.8 9.8 11.4 10.4 
Bi 23.4 9.3 10.6 20.9 9.6 
Th 17.3 9.6 8.7 11.9 9.4 
U 37.1 8.5 9.7 14.0 10 
 Average 21.6 9.8 9.7 13.4 9.2 
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Figure 1 
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Figure 4 
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