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Abstract

We here analyze the propagation of transientsuad-flock temperaturand pressure through a thin
boundary layer, where a steady trend is presetwgea® two adjacent homogeneous rocks. We
focus on the effect of convection on transientssireg such thin layer. In comparison with early
models where this boundary was assumed a shargmatical plane separating the two rocks,
here we show a realistic analysis of such bounldgmr that implies a novel nonlinear model. Its
solutions describe large amplitude, quick and shamsients characterized by a novel drift and
variations of the signal amplitude, leading to almear wave propagation. Possible applications
are in volcanic, hydrologic, hydrothermal... systeamsvell as for deep oil drilling. In addition, this
formalism could easily be generalized for the aafs® signal arriving in a rock characterized by a
steady trend of pressure and/or temperature. Téféses, being proportional to the initial
conditions, can also give velocity variations nattgularly important. A further heuristic model
has therefore been analyzed, i.e. assuming a peedspendent rock permeability. In this way, a
remarkable increase of the system velocities iainbtl.
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1. Introduction

Modeling of transients in fluid-saturated porousksy (Fig. 1)is of fundamental
importance for a large number of applications idrejogical, volcanic, hydrothermal, hydrocarbon
systems, deep oil drilling, fracking events... Tisia classical problem: to analyze systems
perturbed from a sudden arrival of pressure tramsi€Rice and Cleary (1976) envisaged the
buildup of sources that trigger pressurized frantsugh reactive porous horizons. McTigue (1986)
considered also thermal processes in such theonafde (1991) focused on the role of fluid-rock
energy equation. Natale et al. (1996) and Merlani.2001) considered the nonlinear effect of the
convection, which implies the presence of quickgéaamplitude fronts among the model solutions
(Whitham, 1974).



These nonlinear models had many vivid applicatem%.a Fossa" crater in Vulcano
(Aeolian Islands) in Italy (Natale, 1998), “The Geys” in California (Moore and Gunderson, 1995;
Natale et al., 1999), the Karymsky volcano in Kaatkh analyzed by Chirkov (1975), the
submarine eruption off the Izu Peninsula in Japsotgu et al., 1991; Garcia et al.,2000). On a
more theoretical ground Merlani et al. (2001) heoesidered also the parameters variability due to
rock deformation/fracturing at the arrival of agaramplitude front, when the fluid approaches the
fracture pressure region in a strain/forcing grég. 2). In these early analyses, the boundary
between the "source" and an "adjacent” rock ofeskdeen assumed just as a mathematical plane
characterized by rock parameter discontinuities.

The purpose of this paper is to examine in detailttansient evolution in such two-rock
boundary layer of thickness seen as a thin region of continuous transitiorléad-rock
temperaturd and pore pressuf® where a steady trend ®fandP is present. We moreover stress
that this approach can easily be generalized ®c#se of a source rock in presence of continuous
steadyT andP trends in the adjacent rock.

A novel nonlinear model has therefore been obtaimbdse solutions determine a transient
drift, and amplitude variations, during the trangsipropagation. We moreover follow the interest of
Merlani et al (2001) for large amplitude transiemtisd discuss a novel model where we consider a
pressure dependent permeability which gives moiekayolutions.

The paper is organized as follows. We first deBady model equations about thermo-poro-
elastic transients (Section 2) and their complegiind uncertainties in Section 3. The nonlinear
model is investigated in Section 4. The soluticmrsiie case of initial pressure trend is in Sechion
An analysis of the characteristic rock parametegovided in Section 6. A model of the rock
permeability changes for a strong pressure trahsatiscussed in Sections 7 andAdinal
discussion of our results is in Section 9.

2. Thethermo-poro-elastic equationsfor P and T.

We quickly recall early models off&T front in 1-D moving in a thin layer of thicknegs
between two fluid saturated rocks, as a boundasrlaf an aquifer that elastically reacts with an
adjacent homogeneous rock (Fig. 1). In i choice, the computations are easier, since thesstr
ajj is constant (McTigue, 1986). This can hold fowa talf-horizon schematization and similarly
for a radial propagation from a small sphericalrsewor for a cylindrical propagation from a
perforated segment of a borehole, thus forminggangat source. In the half-horizon version, a
boundary layer arounzi~ 0 corresponds to the aquifer-rock boundary wherge&gature and pore
pressure of thesburcé rock are supplied by water circulating in a steegfjime through the
aquifer (Natale et al.,1999).

To describe such flows McTigue (1986) considersd alfundamental relation between the
main quantities in such dynamics, namelandT.
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HereB* is the Skempton paramet@& s the shear modulus; is the stress tensor the drained
Poisson ratio and,* the undrained Poisson ratig, (a;) the volumetric thermal expansion
coefficient for the solid (fluid) K, is the medium permeability,the porosity ang the fluid

viscosity (see Table 1 and 2).

Equation (1) implies that for isothermal problemshie classical diffusion equation that
rules the time evolution d?. For example, the evolution of pressure-inducecroréarthquakes are
considered as an isothermal process, but withsspre dependent permeability (Shapiro and
Dinske, 2009). In turn, if temperature gradients gresent, as often happens in real problems, the
pressure evolution is ruled just by the gradiehfE.dhe opposite also holds: in a constant pressure
matrix, a quick thermal transient evolves as a ndéfasion.

In the general case, this equation is importartesit interconnects strictly the evolutions of
T andP for any initial input. In addition, since inlaD geometry the stresg is constant (McTigue,
1986) the equation (1) becomes (Table 1)
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As a second relation, following Bejan (1984) anch8&ede (1991) we assume a thermal balance
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HereKr is the average thermal conductivipy,is the matrix densityg andc,, are the fluid and the

K
rock heat capacity, respectively, add= ——- P is the Darcy velocity (Tables 1 and 2).
U

The equation (3) is the classical heat conservaddiarbut with two nonlinear terms, the
convection BOP[OT and the mechanical work reY* (OP)Y (Bejan, 1984; Bonafede and

Mazzanti, 1997; Merlani et al., 2001). These tecans appear small quantities but they are related
to auto-interacting effects, i.e. when a parcdlwdl flows towards a different point it also casi

its P andT and eventual pollutants.... In turn, these are nma#ttieally nonlinear unbounded
functions, which can have explosive amplitudes &ds@mallB or Y*. A balance of diffusion,
convection and mechanical work rate therefore gwére evolution of the rock-fluid temperature.

3. The equations complexities and uncertainties.

Much care should be given to the physical meanimbexperimental evaluation of the
coefficients appearing in equations (2) and (3)pdrticular, the coefficient * should be treated
with care: indeed the work made Byncreases the rock heatd therefore in (3) we hawe > 0
(Bejan, 1984). Nevertheless, if the perturbatiaregirock deformations, fracturing or some kind of
irreversible thange of staten the rock, some energy, and heat, can be drttdoom the matrix
(Appendix A). In this case we can have tifat>Y* - ® =Y < 0, for a suitabled > 0 that takes into
account these dissipative effects (Gross and Se&¥laf). Classical cases are the energy dissipated
in the rock to create new fractures (Philipp et2013), frictional heating during an earthquake
(Rice, 2006) or also the energy dissipated by theous fluid moving inside the fractures
(Detournay and Garagash, 2003).

All this explains why a realistic determinationtbé rock parametei, D, Y,®... for a
deep rock is not a simple challenge. Moreover theslke parameters moreover are quantities poorly
known, to be checked by comparing with other infation. Thus, the above equations, depending
from many empirical coefficients often rather pgddhown, must be considered critically.

We here mention a further point: the rock paransedéen considered as constants, in
reality can be perturbed during the transient ihpHtus one has to take into account that
significantP-T jumps in the matrix can build variations of the maparameters (Appendix A,
Fisher et al., 2002; Philipp et al., 2013).

In more detail, in a hydrocarbon or geothermaleysthe arrival of a strong-T transient
can produce rock deformations and/or hydrofractussch can propagate until forming
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interconnected fracture systems. In such situatasrations of Poisson's ratio, Skempton parameter,
shear modulus, rock thermal expansivity, rock dgrasid rock heat capacity are due to variations
of the porosity and thermal coefficients, i.e. emthounded quantities (Bonafede ,1991). Variations
of these quantities can consequently be less impbolver, say, ranges of temperature and pressure
aroundT =~ 100 T andP = 10’ Pa, i.e. characteristic values for volcanic procegZescher et al.,
2006; Fisher et al., 2002). On the other handp#reneabilityK; can be severely affected by the
arrival of a strondp transient (Gross and Seelig, 2006; Shapiro andkeijrZ009). Indeed, such
arrival can lengthen fractures and cracks, intemeahmany minor cracks until a thoroughgoing net
is created (Appendix A). Thus in Section 6 somepeters ak; (Table 1) and the a
corresponding*, a*, B, Y,4, X, V...in Table 2, are considered to vary at the arriva strong

front

We also remark that these problems can be chazeddry widely different parameters. For
example, intrusive dykes can have lengths as Krt@nd widths of 1-1@n (Zencher et al., 2006).
In contrast, injections of viscous fluid in a matcan give fractures with a length of 140with a
width of 1- 10cm (Detournay and Garagash, 2003). Another intergstase is the thermal
diffusion in an earthquake slip where a very sratlkness between 1/6n and 1.0mmhas been
considered (Rice, 2006; Rempel and Rice, 2006).cbhesponding values of the boundary
thicknessy must be much smaller and we here tentatively assbaty is about 10% of the above
widths.

4. The constant-per meability models.

In synthesis, from (2) and (3) we have a systetwofequations ii-D
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Rice and Cleary (1976), McTigue (1986), Bonafed#®(), Natale and Salusti (1996)
among many others, consider the boundary/initiabdmns of a $ourcé matrix (T = Tp +T, andP
=Py +P, for z< 0 att = 0) and an adjacent matriX € To, P = P, for z> 0 att = 0) with Py, P, To,
T, constants. It is clear that such conditions hsltbag as the upstream matrix, tlseurcé, is so
wide that the transient does not affecHtandT evolution.

In order to have a first idea of the values hei@yaed, we remark how in the literature
often are examined problems whée= 10’ PaandT, =~ 100-1000°C for earthquakes, volcanic or
geothermal systems (Bonafede ,19%); 10’ PaandT, =~ 60°C for induced micro seismicity
analyses (Fisher et. al., 2002; Shapiro and Dir2B@9);P, ~ 10* PaandT, = 10°C in the
McTigue (1986) study about nuclear waste dispawadd?, ~ 50 M PaandT, = 200°C for
earthquake slip analysis (Chester et al., 2005 ,R10606).
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We can now define in full detail the problem tha are analyzing: since a sharp jump, as
initial condition for such transients is not a ret@t assumption, we analyze tReandT evolution
considering a thin layer between the source aracad} rocks, and call its thickness. In this
layer, a steady trend d? andT has a dynamical effect on a transient evolutidmcivrequires a
more complex novel model. In addition, such forsralifor a larges can simulate a steady trend of
P and/orT in the adjacent rock

In these early analyses, the model solutions aretifons of z*/t characteristic of pure
diffusion problems. Following such remark Merlataé (2001) studied thesymmetry properties
of (4) and (5) and obtained as explicit solutidms 'tigid wave translations i.e. G (z—vt +c), or

the “self-similar” solution:<F (z2 /t + c), wherev andc are constants. The first case looks rather

artificial since only rigid moving profiles can bétained, thus we investigate a self-similar case.
We therefore assume a particularly simghsatz(Merlani et al., 2011)
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From (4) the previous equation is equivalent to
P(zt)=aT(zt)+ g(2)+ f (t) , (7)

a position related to the initial/boundary condispwhich must be checked in the final solutions.
Garra et al. (2015) analyzed a somehow similarlprolioy applying a “fractional” memory
formalism.

The novel Darcy velocity from (7) is

Uen=-—r 577 57 l0T @+ a@]. (8)
In our studyg(z)= P(z,0)-a T(z,0) plays a key role in such transient evolution@ot z <

w. As an example, farupwards the Earth thermal gradient is about - 3°10 /mand that of
hydrostatic pressutis about - 16Pa/m(Table 2)

To solve (4) and (5) we define= Y o’ + o BandX = 2Y a + B = 24 /o (Table 2). From (5)
and (7) we obtain the following Burgers-like eqoati
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(more exactly itz-derivative is a Burgers equation, with a drift anfibrcing). About equation (9)
Whitham (1974) defines a Reynolds number
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that characterizes its solution to be shock wavesassical diffusion solutions (Fig.3). It is
important to stress hoR is proportional to the initial valu€, different from a pure diffusion.

5. The solutionsfor small and large amplitude transients.

From the structure of equations (4) and (5) om{@)see that iT (2) is a solutionthen alsar (- 2)
andT (2) + constare solutions with different boundary conditiolmsaddition, a change of sign 4f
implies a change of sign for the novel solutiony @ndX’ are nil. The role of;, P1and4 are
therefore essential since different physical sgttiare related to their signs. We moreover note how
A is positive for mild transients, since eventuatfuring processes have little importance; white fo
very largeP; or T; an eventual¢hange of states possible, then allowing a negatie\We will
therefore discuss both cases, of positive or negati

We are well aware that the solutions of equatigrcé® reach a high level of complexity for
irregular behaviors d?(z,0)andT(z,0) In order to give an intuitive example of the smns of the
thin boundary model, we hediscuss a steady trend with a negative linear gradifP(z,0),but
with T(z,0)constant. In the Oy interval we therefore have

g(zF P(z0)-aT(z,0)=R —aTy-I"zly, (11)

and thus%g =-I"ly forI"> 0. ThisI"is the steady pressure differenceyor z> 0. As initial
L
temperature we consider only a sudden transierp jhratt ~ 0, as those above described.

A quadratic version of (11) demonstrates that éngdr effects are in zones with largleydz
(not shown in this paper). The effect of a moreguiarg(z)is also rapidly sketched in Appendix B

The positive 4 case. We now analyze the effect of an initial continustesady gradient of
pressure at the arrival of just a temperature jimpVe assume rather small initial inputs, such that
Y,4, X, I are positivgTable 2). In this simple case equation (9) fer < w becomes

2 2 2
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wheree is a small time delay to take into account all¢henplex processes related to a quick
arrival of a real transient (Appendix A). If agd=|T, 4|/D > 8 - 10, in (12) one can disregard
D (Whitham, 1974).

Moreover the equation (9) has constraints (Appeithat define a transient frontzat zg(t).
Indeed, the solution fdr> ¢ is

T(zH)=T, +T, z<0,



_ v i) () - AT AT
T(ZI)_T0+T|_T+Y — |t O<z<zy(t)=-Vt+, 4 T At , (13)
v

T(zn=T, z> 74(t),

with a drift velocityV = (X' IN/y = ( 21" 4)/(a w) > 0 which decreases the front velocity (Fig 4).
From Fig. 4 we see how temperature quickly increaseil aboufly +T;, not at the arrival of the
front zg (t) but after a time delay, then the temperature nesrvather stable, abolig+T ;.

Equation (13) also shows that for a fixed timetdraperature decreases for increaging

The velocities/ are positive but rather small, around®i0 Sl. SinceY ~ 10%* alsoY I'%/y? is
small, about 18 for sandstones and 1bfor Tennessee marble.

On the other hand, for very smalk 50um (Chester et al., 2005), this veloc\y= 2 P, / y can

reach higher values, alsol0”in Sl. In such a context Ri¢2006) states thatie earthquake data

set for fracture energies can be fit to predictiahs model involving slip on a much thinner zone,
even slip on a mathematical plane. It is, nevedasg| presently uncertain whether broad zones of
ultracataclastic gouge, up to several tens of midters width, participate in seismic shear, or
whether extreme localization is the rule even dhslocalized zones may have in some cases evaded
detection’

To clarify the meaning dR, the diffusive velocity of (9% =, D/t while the nonlinear

velocity is =,/ |T,A|/t. The physical characterization of ratio betweentth®velocities

therefore is,T,4// D = RY2

From (13) we moreover have that at the secondfatez =y the temperature evolves as

2 2
Tlpt)=T, +T, _lrvep +Y(£j t, (14)
44t W
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and for large timeT(y/,t)_> [Y(—j t—at} = -10°%, i.e. its decrease is proportionakto
14

SuchT(y,t) can play the role of new initial/boundary condisdor the transient evolution in the

other "adjacent matrix. In addition to it, the timé&*, necessary to reach the second rock, for small
Y can be computed from

w= -Vt 44T, [t*, (15)
and for smalV andY we obtain that* is proportional tas%/T, , very small for a smalip.

From (7) the corresponding pressuretfore is given by

P(z1)= R+ R +aT, z<0
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P(zt)=R,-T z/y zg(t)<z<y

We stress the relevance of these solutions wharelP satisfy exactly the assumptions (6) - (7),
our ansatz

The negative A case. For larger external signals one can also hawaiéas problem but with
negativeY, V,X. This characterizes the transient evolution winenttansienP andT are much
larger, near the rock fracture regiorFig 2. The solutions are a sharp signal with theesfront

zg(t) since fort > & we have (Fig 5)

T@h=T,+T, z<0
o _(zrvey (1Y s
TE=Ty =5, 5+ |t 0<z<z(t)=-Vt+. /4| T,Alt  (16a)
4
T(zh)=T, 2> 75(t)

but in this case the front is characterized @s(t), t) = To +T1.

It has to be remarked that for this negativene has a negatiwé which in turn increases the
front velocity. In addition, the transient tempeiratat the front arrival ia sharp jump as large as
To+T, and then decreases, till reachihg To: this solution (16a) is just a quick transient.afg
these solutions of andP satisfy exactly the assumption (6) - (7).

6. The parametersvaluesfor somerock examples.

The parameterg, 4, X..... in Table zhave a fundamental role on such transient
evolutions. For Charcoal granite, Tennessee marlgesterly granite, the permeabilkyis of the
order of magnitude of 18 in SI. The diffusion parameter is oftérr= 10° while o ~ 10’ in S| but
with remarkable variations. For these ro43 is therefore smaller than $@nd the transients are
essentially due to the diffusion. We can also haethe velocity/ ~ 10*°in SI: therefore in these
rocks the convection cannot play an important sotee the diffusive effects mainly drive the
system evolution (Table 2).

Sandstones in turn, and Berea sandstone in partitave larger values fé% and thus
R. For these rocks the main nonlinear dynamica&ot$f (namelyR >8-10) can be seenTh is
larger than, say, 10 -10€ and thus th@® andT shock waves are easier to be found in these rocks.
We moreover stress how the nonlinear front veloeity/ t*?is much larger thak =~ 10”in SI



(Table 2) but it also has a rather quick decrelaskeed, the ratio of such two velocities is about
10%(t*?), assuming72y = 1¢ andT, = 100°C.

7. The equations of the large pressure model, with pressure-induced per meability.

In the preceding sections we analyzed the dynamitte boundary layer between two
rocks at the arrival of a nonlinear transient, thet velocities for a smajf are not particularly
impressive. Thus we take into account that sigaifi®-T jumps in the matrix (Fig 2) can generate
variations of the matrix parameters, in particglarmeability (Bonafede, 1991; Shapiro and
Dinske, 2009; Hummel, 2013). To this purpose wdyaeathe case of K:(P) for large amplitude
transient withP andT near the fracture value in Fig 2 (Appendix A; Fiskeal., 2002). We
thereafter discuss a novel heuristic model With K; (P). We callz(P)= K¢«(P)/ K¢ the fluid
pressure-dependent permeability over the constanplessure permeability. We moreover assume
that for large amplitude transievif Y,4, 2 are negative quantities, as discussed in Section 5

About early estimates of the pressure dependentgagility, Gangi (1978) discussed a model with
K: (P) = ko [1+ (P/Po) m]® wherek, is the Taboratory' permeability,P. is an effective modulus and
mis a constant, with O m < 1. More recently, among other exponential apghtea (Yilmaz et al.,
1994), a polynomiaK; (P) was estimated from the analysis of micro-earthgeaidtouds in
experiments of deep pressure explosions in Ba8tetle (Fisher, 2002). In particular Hummel
(2013) foundz(P) = § P" with 5< n< 7, where fom = 5 wasS, = 5x 10 forn = 6 wasS, = 5x
10°° and forn = 7 wasS = 5x 10% in Sl. The largest(P) increase thus is about® @ similar
behavior was also found for micro-seismic datainatng from the Horn River Basin (Hummel,
personal communication).

The novel model equations & = K; (P) therefore are

0P _ 0T

- = k * P

ot at Kl )

oT oT OP 0°T &0
g - 9L % P D<

ot ﬂ() 4 )[ zj 027

where only%—-[ and%—lt: are multiplied byr (P). For a general case, the solutions of this prable

could be found numerically, nevertheless simpldydiceestimates can have some practical interest.

8. The solutions of the large pressure model with K; (P).
In the case of strong initial conditions to haveeatimate from (17) we approximate
7 (P)=1+S(P-Po)"~ S(aZ/dd[t+e])" = S (aldd)" 2" [t+e] "=
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= S (@/84)" y*" [t+¢] "= DY [t+ ¢] (18)

where we consider the tinadout disregard th¥ andP,/y terms This avoids mathematical
pathologies and takes into account the delay dad the complex processes related to a quick
arrival of a real transient (Appendix A). As suggesfrom the above experiments of micro-

earthquake clouds, we estimate from (18) thateaptiessure maximum one has

10°~D* ¢ ™" (19)

and thus 7z(P) =10° Eﬁﬁ) . We also approximat# ~ y* /2 namely the average atin the 0 -y

layer, since? for a thin boundary has variations less importaan 1f. With such approximations

7 (P) becomes just a function of time.

In synthesis the above field data allows to deteenm (17) , (18) and (19)-an heuristic model &f th
effects ofK; (P) on large amplitude transients in small spaceescahich at least holds for

experiments in this range of parameters. Thus mal{i obtain

2 2
0P _ OT | PP _ L0°T o (20)

T —a -k

30 “06 a2 "oz

2 2
a—T{ALa_T] +zﬂa_T+Y(ﬂ] }:o, (21)
00 0z w 0z

as the above discussed models but withd(t). From (20) and (21) this new tinfedetermined
from (17), is

%:E(P) =1+D*(t+£) ™" . (22)

By imposing that)(0) = 0 we moreover obtain

*

— 4 D a-n__D* _a-n
a(t) t+(1_n)(t+£) (1—n)£ >t. (23)

For large time: 6(t) - t +D*&™ = t while for very small times a perturbative expansio

gives 4(t) =t [1+D*M£" D] ~t10%/e  (Fig 6).
(n-1
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The corresponding temperature is

2 2
T(zp)=T, —% + Y(zj 7] 0<z<zg(t)=-VO+,4| T,A|6 . (24)
W

In synthesis, one has for large times the sameaugwalalready analyzed, while for very short times
a novel, enhanced time 4(t) = t 10°/ £, asit would be intuitively expected. In turn the néwant

velocity fort > ¢ is

dze __,d0, (14T do _ of . BT ) & Y (25)
dt dt | oft) dt o) fle+t)

In comparison with the constant-permeability esteador sandstones, in particular the Berea
sandstone in Section 6, the novel solution (25)dwkR and the drifty about 18 times larger. For

2y ~10° andT, = 100 T the new drift velocity is~ 10* In turn the nonlinear velocity is onty

1/2

30 times larger and approximately it is®@)"2in SI. This consequently shows how for a variable

permeability the drift velocity plays a more imgaont role. Similar relations hold also fogy,t) in
(14) and fort* in (15). In Appendix D the concomitant effect dileer cake formation is quickly
sketched.

9. Discussion.

A realistic analysis of the effect of a boundaryelabetween two fluid saturated rocks, on
the propagation of transients®fandT, is an important but rather complex problem. kEv&dent
that it can have different physical meanings, widghamics may evolve in many different ways.
One indeed can consider a pure pressure flux @ lpeat flux or a mixing of these two forcings;
the source can have higher or lower temperature@edsure, temperature only, pressure only,
with or without rock deformations, a steady trefidP@ndT is present...etc. Also nonlinear effects
as convection or advection can eventually be censttl In addition, such boundary layer can be
thin, and schematize the real boundary layer betiwe homogeneous rocks, or very large to
simulate an adjacent rock with sofd@nd/orT trends, two very different but formally similar
problems.

We here consider in detail the case in which a lgeneous Sourcé matrix is more
pressurized than another adjacent matrix, thussiagwon & andT dynamics in a thin boundary
layer of thicknesg between these two rocks. Such barrier is heréetless a region with
continuous trends of pressure between the two oestrits thicknesg can be 10nor 1mm
depending by the particular physical problem comsd. The effect of a sudden jump of
temperature in the source rock on the evolutioa obntinuous pressure field in such boundary
layer is here analysed: we focus on its nonlineasgure propagation.
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In more detail, we analyse a two equations modstril@ng these cases where we also
consider the nonlinear role of convection. Indeedf@cus on the characteristics of the model
solutions in relation to some crucial parameterR & Reynolds number ruling the effect of
convection) 4 (that characterizes the velocity of a nonlineant),  (relating strictlyP andT), V (a
drift velocity due to eventual steady trends). &mtjgular, we show that among the model solutions,
there are also particularly quick and sharp trarsiwith a strict linear relation betweBrandT, as
discussed by Merlani et al. (2011).

Solutions of these two equations can be very coxplerealisticP and/orT trends
(Appendix B), thus we here analyse a case charaeteby simple analytical solution, i.e. the
arrival of a sharp temperature jump in presencesieady linear pressure trend. The main result is
that all this gives a rather small drift velocitgtitveen the two rocks and the solution is

_ (z+v iy (TY _
TEn=T,+T, -5+ Y|t 0<z<z,(t)=-Vt+ /4 T,At (26)
4

fort>e.
We study also the effects of convection for theedasvhich a stronger impact gives some rock
perturbation or deformation. This corresponds ti@asient with1 < 0 and again a from(t) as

2 2
T(ZI)=TO—%+Y(£% 0<z<zgt)=-Vt+. |4 TA|t . (27)
7

From these analyses, we however found that foravate hydrothermal... problems the drift
velocity V is rather smajlonly for an earthquake slip it can be more impur{&ice, 2006). We
therefore investigate a case with an also largereal impact, such that the transient pressure
increases the rock permeabilKy. This is the case oft&(P) reaching values 10° K; (Shapiro et
al., 2006). The novel solutions have only a differgmed(t), which gives a large increase of the
system velocities, in particular for the drift veity. For sandstones, this front velocity is royghl
about 1¢%/+/t in SI while the positive drift velocity is= 10% in SI, which shows the complex

dynamics of these problems.
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Appendix A. Summary remarks about hydro-fracturesin porousrocks.

In many articles dykes, mineral veins, joints armhAnduced hydraulic cracks generated by fluid
overpressures are called hydro-fractures (Philigd.e2013). Such events can influence the rock
permeability in reservoirs of oil, gas, geothermnvater and groundwater. Indeed various analytical
and numerical models show that such hydro-fractpressure jumps often give very high crack tip
tensile stresses (Shapiro et al., 2006). Then thpd-fractures propagate until forming an
interconnected net of fractures. In turn, thesdrdmute to enlarge the rock permeability.

Field observations show how in heterogeneous dicedly layered rocks hydro-fractures can be
arrested at a horizontal layer boundary, thus ety interconnected networks are not frequent
(Philipp et al., 2013). This often happens to hyllatures with discontinuities (including contgcts
or stiffness changes between horizontal layersséneds barriers, i.e. the local stress there cststra
any kind of vertical hydro-fracture propagationushhydro-fractures are mostly confined in
stratabound layers where often a net of fracturasg. Such phenomena can in turn largely
contribute to enlarge the fluid reservoirs permiggbi

Appendix B. On the effect of strongly varying initial conditions at the two-rock boundary.

A very different problem is considered here, we lyea the assumption for the initial

pressure in presence of trend
Po (2)=Po + h(2) (B1)

Hereh(z)is assumed to be derivable but schematizes ayhginying pressure at the boundary of
the two media: it decreases frohnf0) = P; to h(y) = 0 andh(z) is strongly variable in the
interval (0 —y). Consequently the space averdde(x)/d z< 0, whileis nil aroundz = 0 andz = y.
This initial condition can give some intuitive ight about a more realistic model for the two-rock
border, where can happen complex phenomena apditieles migrations, filter cake formation or

local rock fractures (Merlani et al, 2011).

Replacing (B1) in equation (12) we have

2 2
a_T—ka_-E+A a_T +zﬂa_T+Y(ﬂ)2:O
ot 0z 0z dz oz dz (B2)
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2
Mathematically this is a Burgers equation with méapositive inhomogeneous tem(%j and
z

a drift termx dh G_T This problem must be treated numerically. A ddfe possibility is that

dz 0z

2
Y(%j is a very large term, namelyz)is really highly variable function. Disregardintgetother
z
presumably smaller terms, an estimate at firstrdimlespace-averaged quantities therefore is

2
al”[ﬂj ~0. (B3)
ot dz

This very simple case gives an elementary solutipproximately

T =T0—Y[(%]2}. (B4)

Appendix C. Thestructure of thefronts

We here analyze some properties of the Burgerselikgtion: this is not a formal
mathematical demonstration but just an intuitivedxact sketch. Consider in general the equation

2 2
6_T: DG_T+ M 6_T +N 6_T , (C]_)
ot 97 0z 0z

with D , M andN constants. We caf) =0 T /0 zand byz-deriving (C1) we have

6QCF)_D02Q(T) _oMm 0Q*(T) _oQM _ (C2)
at 022 9z 9z '

Assuming thall = Ty is constant in a small region arourvd aandT =Ty+ T, is again constant
aroundz~ b we thus have th&(a) = Q(b)= 0 in the above two small peripheral regionguhm
anotherz-derivative of (C2) gives that in small regions arda = aandz = b one has

0°Q_,20(@Q")_ Q
e 0z 0z

= 0. Once integrated betwearandb the relation (C 1) thus gives

a—Q = = i —_— =
7 dz Qdz o [T(b)-T@)]=0, (C3)

D — T

9
ot

D —— T

that implies thaf (b) - T(a)=To+ T, - To= T, = const .This impliesT (b)=T(a) + T,
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If the solution of (C1) is growing like a polynorhig, Z,....in thea - binterval and we fix
thata = 0 andb = zg, to satisfy the equation (C3) we must assUr(m, t) = To+ T}, in particular in
the limitt - 0 andz— 0.

Appendix D .Theeffect of afilter cake formation.

We now discuss another practical application oagiqus (24) - (29). We consider that during the
transient crossing some small space scale, minendl$ine particle migrations can arrive within a
short delayd and affect the boundary layer permeability (Merktral., 2001). This can happen for
very fine particles flowing into a solid matrix. &uflows would affect mainly the matrix porosity
Kt (and therefore*, k* andB) since from (2) and (3) their effect on the porp&oks less
important.

Obviously, during their migration, such fine pelés deposit on the pore surfaces and
therefore their volume has to decrease. Callihghe spatial rate of such decrease, one has
dyldz+1y =0, namely (z) =yoe™'? (D1)

Following Civan (1998), the effect ¢y of such migration is assumed to be proportiomal t
the volumetric flux of particles into the matrix.d space averaging is an acceptable approximation

for such migrations, their overall effect in thené interval ¢, 412 T, 16 ) is (Civan, 1998)

V4am 0 T
K K¢ |1+a [pudt|=K, [1+an[wﬂ (D2)
d

for a suitable parametgrdepending on the pore and particle dimensiondD2) the permeability
is varied and the consequent novel velocity is

U=-(Ks+a) z /(2u 4 6(t) and Q = - q (Ks +a)/(24x) yo €2z dz.
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Figure Captions

Fig 1. An intuitive sketch of the rock system.

Fig 2. Relation between strasnand forcinge (pressure and temperature) in 1-D problems
Fig 3. Solutions of the Burger equation for variéus

Fig. 4. Solutions for a positivé

Fig. 5. Solutions for a negative
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Fig. 6. Novel time) for a pressure dependent permeability
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TABLES

TABLE 1
Material Abyssal Berea Ruhr Weber Westerly | Charcoal | Tennessee
property Red Clay | Sandstone | Sandstone| Sandstone | granite granite Marble
G 7.0x1d 6.0x10 1.2x10° 1.2x10° 1.6x10° | 1.8x10° 2.4x10°
B* 9.6x10" 6.2x10" 3.9x10 4.0x10" 8.5x10 2.3x10 1.7x10
v 4.8x10" 2.0x10 1.5x10" 1.5x10 2.5x10 2.7x10 2.5x10
v 5.0x10" 3.3x10" 2.9x10" 2.2x10" 3.4x10" 3.0x10" 2.7x10"
o 3.0x10" 1.1x10° 9.8x10" 1.0x10° 1.0x10° 1.0x10° 1.0x10°
O 3.0x10° 3.0x10° 3.0x10° 3.0x10° 2.4x10° 2.4x10° 1.0x10°
K 3x10'° 2x10™ 2x10™ | 1x10™ 4x10™ 10% 10%
Kr 1.0 3.3 2.9 3.0 3.0 3.0 2.9
0 7x10" 2x10" 6x10° 6x10° 1x10° 2x10° 2x10°
Pm Cm 4.0x10 3.0x16 3.0x10 2.7x16 2.7x16 2.6x16 1.0x10

HereKr is the average thermal conductivit; is the permeabilityyyis the matrix density is
the fluid heat capacity arg, is that of the rockB* is the Skempton paramet&js the shear
modulus,v L the drained Poisson ratio av [, the undrained Poisson ratea,, (of) the volumetric

thermal expansion coefficient for the solid (flyi K; is the medium permeability the porosity,
¢ pr = 7x10 and u ~ 4x10%in Sl is the fluid viscosity.
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TABLE 2

Material | Abyssal Berea Ruhr Weber Westerly | Charcoal | Tennessee
property | Red Clay | Sandstone | Sandstone | Sandstone | granite granite Marble
k* 1.3x10’ 4.2x10" 2.9x10" 2.5x10° 5.8x10° 3.1x10’ 3.2x10’
a* 3.3x10’ 5x10' 62.5 535 1.7 1x1H 5.7x10°
a 3x10 1.4x16 2.5x10 5x10F 4.7x10 2.3x10 2.4x10
B 3.1x10% | 1.4x10" 1.2x10 6.8x10™ 2.6x10" | 6.8x10® | 1.8x10%
D 5.9x10’ 1.3x10° 1x10° 1.2x10° 1.1x10° 1.2x10° 3x10°
Y* 4.4x10% 2x10Y 1.8x10% 9.7x10* | 3.7x10% | 9.8x10* | 2.6x10°
4] 9.4x10% | 5.4x10° 4x10° 5.8x10° 2x10™ 2x10% 5.8x10™
for Y*
positive
1] 3.1x10" | 6.7x10™ 2.1x10™ 1.6x10% | 6.1x10" | 1.1x10" 3x10%°
for Y*
positive
AID = 1.6x10° 4.2x10 4x10° 5x102 1.9x10° 1.8x10° 2x10°
RIT,
V=X Tly
(C=10" 3.1x10° | 6.7x10° 2.1x10° 1.6x10° 6.1x10% | 1.1x10" | 3x10%
y=100)
V=XTly
(r=10" 3.1x10* | 6.7x1CG 2.1x10" 1.6 6.1x1d¢ 1.1x10* 3x10’
y=10°)

Characteristic parameters in Sl for Abyssal R&d/ saturated with liquid water are estimated in
(McTigue, 1986), the Berea sandstone and Rhutssane for supercritical water in Bonafede
(1991) . The values of the other rocks are fromrldfe et al. (2001). Considering the difficulty of
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estimating these rock properti@sloco,we give only the orders of magnitude of the above
guantities, but the uncertainties can be large.
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