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Abstract

This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between
the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-
linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the
complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias
parameters. The review begins with a detailed derivation of this very important result, which forms the basis
of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity
and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local
gravitational observables, which include the matter density but also tidal fields and their time derivatives.
We hence expand the definition of local bias to encompass all these contributions. This derivation is followed
by a presentation of the peak-background split in its general form, which elucidates the physical meaning
of the bias parameters, and a detailed description of the connection between bias parameters and galaxy
statistics. We then review the excursion-set formalism and peak theory which provide predictions for the
values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy
bias required in the presence of various types of cosmological physics that go beyond pressureless matter
with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM
isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of
galaxy bias in the galaxies’ rest frame is related to clustering statistics measured from the observed angular
positions and redshifts in actual galaxy catalogs.

Keywords: cosmology, dark matter, galaxy bias, galaxy clustering, large-scale structure,
primordial non-Gaussianity

Email addresses: dvince@physics.technion.ac.il (Vincent Desjacques), djeong@psu.edu (Donghui Jeong),
fabians@mpa-garching.mpg.de (Fabian Schmidt)

Preprint submitted to Physics Reports January 15, 2019

ar
X

iv
:1

61
1.

09
78

7v
5 

 [
as

tr
o-

ph
.C

O
] 

 1
4 

Ja
n 

20
19



Contents

1 Introduction 5
1.1 Historical review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 From initial conditions to observed galaxies: the role of bias . . . . . . . . . . . . . . . . . . . 7
1.3 Notation and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 List of new results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Guide for the reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 From local-in-matter-density bias to the general perturbative bias expansion 16
2.1 A toy model: LIMD in Lagrangian space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Gravitational evolution: general considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Evolution from the continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Evolution from a joint perturbative solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 General perturbative bias expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Spacetime picture of bias and evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Lagrangian basis of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.3 Eulerian basis of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Higher-derivative bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 Velocity bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.8 Stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Galaxy bias in the relativistic context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.10 Renormalization: bare vs. physical bias parameters* . . . . . . . . . . . . . . . . . . . . . . . 49

2.10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.10.2 Equivalence principle and local gravitational observables . . . . . . . . . . . . . . . . . 50
2.10.3 Coarse graining and bare bias expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.10.4 Renormalizing the bias parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.10.5 Higher-derivative operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Peak-background split: rigorous formulation and approximations 62
3.1 Bias parameters as responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Exact implementation of the PBS: separate-universe approach . . . . . . . . . . . . . . . . . . 63
3.3 PBS biases for universal mass functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Renormalized biases and the PBS* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Measuring galaxy and halo bias 72
4.1 n-point correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Two- and three-point functions at leading order . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Two- and three-point functions in Lagrangian space . . . . . . . . . . . . . . . . . . . 79
4.1.3 A worked example: bias constraints from the leading-order power spectrum and bis-

pectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.4 Next-to-leading-order corrections to the two-point functions . . . . . . . . . . . . . . . 82

4.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Scatter-plot method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Response approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5 An overview of bias measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

* Sections that are more technical in nature and not essential to the understanding of later sections are marked with an
asterisk.

2



4.5.1 Halo bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.2 Galaxy bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.3 Stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Halo assembly bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 The excursion-set approach to the distribution of dark matter halos 105
5.1 General considerations about the formation of dark matter halos . . . . . . . . . . . . . . . . 106
5.2 From Press-Schechter to excursion sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 The spherical collapse model of halo formation . . . . . . . . . . . . . . . . . . . . . . 108
5.2.2 Press-Schechter formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.3 Cloud-in-cloud problem and its resolutions* . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Excursion-set formalism: setting up the scene . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4 Survival probability, halo mass function, and bias . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5 Numerical solution of excursion sets: Langevin equation . . . . . . . . . . . . . . . . . . . . . 117

5.5.1 Monte-Carlo solution with sharp-k filter . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5.2 Monte-Carlo solution with general filters . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Analytical approaches I: excursion set with uncorrelated steps . . . . . . . . . . . . . . . . . . 119
5.6.1 Completely independent (Markovian) steps with sharp-k filter . . . . . . . . . . . . . . 120
5.6.2 Halo bias with sharp-k filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.6.3 Expanding around the Markovian (sharp-k) solution* . . . . . . . . . . . . . . . . . . 122

5.7 Analytical approaches II: excursion set with correlated steps . . . . . . . . . . . . . . . . . . . 124
5.7.1 First-crossing with completely correlated steps . . . . . . . . . . . . . . . . . . . . . . 125
5.7.2 Up-crossing probability distribution function* . . . . . . . . . . . . . . . . . . . . . . . 125
5.7.3 Halo mass function and bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.8 Summary: bias of halos in the standard excursion-set formalism . . . . . . . . . . . . . . . . . 128
5.9 Beyond the spherical collapse model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.10 Halo assembly bias in the excursion-set formalism . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 The statistics and evolution of Lagrangian density peaks 135
6.1 Spectral moments and characteristic scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 The Kac-Rice formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3 Rotational invariants and their distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4 Average peak number density* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5 Two-point correlation functions of peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5.1 The peak-density cross-correlation function . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5.2 The peak auto-correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.6 Perturbative peak bias expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.6.1 Polynomials, bias parameters and the peak-background split . . . . . . . . . . . . . . 146
6.6.2 Renormalization and peak correlation functions . . . . . . . . . . . . . . . . . . . . . . 148

6.7 Bias parameters from cross-correlations at two smoothing scales* . . . . . . . . . . . . . . . . 151
6.8 Excursion-set peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.9 Gravitational evolution of Lagrangian density peaks . . . . . . . . . . . . . . . . . . . . . . . 156

6.9.1 Velocity bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.9.2 Linear evolution: continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.9.3 Evolution at higher order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7 Bias and primordial non-Gaussianity 163
7.1 Primordial non-Gaussianity in the general bias expansion . . . . . . . . . . . . . . . . . . . . 164

7.1.1 Primordial non-Gaussianity of the local type . . . . . . . . . . . . . . . . . . . . . . . 164
7.1.2 General bias expansion with local PNG . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.1.3 Beyond local-type PNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.1.4 Stochasticity from PNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

3



7.1.5 Beyond the squeezed limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2 Probing inflation with galaxy clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.3 Non-Gaussian bias parameters from the peak-background split . . . . . . . . . . . . . . . . . 177
7.4 Non-Gaussian bias from Lagrangian bias models . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.4.1 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.4.2 Excursion-set approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.4.3 Lagrangian density peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.5 Non-Gaussian halo bias in simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.6 Observational prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.6.1 Galaxy power spectrum and bispectrum for a single tracer . . . . . . . . . . . . . . . . 188
7.6.2 Multi-tracer methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8 Beyond cold dark matter, cosmological constant, and General Relativity 193
8.1 Massive neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 Imprints of primordial baryon acoustic oscillations . . . . . . . . . . . . . . . . . . . . . . . . 195
8.3 Galaxy bias with dark energy and modified gravity . . . . . . . . . . . . . . . . . . . . . . . . 202

9 Connection to observations 204
9.1 The connection between galaxies and halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
9.2 Astrophysical selection effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.3 Projection effects: from proper to observed galaxy density . . . . . . . . . . . . . . . . . . . . 208

9.3.1 Observed galaxy density contrast at linear order . . . . . . . . . . . . . . . . . . . . . 211
9.3.2 Nonlinear galaxy density contrast in redshift space . . . . . . . . . . . . . . . . . . . . 215

9.4 Galaxy statistics on the sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10 Summary and outlook 221

Appendix A Statistical field theory 223
Appendix A.1 Random fields in 3D Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . 223
Appendix A.2 Fourier representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Appendix A.3 Gaussian random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Appendix B Cosmological perturbation theory 229
Appendix B.1 Standard perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Appendix B.2 Feynman rules of large-scale structure . . . . . . . . . . . . . . . . . . . . . . . . 231
Appendix B.3 Effective field theory and the nonlinear scale . . . . . . . . . . . . . . . . . . . . 232
Appendix B.4 IR resummation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Appendix B.5 Convective SPT approach and conserved evolution at third order . . . . . . . . 235
Appendix B.6 Conserved evolution and bias expansion beyond the EdS background . . . . . . 237

Appendix C Bias conventions and their relation 239
Appendix C.1 Second order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Appendix C.2 Third order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Appendix C.3 Derivation of Π[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Appendix D Halo finding algorithms 244

4



1 Introduction

1.1 Historical review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 From initial conditions to observed galaxies: the role of bias . . . . . . . . . . . . . . . 7
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1.5 Guide for the reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

The observed distribution of galaxies, quasars, and clusters of galaxies—the large-scale structure of the
Universe, Fig. 1—is one of the foundations of our knowledge about the history of the Universe. These
tracers can be observed out to cosmological distances, and can thus be used to survey significant fractions
of the observable Universe. If we understand how the distribution of tracers is related to the underlying
distribution of matter, we can access a wealth of information on the composition of the Universe, properties
of dark matter, dark energy and gravity, as well as the nature of the process that produced the initial seeds
of structure. The relation between luminous tracers and matter, which is known as bias, thus forms a key
ingredient in the interpretation of the observed large-scale structure.

1.1 Historical review

Perhaps the first example of cosmological conclusions drawn from sky surveys is [1], who showed that
the observed flux distribution of radio sources is inconsistent with a static homogeneous Universe. Beyond
this qualitative conclusion, it is difficult to extract information from the 1-point function of galaxies. Thus,
most cosmological inferences have been based on the next-order statistic of the galaxy density field, the
two-point correlation function and its Fourier transform, the power spectrum [2] (a basic introduction to
the description of statistical fields is provided in Appendix A). Two-point statistics were first measured with
significant signal-to-noise ratio in early surveys of galaxies and clusters of galaxies [3, 4, 5, 6, 7, 8, 9, 10, 11].
Already in these first measurements it became clear that the correlation function of galaxies and clusters is
not the same, which implies that they cannot both be unbiased tracers of the matter density fluctuations.
Consider a simple ansatz which locally relates the density contrast of galaxies or clusters of galaxies to that
of matter at a fixed time:

δg(x) ≡ ng(x)

ng
− 1 = b1 δ(x) = b1

(
ρm(x)

ρm
− 1

)
, (1.1)

where all quantities are evaluated at the same fixed time, which we leave implicit here, ng is the mean
comoving (see Sec. 1.3) number density of galaxies, while ρm is the comoving background matter density,
and b1 is a parameter that we call bias. Then, the two-point function of galaxies (or clusters of galaxies) is
enhanced by a factor of (b1)2 over the matter two-point function. If we allow for clusters to have a larger
bias parameter than galaxies, their different observed correlation functions can be explained.

A relation of the form Eq. (1.1) with b1 6= 1 implies that the galaxy density ng(x) is not linearly
proportional to ρm(x), as otherwise their fractional perturbations would be equal. Instead, the galaxy
density has to be a nonlinear function of the matter density. In his seminal paper [12], Kaiser laid out a
physical picture for such a nonlinear function, by positing that clusters form at the locations of rare, high-
density excursions of the matter density field (we will describe this ansatz in detail in Sec. 2.1). This argument
was subsequently refined by Bardeen, Bond, Kaiser, and Szalay (BBKS [13]), who derived the statistics of
peaks in Gaussian random fields (Sec. 6). Further, Refs. [12, 13] and, subsequently, Refs. [14, 15, 16]
formulated the “peak-background split,” which establishes a connection between the bias parameters and
the mean abundance of tracers (Sec. 3). Importantly, in the meantime Ref. [17] showed that bias can be
made much more general than the specific examples considered in [12, 13].

The advent of larger galaxy surveys, in particular the CfA [18] and APM [19] surveys, allowed for the first
robust cosmological inferences from galaxy clustering [20, 11, 21, 22], for which bias is a crucial ingredient. In
particular, Ref. [23] showed that the two-point correlation function of galaxies measured in the CfA and APM
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Figure 1: Two-dimensional slice projections (pie diagram) of the measured locations of galaxies in the CfA2, 2dF, and SDSS
galaxy redshift surveys (top left half). The lower right half shows the location of galaxies which were assigned to dark matter
halos in the Millennium gravity-only N-body simulation using a semi-analytical prescription. It is apparent that the simulation,
which assumes a flat ΛCDM cosmology, qualitatively reproduces the observed large-scale structure of the Universe very well.
From [32].

surveys was impossible to reconcile with the predictions of a cold dark matter (CDM) dominated cosmology
(with matter density parameter Ωm ≤ 1) unless a bias parameter b1 is introduced following [12]. Moreover,
the results of these surveys played an important role in establishing the now familiar standard model of
cosmology, the spatially flat ΛCDM model. To this day, this model consistently describes both the large-
scale galaxy power spectrum and the cosmic microwave background (CMB) [24, 25, 26, 27, 28, 29, 30, 31],
and any significant departures from this model are by now tightly constrained. We briefly recap this history
here.

In the early 1990s, the flat, matter-dominated Einstein-de Sitter (EdS) Universe [33], was favored on
theoretical grounds. Ref. [34] pointed out that this scenario made inconsistent predictions for the relative
amplitude between large-scale and smaller scale clustering of the APM galaxies, given the constraints on the
primordial amplitude of perturbations from CMB temperature fluctuations from COBE [35]. Essentially,
since the shape of the two-point function of tracers, even those that are biased according to Eq. (1.1), is
the same as that of matter on large scales, the former could be used to rule out the shape of the matter
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correlation function predicted by the EdS scenario. Moreover, this cosmological model did not correctly
describe galaxy velocity statistics [36]. As noted in [37], the introduction of a cosmological constant, with
a magnitude that corresponds to roughly 80 percent of the present-day total mean energy density, could
resolve the discrepancy (see also the earlier discussion in [38]). This eventually led to the establishment of
the standard flat ΛCDM cosmology, whose confrontation with observations has been enormously successful
[24, 25, 26, 27, 28, 29, 30, 31, 39]. We refer the reader to [40] for a review of recent cosmological constraints
from galaxy clustering.

Another milestone was reached in the detection of the baryon acoustic oscillation (BAO) feature [41]
in the two-point correlation function of the SDSS [42] and the power spectrum of the 2dF [25] data sets
(see Fig. 1 for representations of these surveys). This feature can be used as a robust standard ruler to
measure the expansion history of the Universe [43, 44]. In addition, redshift-space distortions [45] allow for
a measurement of the growth rate of structure [46, 47]. These probes are by now part of the core science of
a number of ongoing1 and next-generation experiments.2

Despite these successes, the exploitation of the cosmological information in large-scale galaxy surveys is
still in an early stage: (i) Beyond the two-point function, many studies suggest that higher n-point functions
contain significant amounts of information as well [59, 60, 61, 62] (Sec. 4). (ii) The potential of galaxy
clustering to test General Relativity on scales of 30–150 Mpc has only recently been realized [63, 64, 65, 66]
(Sec. 8.3). (iii) Departures from perfect Gaussian initial conditions can leave distinct imprints in the large-
scale clustering of biased tracers [67, 68]. This leads to the fascinating (and surprising) prospect that galaxy
clustering can provide insights on early-Universe physics that are complementary to those from the CMB
(Sec. 7).

A common theme of all these, and many other possible applications of galaxy statistics is that they
critically rely on a robust physical description of the relation between galaxies and matter: galaxy bias.

We emphasize that galaxies are not the only tracers of large-scale structure. Important other examples
include groups and clusters of galaxies, voids, quasars, the Lyman-α forest, line intensity mapping of Hα,
CO, the 21cm hydrogen hyperfine structure transition, and others, as well as diffuse backgrounds such as
the cosmic infrared background. Keeping this in mind, in this review we will use the term “galaxies” as
a convenient stand-in for general tracers of the large-scale structure; aspects that are specific to different
kinds of tracers are discussed in Sec. 9.

1.2 From initial conditions to observed galaxies: the role of bias

In order to be able to extract cosmological information from the observed clustering of galaxies, we
need a reliable model, or, better yet, theory for the statistics of galaxies, given the properties of the very
small (δ ∼ 10−4) initial perturbations in the early Universe, and the background cosmology. The different
ingredients necessary in this endeavor are summarized in the flowchart in Fig. 2.

First, we require a theoretical description of the distribution of matter itself, which is governed by the
growth under gravitational collapse starting from the initial perturbations (see [69, 70] for reviews). Unlike
the CMB, which is accurately described by linear (first-order) perturbation theory, the perturbations in
the matter density of the Universe at redshifts z . 10 are nonlinear. Crucially, the degree of nonlinearity
depends on the scales considered. One can broadly divide large-scale structure into two regimes: large,
quasi-linear scales, where perturbation theory (see below) converges to the correct result if carried out to
sufficiently high order; and the smaller nonlinear scales, which cannot be described by perturbation theory.
The description of LSS on nonlinear scales has to rely on numerical simulations and simplified heuristic
models. In this review, we focus on quasi-linear scales. While this neglects the cosmological information
that can be extracted from LSS on small scales, the key advantage of restricting to large scales, as we will
see, is that we are able to obtain a rigorous theory of galaxy clustering. In order to describe the distribution
of matter on quasi-linear scales, nonlinear cosmological perturbation theory (PT) approaches have been
developed ([71]; see [72] for a review). PT provides a robust theoretical foundation for the description of the

1Dark Energy Survey (DES) [48], eBOSS [49], HETDEX [50], HSC [51], KiDS [52]
2DESI [53], Euclid [54], 4MOST [55], LSST [56], PFS [57], WFIRST [58]
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quasi-linear matter density and tidal field, and has made significant progress in the past decade with the
development of several new technical approaches.3 In this review, we will only rely on fairly basic results of
perturbation theory. These are summarized in Appendix B.

Now, galaxy surveys of course do not measure the matter density field itself, but rather the distribution
of galaxies or other tracers, that is, of highly nonlinear objects which are the result of a complex formation
process. Bias describes, in a statistical sense, the relation of the distribution of these objects to that of
matter. Clearly, this is a very complicated relation in general: galaxy formation takes place over long periods
of time and in interaction with the formation of structure in the matter distribution, and is currently far
from being understood in detail (see [92] for an overview). Given a perturbation-theory based description
of the large-scale matter density and tidal fields on quasi-linear scales, the goal of the theory of galaxy
bias is to write the local number density of galaxies ng as the most general function of the properties of
the large-scale environment that is allowed by general covariance under coordinate transformations. Key
theoretical advances have been made in the understanding of bias over the past decade, paralleling those
for the matter density field mentioned above.

Remarkably, on quasi-linear scales, all the complexities of galaxy formation can be absorbed into a finite
number of parameters (at each order in perturbations and at fixed time), the bias parameters. This is a
nontrivial result, and relies on the fact that on large scales, structure formation is completely determined
by the action of gravity. In fact, one can show that, at linear order in perturbation theory (and assuming
Gaussian, adiabatic initial conditions), the ansatz Eq. (1.1) is correct and complete, up to an additional
additive noise term. More generally, the statistics of galaxies at a given order in perturbation theory are
determined by a well-defined set of bias parameters which can be constrained using these statistics. In this
way, we effectively marginalize over the unknown details of the galaxy formation process, while robustly
extracting cosmological information from galaxy surveys. This review provides a comprehensive overview of
this approach, and connects it to the other aspects of the theory of galaxy clustering on quasi-linear scales,
as summarized in Fig. 2.

To summarize, the perturbative theory of galaxy clustering, valid on quasi-linear scales, is based on
two key ingredients: (i) a perturbation theory prediction for the matter density and tidal field; (ii) a
complete parametrization of galaxy bias at each order in perturbation theory.

Despite the complexities of galaxy formation mentioned above, there is a robust, well-established fact that
we can build on: galaxies reside in massive, gravitationally bound structures called halos. As dark matter
makes up approximately 80% percent of all matter, the potential well of gravitationally bound structures
is dominated by dark matter. Consequently, the halos that host galaxies are dark-matter dominated. The
connection between galaxies and halos is well established numerically and observationally, for example
through stacked weak gravitational lensing [93, 94]. The lower half of Fig. 1 shows an example of how halos
identified in a gravity-only simulation can be populated with galaxies to realistically reproduce their observed
distribution. Thus, the understanding of the large-scale clustering of dark matter halos is a physically well-
motivated intermediate step toward the same for the clustering of galaxies themselves. Moreover, the
formation, structure, and clustering of halos can be studied reliably and in detail via gravity-only N-body
simulations. Hence, several sections of this review will deal with numerical results on, and physical models
of, halo clustering (in particular, Sec. 4–6).

1.3 Notation and terminology

Throughout the bulk of this review, we work in conformal-Newtonian gauge and comoving coordinates,
and restrict to scalar perturbations. Moreover, we assume a spatially flat background, as supported by ob-
servations, although this assumption is of no relevance to the topic of bias. Then, the perturbed Friedmann-

3Renormalized perturbation theory [73, 74, 75], renormalization group approach [76], closure theory [77], Lagrangian per-
turbation theory [78, 79, 80], TimeRG theory [81, 82], effective field theory [83, 84, 85, 86, 87, 88, 89, 90], time-sliced pertur-
bation theory [91], among others.
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Baryon density parameter Ωb0h
2 0.022307

CDM density parameter Ωc0h
2 0.11865

Neutrino density parameter Ων0h
2 0.000638

Cosmological constant parameter ΩΛ0 0.69179

Hubble constant today H0 = h 100 km s−1 Mpc−1 67.78 km s−1 Mpc−1

Scalar spectral index ns 0.9672

Scalar power spectrum amplitude As 2.147× 10−9

Matter power spectrum normalization at t0 σ8 = σ(R = 8h−1 Mpc, z = 0) 0.8166

Table 1: Parameters of the flat ΛCDM reference cosmology used for numerical results (maximum likelihood values for
“base plikHM TTTEEE lowTEB lensing post BAO H080p6 JLA” from Planck 2015 [29, 97]). Here, the density parameters are
defined as ΩX0 = %X(t0)/%crit(t0), where ρcrit is the critical density, and t0 denotes today’s epoch. σ8 is a derived parameter.

Robertson-Walker (FRW) metric can be written as

ds2 = a2(τ)
[
−(1 + 2Φ)dτ2 + (1− 2Ψ)δijdx

idxj
]
, (1.2)

where in General Relativity Φ = Ψ in the absence of anisotropic stress. The matter density contrast δ is,
in general, not a local observable. Thus, it should not really appear by itself in a bias expansion [such as
in Eq. (1.1)]. On scales much smaller than the comoving horizon, H ≡ aH, however, this issue is irrelevant
for all popular gauge choices. Strictly speaking, the matter density perturbation δ should be understood as
being defined in synchronous-comoving gauge throughout this review [95, 96]. We will discuss these issues
in Sec. 2.9.

We will use the reference cosmology defined in Tab. 1 for all numerical results, unless otherwise indicated.
Note that numerical results and figures taken from the published literature are based on different cosmological
parameters. Throughout the review, the matter (ρm), galaxy (ng), and halo densities (nh) are defined as
comoving densities, i.e. as physical densities multiplied by a3; for example, ρm = a3%m, where %m is the
physical matter density. Further, we define the time-dependent density parameter for any component X as
ΩX(τ) ≡ %X(τ)/%crit(τ), where %crit(τ) = 3H2(τ)/8πG. Their values today are denoted as ΩX0.

Let us now generalize the simple linear bias in Eq. (1.1), by writing

δg(x, τ) =
∑

O

bO(τ)O(x, τ) . (1.3)

Here, O are operators, or statistical fields, which describe properties of the galaxies’ environment on which
their density can depend. Each operator is multiplied by a corresponding bias parameter bO, which, at fixed
time, is merely a number. Eq. (1.1) already provides one example, with O = δ and bO = b1. This is easily
generalized to a whole set of operators O = δN , N ≥ 1. The corresponding bias parameters have historically
been known as “local bias parameters” bN (see Sec. 2.1), defined through

bN ≡ N ! bδN . (1.4)

However, as we describe below, we will broaden the definition of local bias to a more general, physically
motivated class. Whenever we need to single out the restricted set of bias parameters in Eq. (1.4), we will
refer to the expansion in a power series in δ solely as local-in-matter-density (LIMD) bias.

Note that we will not distinguish in notation between bias parameters of halos and those of galaxies.
This is because almost all of the bias parameters we encounter in the review are equally relevant for galaxies
and halos. Where results only apply to halos, we will clearly indicate this.

The subsequent sections will derive exactly which operators appear in the proper, complete bias ex-
pansion. In addition to the term LIMD defined above, we assign certain names to different categories of
operators that will appear in the following, which we state here mainly for readers with experience in the
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Probability density function (PDF) p(x)

Spatial derivatives, Laplace operator ∂i ≡ ∂/∂xi, ∇2 ≡ δij∂i∂j ,
Dij ≡ ∂i∂j

∇2 − 1
3δij

Fourier transform f(k) ≡
∫
d3x f(x)e−ik·x

Momentum integral
∫
k
≡
∫

d3k
(2π)3

Sum notation k1···n ≡ k1 + · · ·+ kn
Connected n-point function1 〈O(k1) · · ·O(kn)〉c
Dirac delta distribution2 δD(x) =

∫
p
eip·x

n-point correlator without 〈O(k1) · · ·O(kn)〉′ , where

momentum conservation 〈O(k1) · · ·O(kn)〉 = 〈O(k1) · · ·O(kn)〉′ (2π)3δD(k1···n)

Kronecker symbol δij , δNM

Heaviside step function ΘH(x) = 1 for x > 0 and 0 otherwise

Complementary error function erfc(x) = 1− erf(x) = 2√
π

∫∞
x
du e−u

2

Laguerre polynomials Ln(x)

Legendre polynomials Ll(x)

Probabilists’ Hermite polynomials HN (x)

1 See Appendix A.
2 Note that this implies (2π)3

∫
k δD(k − k0)f(k) = f(k0).

Table 2: List of mathematical symbols and notations.

subject. The definition of these categories can be skipped on a first reading, as it jumps somewhat ahead of
the proceedings. Specifically, we distinguish three categories of bias terms:

• Local bias: this includes all operators O that involve exactly two spatial derivatives4 for each instance
of the gravitational potential Φ. This includes the LIMD terms, i.e. powers of the density δN , as δ
is related to ∇2Φ through the Poisson equation (Tab. 4). It also includes powers of the tidal field,
and time derivatives of the density and tidal field. The physical reasoning behind this category is that
these operators constitute the leading local gravitational observables of long-wavelength spacetime
perturbations. Note that Φ itself, or first derivatives ∂iΦ, are not locally observable and hence not
included in this category, as required by the equivalence principle.

• Higher-derivative bias: this includes operators that involve more than two derivatives acting on a single
instance of Φ; for example, ∇2δ or (∂i∂k∂lΦ)2. These are clearly also local gravitational observables.
However, they are sub-leading in the limit of very long-wavelength density perturbations. Moreover,
each additional spatial derivative has to be multiplied by a spatial scale R∗ in order to render the
contribution to δg dimensionless [see Eq. (1.3)]. R∗ corresponds to the characteristic spatial scale of
the formation of the galaxies considered.

• Nonlocal bias: this class, finally, includes operators with fewer than two, or a fractional number of
derivatives of the potential Φ. These terms cannot be induced by gravitational evolution or local
physical processes, as they are forbidden by the equivalence principle, and so they must be imprinted
in the initial conditions (with a single minor exception described in Sec. 8.2). The most important
case is that of primordial non-Gaussianity, considered in Sec. 7.

The term “scale-dependent bias” has been used frequently in the literature to denote a nontrivial function

4Note that the operator ∂i∂j/∇2 counts as zero net spatial derivatives.
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of wavenumber k in the Fourier-space relation between δg(k) and δ(k), or other operators. Unfortunately,
this term can apply equally to the classes of higher-derivative bias and nonlocal bias, which, as we argued
above, have distinct physical origin. We will only use the term “scale-dependent bias” in the context of
primordial non-Gaussianity (Sec. 7), specifically to denote the leading nonlocal term appearing in that case.

For reference, mathematical symbols and conventions used throughout this review are summarized in
Tab. 2, abbreviations are listed in Tab. 3, and a reference list of physical variables is given in Tab. 4.

1.4 List of new results

Beyond summarizing the current state of the field, this review also includes numerous new results, mainly
related to connections between different aspects of bias that had previously been overlooked. We briefly list
these new results here, for the benefit of expert readers.

• A complete enumeration of higher-derivative bias up to second order (Sec. 2.6), and of stochastic
contributions to the galaxy density and velocity (Sec. 2.8).

• A derivation of the connection between peculiar acceleration of galaxies and the leading velocity bias
and higher-derivative bias (Sec. 2.7), elucidating the reason for the different time dependences of
velocity bias obtained in the literature.

• A proof that the Eulerian peak-background split bias parameters are exactly the large-scale renormal-
ized bias parameters (Sec. 3.4).

• A previously-overlooked stochastic contribution to the halo-matter cross-power spectrum at next-to-
leading (1-loop) order.

• A rigorous derivation of the connection between bias parameters inferred from moments and “scatter-
plot” methods with those measured through n-point functions (Sec. 4.2–4.3). The former measure
different bias parameters (which we call moments biases), a fact which has not been recognized previ-
ously.

• Excursion-set bias parameters obtained using a numerical solution of the exact Langevin equation for
a tophat filter (Sec. 5.8).

• Forecasts for constraints on primordial non-Gaussianity from the power spectrum and bispectrum of
galaxies for current and upcoming surveys (Sec. 7.6.1), including, for the first time, all relevant bias
parameters and stochastic terms.
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BAO Baryon acoustic oscillation

CMB Cosmic microwave background

EdS Einstein-de Sitter (flat, matter-dominated Universe)

EFT Effective field theory

ESP Excursion-set peaks

FoF Friends-of-friends algorithm (Appendix D)

ΛCDM Λ cold dark matter

LIMD Local in matter density (previously commonly known as “local bias”)

LPT Lagrangian perturbation theory

LO Leading order (tree level)

NLO Next-to-leading order (1-loop)

PBS Peak-background split

PNG Primordial non-Gaussianity

PT Perturbation theory

RSD Redshift-space distortions

SO Spherical overdensity (Appendix D)

SPT Eulerian standard perturbation theory

Table 3: List of abbreviations used in the text.
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Quantity Symbol Defining relation

Conformal time τ dτ ≡ a−1dt

Eulerian comoving coordinate x Eq. (1.2)

Time derivative ḟ ḟ ≡ df/dt
Hubble rate H H ≡ ȧ/a
Conformal Hubble rate H H ≡ a−1da/dτ = aH

Mean comoving (physical) matter density ρm (%m) ρm(τ) ≡ a3(τ)%m(τ)

Mean comoving halo number density nh nh(M, z) ≡ ∂4Nh/(∂
3x ∂ lnM)

Linear matter growth factor D(τ) Eq. (B.9)

Logarithmic growth rate f(τ) f ≡ d lnD/d ln a

Gravitational potential Φ Eq. (1.2)

Primordial Bardeen potential φ Φ(k)|mat. dom. = T (k)φ(k)

Primordial curvature pert. in comoving gauge R R = (5/3)φ in matter domination

Lagrangian comoving coordinate q q = limτ→0 xfl(q, τ)

Comoving coordinate of fluid trajectory xfl(q, τ) xfl(q, τ) ≡ q + s(q, τ)

Lagrangian displacement s(q, τ) Eq. (2.25)

Peculiar fluid velocity v v ≡ a ẋ = dx/dτ

Matter density contrast1 δ Eq. (1.1); δ(x, τ) = 2/(3ΩmH2)∇2Φ(x, τ)

Density contrast of galaxies (general tracer) δg Eq. (1.1)

Halo density contrast δh δh(x, τ) ≡ nh(x, τ)/nh(τ)− 1

Lagrangian halo density contrast2 δLh (q, τ0) Tab. 5 on p. 24

Tidal field Kij Kij ≡ (∂i∂j/∇2 − δij/3)δ

Linearly extrapolated initial density field δ(1) δ(1)(k, τ) ≡M(k, τ)φ(k) [Eq. (7.1)]

Operator constructed out of density field O e.g., O(x, τ) = [δ(x, τ)]2

Smoothed field OR OR(x, τ) ≡
∫
d3yO(x+ y)WR(y)

Operator at n-th order in perturbation theory O(n) e.g., O(2)(x, τ) = [δ(1)(x, τ)]2

Linear matter power spectrum PL(k, τ) PL(k, τ) ≡ 〈δ(1)(k, τ)δ(1)(k′, τ)〉′
Variance of linear density field on scale R σ2(R) σ2(R) ≡

∫
k
PL(k)W 2

R(k)

Generalized spectral moment3 σ2
n(R) σ2

n(R) ≡
∫
k
k2nPL(k)W 2

R(k) [Eq. (6.1)]

Critical density (collapse threshold) δcr ' 1.686 Eq. (5.9)

Peak significance νc νc ≡ δcr/σ(R)

Multiplicity function νcf(νc) Eq. (5.19)

Bias parameter4 with respect to operator O bO δh(x, τ) =
∑
O bO(τ)[O](x, τ)

N -th order LIMD bias parameter bN bN ≡ N ! bδN [Eq. (1.4)]

Lagrangian bias parameter bLO δLh (q, τ0) =
∑
O b

L
O(τ0)[OL](q, τ0)

Filter function5 on scale R WR(x), WR(k) See Appendix A.2.

Lagrangian radius of halos R(M) R(M) ≡ (3M/4πρm)1/3 [Eq. (5.11)]

Large smoothing scale R` R` � R(M)

Operator smoothed on large scale O` O`(x) ≡
∫
d3yO(x+ y)WR`(y)

1 In synchronous-comoving gauge, see Sec. 1.3.
2 For halos identified at time τ0; δh satisfies the continuity equation by definition (see Sec. 2.3).
3 Here we allow for n ∈ R.
4 This is the physical, renormalized bias, see Sec. 2.10.
5 Filter functions are normalized such that

∫
d3xWR(x) = 1 and limk→0WR(k) = 1.

Table 4: List of symbols and notation used throughout the review.



Figure 2: Schematic outline of the theoretical prediction of observed galaxy statistics. Given the statistics of the initial
conditions, perturbative bias expansions predict the rest-frame galaxy density as well as that of dark matter halos. This
expansion can either be done using Lagrangian (left) or Eulerian frames (right). Crucially, the general bias expansion in
either frame is mathematically equivalent. The bias expansion is closely connected to the perturbation theory of the matter
density field (Lagrangian [LPT] and standard Eulerian [SPT] perturbation theory, respectively). The peak-background split
(PBS) informs the bias expansion by relating the bias parameters to responses of the mean tracer abundance. The peak and
excursion-set approaches are a special case of the Lagrangian bias expansion, and predict the proto-halo density, which is
connected to the statistics of halos at low redshift through conserved evolution. The statistics of halos in turn can be related to
those of galaxies through halo occupation distribution (HOD) and subhalo abundance matching (SHAM) approaches. Finally,
the connection between rest-frame and observed galaxy statistics involves selection and projection effects (such as redshift-
space distortions). Cosmological physics enters in the initial conditions through primordial non-Gaussianity and isocurvature
perturbations between baryons and CDM. It also affects the evolution of structure, and consequently the bias expansion,
through the effects of massive neutrinos, dark energy, and modified gravity.
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1.5 Guide for the reader

In the following, we describe the outline of the review. We recommend that readers begin with Sec. 2,
and continue to Sec. 3 and 4. Sec. 5 and following are, for the most part, independent of each other and
can be read in arbitrary order. The connection between the different topics is illustrated in the flowchart,
Fig. 2 on the previous page. Below is a brief outline of the contents of each section:

Section 2: This section provides a pedagogical introduction to the general perturbative bias expansion. We
begin with a simple example, bias that is local in the matter density (LIMD) in Lagrangian space,
and then turn to a more realistic study of the gravitational evolution of proto-halos—i.e. the
Lagrangian patches which collapse to form virialized halos. These examples set the stage for our
derivation of the general perturbative bias expansion.

Section 3: This section presents physical arguments, which have become known under the term peak-
background split, that can be used to derive the actual values of the bias parameters. We begin
with general physical arguments valid for any tracer, and specialize to dark matter halos of a
given mass afterwards.

Section 4: We present various methods of measuring bias parameters, for example auto-correlations and
cross-correlations with matter, and “scatter plot” methods. In each case, we show rigorously
which bias parameters are measured and derive the leading theoretical uncertainties. While we
do not make any assumptions about the tracers considered, we do not include redshift-space
distortions and other observational complications here (see Section 9), and consequently focus
on the application to simulations. We also review measurements of the bias parameters of halos
and galaxies, including assembly bias.

Section 5: This section presents the excursion-set approach to calculating the abundance and clustering of
dark matter halos. We discuss in detail the so-called cloud-in-cloud problem, choice of filter, and
barrier shape, as well as assembly bias.

Section 6: The second physical model of halos, peaks in the Lagrangian density field, is described in this
section. We also discuss the recent framework for merging excursion sets and peaks (ESP).

Section 7: While Sec. 2–6 assume Gaussian initial conditions, which is an excellent first-order approximation,
we discuss in detail the impact of non-Gaussian initial conditions on galaxy bias here. We derive
both the general bias expansion (extension of Sec. 2) and the prediction in the excursion-set
and peak approaches (extensions of Sec. 5–6). We also review measurements on simulations
with non-Gaussian initial conditions, and present idealized forecasted constraints on primordial
non-Gaussianity from galaxy surveys.

Section 8: In this section, we relax the assumption of adiabatic perturbations in a single pressureless
(CDM+baryon) fluid made in the previous sections. That is, we consider the impact of mas-
sive neutrinos and relative (isocurvature) perturbations between baryons and CDM induced by
pre-recombination plasma oscillations, as well as Compton drag after reionization. Finally, we
consider the impact on bias of dark energy perturbations and modifications to General Relativity.

Section 9: Strictly speaking, galaxy bias provides a relation between the galaxy (or halo) density and lo-
cal gravitational observables in the galaxy rest frame. This section describes the selection and
projection effects that enter when relating the rest-frame galaxy statistics to observations; this
includes redshift-space distortions as well as so-called relativistic and light-cone effects. We also
briefly describe empirical models connecting halos and galaxies.

We conclude with an outlook in Sec. 10. The appendices contain:

Appendix A: an overview of statistical field theory.

Appendix B: an introduction to perturbation theory in large-scale structure.

Appendix C: relations between different conventions for the bias parameters.

Appendix D: a brief overview of halo finding algorithms.
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2 From local-in-matter-density bias to the general perturbative bias expansion

2.1 A toy model: LIMD in Lagrangian space . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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2.10.4 Renormalizing the bias parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.10.5 Higher-derivative operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

This section provides a detailed introduction into the general perturbative description of galaxy bias.
The final result of this section is fully general, and applies to any large-scale structure tracer. In particular,
although bias has been studied extensively for dark matter halos identified in N-body simulations, the general
bias expansion is not restricted to halos. Bias is a complex problem, which goes significantly beyond the
simple well-known LIMD relation δg = b1δ+(b2/2)δ2 + · · · . For this reason, this section provides a detailed,
step-by-step treatment of the problem. Readers mostly interested in a summary of the relevant equations
will find precisely that in Sec. 2.11.

The ultimate goal of bias is to describe the observed statistics of galaxies, such as the galaxy two-point
correlation function ξg(r), over a certain range of scales, in terms of a finite number of terms (various
correlation functions of matter and space-time perturbations) and associated bias parameters. These bias
parameters can be understood as coefficients of operators O(x, τ) in an expansion of the galaxy number
density perturbation of the general form

δg(x, τ) =
∑

O

bO(τ)O(x, τ) . (2.1)

Once certain physical assumptions about the background cosmology and the nature of the initial conditions
are made, galaxy statistics then contain sufficient information to constrain parameters of the cosmological
model even after the free bias parameters have been marginalized over. The goal of the general perturbative
bias expansion is to determine which operators have to be included in the sum of Eq. (2.1) in order to
describe galaxy clustering down to a certain minimum scale. The relative importance of operators can be
ranked by their order in cosmological perturbation theory (see Appendix B for a brief overview, and [72] for
a comprehensive review). On scales where perturbation theory is valid, higher-order terms are successively
suppressed so that the expansion converges (see Fig. 4 for an illustration in the context of a simple toy
model); as stated in Sec. 1, in this review we restrict ourselves to these scales throughout. Thus, the general
perturbative bias expansion consists of an enumeration of all operators that are relevant at a given order in
perturbation theory (and given order in spatial derivatives, as we will see).

The derivation of this general local bias expansion, which contains the operators that are relevant in
the large-scale limit, is the topic of Sec. 2.1–2.5. We proceed in a pedagogical fashion, beginning with
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the simplest example, namely a special case of local-in-matter density (LIMD) bias in Lagrangian space,
motivated by the spherical collapse approximation to halo formation (Sec. 2.1). We then turn to a more
realistic study of the gravitational evolution of conserved tracers, using two complementary approaches,
in Sec. 2.2–2.4. These yield the general local bias expansion up to cubic order, and set the stage for our
derivation of the general bias expansion at all orders, in Sec. 2.5. Readers interested only in the full bias
expansion can jump to Sec. 2.5 directly.

At this point, we stress again that we define a local operator to mean any leading local gravitational
observable, which includes the matter density and tidal field, as well as further operators we encounter for
the first time in Sec. 2.4. On the other hand, we refer to the restricted expansion which only contains
powers of the matter density perturbation δ as local-in-matter density, or LIMD bias, a case frequently
known in the previous literature under the name “local bias.” Note that the LIMD expansions in Eulerian
and Lagrangian frames are not equivalent (Sec. 2.3).

In addition to the perturbative order, any physical biased tracer introduces a spatial scale which controls
the importance of so-called higher-derivative operators in the expansion Eq. (2.1). This spatial scale, which
we will denote as R∗ in the following, quantifies the size of the spatial region involved in the process of
galaxy formation. That is, the abundance of galaxies depends on the detailed matter distribution (as well
as the other local gravitational observables such as tidal fields) within a region of size R∗. This leads to an
expansion in spatial derivatives, i.e. powers of R∗∂/∂x

i. Such terms are thus known as higher-derivative
operators, and are the topic of Sec. 2.6. These higher-derivative operators also take into account all non-
gravitational physics influencing the galaxy formation process, such as gas heating and cooling as well as
radiative and kinetic feedback processes. In this context, we also discuss bias of galaxy velocities (Sec. 2.7);
the latter affect the observed galaxy density field through redshift-space distortions (Sec. 9.3.2) and are thus
a key ingredient in the modeling of the observed galaxy statistics.

There is one more ingredient we need to consider. The relation between the galaxy density field and
the operators O written in Eq. (2.1) is deterministic. In reality, whether a galaxy forms at a given location
depends on the initial conditions on very small scales, whose random phases are not determined by the large-
scale perturbations included in the bias expansion. This randomness, or stochasticity, has to be included
separately in the bias expansion, leading to

δg(x, τ) = [Eq. (2.1)] + ε(x, τ) +
∑

O

εO(x, τ)O(x, τ) , (2.2)

where the fields ε, εO are uncorrelated with the large-scale perturbations described by the operators O and
uncorrelated among themselves on large scales. Their contribution to galaxy statistics on large scales can
then again be described by a finite set of parameters. These terms are discussed in Sec. 2.8.

Finally, the last two sections of this section deal with the embedding of the general bias expansion
within relativistic perturbation theory (Sec. 2.9) and renormalization (Sec. 2.10). Specifically, Sec. 2.10
discusses the rigorous machinery beneath perturbative galaxy bias, and provides the mathematical proof
of the completeness of the bias expansion argued on physical grounds in Sec. 2.5. While essential from a
theoretical perspective, it can be skipped by readers mostly interested in the observational and measurement
aspects of bias. The section concludes with the above mentioned summary in Sec. 2.11.

2.1 A toy model: LIMD in Lagrangian space

Let us begin our discussion of galaxy bias with a simplified example. We assume that dark matter
halos, within which observed galaxies reside, simply correspond to overdense regions (above a threshold) in
Lagrangian space, that is, in the initial matter density field extrapolated to a desired reference time using
the linear growth. We denote this field, often referred to as linear density field, by δ(1), and assume it to
be Gaussian (see Sec. 7 for the non-Gaussian case). This toy model was first studied quantitatively in [12].
In order to trace halos identified at low redshift back to the initial conditions, we imagine following the
trajectory of the constituent particles of a given halo back to the initial time τ = 0. The region occupied by
these particles is referred to as the proto-halo. Since the initial density field is arbitrarily close to uniform,
the proto-halo volume of a halo of mass M is M/ρm, from which we can define the Lagrangian radius of
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the halo via R(M) = (3M/4πρm)1/3. Hence, in order to define “regions above threshold” which eventually

collapse to form halos, we filter the initial (linear) density field on the scale R(M), denoting this as δ
(1)
R

(Fig. 3). The shape of the filter is not relevant for this discussion; we list popular filters in Appendix A.2.
The comoving Lagrangian number density of proto-halos is then defined as

nLthr(q) ≡ ΘH(δ
(1)
R (q)− δcr) , (2.3)

where δcr is a fixed density threshold and ΘH denotes the Heaviside step function. Note that the “density”
nLthr defined here corresponds, up to normalizing factors which we neglect here, to the mass-weighted cu-
mulative number density of halos above mass M (see for example [98] and Sec. 5). In the sketch Fig. 3,
the proto-halo number density is unity whenever the blue solid line crosses the threshold indicated by the
horizontal line. As this toy model describes “thresholded regions,” it is often referred to as “thresholding.”

The statistics of the Gaussian field δ
(1)
R are completely described by the two-point correlation function

(Appendix A)

ξL,R(r) = 〈δ(1)
R (q)δ

(1)
R (q + r)〉 , (2.4)

where ξL,R(r) is the filtered version of the linear matter correlation function ξL(r) = limR→0 ξL,R(r) [the
Fourier transform of the linear power spectrum PL(k), Eq. (4.8)], and ξL,R(0) = σ2(R) is the variance of
the filtered density field. The mean “number density” of proto-halos is obtained by taking the expectation
value of Eq. (2.3),

〈nLthr(q)〉 =
1√
2π

∫ ∞

νc

e−ν
2/2dν =

1

2
erfc[νc/

√
2] ≡ p1 , νc ≡

δcr

σ(R)
. (2.5)

This shows that, for a high threshold νc > 1, proto-halos become exponentially rare. Note that any
normalizing factors that we neglect here do not affect the calculation of the bias, which we turn to next.

The Lagrangian two-point function of equal-mass proto-halos at separation r is given by the ratio of
the pair probability p2(q, q + r) of finding two proto-halos at positions q and q + r, divided by the 1-point
probability squared (p1)2 [71, 12]:

1 + ξLh (r) =
p2(q, q + r)

p2
1

=

√
2

π

[
erfc(νc/

√
2)
]−2

∫ ∞

νc

e−ν
2/2 erfc


 νc − νξ̂(r)√

2{1− ξ̂2(r)}


 dν . (2.6)

where ξ̂(r) ≡ ξL,R(r)/σ2(R). This relation follows directly from integrating over the Gaussian likelihood

of the density field δ
(1)
R . Again, ξLh (r) is the two-point function of proto-halos in the initial conditions, as

emphasized by the superscript L, extrapolated to z = 0 using linear theory. If ξL,R(r) is sufficiently small,
we can expand Eq. (2.6) in a series,

ξLh (r) =

∞∑

N=1

1

N !
(bLN )2 [ξL,R(r)]

N
, (2.7)

where the r-independent coefficients bLN , the bias parameters, are given by [12, 99, 100]

bLN =

√
2

π

[
erfc

(
νc√

2

)]−1
e−ν

2
c/2

σN (R)
HN−1(νc)

νc�1
=

νNc
σN (R)

+O
(
νN−1
c

)
. (2.8)

The superscript L on the bias parameters indicates that they refer to the Lagrangian density field. Note
that bL1 is positive definite, which is not true for general tracers. Moreover, in the limit of low mass R→ 0,
σ(R) → ∞ and bL1 approaches zero; this is because the simple thresholding procedure Eq. (2.3) does not
correctly describe low-mass objects due to the “cloud-in-cloud” problem. We will return to this in Sec. 5.

Since in the real Universe, matter density fluctuations are small on large scales, we have ξL(r) → 0 as
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Figure 3: Illustration of the toy model of Sec. 2.1. The solid blue line shows the smoothed density field δ
(1)
R (q), while the red

line indicates a long-wavelength perturbation. The dashed horizontal line marks the threshold overdensity δcr.

r →∞. This means that, as long as we are interested in the proto-halo correlation function on large scales,
it is sufficient to keep only the first few terms in the expansion Eq. (2.7). In particular, the leading term is

ξLh (r) = (bL1 )2ξL,R(r) , (2.9)

which is what one obtains from the simple bias relation Eq. (1.1). Thus, the proto-halo correlation function is
directly proportional to the matter correlation function on large scales, i.e. both have the same r-dependence.
However, ξLh is enhanced by the factor (bL1 )2, which becomes large for rare, high-mass proto-halos [νc � 1;
Eq. (2.8)]. The picture in Fig. 3 delivers an intuitive explanation for why this happens. When adding a
large-scale density perturbation (red solid line) to the matter density field, the abundance of rare regions
above threshold responds much more sensitively than the matter density itself, which, as we will see in
Sec. 3, is an alternative, exactly equivalent definition of bias. This larger response in turn leads to enhanced
clustering on large scales [12, 13]. The latter effect, shown in Fig. 4, was the original motivation of [12], who
showed that the correlation function of rare objects such as massive galaxy clusters is enhanced relative to
that of the underlying matter on all scales.

Fig. 4 shows that the series expansion Eq. (2.7) converges rapidly to the exact result on scales &
10h−1 Mpc. This approximately corresponds to the scale where the matter correlation function becomes of
order 1. Thus, separations r & 10h−1 Mpc are amenable to a perturbative description in the context of this
toy model. On the other hand, on smaller scales, higher-order terms are no longer smaller than lower-order
terms. This means that a general perturbative expansion is not guaranteed to converge to the correct result.
While for the toy model considered here we have an exact result, this is not the case for real galaxies, so that
the restriction to perturbative scales is the only way to guarantee a theoretical error that is under rigorous
control. Note that the scale where the expansion Eq. (2.7) breaks down is related to the nonlinear scale
Rnl (see Appendix B; Rnl ∼ 10− 20h−1 Mpc at redshift zero), at which the perturbative description of the
nonlinear matter density field itself breaks down. This scale becomes smaller at higher redshifts; hence, the
range of scales accessible to perturbation theory is larger at high redshifts [101].

The expression for the proto-halo two-point correlation function, Eq. (2.7), is not specific to the ansatz

Eq. (2.3) we started from. Indeed, if we write δh(q) = nLthr(q)/〈nLthr〉−1 as a formal series expansion in δ
(1)
R ,

δLh (q) = bL1 δ
(1)
R (q) +

1

2
bL2

(
[δ

(1)
R (q)]2 − σ2(R)

)
+ · · · , (2.10)

then Eq. (2.7) is obtained directly when discarding all terms that involve zero-lag correlators (terms con-

taining factors of 〈[δ(1)
R (q)]n〉; see Appendix A). One can similarly derive all higher N -point functions and

cumulants of δh(q) [102, 100]. Historically, Eq. (2.10) is known as the local bias expansion [17], since δh(q)
is a local function of the filtered matter density field. As we have discussed in the beginning of Sec. 2,
Eq. (2.10) only contains a subset of the local bias terms according to the definition used in this review. To
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Figure 4: Correlation function in Lagrangian space of thresholded regions in the initial density field extrapolated to z = 0.
The smoothing scale R = 4.21h−1 Mpc (mass scale 2.5 · 1013 h−1M�) is chosen to correspond to bL1 = 1.5 via Eq. (2.8).
Left panel: We show the exact result Eq. (2.6), multiplied by r to better show the large-scale behavior, as well as the series
expansion Eq. (2.7) truncated at different orders. For comparison, the cyan dotted line shows the linear, unfiltered matter
correlation function. The bump at r ≈ 100h−1 Mpc is the BAO feature. Right panel: Relative deviation of the truncated series
expansion from the exact result. The dotted line shows the relative deviation of the unfiltered linear contribution (bL1 )2ξL from
the filtered contribution (bL1 )2ξL,R.

be specific, we refer to Eq. (2.10) as local-in-matter-density (LIMD) bias. Even though not complete, as
we will see, the LIMD expansion is sufficiently general to describe an ansatz of the type Eq. (2.3) for any

function nLthr(q) = F
(
δ

(1)
R [q]

)
[103, 104]. Furthermore, while Eq. (2.7) is a prediction specific to Gaussian

density fields, the LIMD ansatz allows statements about the statistics of nLthr to be made even for gen-
eral density statistics [104], and for density fields whose N -point functions obey hierarchical scaling laws
[105, 106].

This fact, combined with the fact that the series expansion Eq. (2.7) converges to the true result on large
scales (Fig. 4), shows the power of the perturbative bias expansion: it can capture a very general class of
tracers (in the case of Eq. (2.10), a tracer whose abundance is described by an arbitrary local function of the
initial matter density field) via a small set of free parameters, while guaranteed to converge to the correct
result on sufficiently large scales.

Moreover, the proto-halo number density does not have to be an exactly local function of δ
(1)
R in order

for the LIMD expansion Eq. (2.10) to be effective, as already noticed by [17]: we only need to require
that the nonlocality is restricted to scales much smaller than the scale r at which the correlation function is
calculated. This is illustrated in the right panel of Fig. 4, which shows the ratio of the correlation function of
the filtered matter density field, ξL,R(r), to that of the unfiltered field ξL(r). Clearly, the smoothed density
field is nonlocally related to the un-smoothed density field, however this manifests itself in the correlation
function only on scales smaller than a few times the smoothing radius. This exemplifies that, as shown
in [104, 106, 107], in order to change the shape of the galaxy correlation function ξLh (r) relative to the
matter correlation function ξL(r) on large scales, say on hundreds of Mpc, galaxy formation has to be highly
nonlocal, i.e. nonlocal on a scale of order a hundred Mpc. The only exception to this rule, which however
does not invalidate the point, is that there can be an effect on large scales if there are sharp features in the
matter correlation function, for example the BAO feature at r ≈ 100h−1 Mpc. As we will see in Sec. 2.6,
this effect can be taken into account to high accuracy with only one additional bias parameter.

Notice that we did not include a zeroth order bias bL0 , i.e. a constant offset, in the bias relation Eq. (2.10)
because of the requirement 〈δh〉 = 0. This is only true for a deterministic bias relation as assumed in
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Eq. (2.10). In reality, both the presence of random small-scale fluctuations (which affect the abundance of
halos and galaxies, but are not correlated with the long-wavelength fluctuations) and the fact that halos
are a discrete sample of the underlying density field demand that we allow for stochastic fields in the bias
expansion. At lowest order, this adds a stochastic variable ε(q) with vanishing mean to Eq. (2.10). We
begin including stochastic contributions from the next section.

So far, we have provided a description of proto-halo statistics in Lagrangian space. Naturally, we need
to ask how to translate these results to the observationally relevant statistics of the evolved halo field at
lower redshifts (Eulerian space). Let us again consider a simplified setup, namely a large spherical region of
radius R`; specifically, following [15], we assume that R` is much larger than the typical separation between
the halos considered. We allow this region to have an over- or underdensity δ`(τ), but assume the Universe
to be unperturbed otherwise on large scales. Then, we expand the fractional overdensity δh,` of halos within
this region with respect to the global mean at a given redshift as

δh,`(τ) =
N̄`

nhV`(τ)
− 1 = bE1 (τ)δ`(τ) +

1

2
bE2 (τ)δ2

` + · · · , (2.11)

where N̄` is the number of virialized halos in the region, and nh is the global mean abundance (recall that all
densities are comoving and thus unaffected by the dilution due to the expansion of the Universe), while V`(τ)
is the comoving volume of the spherical region. Analogously to Eq. (2.10), and following [15], Eq. (2.11)
defines the Eulerian bias parameters bEN on the right-hand side. Note that these bias parameters formally
become independent of the size of the region only in the limit R` → ∞. For simplicity however, we shall
omit this dependence here. This subtlety will be addressed in Sec. 4.2.

We now want to relate the Eulerian bias parameters to the Lagrangian bias parameters bLN , by using the
number conservation of halos. Since by definition we refer to proto-halos in the initial conditions which are
the exact progenitors of halos identified at time τ , their number is conserved. The evolution of the matter
overdensity δ` or equivalently V`(τ) on the other hand follows spherical collapse [108] (see Sec. 5.2.1), which

is uniquely determined from the initial overdensity δ
(1)
` of the region. The spherical collapse evolution is

valid up to shell crossing, i.e. as long as R` > 0; up to that point, the mass in each shell is conserved. This
implies that the Lagrangian density perturbation of halos is given by 1 + δLh,` = N̄`/(nhV

L
` ) where V L` is the

Lagrangian volume of the region, which is related to the Eulerian volume V` by

V L` = (1 + δ`)V` . (2.12)

Therefore, we obtain the following relation between δh,`(τ) and δLh,`:

1 + δh,`(τ) =
[
1 + δLh,`

]
[1 + δ`(τ)] = 1 +

(
1 + bL1

)
δ` +O(δ2

` ) , (2.13)

where on the right-hand side we have expanded the result in powers of δ` using Eq. (2.10), filtered on the
scale R`. Comparison with Eq. (2.11) then shows that bE1 = 1+bL1 . Halos which have vanishing bias (bL1 = 0)
in the initial conditions, so that δLh = 0 and they are uniformly distributed at the initial epoch, will hence
remain unbiased relative to the matter at any later time τ .5

The calculation of the Eulerian bias parameters can be extended to all orders within this picture, since

the mapping between δ`(τ) and δ
(1)
` can be calculated for any given cosmology by integrating the spherical

collapse equations. Specifically, one obtains the series expansion [109, 110, 111]

δ`(τ) =

∞∑

k=1

ak

[
δ

(1)
` (τ)

]k
; a1 = 1 , a2 =

17

21
, a3 =

341

567
, a4 =

55805

130977
, · · ·

δ
(1)
` (τ) =

∞∑

k=1

aI
k [δ`(τ)]

k
; aI

1 = 1 , aI
2 = −17

21
, aI

3 =
2815

3969
, aI

4 = −590725

916839
, · · · . (2.14)

5Here, we have implicitly assumed that proto-halos comove with the matter fluid. We will discuss this in more detail in
Sec. 2.2 and Sec. 2.7.
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Figure 5: Sketch of the setup considered in Sec. 2.2–2.4. Galaxies form instantaneously at τ = τ∗, where they are described
by an initial bias relation (lower slice), and are comoving with the matter. After this, the evolution is governed by number
conservation and the comoving assumption up until time τ (upper slice), where they are assumed to be observed. The grey
region denotes a Lagrangian volume encompassing three galaxies which gets deformed by nonlinear gravitational evolution.
Since galaxies comove with matter, their density is similarly affected.

Here, the coefficients are only strictly valid for Einstein-de Sitter (EdS), where δ
(1)
` (τ) ∝ a = 1/(1 + z).

However, they are also highly accurate for other cosmologies [112], as long as we remain sufficiently far
from the collapse of the spherical region of size R`. As pointed out in [113, 112], the coefficients aI

3, a
I
4 in

the inverse relation were given incorrectly in [110]. Substitution of Eq. (2.14) into Eq. (2.13) then yields a
unique prediction for the evolved halo correlation function,

ξh(r, τ) =

∞∑

N=1

1

N !
[bEN (τ)]2 [ξR(r, τ)]

N
, (2.15)

with Eulerian bias parameters bEN given by

bE1 (τ) = 1 + bL1 (τ) (2.16)

bE2 (τ) = 2
(
1 + aI

2

)
bL1 (τ) + bL2 (τ)

bE3 (τ) = 6
(
aI

2 + aI
3

)
bL1 (τ) + 3

(
1 + 2aI

2

)
bL2 (τ) + bL3 (τ) .

These important relations were first derived by [15, 110].
We have thus achieved our goal of deriving the bias parameters describing statistics of halos in the evolved

density field given a Lagrangian LIMD bias expansion Eq. (2.10). Clearly, in the context of a spherically
symmetric density perturbation, a deterministic LIMD bias relation in the initial conditions is transformed
into a similar relation in the evolved distribution (Eulerian LIMD). We will see in the next section that this
is a consequence of the spherical symmetry assumed in this derivation: in general, gravitational evolution
starting from a LIMD bias expansion generates additional terms in the Eulerian bias relation which are
beyond LIMD (yet still local). In essence, we have neglected tidal fields which play a similarly important
role as density perturbations. The next subsections will look more closely at the gravitational evolution of
proto-halos or -galaxies.

2.2 Gravitational evolution: general considerations

We now investigate in more detail the interplay of gravitational evolution and bias. Specifically, we
consider the toy example of a sample of galaxies that formed instantaneously at a fixed time τ∗, that are
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comoving with matter, and whose number is conserved afterwards (Fig. 5). The discussion here is not specific
to dark matter halos, and is applicable to the statistics of any conserved tracer of the large-scale structure.
Hence, we will use the term “galaxies” instead of “halos” in the following. Given a bias relation for δ∗g at
time τ∗, involving the matter density and other locally observable quantities, the goal of this section is to
derive how this bias relation evolves under gravity while conserving the number of tracers to some later time
τ > τ∗. We will then be able to express the bias parameters bn at time τ in terms of the bias parameters b∗n
at the “formation time” τ∗, generalizing Eq. (2.16) which is specific to a spherical region and LIMD bias in
Lagrangian space.

With this ansatz, we essentially describe a galaxy sample undergoing “passive evolution.” However,
beyond being a mere toy model, this ansatz can be considered a Green’s function for galaxies in the sense that
a realistic galaxy sample (consisting of a broad range of formation times) can be described as a superposition
of many samples with instantaneous formation at various epochs τ∗. Thus, if our bias expansion correctly
describes a sample formed at an arbitrary time τ∗ and evolved to time τ , then this bias expansion is
sufficiently general to describe any galaxy sample provided all bias parameters are allowed to be free.

Similarly to the matter density field itself, there is no closed solution for the nonlinear evolution of
a conserved galaxy density field. Instead, we adopt a perturbation theory approach which successfully
describes the evolution on sufficiently large scales. Unlike the discussion in the previous section, we do not
assume spherical symmetry; indeed, the lack of this symmetry is the reason why we have to add additional
local terms to our bias expansion beyond the LIMD case, Eq. (2.11). Moreover, we will focus on scales
much larger than the Lagrangian radius of halos throughout, and hence drop the subscript R denoting the
filtering in the following. In Sec. 2.1, we found this to be accurate empirically, however this will be justified
rigorously in Sec. 2.6.

The equation of motion governing the evolution of a conserved tracer is the continuity equation [114,
115, 116, 117]:

D

Dτ
δg = −θ(1 + δg) , (2.17)

where
D

Dτ
≡ ∂

∂τ
+ vi

∂

∂xi
(2.18)

is the convective (or Lagrangian) time derivative, vi is the peculiar velocity of the cosmic matter fluid, and
θ = ∂x,iv

i is the velocity divergence.
In Eq. (2.17), we have implicitly assumed that there is no velocity bias of the galaxies with respect

to matter, that is, galaxies comove with the matter fluid. A detailed discussion of velocity bias, and the
proof that it is absent on large scales, is the topic of Sec. 2.7, but we elaborate briefly here. Consider a
sufficiently large patch surrounding a given galaxy, say several times the Lagrangian radius of the galaxy’s
host halo (e.g. the grey region in Fig. 5). We then determine the center-of-mass velocity of this patch.
Any peculiar velocity of the galaxy with respect to the center-of-mass has to be due either to the detailed
matter distribution within the patch, or non-gravitational forces such as momentum transfer due to baryonic
feedback processes or radiation pressure. That is, for a sufficiently large patch, the galaxy’s relative velocity
with respect to the matter is only determined by physics within the patch, which is equivalent to stating
that on large scales galaxies comove with matter. In the absence of non-gravitational forces, this is already
required by the equivalence principle: test bodies, regardless of their nature—be they a galaxy, black hole,
or dark matter particle—fall at the same rate in an external (large-scale) gravitational field.

In order to evolve δg, we also need the perturbative solution of δ and vi. In the context of standard per-
turbation theory (SPT; see Appendix B for a brief overview), where dark matter is treated as a pressureless
ideal fluid, the fluid velocity v is curl-free and can thus be written as vi = (∂i/∇2)θ. Then, the density
perturbation δ and velocity divergence θ obey the continuity and Euler equations,

D

Dτ
δ = − θ(1 + δ), (2.19)

D

Dτ
θ = −Hθ − (∂ixv

j)2 − 3

2
ΩmH2δ . (2.20)
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Quantity Eulerian expression Lagrangian expression

Lagrangian displacement s(q, τ)

Deformation tensor M j
i (q, τ) ≡ ∂q,isj(q, τ)

Spatial coordinate x q

Spatial derivative ∂x,i ∂q,i = (δ ji +M j
i )∂x,j

Fluid trajectory xfl(q, τ) ≡ q + s(q, τ) q

Fluid velocity v = dxfl/dτ = ∂τs(q, τ) 0

Convective derivative D/Dτ = ∂τ + vi∂x,i D/Dτ = ∂τ

Matter overdensity δ(x, τ) = |1 +M(q, τ)|−1 − 1 0

Conserved tracer overdensity1
δg(xfl[q, τ ], τ) = (1 + δ(xfl[q, τ ], τ))

×
(
1 + δLg (q)

)
− 1

δLg (q) =
1 + δg[xfl(q, τ), τ ]

1 + δ[xfl(q, τ), τ ]
− 1

1 This only holds for a tracer whose number is conserved from time τ = 0 to time τ (e.g., proto-halos of halos identified
at time τ).

Table 5: Summary of relations between Eulerian and Lagrangian space.

There are essentially two equivalent approaches to deriving the mapping from δg(τ∗) to δg(τ). First, one
can directly integrate Eq. (2.17) along the fluid trajectory, making use of the known perturbative solutions
of the SPT equations. Second, one can iteratively solve the set of equations Eqs. (2.17)–(2.20) to obtain a
joint perturbative solution for δg and δ. We will outline each approach in turn in the following sections, as
they illustrate different aspects of gravitational evolution and bias.

Apart from the matter density field δ, in the following we will also encounter the tidal field, which we
define through the scaled dimensionless quantity Kij ,

Kij ≡ Dijδ =
2

3ΩmH2
∂i∂jΦ−

1

3
δijδ ; Dij ≡

(
∂i∂j
∇2
− 1

3
δij

)
, (2.21)

where the second equality follows from the Poisson equation [Eq. (B.3)]. Equivalently, in Fourier space

Kij(k) =

[
kikj
k2
− 1

3
δij

]
δ(k) . (2.22)

Furthermore, we will denote quantities at n-th order in perturbation theory with a superscript (n). For
example, the second-order density field is denoted as δ(2).

2.3 Evolution from the continuity equation

We now proceed to solve the continuity equation Eq. (2.17) for our conserved galaxies as follows [114,
115, 117, 118]. We first divide Eq. (2.17) and Eq. (2.19) by 1 + δg and 1 + δ respectively. This yields

1

1 + δg

D

Dτ
δg = −θ =

1

1 + δ

D

Dτ
δ . (2.23)

For convenience, we now write δg and δ in terms of Lagrangian coordinates x → q, in which case the
convective time derivatives become partial derivatives with respect to τ ; see Tab. 5, where relations between
various quantities in the Eulerian and Lagrangian frames are summarized. Then, the integral along the fluid
trajectory becomes trivial, and we obtain

ln[1 + δg(xfl(τ), τ)] = ln[1 + δ(xfl(τ), τ)] + ln

[
1 + δg(x∗, τ∗)

1 + δ(x∗, τ∗)

]
(2.24)
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for τ ≥ τ∗. We have fixed the integration constant by introducing the galaxy overdensity δg(x∗, τ∗) on the
formation time slice. Here, xfl(τ) denotes the Eulerian coordinate of the fluid trajectory corresponding to
a fixed Lagrangian position q = xfl(τ = 0), and x∗ ≡ xfl(τ∗) denotes the position on the formation time
slice. By introducing the displacement s through xfl(τ) = q + s(q, τ), we can write the equation of motion
governing the fluid trajectory as

(
∂2

∂τ2
+H ∂

∂τ

)
s(q, τ) = −∇Φ

(
q + s(q, τ), τ

)
, (2.25)

with initial condition s(q, τ = 0) = 0. This equation was first derived by [119]. At linear order, we can
neglect the appearance of s in the argument of ∇Φ(xfl), and this yields Eq. (B.16) in Appendix B.

Thus, if we know the bias relation at τ∗, Eq. (2.24) supplies us with the bias relation at all later times. This
has been derived in [79, 118] (see also [120]). It is important to note that conserved evolution relates δg(x, τ)
and δg(x∗, τ∗) at two different times along the same fluid trajectory (solid line in Fig. 5). Mathematically,
this is due to the convective derivatives in Eq. (2.23); physically, it states that galaxies and matter fall at
the same rate in the large-scale gravitational field, and hence co-evolve along the same trajectories in the
absence of an initial velocity bias.

We can make Eq. (2.24) even more clear by rewriting it as

1 + δg

∣∣∣
τ

=
1 + δ|τ
1 + δ|τ∗

(1 + δg|τ∗) , (2.26)

where a vertical bar |τ denotes a quantity evaluated at τ on a fixed fluid trajectory. This simply states that
the density ratio of two conserved, initially comoving fluids remains constant under gravitational evolution,
as required by the equivalence principle; we will encounter this again in Sec. 8.2 when considering the
different initial conditions for baryons and CDM set in the early Universe. Moreover, letting τ∗ → 0, so
that δ|τ∗ → 0, we recover the well-known relation between Eulerian and Lagrangian densities of a conserved
tracer (see Tab. 5), derived for the special case of a spherical perturbation in Eq. (2.13).

In the following, we will solve Eq. (2.26) to second order in perturbations, that is, up to quadratic terms

in δ(1) and K
(1)
ij . Denoting second-order terms with a superscript (2), we easily obtain

1 + δ(1)
g (x, τ) + δ(2)

g (x, τ) = 1 + δ(1) − δ(1)
∗ + δ

(1)
g∗

+ δ(2) − δ(2)
∗ + δ

(2)
g∗ + [δ

(1)
∗ ]2 − δ(1)δ

(1)
∗ +

[
δ(1) − δ(1)

∗

]
δ

(1)
g∗ , (2.27)

where f∗ ≡ f(x∗, τ∗), while quantities without a subscript ∗ are evaluated at (x, τ). Here, we have separated
linear and second order terms into the first and second line. Note however that the distinction between
x∗ = xfl(τ∗) and x is itself first order in perturbations. This is simply because the fluid trajectory in an
unperturbed FRW spacetime is xfl = const. Specifically, using the definition of the Lagrangian displacement
[Tab. 5, see Eq. (B.16) for the linear-order expression], we have at linear order

x∗(x, τ) = x+ s(q, τ∗)− s(q, τ) = x+

(
D∗
D
− 1

)
s(1)(x, τ) + · · · , (2.28)

where D∗/D ≡ D(τ∗)/D(τ), and D(τ) is the linear growth factor defined in Eq. (B.9). Thus, we can neglect
the distinction between x and x∗ in the argument of the terms in the second line of Eq. (2.27), while those
in the first line need to be expanded. For example, we obtain

δ(1)(x, τ)− δ(1)(x∗, τ∗) =

(
1− D∗

D

)
δ(1) −

(
D∗
D
− 1

)
D∗
D
si(1)∂iδ

(1) , (2.29)

where on the right-hand side all quantities are evaluated at (x, τ).
Finally, we need a relation for the galaxy density δg∗ = δg(x∗, τ∗). We write

δ(1+2)
g (x∗, τ∗) = b∗1[δ(1) + δ(2)](x∗, τ∗) + ε∗(x∗, τ∗) +

1

2
b∗2

[(
δ(1)
)
∗

]2
+ b∗K2

[(
K

(1)
ij

)
∗

]2
, (2.30)
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where all quantities are evaluated at x∗, τ∗. We now have allowed for a dependence of δg on the tidal
field squared (Kij)

2, since this is a local observable and of the same order in perturbations as δ2, and
thus is expected to be of similar relevance as the term ∝ b∗2. Note that because the tidal field is traceless
(tr[Kij ] = 0), the tidal field cannot enter the bias expansion at linear order. We have also included the
leading correction to a deterministic bias relation, namely a stochastic contribution ε∗ to the galaxy density
field which we consider to be first order. By definition, ε∗ is assumed to be uncorrelated with the matter
variables. We did not include any further stochastic contribution at second order, a point we will return
to below. Note that b∗1 multiplies both δ(1) and δ(2), since b∗1 is a physical bias parameter that has to be
independent of the perturbative order we are working in (it corresponds to the response of the mean density
of galaxies to a change in the background matter density, as we will discuss in Sec. 3).

Now we can simply collect the linear and second-order contributions to the galaxy overdensity at (x, τ)
from Eq. (2.27), to obtain

δ(1)
g (x, τ) =

(
1 +

D∗
D

[b∗1 − 1]

)
δ(1)(x, τ) + ε∗

δ(2)
g (x, τ) =

{
1 + [b∗1 − 1]

(
D∗
D

)2
}
δ(2) +

{
D∗
D

[b∗1 − 1]−
(
D∗
D

)2

[b∗1 − 1] +
1

2
b∗2

(
D∗
D

)2
}

[δ(1)]2

+ b∗K2

(
D∗
D

)2

[K
(1)
ij ]2 +

(
D∗
D
− 1

)
D∗
D

[b∗1 − 1]si(1)∂iδ
(1) −

(
D∗
D
− 1

)
ε∗δ(1)

+

(
D∗
D
− 1

)
si(1)∂iε

∗ , (2.31)

where on the right-hand side all quantities are evaluated at (x, τ), except for ε∗ which is evaluated at (x, τ∗).
This corresponds to Eq. (53) of [118] (who do not include stochasticity however).6 We define

bE1 = 1 +
D∗
D

[b∗1 − 1] (2.32)

as the linear Eulerian bias (at time τ > τ∗). This relation first appears in [114], who pointed out that the
bias of galaxies must approach unity as time goes by. We will come back to this shortly. Note that if we
let D∗/D → 0 while keeping bL1 ≡ (D∗/D)b∗1 finite, corresponding to a formation at τ = 0 with subsequent
conserved evolution, we obtain the relation bE1 = 1 + bL1 as in the spherical collapse evolution (Sec. 2.1). We
will return to this case below.

Following our discussion above, the coefficient of the second-order density δ(2) in δg has to be bE1 as well.

Thus, we separate out bE1 δ
(2) in δ

(2)
g , and insert the expression for δ(2) in terms of the linear-order δ(1), K

(1)
ij ,

and displacement term [Eq. (B.14)], into the remainder. Reordering terms, we finally obtain the expression
for the galaxy density contrast to second order:

δ(1+2)
g = bE1

[
δ(1) + δ(2)

]
+ ε∗ +

1

2
bE2 [δ(1)]2 + bEK2 [K

(1)
ij ]2

−
(
D∗
D
− 1

)
ε∗δ(1) +

(
D∗
D
− 1

)
si(1)∂iε

∗ , (2.33)

where all quantities (again, except for ε∗) are evaluated at (x, τ) and the second-order Eulerian bias param-

6Note that Ψ in Ref. [118] should stand for the displacement from the formation time to the present, which we write as
(D∗/D − 1)s(1)(x, τ).
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eters are given by [121]

bE2 (τ) = b∗2

(
D∗
D

)2

+
8

21

(
1− D∗

D

)
[bE1 − 1]

bEK2(τ) = b∗K2

(
D∗
D

)2

− 2

7

(
1− D∗

D

)
[bE1 − 1] . (2.34)

A relation of the type Eq. (2.33) has been derived in [115], who, crucially, did not separate out the contri-
bution bE1 δ

(2) at second order however. Let us discuss this interesting result.

• The displacement term si∂iδ has canceled out of the deterministic bias relation. This is in fact ex-
pected, since the appearance of a nonzero displacement term would mean the galaxy has moved away
from the fluid trajectory. Since we have only considered gravity here and neglected all non-gravitational
momentum transfer effects, such a displacement cannot happen by way of the Equivalence Principle.
The displacement s is still explicit in the stochastic term at second order, since the stochastic field is
defined on the formation time slice. However, since ε∗ is completely described by a spatially indepen-
dent 1-point probability distribution function (Sec. 2.8), the displacement term does not contribute to
the galaxy clustering statistics. This does change however in the case of non-Gaussianity in the initial
conditions, as we will see in Sec. 7.1.2.

• For fixed formation time τ∗, D∗/D = D(τ∗)/D(τ) monotonically decreases towards later times. Thus,
the galaxy density field becomes progressively less biased with respect to matter as τ →∞.

• At second order, evolution induces a term ∝ ε∗δ(1). If we imagine a realistic galaxy sample that
includes galaxies with various formation times, following the “Green’s function” approach mentioned

above, δ
(2)
g contains a superposition of individual contributions ε∗δ(1) from various formation times τ∗.

Instead of attempting to model the distribution of formation times of all galaxies in the sample, these
contributions can be absorbed by introducing a second stochastic field εδ in addition to ε, which enters
the bias expansion as εδ δ. In general, there will be some nonzero (but not perfect) cross-correlation
between the fields ε and εδ. We return to this in Sec. 2.8.

Finally, we briefly consider the cross-correlation coefficient r between galaxies and matter. This is at
linear order given by [116, 122]

rgm ≡
〈δgδ〉√
〈δgδg〉〈δδ〉

=

[
1 +

(
D∗
D

)2 〈(ε∗)2〉
(bE1 )2〈(δ∗)2〉

]−1/2

. (2.35)

At this order, rgm differs from unity solely due to the stochastic term ε∗. Note that if we wanted to derive
the leading nonlinear correction to Eq. (2.35), we would need to include terms up to third order in per-
turbation theory. We defer this until Sec. 4.1.4. Eq. (2.35) is equally valid in real and in Fourier space.
While in Fourier space, rgm is generally less than 1 on all scales, in real space it is equal to 1 if |x2 − x1|
is sufficiently large, since the correlation function of ε∗ vanishes at large separations (see Sec. 2.8 for a
more precise discussion). For fixed τ∗ and ε∗, the cross-correlation coefficient rgm(τ) asymptotes toward 1
as τ → ∞, similar to bE1 . In other words, (b1, 〈ε2〉) = (1, 0) is a fixed point: if galaxies are unbiased and
perfectly correlated with matter at some time τ0, this remains true for all τ > τ0.

Bias expansions at initial and final time: Let us now go back to the gravitational evolution
of a bias relation given in the initial conditions considered in Sec. 2.1, i.e. of Lagrangian bias (see also
[123]). This limit is obtained by letting τ∗ → 0 while keeping (D∗/D)b∗1 ≡ bL1 , ε∗ ≡ εL, (D∗/D)2b∗2 ≡ bL2 ,
(D∗/D)2b∗K2 ≡ bLK2 , fixed. This is the approach taken with the predictions from the excursion-set (Sec. 5)
and peak approaches (Sec. 6). We then obtain the following expression at time τ :

δ(1+2)
g (x, τ) = (1 + bL1 )

[
δ(1) + δ(2)

]
+ (1 + δ(1))εL +

1

2

{
8

21
bL1 + bL2

}
[δ(1)]2 +

[
−2

7
bL1 + bLK2

]
[K

(1)
ij ]2 ,

(2.36)
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where we have dropped the stochastic displacement term s(1) · ∇εL as it does not contribute to observables
(see above). To illustrate the significance of Eq. (2.36), we can contrast it with an example with no evolution,
obtained by setting τ∗ = τ , which contains exactly the terms included in the initial bias relation Eq. (2.30):

δ(1+2)
g (x, τ) = bE1

[
δ(1) + δ(2)

]
+ ε+

1

2
bE2 [δ(1)]2 + bEK2 [K

(1)
ij ]2 . (2.37)

Now, letting bLK2 = 0 in Eq. (2.36), we obtain the limit of LIMD Lagrangian bias (cf. Sec. 2.1). At finite
time, it leads to a bias with respect to the tidal field squared of bEK2 = −2/7bL1 = −2/7(bE1 − 1). Thus,
a LIMD expansion in the initial conditions is inconsistent with a LIMD expansion at the evolved time τ
[Eq. (2.37) with bEK2 = 0], and vice versa, unless bias is trivial, b∗1 = 1 and b∗n = 0 for n > 1. This was first
derived by [117, 124], who pointed out that Eulerian LIMD and Lagrangian LIMD bias lead to different
three-point functions. Refs. [79, 118, 125] also discuss the relation between Eulerian LIMD and Lagrangian
LIMD bias. One might therefore consider a measurement of a Eulerian tidal bias of bEK2 = −2/7(bE1 − 1) as
a confirmation of Lagrangian LIMD bias. However, this interpretation assumes a formation time of τ∗ → 0
with subsequent conserved evolution. In fact, the same relation would be measured for any conserved tracer
with finite formation time τ∗ and nonzero b∗K2 , as long as

b∗K2 = −2

7
[b∗1 − 1] . (2.38)

Indeed, there is no reason why the formation of halos or galaxies should in general be independent of the
local tidal field [117, 126, 127, 128, 118, 129].

Finally, comparing Eq. (2.36) and Eq. (2.37), we also see that a stochastic term ∝ ε δ(1) appears in
the former, but is absent in Eq. (2.37). Hence, bias expansions at initial time and evolved time are only
equivalent if we also allow for a second-order stochastic term εδδ at formation time. Essentially, while ε
corresponds to stochastic fluctuations in the galaxy density, εδ corresponds to stochastic fluctuations in the
linear bias. This effect is an integral part of the general bias expansion starting at second order.

At this point, it is worth pointing out that the time evolution of the bias parameters of a realistic,
observationally selected galaxy sample is difficult to predict. As mentioned at the beginning of Sec. 2.2, a
realistic sample consists of galaxies that have formed at various different times. Consider such a sample,
where the normalized distribution of formation times is denoted as p(τ∗). Then, the bias parameter bO(τ)
corresponding to an operator O at time of measurement τ is given by

bO(τ) =

∫
bEO(τ |{b∗O′}, τ∗)p(τ∗)dτ∗ , (2.39)

where bEO(τ |{b∗O′}, τ∗) is the Eulerian bias at time τ given a set of bias parameter {b∗O′} at formation time
τ∗, which at second order is given exactly by the relations in Eq. (2.32) and Eq. (2.34); we can write the
stochastic fields ε, εO in a similar way. Thus, without detailed knowledge of the formation-time distribution,
constraints on the bias parameters at one redshift will not lead to a prediction of the bias parameters at
another redshift. Moreover, the distribution of formation times itself at a given point could well depend on
the large-scale density and tidal field, which would also affect the time evolution of the bias parameters.

We stress, however, that as long as we keep all relevant terms at a given order, the presence of a
distribution of formation times does not lead to new bias parameters. Thus, in most applications, as
long as we consider the bias parameters to be effectively free functions of time, we arrive at the correct
description regardless of the formation history of galaxies. Moreover, the calculation above shows that the
bias parameters are expected to evolve slowly, namely on the same Hubble time scale as the growth of matter
perturbations themselves: d ln bO/dτ ∼ H.

2.4 Evolution from a joint perturbative solution

An alternative to the approach described in the previous section is to directly solve the full set consisting
of Eq. (2.17) and Eqs. (2.19)–(2.20) for δg, δ, and θ [130, 118, 131] (see also [132]). At linear order in PT,
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one obtains second-order ordinary differential equations (ODE) for δ and δg, which can be combined to yield
an ODE for b1(τ) [133]. The standard approach to solving these equations at nonlinear order is to work in
Fourier space, in which case Eqs. (2.19)–(2.20) become Eqs. (B.4)–(B.5) in Appendix B. In the context of the
evolution of bias, this approach has the disadvantage that it mixes local physical effects (which are important
for bias) with advection terms from the fluid flow such as si∂iδ, s

i∂iδg (which are identical between matter
and galaxies and thus are of no relevance for bias).

One option to circumvent this issue is to use Lagrangian perturbation theory (LPT) [78, 134, 135, 79, 120].
The fundamental quantity of LPT is the deformation tensor Mij ≡ ∂q,isj . The evolved matter density is
given by

1 + δ(x, τ) = |1 +M |−1
q,τ , (2.40)

where we have assumed the single-stream regime (in the multi-stream regime, one should sum over all
solutions of x = q+s(q, τ)). Now, to describe biased tracers, we have to correspondingly introduce a galaxy
deformation tensor Mg. Note that the displacement s itself is still the same for matter and galaxies, as long
as velocity bias can be neglected (see Sec. 2.7).

One then immediately obtains the Lagrangian version of Eq. (2.24),

− ln[1 + δg(x[q, τ ], τ)] = ln |1 +Mg|q,τ = ln |1 +M |q,τ + ln

[ |1 +Mg|
|1 +M |

]

q,τ∗

. (2.41)

So far, this is very similar to the derivation of Sec. 2.3, with the advantage that there is no need to deal
with the displacement terms as all terms are explicitly evaluated at a fixed Lagrangian coordinate. On the
other hand, the initial bias relation at τ∗ now relates Mg to M :

|1 +Mg(q, τ∗)|−1 = b∗trM trM + b∗tr(M2) tr[MM ] + b∗(trM)2(trM)2 + ε∗ + ε∗trM trM + · · · , (2.42)

where all terms on the right-hand side are evaluated at (q, τ∗). This is equivalent to the bias expansion in
Eq. (2.30), in the sense that, at second order in perturbations, we can convert each term in Eq. (2.42) into
a linear combination of the terms in Eq. (2.30). However, this bias relation does not allow us to easily read
off the standard bias parameters (b1, b2 and bK2 to second order), since their contributions are spread over
all terms in Eq. (2.42), and terms at all higher orders as well.

Another approach to solving Eq. (2.17) and Eqs. (2.19)–(2.20) proceeds by integrating the equations
along the fluid flow. In this approach, which was introduced by [131] and dubbed “convective SPT,” the
advection terms never appear explicitly, and only terms relevant for bias are present. On the other hand,
we still deal explicitly with the Eulerian density and tidal field, allowing us to connect to the results of the
previous section as well as subsequent sections. We briefly present this approach here, with details given
in Appendix B.5. We stress that regardless of the approach taken, the final result has to be the same,
and we follow the convective SPT approach only because the resulting expressions offer a clear physical
interpretation.

We continue to assume the absence of velocity bias; that is, galaxies are comoving with the matter. The
system which we started from, Eq. (2.17) and Eqs. (2.19)–(2.20), can be written in compact form as

D

Dτ
Ψ = − σ ·Ψ + S (2.43)

where we have defined the vector Ψ = (δg, δ, θ), σ is a matrix that solely depends on the FRW background,
and S is a source term which is at least second order in perturbation theory [see Eq. (B.36)].

The system Eq. (2.43) can be solved order by order in a straightforward manner, as detailed in Ap-
pendix B.5. Care needs to be taken in deriving the source term in order to allow for an integration along
the fluid trajectory. In the following, we will present the solution up to third order. Earlier results up to
this order can be found in [136, 118, 137, 138]. To begin, we need to provide an expression for the galaxy
density at the initial “formation” time τ∗. Assuming instantaneous formation as before, we include all terms
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composed of the density and tidal field, and include all relevant stochastic terms, up to third order:

δ∗g =

3∑

n=1

b∗n
n!

[δ∗]n + b∗K2 tr
[
(K∗ij)

2
]

+ b∗K3 tr
[
(K∗ij)

3
]

+ bδK2δ∗ tr
[
(K∗ij)

2
]

+ ε∗ + ε∗δδ
∗ + ε∗δ2 [δ∗]2 + ε∗K2 tr

[
(K∗ij)

2
]
, (2.44)

where here and throughout, a superscript ∗ indicates that a quantity is evaluated at x∗ ≡ xfl(τ∗) and τ∗.
The stochastic fields ε∗, ε∗X (X = δ, δ2, K2) are assumed to be first-order random fields. Note that a term
of the form εδδ has already appeared through second-order evolution in the previous section, indicating that
it should be included at second order. Similar reasoning applies to the new third order stochastic terms.

Up to second order, we recover the results of Sec. 2.3. The solution is given by [Eq. (B.45)]

δ(1+2)
g (x, τ) = bE1 (τ)

[
δ(1) + δ(2)

]
+

1

2
bE2 (τ)(δ(1))2 + bEK2(τ)(K

(1)
ij )2 + εEδ (τ)δ(1) , (2.45)

where on the right-hand side, all quantities are evaluated at the Lagrangian position q corresponding to
(x, τ), and the Eulerian bias parameters are

bE1 (τ) = 1 +
D∗
D

[b∗1 − 1]

bE2 (τ) = b∗2

(
D∗
D

)2

+
8

21
(b∗1 − 1)

D∗
D

(
1− D∗

D

)

bEK2(τ) = b∗K2

(
D∗
D

)2

− 2

7
(b∗1 − 1)

D∗
D

(
1− D∗

D

)
, (2.46)

while the Eulerian stochasticity is

εEδ (τ) = ε∗δ
D∗
D
−
(
D∗
D
− 1

)
ε∗ , (2.47)

as derived independently in Sec. 2.3. Note that εEδ has one power of D∗/D less than the other second-order
Eulerian quantities, since the fields ε∗X are defined at τ∗. As mentioned above, δg(x, τ) is written here
as a local function of the matter fields and stochastic variables evaluated at q = x(τ = 0), i.e. Eulerian
quantities evaluated at a fixed Lagrangian position. In order to transform to a Eulerian position x, one
adds the second-order displacement term to δg (as well as analogously to δ and θ) through

− si(1)(x, τ)∂iδg(x, τ) . (2.48)

Going to third order, we obtain

δ(3)
g (x, τ) = bE1 δ

(3) + bE2 δ
(1)δ(2) + 2bEK2K

(1)
ij K

(2)
ij +

1

6
bE3 (δ(1))3 + bEK3(K

(1)
ij )3 + bδK2δ(1)(K

(1)
ij )2

+ bEtdO
(3)
td + εEδ δ

(2) + εEδ2(δ(1))2 + εEK2(K
(1)
ij )2 , (2.49)

where

O
(3)
td ≡

8

21
K

(1)
ij Dij

[
(δ(1))2 − 3

2
(K(1))2

]
. (2.50)

Here and throughout, we use the short-hand notation

K2 ≡ (Kij)
2 ≡ tr[KK] = KijKji and K3 ≡ (Kij)

3 ≡ tr[KKK] = KijKjkKki . (2.51)

Again, in order to obtain the density at a fixed order in standard Eulerian perturbation theory, we need
to displace δg from a fixed Lagrangian position q to the Eulerian position, by expanding in the argument
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xfl[q, τ ]. This is given in Eq. (B.48). As this coordinate shift is somewhat tangential to the topic of bias,
we do not repeat the results here.

The third-order Eulerian bias parameters are given by

bE3 (τ) = b∗3

(
D∗
D

)3

+

[
(b∗1 − 1)

4

1323

(
199− 35

D∗
D

)
+

13

7
b∗2
D∗
D

]
D∗
D

(
D∗
D
− 1

)

bEδK2(τ) = b∗δK2

(
D∗
D

)3

+

[
−(b∗1 − 1)

1

147

(
33 + 7

D∗
D

)
+

(
2

7
b∗2 + b∗K2

)
D∗
D

]
D∗
D

(
D∗
D
− 1

)

bEK3(τ) = b∗K3

(
D∗
D

)3

+

[
(b∗1 − 1)

2

63

(
−11 + 7

D∗
D

)
+ 2b∗K2

D∗
D

]
D∗
D

(
D∗
D
− 1

)

bEtd(τ) =

[
(b∗1 − 1)

1

6

(
D∗
D
− 23

7

)
+

5

2
b∗K2

D∗
D

]
D∗
D

(
D∗
D
− 1

)
. (2.52)

We see that, as expected, all bEO converge to b∗O for D∗/D → 1 (when τ∗ → τ), with the exception of O
(3)
td

since we did not allow for it at the formation time [Eq. (2.44)]. Also, they vanish for D∗/D → 0, unless b∗O
diverge in the limit τ∗ → 0, which is usually assumed when writing a Lagrangian bias relation. Specifically,
we can easily obtain the prediction for bEO assuming Lagrangian LIMD bias, by letting τ∗ → 0 and all cubic
b∗O = 0 apart from b∗3(D∗/D)3 = bL3 . This yields

bE3 (τ) = bL3 −
796

1323
bL1 −

13

7
bL2

bEδK2(τ) =
11

49
bL1 −

2

7
bL2

bEK3(τ) =
22

63
bL1

bEtd(τ) =
23

42
bL1 . (2.53)

The first line matches Eq. (2.16) exactly, since it is the only term that remains for a spherically symmetric
perturbation, whose evolution is governed exactly by the spherical collapse solution.

Finally, the Eulerian stochastic terms at third order become

εEδ2(τ) = ε∗δ2

(
D∗
D

)2

− 4

21
(ε∗δ − ε∗)

D∗
D

(
D∗
D
− 1

)

εEK2(τ) = ε∗K2

(
D∗
D

)2

+
2

7
(ε∗δ − ε∗)

D∗
D

(
D∗
D
− 1

)
. (2.54)

In analogy to the second-order case, we see that the third-order stochastic terms εδ2 , εK2 are induced by
gravitational evolution, even if they are absent initially. Thus, following the discussion at the end of Sec. 2.3,
we should allow for these terms in the general bias expansion.

Let us now turn to the operator O
(3)
td which has appeared in the third-order evolved bias relation

Eq. (2.49). While the operator O
(3)
td is third order in perturbations, it cannot be expressed locally in

terms of the linear density and tidal field, as is clear from Eq. (2.50). Therefore, including this operator
goes beyond the initial bias relation Eq. (2.44): that is, starting from third order in perturbation theory,
a bias expansion involving only the local density and tidal field is not sufficient. Interestingly, the operator

O
(3)
td can be expressed in a variety of equivalent ways at third order, as derived in Appendix C:

• O(3)
td = 2KijDij [δ+(fH)−1θ]+F (δ,Klm), where f ≡ d lnD/d ln a is the logarithmic linear growth rate,

and F (δ,Klm) denotes cubic local combinations of density and tidal field as enumerated in Eq. (2.44)

[see Eqs. (C.15)–(C.16) for the precise relation]. Thus, O
(3)
td is related to the local difference of the

tidal field, ∝ Dijδ, and velocity shear, ∝ −Dijθ. This type of operator was first considered in [128].
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• O(3)
td = (4/5)Kij

(
[Hf ]−1D/Dτ − 1

)
Kij +G(δ,Klm) [Eq. (C.11) with Eq. (C.9)]. We see that O

(3)
td is

proportional to the convective time derivative of the tidal field (at second order) along the fluid flow.

• O(3)
td = (8/3)[M ij − (1/3)δij trM ]

(
[Hf ]−1∂τ − 1

)
Mij [Eq. (C.14)]. This is the Lagrangian expression

of O
(3)
td , showing that this operator is related to the time derivative of the Lagrangian deformation

tensor (recall that in Lagrangian coordinates, convective time derivatives reduce to partial derivatives;
Tab. 5).

All these equivalent formulations show that the operator O
(3)
td is a local observable. An observer comoving

with the galaxy could measure it, for example, by measuring the proper time derivative of the local tidal
field. Indeed, we would expect any quantity that emerges from the gravitational evolution of a conserved

tracer to be a local gravitational observable. Thus, given that O
(3)
td has exactly two spatial derivatives for

each power of the potential, counting Dij as zero net derivatives, it is justified to include it in our category
of local bias operators.

Let us briefly pause to consider how our treatment, which has gone to third order in perturbations, might
continue to higher orders. In particular, what terms beyond simple combinations of δ and Kij would one

expect at fourth and higher order? Our first encounter of such a term, O
(3)
td in Eq. (2.50), shows that at

third order, only a certain combination of Dij(δ2) and Dij(K2) appears, not each one of them individually.
One might then wonder if, following [128], it is sufficient to include the velocity shear (∂i∂j/∇2)θ in addition
to δ, Kij . As we will see in the next section, this is not the case. At fourth order, the velocity shear is no
longer sufficient.

Before continuing to the general bias expansion, it is worth considering how these results change when
allowing for an expansion history beyond EdS. Specifically, we continue to assume the validity of GR, but
allow for a nonzero curvature, and cosmological constant Λ or dark energy component (where we neglect
the effect of dark energy perturbations; we will discuss further generalizations in Sec. 8.1 and Sec. 8.3).
As shown in Appendix B.6, the equations of motion maintain the same structure as in EdS. We also show
there that no new type of bias operator appears up to including third order for a general expansion history,
although the time evolution of bias parameters for conserved tracers [Eq. (2.52)] is modified. Further, the
departure from EdS of the equations of motion is completely quantified by the quantity Ωm(a)/f2(a) − 1.
Since for ΛCDM, as well as most viable dark energy expansion histories, we have f ≈ Ω0.55

m [139], this
quantity is approximately

Ωm(a)/f2(a)− 1 ≈ −0.1 ln Ωm . (2.55)

For Ωm0 ≥ 0.3, this quantity remains less than 0.13 at all redshifts. This explains why the EdS approximation
in perturbation theory calculations, with a(τ) replaced with D(τ) in the final result, is numerically accurate.

2.5 General perturbative bias expansion

Building upon the specific second- and third-order results we have presented above, the goal of this
section is to derive a general framework for the perturbative bias expansion. That is, we aim to derive a
set of bias parameters that is sufficient to describe the statistics of any large-scale structure tracer, within
the realm of perturbation theory. In the following, we will continue to use the term “galaxy”, although one
should keep in mind that the results are more generally applicable to other tracers. In fact, the general bias
expansion can also be applied to the local matter power spectrum [140].

In Sec. 2.3–2.4, we have seen specific bias relations involving the density and tidal field, as well as an

additional operator O
(3)
td , and their stochastic counterparts such as εδ, εK2 . While the previous derivations

assumed a conserved tracer, this is easily generalized by employing the functions bEO(τ ; {b∗O′}, τ∗) as Green’s
functions, as discussed at the end of Sec. 2.3. We now abandon the assumption of number conservation
entirely, and allow our galaxies to form and merge arbitrarily. In general, a deterministic bias relation for
an arbitrary galaxy sample can be written as

δg(x, τ) =
∑

O

bO(τ)O(x, τ) , (2.56)
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where δg = ng/ng − 1 is the density contrast of the galaxies, bO are bias parameters, and O are operators
constructed out of the matter density field, gravitational potential, and in general other perturbations. The
statistics of the galaxies at a fixed time are then given by the statistics of the matter density field, potential,
and so on at the same time, and a finite set of numbers bO. Note that this relation is only useful if we have a
finite set of operators and hence a limited number of bias parameters which can be marginalized over while
retaining cosmological information. Refs. [113, 141] have considered generalizations of bias parameters to
bias functions, bN → bN (x1, · · · ,xN ). However, in order to retain predictive power, we need to condense
these functionals into a finite set of terms. This is precisely the goal of this section.

In the context of cosmological perturbation theory, we thus need to identify which operators should be
included in the bias relation up to any given order in perturbations. We will refer to such a set of operators
as basis. Of course, such a basis is not unique, since any linearly independent combination of the operators
in one basis represents another basis. One significant example is choosing operators given in the Lagrangian
frame, for example in terms of the distortion tensor M (Tab. 5) (Lagrangian bias), or in terms of quantities
at the final, observation time (Eulerian bias), such as Eq. (2.49). We will give explicit examples of both.

In the previous section, we have seen that, when starting from a bias expansion that includes powers of
the density field and tidal field, i.e. O ∈ {δ, δ2, (Kij)

2, . . . } at one time τ∗, then conserved evolution under

gravity introduces additional bias operators, in particular O
(3)
td in Eq. (2.49), at a later time τ . In this sense,

a bias expansion restricted to powers of the density and tidal field is incomplete, since it does not allow us to
describe, for example, a galaxy that has formed at some earlier time (or even in the initial conditions) and
then passively evolved following number conservation; see also the introduction of Ref. [113] which nicely
describes this problem.

As a starting point, we will work under the following assumptions in the remaining subsections:

• Gravitation is described by General Relativity (GR).

• The impact of massive neutrinos and dark energy perturbations can be neglected.

• The initial conditions are Gaussian and adiabatic, and any isocurvature perturbations induced by
physics in the early Universe can be neglected.

We will relax the first two assumptions in Sec. 8, and the last assumption in Sec. 7 as well as Sec. 8 (for
isocurvature perturbations between baryons and CDM). The last point implies that we only consider the
adiabatic growing mode. In a standard ΛCDM cosmology, this is accurate at the percent-level (see Sec. 8.2).

2.5.1 Spacetime picture of bias and evolution

The key physical feature of the formation of tracers such as halos and galaxies is that it happens over
long time scales [92], while the formation process is limited to relatively small spatial scales [142]. With
long time scales here we mean that the formation takes place over an appreciable fraction of the age of the
Universe. On the other hand, the matter that forms dark matter halos comes from within a region of a few
Mpc in comoving size. In other words, the spacetime region that encompasses the formation and evolution
of galaxies is of the “spaghetti” shape sketched in Fig. 6. This is related to the well-known fact that the
nonlinear scale, at which the fractional density perturbations become order unity, is much smaller than
the Hubble horizon. This latter fact forms the basis of all perturbation-theory approaches to large-scale
structure, and it is of similarly crucial importance in the derivation of bias relations.

Suppose that the abundance of galaxies at position x only depends on the distribution of matter in a
finite region around x, of characteristic comoving length scale R∗. We will call R∗ the “nonlocality scale”
which is understood to be defined on a certain time slice (for example, the final or initial times). We
will further discuss its physical significance in Sec. 2.6. For dark matter halos, R∗ is expected to be of
order the Lagrangian radius. Now consider the case where we look at statistics of galaxies or halos on
scales much larger than R∗. Then, we can approximate the bias relation as effectively local in space, thus
reducing the bias expansion from a functional expansion to an ordinary Taylor expansion as in Eq. (2.56)
(see Sec. 2.6 for the functional expansion). In effective field theory (EFT) language ([143, 83, 86, 88]; see
[144] for a review), the spatially local approximation provides the low-energy effective description of the full,
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Figure 6: Sketch of the spacetime region involved in the formation of tracers such as halos or galaxies. Time is running
vertically. The solid line denotes the fluid trajectory xfl(τ ′) from a Lagrangian position q = xfl(τ = 0) to a Eulerian position
x = xfl(τ) at time τ . The shaded region with a comoving spatial extent of order R∗ denotes the region from which the matter
within the galaxy and its host halo originates, or the region of influence feedback processes—whichever is larger.

complicated dynamics of the formation of galaxies (Sec. 2.10).
When considering galaxy formation as effectively local, the only quantities that are relevant for the

formation of galaxies are then the density and the tidal field ∂i∂jΦ(xfl(τ ′), τ ′) along the trajectory of a
Lagrangian patch enclosing the galaxy ([88, 131]; Ref. [125] only considered the matter density along the
fluid trajectory). One way to prove this statement is to invoke the equivalence principle, which states that
in a free-falling frame, such as that comoving with the trajectory xfl(τ), the leading locally observable
gravitational effect is given by second derivatives of the metric tensor. Moreover, essentially all tracers
of the LSS are non-relativistic. Then, the only relevant component of the metric tensor is the time-time-
component. On sub-horizon scales, this is in turn equivalent to the tensor ∂i∂jΦ, where Φ is the gravitational
potential defined in Eq. (1.2). This tensor can further be decomposed into the trace ∇2Φ which is directly
related to the density perturbation δ through the Poisson equation; and the trace-free part Kij [Eq. (2.22)],
which quantifies the tidal field proper. An alternative, more rigorous derivation of the same result is given
by the Conformal Fermi Coordinate (CFC) approach [145, 146], which clarifies the meaning of the density
perturbation and Kij in the relativistic context. We will return to this in Sec. 2.9.

This reasoning provides the physical justification for our definition of local bias (Sec. 1.3) as encompassing
all terms in the general bias expansion that are constructed (without any further spatial derivatives) out
of the density and tidal field along the fluid trajectory: these are precisely the leading local gravitational
observables for a comoving observer. In conformal-Newtonian gauge, these terms are characterized by
exactly two spatial derivatives acting on each power of the potential Φ. Note that we do not need to assume
a conserved, passively evolving galaxy sample here. Any gravitational interactions such as mergers [147]
do not, on sufficiently large scales, depend on any property apart from the local density and tidal field. A
galaxy sample that preferentially resides in halos formed from recent major mergers might have a larger
nonlocality scale R∗ than that of typical halos of the same mass. Nevertheless, it will be a finite scale, and
presumably still of order the Lagrangian radius of these halos as argued above.

In our reasoning we did however implicitly assume that the small-scale initial conditions, i.e. those of
much smaller scale than the large-scale correlations we are interested in, are statistically uncorrelated over
large scales. This is the case for Gaussian initial conditions, which we assume in this section.

Now, let us formalize our reasoning. The dependence on δ(xfl(τ ′), τ ′) and Kij(xfl(τ ′), τ ′) can be written
as multiple time integrals over the fluid trajectory. For example, in the simplest case, for a given operator
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O constructed out of δ and Kij , we can formally expand the time integral as [88]

δg(x, τ) ⊃
∫ τ

dτ ′ fO(τ, τ ′)O(xfl(τ ′), τ ′)

=

[∫ τ

dτ ′ fO(τ, τ ′)

]
O(x, τ) +

[∫ τ

dτ ′ (τ ′ − τ)fO(τ, τ ′)

]
D

Dτ
O(x, τ) + · · · , (2.57)

where D/Dτ is the convective derivative along the fluid flow [Eq. (2.18)]. In order to provide a basis of
operators at a fixed time, as demanded by Eq. (2.56), we thus have to include time derivatives along the
fluid flow, such as D(∂i∂jΦ)/Dτ , in the basis of operators. Including time derivatives, of arbitrary order,
of powers of the density field and tidal field then provides a complete basis of operators for the local bias
expansion (that is, at lowest order in spatial derivatives). However, this is not very satisfying: since the
formation of galaxies happens on long time scales, the higher-order terms not written in Eq. (2.57) are not
necessarily smaller than the ones that we include; in fact, this seems to suggest that we need infinitely
many operators in our bias expansion. Fortunately however, at fixed order in perturbation theory, only
a finite number of time derivatives are linearly independent, and thus the basis can be completed with a
finite number of operators. The physical reason is that the time evolution of the large-scale, quasi-linear
perturbations is predicted at any given order in perturbation theory. Moreover, given our assumptions, they
evolve at exactly the same rate on linear scales, since the linear growth factor is scale-independent. Thus,
the departure from the linear growth rate is higher order in perturbations. We will now show precisely how
to use this fact to obtain a finite set of operators.

2.5.2 Lagrangian basis of operators

To begin with, let us work on the initial time slice, in Lagrangian coordinates q = xfl(τ = 0). This
simplifies the treatment, since in Lagrangian coordinates convective time derivatives D/Dτ [Eq. (2.18)]
reduce to simple time derivatives ∂/∂τ .

Consider a Lagrangian operator OL(q, τ) constructed out of dO factors of ∂q,i∂q,jΦ
(1)(q) (or, equivalently,

the distortion tensor Mij). In perturbation theory, it can be written as

OL(q, τ) = DdO (τ)O
(dO)
L (q, τ0) +DdO+1(τ)O

(dO+1)
L (q, τ0) + · · · , (2.58)

where D(τ) is the linear growth factor, normalized to some reference time τ0. By construction, dO is

the perturbative order of the leading contribution to OL. The operators O
(n)
L (q, τ0), n = dO, dO + 1, . . . ,

correspond to the contributions to OL at n-th order in perturbation theory, evaluated at the reference time
τ0. Here, we have assumed for simplicity that the n-th order growth factor is given by the linear growth
factor to the n-th power. This is only strictly valid for an EdS (flat matter-dominated) Universe where
D(τ) = a(τ), although also generally very accurate for other cosmologies such as ΛCDM. We will discuss
this at the end of Sec. 2.5.3.

Given the general relation Eq. (2.58), allowing for time derivatives of OL in the bias expansion [see

Eq. (2.57)] is, at n-th order in perturbation theory, equivalent to including the contributions O
(m)
L (m ≤ n)

at each order individually. This is because, at this order in perturbation theory, the time derivatives of

any operator OL are given by linear combinations of the O
(m)
L (m ≤ n). Consider for example a second-

order Lagrangian operator, which in perturbation theory can be written as, following Eq. (2.58), OL(q, τ) =

D2(τ)O
(2)
L (q, τ0) + D3(τ)O

(3)
L (q, τ0) + · · · . Then, in third-order perturbation theory, the n-th convective

time derivative of OL is given by

(
D

Dτ

)n
OL(q, τ)

∣∣∣
(3)

=
∂n

∂τn
OL(q, τ)

∣∣∣
(3)

=

(
dn

dτn
D2(τ)

)
O

(2)
L (q, τ0) +

(
dn

dτn
D3(τ)

)
O

(3)
L (q, τ0) . (2.59)

At any given fixed time, this is just a linear combination of O
(2)
L (q, τ0) and O

(3)
L (q, τ0). This continues to

hold correspondingly at any fixed, higher order in perturbation theory, and becomes even more obvious
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when transforming the time coordinate from τ to lnD(τ): then, the right-hand side of Eq. (2.59) simply
becomes 2nD2(τ)O(2) + 3nD3(τ)O(3).

Note that, even when starting with an operator OL that is a local combination of ∂q,i∂q,jΦ, the higher-

order terms O
(n)
L generated by time evolution are in general not expressible as local combinations of ∂q,i∂q,jΦ.

Instead, terms involving ∂i∂j/∇2 acting on powers of ∂l∂mΦ appear, just as we have seen with O
(3)
td in

Eq. (2.50). Fundamentally, this is a consequence of the fact that gravity acts over long distances, so that
the gravitational evolution of the tidal field cannot be approximated as local [148, 149]. In particular, the
invariant definition of the tidal field is a certain projection of the Weyl tensor [150], which corresponds to
the specific part of the Riemann tensor that is not locally related to the stress-energy tensor via the Einstein
equations.

Crucially however, while we assume that galaxy formation is local (we relax this assumption in Sec. 2.6),
we do not have to assume that gravity is local. Indeed, one can straightforwardly derive the evolution of
the tidal field in perturbation theory, and take that into account in the bias expansion, namely through

the terms O
(m)
L described above. One finds that the time derivatives of the tidal field only contain a small

subset of all possible operators constructed out of ∂i∂j/∇2 acting on powers of ∂l∂mΦ. Only these specific
operators should be included in the bias expansion, because only these terms correspond to local observables,
essentially time derivatives of the tidal field along the fluid flow.

Let us now construct an explicit Lagrangian basis of bias operators. It is convenient to write these in
terms of the Lagrangian distortion tensor introduced in Sec. 2.4,

Mij ≡
∂sj
∂qi

. (2.60)

Note that at linear order, M
(1)
ij is directly proportional to ∂q,i∂q,jΦ

(1). Knowing that we can always recast
the time derivatives as a sum of higher-order operators, we simply have to take all scalar contractions of the

contributions M
(n)
ij at each perturbative order; up to quadratic order, this was already written in Eq. (2.42).

However, we do not need to include tr[M (n)] ≡ δijM (n)
ij with n > 1, as these terms can always be expressed

in terms of lower-order operators through the equations of motion for Mij (see [80, 151] for the explicit
expression of the latter). The basis up to fourth order then is [131]7

1st tr[M (1)]

2nd tr[(M (1))2] , (tr[M (1)])2

3rd tr[(M (1))3] , tr[(M (1))2] tr[M (1)], (tr[M (1)])3 , tr[M (1)M (2)] (2.61)

4th tr[(M (1))4] , tr[(M (1))3] tr[M (1)] ,
(

tr[(M (1))2]
)2

, (tr[M (1)])4 ,

tr[M (1)] tr[M (1)M [2]] , tr[M (1)M (1)M (2)] , tr[M (1)M (3)] , tr[M (2)M (2)] .

At fourth order, we have used the fact that, as a 3 × 3 symmetric matrix, M
(1)
ij is characterized by three

independent rotational invariants, allowing us to eliminate tr[(M (1))2](tr[M (1)])2. Starting at third order,
Mij is no longer symmetric; that is, the displacement vector also has a curl component. However, at each
order in perturbations, the antisymmetric part of Mij can be re-expressed in terms of combinations of lower-
order contributions to the symmetric part, M(ij) ≡ (Mij + Mji)/2, via the equations of motion [80, 151].
Hence, it is sufficient to write the bias expansion purely in terms of the contributions to the symmetric part,

M
(n)
(ij).

All of the operators in Eq. (2.61) are easily evaluated in Lagrangian perturbation theory. The first
instance of a convective time derivative appears at third order in the bias expansion through the operator

7We have added two operators at fourth order that were missing in [131]; specifically, the first two terms in the very last
line of Eq. (2.61).
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tr[M (1)M (2)], which is precisely related to the operator O
(3)
td introduced in Sec. 2.4 (see p. 31). Note however

that, while M
(1)
ij and M

(2)
ij can be rephrased in terms of second derivatives of the gravitational and velocity

potentials, this is no longer true for M
(3)
ij which appears at fourth order. Fortunately, with this construction

it is now obvious how to extend the complete set of bias operators to higher orders. Thus, Eq. (2.61) is
directly applicable to calculate statistics of biased tracers in LPT. The disadvantage, as has already been
mentioned after Eq. (2.42), is that Eq. (2.61) is not very convenient to connect to well-known perturbative
bias expansions. This is because the matter density contrast δ and the tensor M are nonlinearly related
through δ(q) = |1 +M |−1 − 1. Thus, the well-known linear bias term b1δ(q) contributes to many terms
in the list Eq. (2.61). In the next section, we will derive an equivalent basis that is closer to standard
perturbative bias expansions.

2.5.3 Eulerian basis of operators

A Eulerian basis can similarly be constructed out of ∂x,i∂x,jΦ(x, τ) and its convective time derivatives.
Here, we follow Ref. [131] who have defined8

Π
[1]
ij (x, τ) =

2

3ΩmH2
∂x,i∂x,jΦ(x, τ) = Kij(x, τ) +

1

3
δijδ(x, τ) , (2.62)

which in the notation of Sec. 2.3 and Sec. 2.4 contains δ = tr Π[1] and Kij as the trace-free part of Π
[1]
ij .

Note that the superscript [1], to be distinguished from (1), refers to the fact that Π[1] starts at first order in
perturbation theory, but contains higher-order terms as well. We then define the higher-order tensors Π[n]

recursively by convective time derivatives:

Π
[n]
ij =

1

(n− 1)!

[
(Hf)−1 D

Dτ
Π

[n−1]
ij − (n− 1)Π

[n−1]
ij

]
. (2.63)

Note that Π
[n]
ij is symmetric for any n. By construction, the lowest-order contribution to Π[n] in perturbation

theory is at n-th order. This helps us keep track of all the relevant terms at any given order. However,
unlike in the Lagrangian case, here the Π[n] are not simply the n-th order perturbative contributions to
Π[1]. This is because in the Eulerian case, convective time derivatives [Eq. (2.18)] are not equal to ordinary

derivatives ∂/∂τ . The reason why a basis constructed out of Π
[n]
ij is complete, however, is exactly analogous

to the Lagrangian case discussed above: at n-th order in perturbation theory, Π
[1]
ij , which contains the

matter density and tidal field up to n-th order, only has n different time dependences D(τ), D2(τ), · · ·Dn(τ).
Therefore, any higher convective time derivative (D/Dτ)m with m > n can be expressed in terms of the first,
second, · · · , n-th time derivatives, when neglecting terms higher than n-th order in perturbation theory.

The quantity tr[Π[n]] is a linear combination of convective time derivatives of the Eulerian density
perturbation δ. At any given order, these can be written as combinations of lower-order operators, by way
of the Eulerian fluid equations (for example, tr

[
Π(2)

]
= (17/21)δ2 + (2/7)(Kij)

2 in second-order PT; see

Appendix C), and can thus be excluded from the basis for n > 1. This is in analogy with tr[M (n)] in
the Lagrangian basis. Correspondingly, the bias coefficients of these terms can be seen as integrals over
the kernels ftr Π[1](τ, τ ′), f(tr Π[1])2(τ, τ ′, τ ′′) and so on, introduced in Eq. (2.57) above, against progressively
higher powers of the growth factor [88].

8Note that the prefactor was absorbed into the definition of Φ there.
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Up to fourth order, we therefore have, in exact formal analogy to Eq. (2.61),

1st tr[Π[1]] (2.64)

2nd tr[(Π[1])2] , (tr[Π[1]])2

3rd tr[(Π[1])3] , tr[(Π[1])2] tr[Π[1]] , (tr[Π[1]])3 , tr[Π[1]Π[2]]

4th tr[(Π[1])4] , tr[(Π[1])3] tr[Π[1]] ,
(

tr[(Π[1])2]
)2

, (tr[Π[1]])4 ,

tr[Π[1]] tr[Π[1]Π[2]] , tr[Π[1]Π[1]Π[2]] , tr[Π[1]Π[3]] , tr[Π[2]Π[2]] .

This basis offers the advantage of having a close connection to the standard Eulerian bias expansion. For
example, the coefficient of the term (tr[Π[1]])n is precisely bδn = bn/n!, since tr[Π[1](x, τ)] = δ(x, τ) at all
orders. The term tr[(Π[1])2] = (Kij)

2 + δ2/3 on the other hand contains the tidal field squared. Of course,
as in the Lagrangian case, explicit time derivatives appear in the bias expansion at third order through the

operator tr[Π[1]Π[2]], which again is directly related to the operator O
(3)
td (see p. 31 and Appendix C). As

mentioned after Eq. (2.61), gravitational and velocity shear are no longer sufficient in the bias expansion

starting at fourth order, as evidenced by the appearance of Π
[3]
ij .

We now discuss the key approximation made in constructing the convenient bases Eq. (2.61) and
Eq. (2.64), namely that all operator contributions at a given perturbative order n have the same time
dependence, [D(τ)]n. This is only strictly true in an EdS Universe, while in ΛCDM and quintessence cos-
mologies new time dependences appear at each new order. For example, second-order operators can have
a time dependence given by [D(τ)]2 or by D2(τ), where D2(τ) ∝

∫
D2d lnD is the second-order growth

factor. This means that the operators in the bases described above are in general not sufficient anymore.
However, we show in Appendix B.6 that the first instance of a new term in the bias expansion appears only
at fourth order. Specifically, the tr[Π[1]Π[3]] term in Eq. (2.64) splits into two terms which, however, have
to have very similar bias coefficients if the nonlinear growth factors approximately obey Dn(τ) ' [D(τ)]n;
the departures from this relation are at the percent level for a standard ΛCDM cosmology. This means
that the additional operators added to complete the operator bases described here will be (i) fourth and
higher order; (ii) suppressed by a numerical prefactor . 0.1 relative to the terms included in Eq. (2.64).
They will thus be irrelevant in most practical applications. Note that, since we only work to third order in
perturbation theory there, all results given in Sec. 4 hold in ΛCDM and quintessence cosmologies.

2.6 Higher-derivative bias

In the treatment of bias so far, we have approximated the formation of halos and galaxies as perfectly
local in a spatial sense. After reordering the time derivatives along the fluid trajectory, we have written the
bias expansion for δg(x, τ) in terms of operators evaluated at the same location: O(x, τ) in the Eulerian
basis, or OL(q, τ) in the Lagrangian basis. However, we know that the formation of halos and galaxies
involves the collapse of matter from a finite region in space, and thus, the local bias expansion derived above
cannot be completely correct on all scales. In this section, we study the limitation of the spatially-local
approximation and derive the set of additional operators to include in the expansion Eq. (2.56). We refer
to these operators as higher-derivative operators. They naturally arise in peak theory or the excursion-set
approach [13, 152, 153] (see Sec. 5 and Sec. 6 for a detailed discussion).

In order to incorporate the deviation from perfect locality of galaxy formation, we should replace the
local operators O(x, τ) appearing in Eq. (2.56) with functionals [154, 155]. For example, the linear-order
operator in the Eulerian basis, O = δ, now becomes

bδ(τ)δ(x, τ)→
∫
d3y Fδ(y, τ)δ(x+ y, τ) , (2.65)

where Fδ(y, τ) is a kernel that is in general time dependent. Here, we have used the homogeneity of the
Universe, or the absence of preferred locations, which dictates that Fδ is independent of x. We can now
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perform a formal series expansion of δ around x, leading to

bδ(τ)δ(x, τ)→
[∫

d3y Fδ(y, τ)

]
δ(x, τ) +

[
1

6

∫
d3y |y|2 Fδ(y, τ)

]
∇2
xδ(x, τ) + · · ·

= bδ(τ)δ(x, τ) + b∇2δ(τ)∇2
xδ(x, τ) + · · · , (2.66)

where statistical isotropy demands the absence of any preferred directions with which the derivative operators
could be contracted.

Hence, there is no term linear in spatial derivatives, and the leading higher-derivative term involves
the Laplacian of δ(x, τ). We then identify the standard linear bias bδ = b1 with the “total mass” of the
kernel, while the second integral, the “moment of inertia” of the kernel, defines a new higher-derivative
bias parameter b∇2δ. This bias parameter has dimension [length]2; the characteristic scale R∗ that sets the
magnitude of |b∇2δ| ∼ R2

∗ is the scale of the spatial support of the kernel Fδ(y, τ), which we identify with
the nonlocality scale of the tracer R∗. Note that ∇2δ is a local observable for a comoving observer and,
following our discussion in Sec. 2.5.1, should thus be included in the general bias expansion in any case.
Such a term naturally appears for example in the peak approach (Sec. 6) without any explicit nonlocality,
induced by the constraint of a negative curvature of the smoothed density field. The formal derivation from
a kernel as in Eq. (2.66) provides another physical interpretation for the bias parameter b∇2δ and its relation
to the spatial scale R∗.

Let us briefly discuss how baryonic effects are also captured by higher-derivative terms. While this
statement holds for general perturbations of the stress tensor of matter, we consider the effect of gas pressure
perturbations δp here for simplicity. These are sourced by density perturbations, so that at linear order

δp(1) = c2s%bδ
(1) , (2.67)

where cs is the sound speed, and %b is the mean physical baryon density. The relevant quantity for dynamics
is the gradient ∇δp of the pressure. Thus, if we allow for the galaxy density to depend on ∇δp, we have to
add the leading scalar quantities that can be constructed out of ∇δp to the bias expansion, leading to

δg ⊃ b∇2δp∇2δp+ b(∇δp)2(∇δp)2 ∝ b∇2δp∇2δ + b(∇δp)2(∇δ)2 . (2.68)

We see that these terms are higher-derivative and, moreover, the only term linear in perturbations is exactly
of the same form as in Eq. (2.66). We will discuss nonlinear higher-derivative terms, such as (∇δ)2, below.
On the other hand, in contrast to gas, radiation can travel large distances and hence, in principle, lead to
a dependence of the local galaxy density on the matter distribution within a very large region; i.e. it can
significantly increase the scale R∗. We will discuss realistic estimates of these effects below. For now, let us
continue with the general discussion based on Eq. (2.66).

In Eq. (2.65), the kernel Fδ describes how the formation of galaxies depends on the precise distribution
of matter in the vicinity of x. Therefore, it is sensible to connect the second moment of Fδ with the
nonlocality scale R∗ introduced in Sec. 2.5.1. If Fδ is given by a typical filtering kernel, e.g. a Gaussian
or tophat [cf. Eqs. (A.26)–(A.28)], then we expect that b∇2δ > 0: if we are at the location of a peak in
the density field, then the smoothed density will be smaller than the un-smoothed one. On the other hand,
∇2δ < 0 at such a location, and so a positive b∇2δ leads to the expected behavior, i.e. that peaks are
damped by smoothing. Consider for example our toy model of Sec. 2.1. At linear order, the proto-halo

density perturbation can be written as δh,L(q) = bL1 δ
(1)
R (q). A formal expansion of the smoothed density

field δ
(1)
R around the un-smoothed linear density δ(1) yields

δh,L(q, τ) = bL1 δ
(1)(q, τ) + bL∇2δ∇2

qδ
(1)(q, τ) + · · · , where bL∇2δ =

1

10
bL1R

2 . (2.69)

Here we have assumed a tophat filtering kernel to be specific. Note that bL∇2δ does not necessarily have to
be positive; peaks of the density field provide an illuminating example for the case bL∇2δ < 0 (see Sec. 6).
Continuing the derivative expansion, the next higher correction in Eq. (2.69) scales as R4∇4δ.
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Figure 7: Illustration of the effect of higher-derivative bias in the context of the thresholding toy model of Sec. 2.1. We show
two-point correlation functions multiplied by r2 in order to better illustrate the effect on the BAO feature. The values for
R = 4.21h−1 Mpc (mass scale 2.5 · 1013 h−1M�), bL1 = 1.5 and z = 0 are the same as in Fig. 4. Left panel: Linear-order
contribution (bL1 )2ξL,R(r) to Eq. (2.7) (solid), and the linear LIMD bias prediction (bL1 )2ξL(r) (dotted); note that the former
contains the filtering kernel while the latter does not. Some differences are seen on small scales and especially around the BAO
feature. When adding the leading higher-derivative bias [Eq. (2.69)] to the LIMD prediction (dashed), the perturbative bias
expansion matches the smoothed two-point correlation function very well. Right panel: Relative deviation of the results shown
in the left panel from the linear LIMD prediction.

In Fourier space, the term proportional to b∇2δ corresponds to a “scale-dependent bias” −b∇2δk
2δ ∝

(R∗k)2δ, with higher corrections scaling as (R∗k)2nδ. However, let us emphasize again that this is an
expansion in powers of k2, rather than a general function f(k), which is how the term “scale-dependent
bias” is sometimes interpreted. To make this distinction clear, we will use the term higher-derivative bias
throughout.

At linear order, which we have assumed in Eq. (2.66) and Eq. (2.69), the distinction between higher-
derivative terms in Eulerian and Lagrangian frames, i.e. ∇2

xδ vs. ∇2
qδ, is irrelevant. This is no longer the

case at nonlinear order in perturbations. Moreover, the relation between Lagrangian and Eulerian higher-
derivative biases is complicated by velocity bias, unlike the case in the local bias expansion, as we will see in
the next section. Crucially, the difference between derivatives with respect to q and those with respect to
x, which involves the distortion tensor M [Tab. 5], can be absorbed by nonlinear higher-derivative terms,
which then render bias expansions in Eulerian and Lagrangian frames equivalent again. We will return to
this below.

In terms of the two-point correlation function of galaxies, the leading contribution is of the form

ξgg(r)
∣∣∣
higher deriv.

= 2b1b∇2δ∇2
rξ(r) , (2.70)

where ξ(r) is the matter two-point correlation function. Note that this term can become observationally
relevant not just if the correlation scale r is of order R∗, but on the much larger scale of the BAO feature
(r ∼ 100h−1 Mpc) because of the narrow width of this feature [156, 152]. This is illustrated, in the context
of the thresholding toy model of Sec. 2.1, in Fig. 7 (left panel), which shows the effect of smoothing (on
the scale R ' 4h−1 Mpc) on the two-point correlation function. The smoothing damps the BAO feature
slightly. We also show the effect of including the leading higher-derivative contribution through Eq. (2.70)
and Eq. (2.69). The right panel of Fig. 7 clearly shows that the leading higher-derivative term captures
the bulk of the smoothing effect. Thus, by including one additional bias parameter, we incorporate the
leading effect of the finite size of the thresholded regions, and improve the precision of the bias expansion
significantly. At this point, it is worth emphasizing that the higher-derivative terms primarily modify the
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amplitude of the BAO feature. If the BAO scale is determined by marginalizing over the broad-band shape
of the galaxy two-point correlation function, as is usually done in BAO studies, then the estimated scale
is insensitive to b∇2δ. On the other hand, if our goal is to extract the full information from the galaxy
two-point correlation function, this term has to be included (Sec. 4.1).

As we have seen, higher-derivative biases introduce an additional spatial scale, R∗, into the perturbative
bias expansion (unlike the local bias expansion at leading order in derivatives, which only involves the
same Hubble time scale that governs the evolution of matter itself). The significance of this new scale is
that it provides a fundamental cutoff for the perturbative approach to galaxy clustering: when the scale
r on which we measure correlations approaches R∗, all higher-derivative terms become relevant, and the
perturbative description loses all predictive power. The same effect happens in Fourier space for k ∼ R−1

∗ .
Thus, even if we were able to predict the properties of the matter density field perfectly, the nonlocality of
the formation of galaxies sets a fundamental limit on the scales over which we can describe the statistics
of galaxies perturbatively. In practice, even for halos, it is still unclear whether higher-order local bias
terms or higher-derivative operators provide the actual cutoff of the perturbative theory. For galaxies, the
cutoff will most likely depend strongly on the specific galaxy sample considered. In the following, we discuss
approximate estimates of and constraints on R∗ for different tracers:

• Dark matter halos: Since halo formation in N-body simulations is governed exclusively by gravity,
one expects R∗ to be comparable to the Lagrangian radius R(M) of halos. This is because the matter
within a given halo originates from a region of size R(M). This is also borne out by nonlinear models
of halo formation such as the excursion set (Sec. 5) and peaks of the Lagrangian density field (Sec. 6),
and indeed the toy model of Sec. 2.1, where R(M) is the filter scale used to define the significance
νc = δcr/σ(R) [just as we found in Eq. (2.69)]. As discussed above however, the precise value and
indeed sign of b∇2δ depend on the details of the model considered.

• Galaxies: If the properties of galaxies in a given sample are completely determined by those of
their host halos, as assumed in the halo occupation distribution and abundance matching approaches
(Sec. 9.1), then the scale R∗ for these galaxies is given by that of the host halos, i.e. R(M). On the
other hand, if the local rate of galaxy formation is significantly modified by the radiation field (e.g.,
the flux of ionizing UV radiation), then R∗ could be as large as the absorption length of this radiation
[157, 158, 159], which can be several hundred Mpc. Thermal heating of the intergalactic medium by
high-energy cosmic-ray cascades is another possibility for long-range influences [160, 161], as these
cosmic rays have large mean-free paths as well. These effects can in turn strongly modify the shape
of the galaxy two-point function and thus affect the measured position of the BAO feature [162, 155].
Similar conclusions hold for large-scale outflows, for example, or strong jets launched by active galactic
nuclei, although the scale of these phenomena is expected to be at most tens of Mpc [142] and thus
significantly smaller than the mean free path of UV photons.

• Line emission from diffuse gas: This is an interesting case, which includes the Lyman-α forest as
well as intensity mapping. Ignoring the effects of any large-scale fluctuations in the ambient radiation
field, the nonlocality scale of the gas is of order the Jeans scale, R∗ ∼ 1/kJ , which is very small
(1/kJ ∼ 0.1hMpc−1 [163, 164]) for the relatively cold gas observed using these channels. Combined
with the fact that these tracers are observed at fairly high redshifts, where the nonlinear scale is small,
this suggests that line emission from the intergalactic medium can be modeled accurately to very small
scales. Unfortunately, the line emission depends on the ionization state of the medium, which in turn
is controlled by the ambient radiation field [165, 166]. As mentioned above, the mean free path of
ionizing radiation in the intergalactic medium is very large, so that in fact R∗ for these tracers is not
small. Ref. [167] provides a very clear illustration of this effect on large-scale statistics of the Lyman-α
forest. The information loss by being restricted to very large scales above R∗ can however be reduced
by explicitly modeling this effect through measured cross-correlations with sources of ionizing radiation
such as galaxies and quasars [168].

41



Finally, we turn to higher-derivative corrections to nonlinear operators in the bias expansion. While
technically more complicated, this follows in strict analogy to the linear case leading to Eq. (2.66); the
remainder of the section is not essential for the subsequent developments and can be skipped on a first
reading. Let us work again in Eulerian coordinates, noting that exactly the same reasoning goes through in
the Lagrangian basis in terms of derivatives with respect to q. As described in Sec. 2.5.3, each operator in
the local basis can be written as

O(x, τ) = Π[i1](x, τ) · · ·Π[in](x, τ) , (2.71)

where Π
[n]
ij is defined in Eqs. (2.62)–(2.63), and we have suppressed tensor indices in this expression since

they are irrelevant for the following arguments. Going beyond locality then means that we should introduce
a kernel FO(y1,y2, · · · ,yn; τ) to replace terms in the local bias expansion so that, again suppressing tensor
indices,

bO(τ)O(x, τ)→
∫
d3y1 · · · d3yn FO(y1, · · · ,yn; τ)Π[i1](x+ y1, τ) · · ·Π[in](x+ yn, τ) . (2.72)

Note that the operators Π
[n]
ij are local observables, and the formation of halos can depend on the detailed

distribution of the Π
[n]
ij within the scale R∗. Thus, they also form the building blocks for the general

higher-derivative expansion. It is then straightforward to perform the same Taylor expansion around x as
in Eq. (2.66), for each factor Π[ij ], resulting at leading order in terms of the type

Π[i1](x, τ) · · ·
[
∇2
xΠ[ij ](x, τ)

]
· · ·Π[in](x, τ) and

Π[i1](x, τ) · · ·
[
∂x,kΠ[ij ](x, τ)

]
· · ·
[
∂lxΠ[ik](x, τ)

]
· · ·Π[in](x, τ) . (2.73)

Note that the indices k and l in the second line can be contracted among themselves or with the tensor

indices of the Π
[n]
ij . Thus, in order to obtain the complete set of higher-derivative operators, we have to allow

for all contractions of derivatives on each Π factor in the operator basis Eq. (2.64), including contractions
with the tensor indices of the Π themselves. The analogous construction works for the Lagrangian basis

Eq. (2.61) in terms of ∂q acting on M
[n]
ij . Including the complete set of higher-derivative terms is also

necessary and sufficient to ensure that the Lagrangian and Eulerian bias expansions are equivalent at higher
order in derivatives.

Explicitly, the leading higher-derivative terms O(R2
∗) in the Eulerian basis are, up to second order in

perturbations, given by

O(R2
∗) : 1st ∇2 tr[Π] (2.74)

2nd tr[(∇2Π)Π] , tr[(∂iΠ)(∂iΠ)] , (∇2 tr[Π]) tr[Π] , (∂i tr[Π])(∂i tr[Π]) ,

∂kΠij∂
iΠkj , Πkl∂k∂l tr[Π] , Πkl∂k∂iΠ

i
l , ∂

iΠij∂
j tr[Π] , ∂iΠij∂kΠjk ,

where we have denoted Π ≡ Π[1] for clarity. Note that the second line includes the (∇δ)2 term already
discussed in the context of pressure perturbations, Eq. (2.68). Clearly, the number of higher-derivative
operators and corresponding bias coefficients increases rapidly toward higher order in perturbation theory.
However, as outlined above, all the contributions quoted here are suppressed by a factor of (R∗k)2 on large
scales relative to the leading terms in Eq. (2.64).

2.7 Velocity bias

Starting from Eq. (2.17), we have assumed that galaxies and matter comove along the same fluid trajec-
tories. We now show why this is consistent within the local bias expansion. Galaxies in general experience
different peculiar forces than the matter fluid. This is both due to the fact that galaxies are strongly in-
fluenced by baryonic physics, and that galaxy formation happens within a spatial region of finite size R∗
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(Sec. 2.6), so that their center-of-mass acceleration is some weighted mean of the local gravitational acceler-
ation field within this region. Let us denote the peculiar acceleration of galaxies with respect to the matter
fluid as ag. The Euler equation for the galaxy velocity field vg is then

∂

∂τ
vg +Hvg + (vg · ∇)vg = −∇Φ + ag . (2.75)

Note that, in the effective field theory of the matter fluid (EFT [83], Appendix B.3), a peculiar acceleration
am also appears in the Euler equation for the matter fluid velocity v. There, aim = −∂jτ ij/ρm is sourced by
the effective stress tensor of matter τ ij that is induced by integrating out the small-scale non-perturbative
modes (see Appendix B.3). Strictly speaking, we define ag here as the difference between the large-scale
acceleration field of galaxies and am (denoted as fg − f in [131]). Subtracting the Euler equation from
Eq. (2.75) and defining vrel ≡ vg − v, one can then easily show that [131]

D

Dτ
vrel +Hvrel + (vrel · ∇)vg = ag , (2.76)

where D/Dτ is throughout defined with respect to the matter velocity v. We see that ag is the source of
galaxy velocity bias vg−v. If we assume a conserved tracer in the spirit of Sec. 2.4, the continuity equation
becomes

D

Dτ
(δg − δ) = − θ(δg − δ)−∇ · [(1 + δg)vrel] . (2.77)

Our general results on velocity bias derived below are independent of the conserved-tracer assumption,
however.

Since an observer in a given galaxy can in principle measure the relative acceleration between the galaxy’s
center of mass and the matter fluid, ag is a locally observable quantity. As such, its effective large-scale
expansion can again only involve gravitational observables, that is, ∂i∂jΦ and its derivatives. Expanding ag
in powers of Φ, isotropy implies that each term involving n Φ fields must have at least 2n + 1 derivatives.
This is simple to see: any local observable composed of n powers of (∂i∂jΦ), say, has an even number of
indices. In order to construct a vector akg , we have to add an additional derivative ∂k, leading to 2n + 1

derivatives in total. The single leading term (n = 1) is given by aig ∝ ∂i∇2Φ. Physically, the peculiar
acceleration can be sourced both by (statistical) differences in the local gravitational potential gradient for
galaxies and matter, induced for example by smoothing or the peak constraint, and by non-gravitational
effects such as the pressure forces discussed around Eqs. (2.67)–(2.68). Indeed, we have seen in the previous
section that both effects lead to higher-derivative terms [Eq. (2.66) and Eq. (2.68), respectively].

We have thus proven that galaxy velocity bias is a higher-derivative effect, which justifies why we were
able to consistently set vg = v in Sec. 2.2–2.4. The general velocity bias expansion then consists of all
3-vectors that can be constructed from the local gravitational observables and their spatial derivatives,
following the same procedure as described in the previous section. At leading order, there is only a single
contribution, which we will consider below.

Note that a velocity bias that is not suppressed by derivatives has been studied in the literature [130, 118].
However, as argued here, such a velocity bias violates the equivalence principle. On the other hand, if the
galaxy density depends on multiple fluids, such as baryons and CDM, a relative velocity perturbation
between these fluids is a local observable even without any derivatives. If present in the initial conditions
on large scales, such a relative velocity between baryons and CDM also needs to be taken into account in
the bias expansion, as described in Sec. 8.2.

By construction, our expansion only includes the leading terms in the large-scale limit. On small scales, a
velocity bias of sub-halos within massive dark matter halos is well established in simulations [169, 170, 171].
These fully nonlinear effects are beyond the reach of the perturbative treatment described here. Further,
while the galaxy velocity is unbiased at the level of the local bias expansion, the galaxy momentum density
jg = (1 + δg)vg is not, since it is weighted by the galaxy density. All measurements of velocities of halos
and galaxies in simulations and observations naturally yield the momentum density and must be carefully
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re-weighted to obtain an accurate estimate of vg [172, 173]. Ref. [173] empirically verified that halo velocity
bias on scales k ≤ 0.1hMpc−1 is less than 2%.

Let us now consider the leading higher-derivative velocity bias at linear order, and its effect on the
evolution of bias. In order to solve Eq. (2.76) at linear order, we need an expression for the peculiar
acceleration ag (again, strictly speaking it is the effective relative acceleration between galaxies and matter
on large scales). As discussed above, ag has at least three derivatives acting on Φ. At linear order and
leading order in derivatives, ag thus has to be proportional to ∇δ, i.e.

ag(xfl(τ), τ) = Ag(τ)∇δ(xfl(τ), τ) . (2.78)

Other possible choices, such as ∇2v, are equivalent to ∇δ at linear order. The dimensionless proportion-
ality constant Ag(τ), essentially a bias parameter quantifying the effective acceleration due to small-scale
perturbations, is in general a free function of time. Ag is expected to be of the same order as the leading
higher-derivative biases (Sec. 2.6), i.e. Ag = O(R2

∗H2). Note that since R∗ is a spatial scale and there are no
preferred directions in the galaxy’s rest frame, the lowest nontrivial dependence on R∗ has to be of this form
(cf. the low-k expansion of a generic spherically symmetric convolution kernel WR(k) = c1 + c2k

2R2 + · · · ).
We can then immediately integrate the linearized version of Eq. (2.76) to obtain

vg(x, τ) = v(x, τ) +
1

a(τ)

∫ τ

0

dτ ′ a(τ ′)ag(x, τ
′) = v(x, τ) + β∇δ(τ)∇δ(x, τ) , where

β∇δ(τ) ≡ 1

a(τ)D(τ)

∫ τ

0

dτ ′ a(τ ′)D(τ ′)Ag(τ
′) . (2.79)

Thus, we can trade the acceleration bias Ag(τ) for a bias in the galaxy velocity β∇δ(τ). We will reserve the
notation βO(τ) for velocity-bias parameters. It is instructive to consider two simple limiting cases for the
time dependence of ag(τ). If ag(τ) = const, implying Ag(τ) ∝ D−1(τ), and assuming an EdS Universe for
simplicity, Eq. (2.79) immediately yields β∇δ(τ)∇2δ(x, τ) ∝ τ , i.e. the velocity-bias term has the same time
dependence as v in the standard growing mode itself. In this case, one can write

vg(x, τ)
ag=const

=
[
1 + β∇2v∇2

]
v(x, τ) , (2.80)

where β∇2v is constant. This time evolution was first proposed in the context of the peak model [152, 174]
(Sec. 6.9.1).

If on the other hand ag(τ) ∝ δD(τ − τ∗), corresponding to an instantaneous boost of galaxy velocities
relative to matter at time τ∗, then (vg − v)(x, τ) ∝ a−1(τ)∇δ(xfl(τ∗), τ∗) ∝ a−1(τ) for τ > τ∗ [equivalently,
β∇δ ∝ (aD)−1, Eq. (2.79)]. This corresponds to the decaying relative-velocity mode of a system of two
fluids coupled by gravity [118], and can be understood as the usual decay of peculiar velocities (when not
sourced) in an expanding Universe. Thus, the different results on the evolution of large-scale velocity bias
obtained in the literature are a consequence of different assumptions on the time evolution of the relative
acceleration ag.

Finally, we consider the setup studied in Sec. 2.2–2.4. That is, we prescribe a bias relation at a “formation
time” τ∗, and assume conserved evolution of the tracers afterwards. We can then integrate the continuity
equation Eq. (2.77) to obtain the galaxy density δg. At linear order and including the leading higher-
derivative term, we write the galaxy density at an initial time τ∗ as

δg(x, τ∗) = b∗1δ(x, τ∗) + b∗∇2δ∇2δ(x, τ∗) . (2.81)

At some later time τ , δg is then given by

δg(x, τ) = bE1 (τ)δ(x, τ) + bE∇2δ(τ)∇2δ(x, τ)

where bE∇2δ(τ) = b∗∇2δ

D∗
D
−
∫ τ

τ∗

dτ ′β∇δ(τ
′)
D(τ ′)

D(τ)
. (2.82)
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We have used D∗/D ≡ D(τ∗)/D(τ) and bE1 (τ) = 1 + (b∗1 − 1)(D∗/D) as defined in Sec. 2.3. This generalizes
the result of [152] to a time-dependent β∇δ. Following our arguments after Eq. (2.78), the two contributions
to bE∇2δ are expected to be of the same order ∼ R2

∗, noting that Ag ∼ R2
∗H2, while β∇δ ∼ R2

∗H. We see that
the evolution of the higher-derivative bias in the density depends on the time evolution of the velocity bias.
Unlike the case of the local bias expansion, where the evolution of bias parameters for a conserved tracer at
a given order is uniquely determined by the knowledge of the bias parameters at fixed time, at higher order
in derivatives we require knowledge of the velocity bias β∇δ along the entire trajectory. This is because
higher-derivative terms allow for non-gravitational effects to play a role, whose evolution is not necessarily
tied to the gravitational evolution of matter. We stress that it is still possible to completely describe galaxy
bias at a fixed time, on sufficiently large scales, in terms of a finite number of bias parameters.

Going back to the two limiting cases for Ag considered above, we find that, for ag = const, the velocity
bias contribution to bE∇2δ(τ) is also constant (in EdS), so that for τ � τ∗ this eventually becomes the
dominant contribution, as is the case in the peak model ([152]; see Sec. 6.9.1). On the other hand, for an
initial boost, Ag ∝ δD(τ − τ∗), this term decays as τ−3 in EdS (this corresponds to the adiabatic decaying
mode of the density field). In this case, the initial higher-derivative bias contribution, which scales as
b∗∇2δD∗/D ∝ τ−2, dominates over the velocity bias contribution at late times. Of course, all of these results
are only valid under the assumption of conserved evolution.

2.8 Stochasticity

The bias expansion described so far captures the impact of long-wavelength perturbations on the galaxy
density. That is, we have ignored the influence of small-scale perturbations on the formation of galaxies,
which is stochastic, as the small-scale initial conditions are not correlated over long distances (this is a
consequence of the assumed Gaussianity of the initial conditions). In order to take this into account, we
have to introduce stochastic fields in the bias relation, as already done in Sec. 2.3–2.4. This is related to
a phenomenon known in the literature as stochastic bias [175, 176, 154]. Further, in Sec. 2.3–2.4 we have
seen that stochasticity on one time slice couples to gravitational evolution, and thereby introduces further
stochastic terms at higher order such as the term εδδ in Eq. (2.33).

The fully general set of stochastic contributions then consists of all terms of the deterministic bias
expansion O, with independent stochastic parameter εO. Crucially, since the εO are uncorrelated with large-
scale perturbations, they are completely described by their joint 1-point PDF on large scales, or equivalently
their real-space moments 〈εOεO′〉, 〈εOεO′εO′′〉, and so on. Consider as an example the galaxy two-point
function, which we will describe in detail in Sec. 4.1. The leading stochastic contribution is

〈δg(x1)δg(x2)〉
∣∣∣
leading stoch.

= 〈ε(x1)ε(x2)〉 = P {0}ε δD(x1 − x2) , (2.83)

where
P {0}ε ≡ lim

k→0
〈ε(k)ε(k′)〉′ . (2.84)

is the power spectrum of the field ε in the large-scale limit. Here and throughout, a prime on an expectation
value denotes that the momentum-conserving Dirac delta function is to be dropped. Note that in real space,
the stochastic contributions are localized at zero lag (but see below).

Next, we consider the galaxy three-point function, whose leading stochastic contributions are

〈δg(x1)δg(x2)δg(x3)〉
∣∣∣
leading stoch.

= 〈ε(x1)ε(x2)ε(x3)〉+ {〈ε(x1)(εδδ)(x2)δ(x3)〉+ 5 perm.}

= B{0}ε δD(x1 − x2)δD(x2 − x3) +
{

2P {0}εεδ
δD(x1 − x2)〈δ(x2)δ(x3)〉+ 3 perm.

}
, (2.85)

where

B{0}ε ≡ lim
k,k′→0

〈ε(k)ε(k′)ε(k′′)〉′ and P {0}εεδ
≡ lim
k→0
〈ε(k)εδ(k

′)〉′ . (2.86)
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We see that, when expanding correlators using Wick’s theorem, only correlators of the εO among them-
selves remain. This is a consequence of the fact that the εO are uncorrelated with the long-wavelength
perturbations, such that 〈εOδ〉 = 0.

Since the coefficients εO themselves are first-order perturbations, the complete set of stochastic terms up
to third order becomes, working in the Eulerian local basis and thus neglecting higher-derivative operators,

1st ε (2.87)

2nd εδ tr[Π[1]]

3rd εtr[Π2] tr[(Π[1])2] , ε(tr Π)2(tr[Π[1]])2 ,

with an analogous expansion in the Lagrangian case. Note that these terms have already been included in
the third-order derivation of Sec. 2.4. Going back to Eq. (2.47) and Eq. (2.54), we see that gravitational
evolution mixes the various stochastic terms. This shows that we also have to allow for covariance (cross-
correlation) between different stochastic fields εO and εO′ , as written in Eq. (2.85). The higher-derivative
terms will similarly have stochastic counterparts, for example ε∇2δ∇2δ.

Finally, we also need to take into account that the galaxy density contrast is not expected to depend on
the small-scale perturbations in an exactly local sense, but rather depends on their spatial distribution within
a finite region of order R∗ (much like its dependence on the long-wavelength perturbations). This implies
the necessity of including higher derivatives of the stochastic moments. In Fourier space, this translates into
a series expansion in k2, that is,

〈εO(k)εO′(k
′)〉′ = P {0}εOεO′

+ P {2}εOεO′
k2 + P {4}εOεO′

k4 + · · · , (2.88)

where the P
{n}
εOεO′ are only functions of time. Moreover, following the discussion above, we expect the higher-

derivative moments to scale approximately as |P {n}εOεO′ | ∼ Rn∗P
{0}
εOεO′ . Note however, that the stochastic

correlators arise through the coupling of two or more small-scale (non-perturbative) modes to a large-scale
(perturbative) mode. The boundary between these two regimes is the nonlinear scale knl [Eq. (4.25)]. Thus,
stochastic contributions with a different scaling which involves knl instead of R∗ are also possible. We return
to observational constraints on the stochastic correlators in Sec. 4.5.3.

In the context of field theory, these terms are referred to as “contact terms”, as they formally correspond,
in real space, to taking n powers of the Laplacian on a Dirac-delta two-point correlation function. However,
care must be taken when deriving the corresponding result in real space. Eq. (2.88) cannot be simply Fourier
transformed, since it is a low-k expansion and the Fourier transform relies on the contribution of all k modes.
Physically, we expect the correlations of the stochastic terms to be localized to scales of order R∗ or less,
i.e.

〈εO(x)εO′(x+ r)〉 r�R∗−→ 0 . (2.89)

On scales much larger than R∗, they can then be approximated as effective delta functions, 〈εO(x)εO′(x+

r)〉 = P
{0}
εOεO′ δD(r), equivalent to keeping the leading term in Eq. (2.88). As discussed above, the real-space

counterparts to the sub-leading terms in Eq. (2.88) are formal derivatives of δD(r). This reflects the fact
that on scales r ∼ R∗, any perturbative description has to break down, similar to the breakdown of the
expansion Eq. (2.88) for k ∼ 1/R∗.

In order to illustrate these considerations, let us adopt a toy model for the power spectrum of ε(k) that
is presumed valid on all scales:

Pε(k) ≡ 〈ε(k)ε(k′)〉′ =
1

ng

[
1− c e−k2R2

∗

]
, (2.90)

where ng is the mean galaxy number density and c ∈ [0, 1] is a constant. For k � 1/R∗, this approaches

the Poisson shot noise 1/ng, while in the low-k limit, this asymptotes to a smaller value P
{0}
ε = (1 −

c)/ng. Qualitatively, this behavior matches the expectation from halo exclusion, where c corresponds to the
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Lagrangian volume fraction occupied by the halos considered [127, 177, 178, 179]. We can Fourier transform
this power spectrum to obtain the corresponding two-point correlation function, yielding

ξε(r) =
1

ng

[
δD(r)− c(8π3/2R3

∗)e
−r2/4R2

∗

]
. (2.91)

Clearly, this obeys Eq. (2.89). Note that the apparently unphysical delta function will always yield finite
results in practice, since the correlation function cannot be measured at strictly zero separation, and is
instead integrated over a finite volume. If the volume that is integrated over is much larger than R3

∗, then
the variance of ε becomes independent of scale, just as expected for an effective white-noise distribution.
Thus, while the stochastic terms contribute to Fourier-space statistics of galaxies on all scales, in real space
they only contribute at small separations r ∼ R∗, and to statistics that involve zero-lag correlators.

Finally, there are also stochastic contributions to galaxy velocities. As in Sec. 2.7, we consider the effective
relative velocity between galaxies and matter. In addition to the leading-order deterministic velocity bias
β∇2v, we now include a stochastic contribution:

[
vig − vi

]
(x, τ) = β∇2v(τ)∇2vi(x, τ) + εiv(x, τ) , (2.92)

where the vector εiv is characterized by the same properties as the stochastic contributions to the galaxy
density: it is uncorrelated with the large-scale operators, and completely described by its zero-lag moments.
Compared to the leading stochastic field ε in the galaxy density, an additional constraint is imposed on these
moments by the equivalence principle. For the same reasons as described for the deterministic velocity bias
β∇2v in Sec. 2.7, the stochastic contribution to vg − v has to be constructed from local observables, such as
the density and tidal field; this holds both for gravitational and non-gravitational sources of vg − v. Thus,
on large scales the relative velocity can always be written as a total derivative of a nonlinear function of the
density and tidal field: [vig − vi](x) = ∂iF (δ(x),Klm(x)). This fact implies that the power spectrum of the
stochastic relative velocity between galaxies and matter has the following scaling on large scales:

lim
k→0
〈εiv(k)εjv(k

′)〉′ = kikjP {2}εv , (2.93)

where P
{2}
εv is a positive constant. That is, there is no white-noise term P

{0}
εv unlike for ε. Similarly, we

have, for the cross-correlation with ε, limk→0〈εjv(k)ε(k′)〉′ = ikjP
{1}
εεv . The stochastic velocity bias plays an

important role for galaxy statistics in redshift space [180].

Above, we have argued that P
{2}
ε ∼ R2

∗P
{0}
ε ∼ R2

∗/ng, if stochasticity in the galaxy number density is
close to Poisson. We now give a rough order-of-magnitude estimate for the stochastic amplitudes of the

velocity. First, for P
{1}
εεv , one can follow the reasoning described after Eq. (2.82), to roughly estimate that

this term should not be larger than of order R2
∗HP {0}εε , and, similarly, P

{2}
εv . R4

∗H2P
{0}
εε . We can provide

a sharper estimate by adopting a concrete physical model. Let us assume that the stochastic velocity
contribution of a given galaxy sample is due to the virial velocities within the host halos of mass M and
Eulerian radius RE of these galaxies. The variance of virial velocities is σ2

v,vir ≈ GM/RE . Matching this
variance to Eq. (2.93) yields

σ2
v,vir =

∫

k

Pεv (k) ∼ 1

2π2

∫ 1/RE

0

k4dk P {2}εv ⇒ P {2}εv ∼
GM

RE
R5
E . (2.94)

Here, we have cut off the integral at k ∼ 1/RE , and neglected all prefactors since this is a very rough

estimate. Since Φ ∼ GM/RE is approximately mass-independent, we find that P
{2}
εv scales as R5

E , or M5/3.
This is the same scaling as dynamical mass estimates based on velocity statistics (e.g., [181]).

Including the stochastic terms listed here completes the parametrization of bias under the assumptions
listed in the beginning of Sec. 2.5: General Relativity, a non-relativistic matter fluid, and adiabatic Gaussian
initial conditions. The general bias expansion is summarized in Sec. 2.11.
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2.9 Galaxy bias in the relativistic context

So far in this section, we have restricted our discussion of galaxy bias to sub-horizon scales k � aH,
where most of the information in large-scale structure resides. This is because most of the measured modes
are small-scale modes, while a survey with comoving volume of order H−3

0 will only measure a handful of
modes with k ∼ H0. However, future large-scale galaxy surveys will have sufficiently large volume to probe
such scales. We now consider how the bias can be extended to describe the galaxy density contrast on
arbitrarily large scales.

It is important to note that the leading corrections to the sub-horizon treatment of bias, which describes
the rest-frame galaxy density, scale as (aH/k)2, and are thus very small unless we consider very large scales.
On those large scales, linear perturbation theory is an excellent approximation. Hence, for most practical
purposes, it is sufficient to consider relativistic effects at linear order. In fact, the only requirement necessary
to make the bias expansion consistent in the relativistic context at linear order is that the time slicing
(constant-time hypersurface) chosen to perform the bias expansion must correspond to a constant proper
time of comoving observers, which is realized by working in the synchronous-comoving gauge [182, 95, 96]
(Ref. [183, 184] showed how to extend this to second order in relativistic perturbations). The reason is that,
apart from the local density, the galaxy density depends on the local age of the Universe, or proper time
along the fluid trajectory up to the time of observation. In other words, at fixed proper time, galaxies are
at a fixed evolutionary stage, in which case the bias expansion in terms of the galaxy density is sufficient at
linear order.

The conformal Fermi coordinates (CFC) introduced in [145, 146] provide a useful way of defining bias
operators in the relativistic context. The CFC are the natural coordinates a cosmologist living in a given
galaxy would use. Briefly, the construction of CFC starts from a time-like geodesic, namely the fluid
trajectory xµfl(tF ) parametrized by the proper time tF , with tangent vector Uµ ≡ ∂xµfl(tF )/∂tF . This frame
can be constructed locally for any spacetime, as long as a geodesic congruence exists within a neighborhood
of the geodesic considered, and is thus not restricted to the assumption of a perturbed FRW spacetime.
However, in the actual Universe, which has perturbations on all scales, we perform the construction on a
coarse-grained metric which only has contributions from Fourier modes below some cutoff k < Λ. Then, the
velocity 4-divergence ϑ ≡ ∇µUµ along the fluid defines the local Hubble rate HF (tF ) ≡ ϑ/3. The Hubble
rate can be integrated to yield the local scale factor aF (tF ) (up to an arbitrary overall normalization). One
can then construct a coordinate system with time coordinate τF defined through aF dτF = dtF so that the
metric becomes

gFµν(xF ) = a2
F (τF )

[
ηµν +Aµν,kl(τF )xkFx

l
F +O(x3

F )
]
. (2.95)

That is, along the entire trajectory xµfl(τ), all large-scale cosmological perturbations (k < Λ) are absorbed
into the local scale factor aF , and the corrections ∝ x2

F , Aµν,kl. Note that A00,kl is trace-free with respect
to kl, A00,klδ

kl = 0.
For nonrelativistic tracers such as galaxies, the spatial components of the metric are dynamically ir-

relevant, and the CFC spacetime is characterized completely by the local expansion rate HF (τF ) and the
purely tidal perturbation to the time-time component of the metric, Kij

F ≡ A00,ij . These are the same 6
degrees of freedom as found in the quasi-Newtonian description described in the previous sections. Thus, a
fully relativistic basis of bias operators is given by all scalar combinations of HF and Kij

F , as well as their
derivatives with respect to τF and xiF . The latter are suppressed by the spatial scale R∗ as before.

To illustrate this, let us consider an adiabatic perturbation at linear order. As discussed above, this is
the most relevant case. As shown in [185], the isotropic part of the perturbation is absorbed into aF , which
then obeys the Friedmann equation,

H2
F =

8πG

3
%F +

KF

a2
F

, (2.96)

in terms of the local physical (not comoving) CFC-frame matter density %F and curvature KF = const. That
is, the local matter density together with the initial conditions (curvature) completely specifies the isotropic
part of the spacetime along the entire fluid trajectory. The CFC approach thus provides one proof of the
separate universe conjecture [186, 187, 188, 95, 189]. Moreover, KF is directly related to the matter density
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perturbation δsc in synchronous-comoving gauge by [95, 185]

KF

H2
0

=
5

3
Ωm0

δsc(τ)

Dmd(τ)
, (2.97)

where Dmd(τ) is the linear growth factor normalized to a(τ) during matter domination (for a(τ)� 1). δsc
is in turn proportional to ∇2Φ in conformal-Newtonian gauge. This shows that, at linear order, the physical
variable with respect to which galaxies are biased is δsc or equivalently ∇2Φ [190, 95, 96]. Note that the
separate-universe picture holds fully nonlinearly for isotropic perturbations. For such configurations, the
complete bias expansion thus consists of powers of KF or equivalently %F (and spatial derivatives thereof).
This provides another interpretation for the fact that we do not have to include convective time derivatives
of δ in the bias expansion. On the other hand, the anisotropic part is encoded in the trace-free perturbations
A00,kl = Kkl

F and Aij,kl = δijK
kl
F , while A0i,kl = 0.

Beyond linear order, there are nontrivial relativistic effects. First, relativistic effects due to the motion
of galaxies enter at order (v/c)2 ∼ 10−5(v/[1000 km s−1])2. Second, the galaxy density couples to vector
and tensor metric perturbations, which in turn are produced by large-scale structure at nonlinear order
[191, 192, 193] (and primordially, in case of tensor modes); one can show [150] that in the CFC frame, the
nonlinearly generated vector and tensor modes only start to contribute at third order in perturbations.9

These “genuine” relativistic effects in large-scale structure, while interesting, are most likely too small to be
of observational relevance for current and upcoming surveys.

Apart from such genuine relativistic effects, the results of this section give a rigorous description of galaxy
clustering in relativistic perturbation theory in a specific frame, the CFC. In order to connect to observations,
we then have to transform the galaxy density in CFC to observed coordinates. This is straightforward to
do, given that the galaxy number density transforms as the 0-component of a four-vector, namely the
galaxy current vector jµg . The coordinate transformation is determined by tracing photon geodesics from
the galaxy’s position to the observer. We shall describe this in Sec. 9.3.

2.10 Renormalization: bare vs. physical bias parameters*

2.10.1 Motivation

So far in Sec. 2, we have enumerated which bias terms to include to express the galaxy density in an
expansion of the form

δg(x, τ) =
∑

O

[bO(τ) + εO(x, τ)]O(x, τ) + ε(x, τ) . (2.98)

However, there is a subtlety when relating this bias expansion to the statistics of galaxies. To understand
this issue, let us disregard nonlinear gravitational evolution for the moment, and go back to the case of
LIMD bias in Lagrangian space considered in Sec. 2.1. We start from the LIMD bias expansion Eq. (2.10),
now written as

δLg (q) = c1δR(q) +
1

2
c2
(
δ2
R(q)− σ2(R)

)
+

1

6
c3δ

3
R(q) + · · · , (2.99)

where we have dropped the superscript (1) on the matter density δR for clarity, and denoted the Lagrangian

bias parameters with ci, for a reason that will become clear shortly. Now, given that δR = δ
(1)
R is Gaussian,

we can easily work out the two-point function of δLg in Lagrangian space, given Eq. (2.99):

ξLg (r) =
[
c21 + c1c3σ

2(R)
]
ξL,R(r) +

1

2
c22[ξL,R(r)]2 + · · · . (2.100)

9In case of galaxy shapes, primordial tensor modes actually lead to effects at linear order which can become relevant on
large scales [194, 195].

* This section is of a more technical nature and is not essential for the remainder of the review. However, we encourage
readers to go through the non-technical introduction, Sec. 2.10.1.
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We immediately see a difference to the expansion Eq. (2.7) that we obtained from an explicit calculation of
the pair probability in Sec. 2.1: while in Eq. (2.7), the coefficient of the leading term ξL,R(r) is (bL1 )2, here we
have a coefficient c1(c1 + c3σ

2(R)). Moreover, if we were to continue the expansion in Eq. (2.99) to higher
orders, we would obtain additional contributions to ξLg (r) that are proportional to c1c2n+1σ

2n(R)ξL,R(r)
and thus contribute at leading order on large scales. This is clearly in contradiction with the spirit of the
perturbative bias expansion, which is based on the principle that the contributions of higher-order bias
terms are suppressed on large scales. Further, if we choose a small smoothing scale R such that σ(R) is not
much less than 1, then these higher-order contributions change the amplitude of ξLg (r) by order one. This
contradicts Sec. 2.6, where we have argued that any smoothing scale involved should be irrelevant on large
scales.

On the other hand, Eq. (2.7) shows exactly the desired behavior, with higher-order bias terms (as well as
the effects of smoothing) being suppressed on large scales. The solution to the undesirable situation posed
by Eq. (2.100) is that the coefficients cn in the bias expansion Eq. (2.99) are not physical, but “bare” bias
parameters. Instead, the physical bias parameters are introduced as coefficients of renormalized operators.
In the present case,

c1δR → bL1 [δR] ≡ bL1 δR ; c3δ
3
R → bL3 [δ3

R] ≡ bL3 (δ3
R − 3σ2(R)δR) . (2.101)

Inserting these relations into Eq. (2.99), we see that this removes the undesired contribution to ξLg (r), and we

recover ξLg (r) = (bL1 )2ξL,R(r) in the large-scale limit. An equivalent approach is to define bL1 ≡ c1+c3σ
2(R)/2,

as done in [76]. Here, the scale R should really be seen as an arbitrary smoothing scale (denoted as Λ−1

below) whose value becomes irrelevant in the end. Thus, renormalization is an essential part of the connection
between bias expansion and galaxy statistics.

In the case of a Gaussian density field, the renormalized LIMD operators are simply given at all orders
by Hermite polynomials [99],

[δN ] = σN (R)HN

(
δR
σ(R)

)
. (2.102)

Suitable orthogonal polynomials can be defined for other operators, such as (∇δ)2 [196]. This approach is
discussed in Sec. 6.6.1 in the context of peak theory, but it is applicable to any Lagrangian bias scheme.
However, this method cannot be directly applied to the evolved, Eulerian density field as the latter is highly
non-Gaussian on small scales. Nevertheless, even in this case, renormalized operators can be systematically
derived order by order in perturbation theory. We stress again that all physical statements about the
values of bias parameters, for example a large bias for rare objects, refer to the physical, renormalized bias
parameters, i.e. the coefficients of the renormalized operators.

The aim of this section is to describe in detail the renormalization procedure that connects the bias
expansion derived so far for the evolved galaxy density field to the observable statistics of galaxies on large
scales. In the course of this derivation, we make the physical arguments of the previous sections more formal
and rigorous, and connect to the EFT language ([143, 83, 88]; see [144] for a review). Renormalization in
the context of galaxy bias was first considered by [76], and later expanded on in [100, 197, 88, 131].

2.10.2 Equivalence principle and local gravitational observables

In essence, the perturbative bias expansion attempts to connect the proper rest-frame density of galaxies
at some time τ and position x to the initial conditions (for example, produced by inflation) at time τ = 0.
In full generality, the proper comoving density ng can be written as

ng(x, τ) = Fg[Φ
(1)(y)](x, τ) , (2.103)

where Fg is a nonlinear functional of the initial potential perturbations Φ(1)(y) = Φ(y, τ = 0). The
assumption of statistical homogeneity of the Universe dictates that the functional be invariant under a
constant spatial coordinate shift x→ x+ξ. This implies that Fg only involves the combination y−x. More
generally, ng, being the 0-component of the current vector jµg , has specific transformation properties under
general coordinate (or gauge) transformations. In particular, it transforms as a 3-scalar under coordinate
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rotations on a fixed time slice, a property we have already used from the beginning (e.g., when introducing
the term (Kij)

2 in Sec. 2.3).
A particular generalized Galilean coordinate transformation, which corresponds to a time-dependent

but spatially uniform coordinate shift, is of special relevance to large-scale structure [198, 199, 200]. In
General Relativity, the equivalence principle holds, which implies that we can remove a pure-gradient metric
perturbation by going to the free-falling frame of comoving observers, who move on trajectories xfl(τ ′)
with τ ′ ∈ [0, τ ]. Specifically, for the conformal-Newtonian gauge metric Eq. (1.2), a pure-gradient potential
perturbation,

Φ(x, τ) = Ψ(x, τ) = A(τ) · x , (2.104)

can be removed by performing a spatially constant but time-dependent spatial translation,

x→ x+ ξ(τ); v → v + ∂τξ(τ) . (2.105)

Under this translation, the 00-component of the metric transforms as

Φ→ Φ− (∂2
τξ +H∂τξ) · x . (2.106)

Thus, if we demand that ξ(τ) solves

∂

∂τ2
ξ +H ∂

∂τ
ξ = ∇Φ(τ) = A(τ) , (2.107)

then ∇Φ vanishes in the transformed coordinates at all times. We recognize Eq. (2.107) as the equation for
(minus) the Lagrangian displacement ξ = −s, Eq. (2.25). That is, x+ ξ(τ) corresponds to the Lagrangian
coordinate of a fluid trajectory in the presence of a long-wavelength (pure-gradient) mode. An observer
comoving with this trajectory will experience no gravitational force, as ∇Φ = 0. Clearly however, we
can only remove first spatial derivatives of the potential, while second spatial derivatives lead to locally
observable gravitational effects. This is the physical content of the well-known consistency relations in
large-scale structure [201, 202, 200, 203, 204, 205], which phrase the requirement that the local physics must
be invariant under time-dependent translations as conditions relating certain limits of N -point functions to
(N − 1)-point functions. Following our discussion, the consistency relations hold for biased tracers as well
[206, 207], on scales much larger than R∗.

Working in the fluid coordinates, we can then write Fg fully generally as

ng(x, τ) = Fg

[
∂i∂jΦ(x′fl(τ ′), τ ′)

]
(x, τ) , (2.108)

where Fg now only involves the difference x′fl − xfl at various times τ ′ (with 0 ≤ τ ′ ≤ τ). We could have
equivalently written Eq. (2.108) in terms of ∂q,i∂q,jΦ(q, τ). This nonlinear functional of ∂i∂jΦ is significantly
more restrictive than the full functional Fg[Φ]. Moreover, since ∂i∂jΦ corresponds to the leading locally
observable effect of the gravitational field, this way of writing the functional isolates the actual physical
impact of long-wavelength perturbations on the galaxy density. On the other hand, Fg[Φ

(1)(y)] contains a
large number of unphysical gauge modes. The price we have payed for this reduction in degrees of freedom
is that we need to include the dependence on ∂i∂jΦ along the entire fluid trajectory. Physically, this makes
sense, since, as argued in Sec. 2.5.1, the formation of halos and galaxies is not an instantaneous process and
thus depends on the local environment throughout cosmic time. We also see that the dependence is now on
the full potential Φ rather than the initial potential Φ(1), a point to which we will return below.

The requirement that ng be a spatial scalar is then simply achieved by only allowing terms where all
indices in the factors of ∂i∂jΦ are contracted. We stress again that any dependence on other local observables,
such as the matter density or velocity shear, and time derivatives thereof, are implicitly included in the
arguments listed in Eq. (2.108), as these can themselves be expressed as integrals over ∂i∂jΦ(x′fl) via the
equations of motion. One might wonder whether the relation Eq. (2.108) depends on when the spatial
derivatives are taken, e.g. in Eulerian frame (∂x,i∂x,j) or Lagrangian frame (∂q,i∂q,j). However, the different
spatial derivatives can be transformed into each other (see Tab. 5), where the transformation itself just
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depends on ∂i∂jΦ along the fluid trajectory. Hence, the expansion is independent of the time slice chosen
for the spatial derivatives.

Further, following our physical arguments in Sec. 2.5.1, there is a spatial scale R∗ such that the functional
kernel in Fg becomes negligible if |x′fl−xfl| � R∗. In general, R∗ is a function of time τ ′; in this case, what
we refer to as R∗ should always be seen as maxτ ′ [R∗(τ

′)].
We now expand the functional in Eq. (2.108) in time. For this we consider an operator O(x′fl(τ ′), τ ′) which

is composed of any nonlinear combination of ∂i∂jΦ(x′fl(τ ′), τ ′) (we will deal with the functional dependence
on x′fl below). The time dependence then formally is [as in Eq. (2.57)]

∫
dτ ′ FO(τ ; τ ′)O(x′fl(τ ′), τ ′) =

∞∑

n=0

1

n!

[∫
dτ ′(τ ′ − τ)nFO(τ ; τ ′)

](
D

Dτ

)n
O(x′fl(τ), τ) , (2.109)

where we have expanded O in terms of convective time derivatives around τ ′ = τ , and x′fl(τ) denotes a fluid
trajectory in the vicinity of xfl(τ). Of course, we could have equivalently expanded around τ = 0. The
factors in brackets are coefficients which only depend on τ . With this, the functional Eq. (2.108) can be
written on a single time slice, by including convective derivatives of all combinations of ∂i∂jΦ:

ng(x, τ) = Fg

[
∂i∂jΦ(x′, τ),D∂i∂jΦ(x′, τ)/Dτ, . . . ; τ

]
(x) , (2.110)

which is understood to also include nonlinear mixed terms such as (∂k∂lΦ)D(∂k∂lΦ)/Dτ [including these
terms captures functionals involving products of operators such as

∫
dτ ′
∫
dτ ′′F (τ ; τ ′, τ ′′)O1(τ ′)O2(τ ′′)].

Eq. (2.110) is still a functional in terms of the spatial dependence x′, but is local in time. Again, any
reference time τ̃ 6= τ could be chosen for the expansion on the right-hand side, as long as x is replaced with
xfl(τ̃).

2.10.3 Coarse graining and bare bias expansion

In the context of the perturbative bias expansion, our goal is to isolate the dependence of ng(x, τ) on
large-scale perturbations, with the ultimate goal of deriving statistics of ng for some large scale r, or Fourier
wavenumber k ∝ 1/r. The theory itself, once applied to measurements, will tell us what “large” here means
precisely.

Let us coarse-grain, or filter, Eq. (2.110) on a spatial scale Λ−1 which is much smaller than r, or,
equivalently, Λ � k for all wavenumbers k of interest (see Fig. 8). Since this is a crucial step, we carefully
describe it here. We let WΛ(|x|) denote the filtering kernel, assumed to be isotropic and normalized to unity
(which is a natural assumption since any anisotropy would correspond to introducing preferred directions).
We denote any filtered quantity with a subscript Λ, e.g. ΦΛ. In EFT language, Λ provides our UV
(ultraviolet; high-energy, or small-scale) cutoff, introduced to render loop integrals finite. We can think of
δΛ(x) ∝ ∇2ΦΛ as the average density perturbation within a region U of size Λ−1 centered on x (dotted
region in Fig. 8). Complementary to ΦΛ, we define the small-scale potential perturbations as

Φs(x, τ) ≡ Φ(x, τ)− ΦΛ(x, τ) . (2.111)

Note that the cutoff Λ is merely a computational tool whose value we are free to determine; any observable,
including statistics of galaxies as well as the physical bias parameters, have to be independent of the value
of Λ. This can in fact be used as a sanity check for any predictions for observables. Thus, Λ−1 must be
distinguished from the physical scaleR∗ which controls the amplitude of the higher derivative bias parameters
discussed in Sec. 2.6, and is, for halos, typically of order the Lagrangian radius. In fact, demanding that
galaxy statistics be independent of Λ forces us to introduce precisely these higher derivative terms with
physical renormalized coefficients, as we will see in Sec. 2.10.5. However, going step by step, we will again
start by neglecting higher-derivative terms. In this case, we implicitly assume that Λ−1 is larger than R∗.

Note that we could have equally chosen to perform the coarse-graining in terms of the initial potential
perturbations Φ(1). The nonlinear gravitational potential in Eulerian coordinates, Φ(x, τ), and Φ(1)(q) are
nonlinearly related. Their relation, however, can be expanded in terms of the same operators as we will
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Figure 8: Sketch of the setup and quantities used in the derivation of bias renormalization. Time runs vertically as in Fig. 6.
The observed galaxies reside at Eulerian positions x1, x2 and each form within a spacetime region centered around the fluid
trajectories to each point as in Fig. 6. The top of the plot corresponds to the epoch of observation, while the bottom denotes
the initial condition (Lagrangian positions q1, q2). The blue line near the bottom shows the total initial (linear) density field.
We coarse-grain the galaxy and matter fields on the scale Λ−1 (dotted region), resulting in a smoothed large-scale density field
δΛ shown by red solid lines. The black line at the bottom shows the small-scale density field in the initial conditions, which is
statistically the same everywhere. For clarity, we only represent the density field, although in reality the galaxy density is a
function of all components of ∂i∂jΦ as well as its convective time derivatives.

include in the bias expansion. Since coarse-graining (convolution) and multiplication do not commute, there
are differences in the result obtained by coarse-graining in Φ(1); however, these differences are at higher
order in spatial derivatives, and will be absorbed by higher derivative operators (Sec. 2.10.5).

If we make Λ sufficiently small (that is, the smoothing scale sufficiently large), then the functional
dependence on ∂i∂jΦ in Eq. (2.110) separates into an ordinary [as in the local expansion in Eq. (2.56)]
dependence on the variable ∂i∂jΦΛ(x), while the functional dependence is restricted to ∂i∂jΦs(x

′):

ng,Λ(x) = Fg,Λ [∂i∂jΦΛ(x), D∂i∂jΦΛ(x)/Dτ, . . . ; ∂i∂jΦs(x
′), D∂i∂jΦs(x

′)/Dτ, . . . ] , (2.112)

where here and in the following we suppress the time arguments τ for clarity, since they are the same on
both sides of Eq. (2.112). We now prove this statement. First, Eq. (2.112) holds if and only if Λ−1 is
much larger than R∗, the spatial scale over which the functional in Eq. (2.110) has significant support. We
now expand Eq. (2.110) into a series of linear, quadratic, and higher-order functionals, in analogy with the
expansion of the functional in time Eq. (2.109). By inserting Φ = ΦΛ + Φs [Eq. (2.111)], any term without
time derivatives in this expansion can be written as
[
n∏

i=1

∫
d3xi

]
F

(n)
i1j1···injn(x1, · · · ,xn)∂i1∂j1Φ(xfl + x1) · · · ∂in∂jnΦ(xfl + xn) (2.113)

'
n∑

k=0

n!

(n− k)!
∂i1∂j1ΦΛ(xfl) · · · ∂ik∂jkΦΛ(xfl)

{[
n∏

i=1

∫
d3xi

]
F

(n)
i1j1···injn(x1, · · ·xn)

× ∂ik+1
∂jk+1

Φs(xfl + xk+1) · · · ∂in∂jnΦs(xfl + xn)

}
,
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where we have approximated ΦΛ(xfl[τ ]) as constant over the region over which the kernel F (n) is nonzero,
as implied by the condition Λ−1 � R∗. This allowed us to pull the factors of ΦΛ(xfl + xi) outside the
integral. In Sec. 2.10.5 we will show that going beyond this approximation leads to the higher-derivative

terms discussed in Sec. 2.6. Further, we have assumed without loss of generality that the kernels F
(n)
i1j1···injn

are symmetrized over the indices ikjk and the associated spatial positions xk. The same reasoning also goes
through for terms with time derivatives. If we think of the spatial derivatives as being with respect to q,
i.e. Lagrangian derivatives, then D/Dτ commutes with ∂i. For Eulerian spatial derivatives, this is not the
case, however the term vi∂i in the convective derivative cancels via the time dependence that appears in the
spatial argument xfl(τ) of all instances of the potential Φ.

The terms in curly brackets in Eq. (2.113) correspond to weighted integrals over the small-scale fluctua-
tions. It is then clear that we can write Eq. (2.112) as

ng,Λ(x) =
∑

1, OΛ

cO,Λ [∂i∂jΦs, D∂i∂jΦs/Dτ, . . . ]OΛ(x) , (2.114)

where the coefficients cO,Λ[∂i∂jΦs, · · · ] are still functionals of the small-scale modes ∂i∂jΦs. The sum runs
over 1 and all scalar operators constructed out of ∂i∂jΦΛ and its time derivatives, i.e. precisely the set
described in Sec. 2.5.1, with a zeroth-order constant related to the mean density of the galaxies. However,
here the operators are constructed out of the coarse-grained quantity ∂i∂jΦΛ. We have made this explicit
through the subscript Λ.

Now, by construction, the short modes have no support at low k in Fourier space. Specifically, Φs(k) =

[1−WΛ(k)]Φ(k)
k→0−→ O(k2Λ2)Φ(k). The small-scale modes in the initial conditions Φ

(1)
s are then independent

of long-wavelength modes Φ
(1)
Λ for Gaussian initial conditions (see lower panel of Fig. 8). At finite time,

they do depend on long-wavelength modes through the gravitational influence of the latter. However, the
gravitational effects on the evolution of the small-scale modes are also precisely captured by ∂i∂jΦΛ and its
convective time derivatives, i.e. the operators OΛ that appear in the sum in Eq. (2.114). This can be shown
for example by considering the Lagrangian evolution equations of the matter density field (Sec. 4 of [131]).
Then, at any given time, we can expand the evolved small-scale statistics and their time derivatives in terms

of the long wavelength operators OΛ and the initial small-scale modes Φ
(1)
s in Eq. (2.114). Finally, we reorder

the sum to write the coefficients cO,Λ as functionals of the small-scale modes in the initial conditions:

cO,Λ [∂i∂jΦs, D∂i∂jΦs/Dτ, . . . ]→ cO,Λ[∂i∂jΦ
(1)
s ] . (2.115)

Note that we can only do this reordering consistently if the basis contains all operators that appear in the
solution for the gravitational evolution of the small-scale modes Φs up to a given order in perturbation
theory. Only in this case is the operator basis closed under renormalization, which we will discuss below.

Since, on large scales, the small-scale initial conditions Φ
(1)
s are uncorrelated with each other as well as

the coarse-grained operators, the dependence of cO,Λ on ∂i∂jΦ
(1)
s can be completely described by stochastic

fields εΛ,O; that is, fields that are entirely characterized by their one-point PDF. This is of course only valid
on scales much larger than Λ−1. We then obtain the expression

ng,Λ(x) = n0,Λ

[
1 + εΛ(x) +

∑

O

{
cO,Λ + εO,Λ(x)

}
OΛ(x)

]
, (2.116)

where the sum runs over the operators described in Sec. 2.5, and εO,Λ are stochastic fields with zero expecta-
tion value which are uncorrelated with any other coarse-grained fields (in particular the OΛ), and only have
zero-lag correlations among themselves. We have pulled out an overall factor n0,Λ in Eq. (2.116), so that
the quantities in brackets are dimensionless. Note that the term c1,Λ[· · · ] in Eq. (2.114) now corresponds to
εΛ.

2.10.4 Renormalizing the bias parameters

We see that the bias expansion written in Eq. (2.116) contains exactly the operators of the general local
bias expansion described in Sec. 2.5. However, now all terms in Eq. (2.116) depend on the coarse-graining
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scale Λ, which is an arbitrary cutoff introduced in the calculation. Nevertheless, if we have included all
necessary operators in the bias expansion up to a given order in perturbation theory, we know that we
should be able to describe the statistics of ng up to that order without making reference to an unphysical
smoothing scale Λ. The goal of renormalization is to reorder the sum in Eq. (2.116) into a sum over
Λ-independent operators multiplied by Λ-independent parameters:

ng(x) = ng

[
1 + [ε] +

∑

O

{
bO + [εO]

}
[O]

]
, (2.117)

where [O] are renormalized operators which we will discuss below and bO, [εO] are the physical, renormalized
bias coefficients and stochastic fields. Clearly, Eq. (2.117) is not unique, as different linear combinations
of operators [O] will yield an equivalent expression with different bias parameters. However, any complete
renormalized bias expansion of the form Eq. (2.117) can be related unambiguously to any other (see Ap-
pendix C). In the following, we will focus on the operators [O] and biases bO, and will not further consider
the stochastic contributions; their renormalization can be derived analogously.

The reason why we need to renormalize the bias coefficients is that, when calculating the large-scale
statistics of ng, we obtain results that are strongly dependent on the artificial coarse-graining scale Λ if
we use the “bare” bias expansion Eq. (2.116). This already becomes apparent when taking the ensemble
average of Eq. (2.116), which should yield the observed mean density of galaxies 〈ng,Λ〉 = ng. We obtain

ng = 〈ng,Λ〉 = n0,Λ

[
1 +

∑

O

cO,Λ〈OΛ〉
]

= n0,Λ

[
1 + cδ2,Λ〈δ2

Λ〉+ cK2,Λ〈(Kij
Λ )2〉+ · · ·

]
, (2.118)

where we have used the fact that 〈εΛ〉 = 0 = 〈εO,Λ〉, and have written the leading terms at second order.
These terms thus renormalize the “bare” mean number density n0,Λ, which is physically meaningless due to
its Λ-dependence. We can infer from this relation, and the corresponding ensemble average of Eq. (2.117),
our first renormalization condition for the operators, namely that 〈[O]〉 = 0. Consider O = δ2 as an example.
We can define

[δ2] = δ2
Λ − σ2(Λ) + · · · , where σ2(Λ) ≡

〈(
δ

(1)
Λ

)2
〉
, (2.119)

and the ellipsis stands for higher-order contributions. Clearly, 〈[δ2]〉 = 0 at lowest order, as desired. This
trivial renormalization can clearly be performed for all other operators as well.

Next, let us consider the galaxy-matter cross-power spectrum, which is the simplest way to estimate the
linear bias bδ (Sec. 4.1). For demonstration, we include both the leading term and the contribution ∝ δ2

Λ in
the bare bias expansion:

〈δg(k)δ(k′)〉 = cδ,Λ〈δΛ(k)δ(k′)〉+ cδ2,Λ〈(δ2
Λ)(k)δ(k′)〉+ · · · , (2.120)

where we have inserted Eq. (2.116) and the dots denote remaining second-order as well as higher-order
terms. Our goal is to identify the bias bδ on very large scales k → 0 through

〈δg(k)δ(k′)〉 k→0
= bδ〈δ(1)(k)δ(1)(k′)〉 . (2.121)

Since, for fixed Λ, both δΛ and δ asymptote to the linear density field δ(1) in the large-scale limit, we see
that the first term in Eq. (2.120) already shows the desired behavior. That is, at this order there is no
need to renormalize O = δ, and we have [δ] = δ (this does not imply however that bδ = cδ,Λ, as we will see
below; only in the limit Λ → 0 (infinite smoothing scale) does the bare bias parameter asymptote to the
renormalized one).

This is not the end of the story however. Let us consider the second contribution in Eq. (2.120). Note that
(δ2

Λ)(k) involves a convolution in Fourier space. That is, small-scale (high-wavenumber) modes contribute to
this term, no matter how small k is. Given the assumed Gaussian initial conditions, the leading contribution
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to 〈(δ2
Λ)δ〉 appears at second order in perturbation theory, and is obtained by replacing each instance of δΛ

with δ
(2)
Λ (the third possible contribution vanishes). This yields

〈(δ2
Λ)(k)δ(k′)〉′

∣∣∣
lo

= 2
〈(
δ

(1)
Λ δ

(2)
Λ

)
(k)δ(1)(k′)

〉′

= 2

∫

p1

∫

p2

∫

p3

(2π)3δD(k − p123)WΛ(p1)WΛ(|p23|)F2(p2,p3)

× 〈δ(1)(p1)δ(1)(p2)δ(1)(p3)δ(1)(k′)〉′

=

[
4

∫

p

WΛ(p)WΛ(|p+ k|)F2(p,k)PL(p)

]
PL(k)

p�k
=

[
4

17

21

∫

p

[WΛ(p)]2PL(p)

]
PL(k) =

68

21
σ2(Λ)PL(k) , (2.122)

where F2 is the second-order perturbation theory kernel [Eq. (B.13)]. Here, a subscript “LO” denotes the
leading-order expression of the correlator, that is, at the lowest non-vanishing order in perturbation theory.
In the last line, we have assumed the large-scale limit k → 0. Since the dominant contribution to the
momentum integral comes from modes p ∼ Λ � k, it is appropriate to assume p � k. In this limit, the
angle-average of F2 yields 17/21. Thus, the second-order bare bias operator δ2

Λ leads to a contribution that
is of the exact same shape on large scales as the linear bias term, namely ∝ PL(k), but depends on the
variance σ2(Λ) of the density field at the cutoff scale. This is clearly unsatisfactory, and very reminiscent of
the issue we encountered with the cubic bias term in Sec. 2.10.1. Fortunately, there is a simple remedy: we
add δΛ as counter-term to [δ2], extending Eq. (2.119) to

[δ2] = δ2
Λ − σ2(Λ)

[
1 +

68

21
δΛ

]
+ · · · . (2.123)

The same exercise can then be performed for the other bare bias operators, ensuring that Eq. (2.121) actually
holds.

However, the large-scale limit of the two-point function Eq. (2.121) is not the only constraint. Consider
for example the galaxy-matter-matter three-point function, which on large scales allows for a measurement
of the two (physical, renormalized) second-order biases bδ2 , bK2 , as will be described in detail in Sec. 4.1.
Specifically, the desired large-scale limit of the three-point function is

〈δg(k)δ(k1)δ(k2)〉 k1,k2→0
= bδ〈δ(k)δ(k1)δ(k2)〉lo + bδ2〈(δ2)(k)δ(k1)δ(k2)〉lo

+ bK2〈(Kij)
2(k)δ(k1)δ(k2)〉lo , (2.124)

where, again, a subscript “LO” denotes the leading-order expression in perturbation theory. Note in partic-
ular the absence of the coarse-graining scale Λ in this expression; technically, this is because the right-hand
side does not contain any loop integrals.

In the bare bias expansion, Eq. (2.124) involves cδ,Λ〈δΛ(k)δ(k1)δ(k2)〉. As in the case of the two-point
function, this already asymptotes to the leading-order expression in Eq. (2.124) in the large-scale limit. Thus,
we again do not need to renormalize the operator δ. This in fact continues at all orders in perturbation
theory (but only at the level of the local bias expansion excluding higher-derivative operators), and is related
to the fact that we did not need to include tr Π[n] in the bias expansion in Sec. 2.5. On the other hand, now
the expression Eq. (2.123) is not sufficient to renormalize δ2

Λ, as it yields a cutoff-dependent result at next-
to-leading (NLO, or 1-loop) order, which is fourth order in perturbations, when inserted into Eq. (2.124).
In this case, we can cure the unphysical behavior by adding (δΛ)2 and (Kij

Λ )2 as counter-terms. Specifically,
Ref. [197] derived

[δ2] = δ2
Λ − σ2(Λ)

[
1 +

68

21
δΛ +

24032

6615
δ2
Λ +

254

2205
(Kij,Λ)2

]
. (2.125)
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Of course, going to higher order in perturbations requires the addition of more counter-terms, such as
σ2(Λ)δ3

Λ, as well as corrections to lower-order counter-terms such as σ4(Λ)δΛ, each multiplied by a coeffi-

cient determined through the renormalization conditions. Similarly, (Kij
Λ )2 also needs to be renormalized.

Crucially however, we do not need these relations to derive the large-scale galaxy statistics: at leading order,
we can always be assured that the bias parameters that appear are the physical ones, thanks to renormal-
ization. When including next-to-leading contributions, i.e. loop terms, we can simply drop those terms that
are canceled by counter-terms to lower-order operators. They are easily identified by having the same scale
dependence as the contribution from the lower-order operator, but with a cutoff-dependent amplitude (cf.
Eq. (2.122); this will be illustrated in Sec. 4.1.4).

Finally, after these concrete examples, we can turn to systematically defining the conditions which the
renormalized operators need to satisfy. A necessary condition for a properly renormalized operator O in
the bias expansion is that all N -point auto- and cross-correlations of the galaxy density asymptote to
their leading-order expressions on large scales. This is crucial, as it ensures that a single set of physical bias
parameters describes all statistics of a given galaxy sample. Achieving this result might seem like a daunting
task; however, many of the auto- and cross-correlations are redundant. Since, in our perturbative bias
expansion, all operators are constructed out of ∂i∂jΦ

(1), or equivalently in Fourier space (kikj/k
2)δ(1)(k),

it is sufficient to enforce the following renormalization conditions for each operator in the bias expansion
[197]:

lim
ki→0
〈[O](k)δ(1)(k1) · · · δ(1)(kn)〉 = 〈O(k)δ(1)(k1) · · · δ(1)(kn)〉lo , (2.126)

where n = 0, 1, 2, .... The n = 0 condition simply reads 〈[O](x)〉 = 0, which is what we found after
Eq. (2.118). At any order in perturbation theory, only a finite set of these conditions adds new constraints.
Note that the constraints Eq. (2.126) are sufficient to ensure that all statistics where [O] contributes at
leading order, for example, the three-point function in case of O = δ2, approach the leading-order result
on large scales. This is because Eq. (2.126) can be taken as building block to construct all other auto-
and cross-correlations between any operators in the renormalized set. When [O] appears in loop integrals,
it can still lead to significant contributions at low k that depend on small-scale modes. However, these
contributions can be expanded in powers of k2 (they are analytic), and hence are absorbed by counter-
terms to the renormalized stochastic fields [ε], [εO], which show precisely the same large-scale behavior [cf.
Eq. (2.88)]. We will encounter an example of this kind in Sec. 4.1.4 for O = δ2.

In general, we can write the renormalized operators as a sum over bare operators with Λ-dependent
coefficients,

[O] =
∑

O′

ZOO′(Λ)O′ . (2.127)

The relation between the bare bias parameters cO,Λ and their renormalized counterparts bO is then given
by matching coefficients in the respective expansions, Eq. (2.116) and Eq. (2.117) (see also Appendix C):

bO =
∑

O′

(Z−1)O′O(Λ)cO′,Λ , (2.128)

which involves the transpose of the inverse of the coefficient matrix ZOO′ . That is, in order to obtain an
expression for the renormalized bias bO, we need to know which renormalized operators [O′] contain O as
counter-term. For this reason, even though δ is not renormalized, so that ZδO′ = 0 for any O′ 6= δ, the
same is not true for bδ, since δ appears as a counter-term for many other operators (including δ2, as we have
seen). Instead, we have [197]10

bδ = cδ,Λ + σ2(Λ)

[
68

21

(
cδ2,Λ +

2

3
cK2,Λ

)
+ 3cδ3,Λ +

2

3
cδK2,Λ +

32

63
ctd,Λ

]
, (2.129)

10Note the slightly different normalization of bias coefficients there, and that G2 = (Kij)
2 − (2/3)δ2 in our notation (see

Appendix C).
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where ctd,Λ is the bare bias coefficient multiplying O
(3)
td . We will re-derive this expression from Eqs. (2.116)–

(2.117) using the peak-background split approach in Sec. 3.4.
The renormalized operators and bias parameters defined through Eq. (2.126) and Eq. (2.128) describe the

n-point functions of galaxies in the large-scale limit, and are thus particularly relevant to actual observations
(e.g. from galaxy redshift surveys). It is however just as well possible to construct renormalized bias
operators corresponding to other observables. Consider the joint moments of the smoothed halo density field
and matter density field on a physical scale R`, 〈[δh,`(x)]n[δ`(x)]m〉. As we will describe in detail in Sec. 4.2–
4.3, these moments can be used to derive bias parameters, for example through the so-called hierarchical
ansatz, or the “scatter plot” method (note that these moments are not sufficient to unambiguously measure
all bias coefficients, and mostly restricted to the LIMD biases bδn). The renormalized bias parameters inferred
using these measurements are not the same as those introduced above. This is because the moments are
defined with respect to a specific scale R`, and filtering kernel WR`(k). The biases bmO(R`) inferred from
moments are renormalized bias parameters in analogy to the bO(R`), i.e. they are coefficients of renormalized
operators [O]m` . However, the latter are defined with different renormalization conditions, specifically

〈[O]m` 〉 = 0 and 〈[O]m` (x)[δ
(1)
` (x)]n〉 = 〈O[δ`, · · · δ`](x)[δ

(1)
` (x)]n〉lo , (2.130)

where O[δ`, · · · δ`] denotes the operator O constructed out of smoothed density fields; that is, in case of
O = δn, it stands for O[δ`, · · · δ`](x) = (δ`(x))n. On the other hand, on the left-hand side, O is smoothed
after taking the nonlinear functional of the density field. It is straightforward to verify that the counter-
terms for [O]m` scale in the same way with the cutoff as those for [O]; in other words, [O]m` and [O] only
differ by finite R`-dependent corrections. The same correspondingly holds for bmO(R`) and bO. The relation
between the two sets of bias parameters can be derived at any given order in perturbation theory (Sec. 4.2).
Note that the finite difference between bmO(R`) and bO does not necessarily vanish as R` →∞, as one might
think, because the finite terms involve different integrals over the linear power spectrum. These depend on
the local spectral index of the power spectrum which, in turn, induces a logarithmic R` dependence as we
will see in Sec. 4.2.

2.10.5 Higher-derivative operators

The considerations so far were limited to the operators in the local basis. This can be traced back
to Eq. (2.113), where we approximated ∂i∂jΦΛ as approximately constant over the scales over which the
convolution kernel is nonzero. This corresponds to the lowest-order term in a Taylor series,

∂i∂jΦΛ(x1) = ∂i∂jΦΛ(x) + ∂i∂j∂kΦΛ(x)(x1 − x)k +
1

2
∂i∂j∂k∂lΦΛ(x)(x1 − x)k(x1 − x)l + · · · , (2.131)

where we have written x ≡ xfl(τ) for clarity. We can now include these sub-leading terms in Eq. (2.113).
The leading correction to Eq. (2.113) is

n∏

i=1

∫
d3xi F

(n)
i1j1···injn(x1, · · · ,xn)∂i1∂j1Φ(x1) · · · ∂in∂jnΦ(xn) = [right-hand side of Eq. (2.113)]

+

n∑

k=0

n!

(n− k)!
∂l∂m∂i1∂j1ΦΛ(x) · · · ∂ik∂jkΦΛ(x)

n∏

i=1

∫
d3xi (x1 − x)l(x1 − x)m F

(n)
i1j1···injn(x1, · · ·xn)

× ∂ik+1
∂jk+1

Φs(xk+1) · · · ∂in∂jnΦs(xn)

+ · · · . (2.132)

Here, we have written only one term with both derivatives acting on ∂i1∂j1ΦΛ(x1); the ellipsis in the last
line stands for other terms which involve ∂l and ∂m each acting on one (i.e. not necessarily the same) of the
other instances of ∂ik∂jkΦΛ and contracted with one of the ik, jk or with each other. This is because neither
the kernel F (n) nor the small-scale modes Φs have any preferred directions (apart from those induced by the
long-wavelength modes themselves). For the same reason, the leading higher-derivative correction involves
two powers of separations (xi − x)(xj − x).
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We see that the higher-derivative terms have the same structure as the lowest-order term, Eq. (2.113),
with two differences: first, there are two more derivatives acting on the long-wavelength modes; second, the
convolution over the small-scale modes now involves a modified kernel,

(xi − x)l(xj − x)mF
(n)
i1j1···injn . (2.133)

This modified kernel, given our assumptions about the scales over which F (n) is nonzero, scales as R2
∗ times

the kernel appearing in Eq. (2.113). This then leads us to bare bias parameters that correspondingly scale as
R2
∗ which multiply precisely the higher-derivative operators described in detail in Sec. 2.6. We can then let

the smoothing scale Λ→ 0, leading to renormalized higher-derivative biases that scale as R2
∗. This reasoning

continues correspondingly to higher orders.
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2.11 Summary

In this section, we have described the general, perturbative bias expansion of arbitrary large-scale struc-
ture tracers. Clearly, while well-defined and systematic, this expansion is nontrivial and consists of a complex
set of terms. For this reason, we provide a brief summary here before moving on to the following sections.
The general bias expansion can be broken down into three ingredients:

• The deterministic local expansion, i.e. at leading order in derivatives (Sec. 2.5): this series
of terms of the form bO O, where O is an operator and bO is its associated bias parameter, includes as
operators powers of the density and tidal field, as well as convective time derivatives of the tidal field,
as summarized in Eq. (2.64) (in Eulerian space) and Eq. (2.61) (in Lagrangian space). Each operator
O has exactly two spatial derivatives acting on each occurrence of the gravitational potential Φ (where
we count the differential operator ∂i∂j/∇2 as zero net derivatives).

• Stochastic contributions (Sec. 2.8): in addition to the leading stochastic field ε, there is an
additional stochastic field εO associated with each operator O in the bias expansion. This can be
interpreted as “scatter” in the deterministic bias parameter bO.

• Higher-derivative terms (Sec. 2.6): For each operator O in the local bias expansion, there are
higher spatial derivative terms such as b∇2O∇2O (and others; for the precise list of terms, see Sec. 2.6).
Physically, these terms take into account the fact that galaxy formation is not perfectly local. The
bias coefficients of these terms have units of length to some power, for example Mpc2 in the case
of b∇2O. The length scale that sets the value of these coefficients is the physical “nonlocality scale”
R∗ of galaxy formation; on scales of order R∗, these terms are un-suppressed, and any perturbative
description of galaxy bias necessarily breaks down. Note that the stochastic fields also have associated
higher-derivative contributions, which effectively capture the fact that the stochastic fields are expected
to be correlated over the scale R∗ (see Sec. 2.8 for an example).

A further important result pertains to the relation between the galaxy velocity field and the matter velocity
(velocity bias, Sec. 2.7): velocity bias is guaranteed to be a higher-derivative effect. That is, we can write
at lowest order in perturbations and derivatives,

vg = v + β∇2v∇2v + εv(x, τ) , (2.134)

where β∇2v ∼ R2
∗ is related to the nonlocality scale of galaxy formation (other possible terms such as ∝∇δ

are equivalent to ∇2v at linear order), and εv is a stochastic velocity contribution whose large-scale power
spectrum scales as k2 (Sec. 2.8).

The sections referenced above provide all the ingredients necessary to write down the general bias ex-
pansion at any desired order. To be specific, we now summarize the complete bias expansion of a general
galaxy sample up to third order:

δg = b1[δ] + b∇2δ[∇2δ] + [ε]

+
1

2
b2
[
δ2
]

+ bK2

[
(Kij)

2
]

+
[
εδδ
]

+
1

6
b3
[
δ3
]

+ bδK2

[
δ(Kij)

2
]

+ bK3

[
(Kij)

3
]

+ btd
[
O

(3)
td

]
+
[
εδ2δ2

]
+
[
εK2(Kij)

2
]

+O(δ4) +O
[
R2
∗∇2(δ2), R4

∗∇4δ
]
. (2.135)

The brackets denote renormalized operators, as defined in Sec. 2.10.4. As indicated in the last line, the
terms neglected here are either fourth order in perturbation theory, or involve higher derivatives of nonlinear
operators, or four powers of spatial derivatives (all of these include stochastic contributions as well). Note
that the number of higher-derivative terms to be kept depends on the scale R∗ (recall that b∇2δ ∝ R2

∗).
Here, we have assumed that R∗ is of order of the scale where the matter density field becomes nonlinear,
in which case it is sufficient to keep only the leading higher-derivative term, b∇2δ∇2δ (see Sec. 4.1.4), when
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going to third order in perturbations. In this case, Eq. (2.134) also provides the complete relation for galaxy
velocities at this order. In practice, when analyzing an actual galaxy sample, as many higher-derivative
terms should be included as the data are able to constrain (see the discussion in [128]).

In Sec. 4, we will describe how Eq. (2.135) makes predictions for galaxy (or halo) statistics. Depending
on the precise statistic chosen, usually only a subset of the terms in the general bias expansion contribute at
a given order. Before that however, in the next section (Sec. 3), we will discuss the physical interpretation of
several of the bias parameters in Eq. (2.135) as responses of the galaxy number density to long-wavelength
perturbations, an argument historically known as the “peak-background split.”
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3 Peak-background split: rigorous formulation and approximations

3.1 Bias parameters as responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Exact implementation of the PBS: separate-universe approach . . . . . . . . . . . . . . 63

3.3 PBS biases for universal mass functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Renormalized biases and the PBS* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

In the previous section, we have derived what bias parameters need to be included at any given order
in the perturbative bias expansion to describe a general tracer of the large-scale structure. We now turn to
physical arguments that can be used to derive the actual values of these bias parameters, as well as hierarchies
and relations between them. We will begin with general physical arguments valid for general tracers such
as galaxies, before making simplifying assumptions which mainly apply to dark matter halos. For this, we
use the peak-background split (PBS) approach in a more general sense than frequently understood; this will
lead to a well-defined physical interpretation of the bias parameters that are measured from the correlation
functions of galaxies (i.e., the renormalized bias parameters).

The decomposition of the density field into the sum of a low-amplitude signal δ` (background) with a
large coherence length and a high-amplitude, noisy component δs = δ − δ` (peak) with a small coherence
length was first introduced by [12], though the term “peak-background split” was coined by [13]. The PBS
simply states that a long-wavelength density perturbation acts like a local modification of the background
density for the purposes of the formation of halos and galaxies, since it can be considered constant over the
spatial scale within which tracers form (that is, the scale R∗ introduced in Sec. 2.5). This separation of
scales between the long-wavelength perturbation—on the scales on which we measure correlations—and the
small-scale perturbations—that are directly involved in the formation of tracers—is precisely the physical
argument made for the general bias expansion in Sec. 2.5.1.

While the PBS argument was originally introduced for long-wavelength density perturbations, and thus
only allowed for a derivation of the LIMD parameters bN (e.g. [12, 14, 15, 110, 16]), similar arguments can
be made for other bias terms:

• those with respect to the tidal field (see Sec. 5.9);

• higher-derivative operators such as ∇2δ or (∇δ)2 (see Sec. 6.6.1); and

• bias contributions induced by primordial non-Gaussianity (see Sec. 7).

For the remainder of this section, we will focus on the bias with respect to powers of the density bN .
After the initial proposition of [12], the physical argument regarding the separation of long- and short-

wavelength modes has come to be associated with theoretical approaches such as excursion set (Sec. 5) and
peaks (Sec. 6), that is, analytically tractable toy models of large-scale structure. However, as we describe
in Sec. 3.1–3.2, the PBS argument is not specific to these models and is in fact exact. That is, when defined
properly, the PBS predicts the exact bias parameters for halos and galaxies. One example of how the
exact PBS can be implemented is given in Sec. 3.2; the results of implementing this approach with N-body
simulations are presented later in Sec. 4.4. In Sec. 3.3, we specialize to the case of tracers which follow a
so-called universal mass function. This yields the well-known expressions for the bias parameters commonly
referred to as “peak-background split biases.”

3.1 Bias parameters as responses

In Sec. 2, we arrived at a bias expansion of the galaxy number density perturbation of the form

δg(x, τ) =
∑

O

bO(τ)[O](x, τ) , (3.1)

where we have neglected stochastic terms, as they will not play a role in this section. As discussed in
Sec. 2.10, the physical, measurable biases are really given as the coefficients of the renormalized operators
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[O]. We will only deal with the renormalized bias parameters bO in Sec. 3.1–3.3, although an interesting
link to the bare bias parameters and renormalization will be presented in Sec. 3.4.

Now, we would like to ask: what is the physical interpretation of the bias coefficients appearing in

Eq. (3.1)? Let us focus on the coefficients bN ≡ N ! bδN of the operator δN [this is
(
tr Π[1]

)N
in the Eulerian

basis Eq. (2.64)]. Consider a large region (much larger than the nonlocality scale R∗ of the galaxy sample
considered) characterized, at a given arbitrary time, by a mean fractional overdensity ∆. According to the
peak-background split argument, the expectation value of the physical galaxy density ng in such a region is
given by the average abundance of tracers in a fictitious FRW spacetime with modified physical background
density

%̃m = (1 + ∆) %m , (3.2)

where %m is the fiducial background density. We shall further elaborate on exactly what this “fictitious
spacetime” is in Sec. 3.2. Eq. (3.2) is equivalent to adding a uniform component %m∆ to the matter density.
Then, at a given point within this region where the density is %m(x) = %m[1+δ(x)] (here δ is not necessarily
small), the matter density is perturbed to

%m(x)→ %m(x) + %m∆ = %m(1 + δ(x) + ∆) , or δ(x)→ δ(x) + ∆ . (3.3)

Thus, we shift all density perturbations by an amount ∆. Note that we add a fixed amount of uniform
matter density everywhere; we do not rescale the local matter density %m by 1+∆, which would also amplify
the fluctuations δ.

We now introduce the strict definition of peak-background split bias parameters bN (N ≥ 1) as the
derivative of the mean physical number density of galaxies ng with respect to ∆:

bN ≡
1

ng|∆=0

∂Nng|∆
∂∆N

∣∣∣
∆=0

. (3.4)

Using Eq. (3.2), we can also write this as

bN =
%Nm
ng

∂Nng
∂%̃Nm

∣∣∣
%m

, (3.5)

where the derivatives are evaluated at the fiducial value of %m. These relations show that, if we can predict
the abundance of galaxies as a function of the modified background density %̃m, at fixed time t, we can predict
the LIMD bias parameters bN . In the next section, we will discuss precisely this approach of measuring
biases, in particular for dark matter halos. In the course of that calculation, we will also clarify the physical
meaning of the transformation Eq. (3.3).

3.2 Exact implementation of the PBS: separate-universe approach

To begin, let us define a bit more carefully what we mean by the transformation Eqs. (3.2)–(3.3). A
uniform adiabatic density perturbation on an FRW background is equivalent to a different (curved) FRW
background, as first shown by [186] (we continue to assume Gaussian initial conditions in this section). This
idea, often referred to as “separate-universe” approach, has been used in many calculations and N-body
simulations since then, first starting at linear order in the perturbation ∆ [187, 188, 208, 209, 210, 211,
212, 95, 189, 213], and more recently generalized to fully nonlinear order [214, 185]. The following brief
description follows the one laid out in [214]. We assume a ΛCDM cosmology throughout.

Consider a long-wavelength overdensity ∆(t) as in Eq. (3.3), distinguished there from the small-scale
perturbations δ. Throughout, we will allow ∆ to be fully nonlinear; the separate-universe approach is not
restricted to linear order in the density perturbation, as emphasized in [185]. Moreover, t stands for the
proper time of comoving observers throughout. We then proceed to absorb the overdensity ∆ into the
physical background matter density of a modified cosmology %̃m(t) as

%m(t) [1 + ∆(t)] = %̃m(t) . (3.6)
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Thus, instead of embedding the region with overdensity ∆ in a fiducial background Universe, one considers
it as a separate universe with an altered cosmology. We will now derive the parameters of this modified
cosmology in relation to ∆, specifically the linearly extrapolated present-day overdensity

∆
(1)
0 ≡ ∆(ti)

D(t0)

D(ti)
, (3.7)

where D is the linear growth function of the fiducial cosmology, t0 is the present time, and ti denotes an

early time at which ∆(ti) is still small. Again, we will not assume that ∆
(1)
0 is small, although in most

practical applications one will choose |∆(1)
0 | . 1.

Expressed in terms of the standard cosmological parameters, i.e. %m(a = 1) = ρm = Ωm0
3H2

0

8πG and

H0 = 100h km s−1Mpc−1, Eq. (3.6) becomes

Ωm0h
2

a3(t)
[1 + ∆(t)] =

Ω̃m0h̃
2

ã3(t)
, (3.8)

where we used a tilde to denote quantities in the modified cosmology. For the fiducial cosmology, we
adopt the standard convention for the scale factor a(t0) = 1. In contrast, for the modified cosmology, it
is convenient to choose the normalization such that limt→0 ã(t)/a(t) = 1. These conventions lead to (as
∆(t→ 0) = 0)

Ωm0h
2 = Ω̃m0h̃

2 , ΩΛ0h
2 = Ω̃Λ0h̃

2 . (3.9)

Note that this relation implies that the comoving matter densities defined using the respective scale factor
are the same: ρ̃m ≡ ã3%̃m = ρm. Introducing δa(t) through ã(t) = [1 + δa(t)]a(t), we find from Eq. (3.6)

1 + ∆(t) = [1 + δa(t)]−3 . (3.10)

This is just a statement of mass conservation. The Friedmann equation for a(t) is, assuming a flat fiducial
cosmology for simplicity, given by

H2(t) =

(
ȧ

a

)2

=
8πG

3
%m(t) +

1

3
Λ , (3.11)

where Λ denotes the cosmological constant. The same equation, but including curvature K̃ and modifying
the matter density, holds for ã(t):

H̃2(t) =

( ˙̃a

ã

)2

=
8πG

3
%̃m(t) +

1

3
Λ− K̃

ã2(t)
. (3.12)

One can then combine Eqs. (3.11)–(3.12) with the corresponding second Friedmann equations to obtain an
evolution equation for ∆:

∆̈ + 2H∆̇− 4

3

∆̇2

1 + ∆
= 4πG%m (1 + ∆)∆ . (3.13)

When linearizing this equation in ∆, one recovers the equation for the linear growth factor (given in Eq. (B.9)
using τ rather than t as time variable). Beyond linear order, Eq. (3.13) is exactly the equation for the interior
density of a spherical tophat perturbation in a ΛCDM Universe (see Sec. 5.2.1 and App. A of [215]). Taking
the difference of Eq. (3.11) and Eq. (3.12) yields a relation for the curvature K̃. One can verify that K̃ is
conserved [214], which is a necessary condition for Eq. (3.12) to describe a physical FRW solution [185].

One can also generalize the separate-universe picture to include a dark energy component instead of a
cosmological constant. In that case, dark energy perturbations also need to be taken into account, and the
conservation of curvature only holds outside the sound horizon of the dark energy component. Recently,
Ref. [216] generalized the separate-universe approach to effectively include pressure and anisotropic stress
perturbations, although this only holds strictly when following the evolution of non-relativistic fluids such
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as baryons and CDM. We return to this issue in Sec. 8.3, and assume for the remainder of Sec. 3 that we are
outside the sound horizon of all fluid components. In this case, we can evaluate the curvature at an early
time ti, when the perturbation δa is infinitesimal and the Universe is in matter domination. We then have
H2 = H2

0 Ωm0a
−3, δ̇a = Hδa, and δa = −∆/3, with which one can derive

K̃

H2
0

=
5

3

Ωm0

a(ti)
∆(ti) . (3.14)

Alternatively, using the linear growth factor Dmd normalized such that Dmd(ti) = a(ti), we can write

K̃

H2
0

=
5

3

Ωm0

Dmd(t0)
∆

(1)
0 . (3.15)

We have thus recovered the relation between curvature and matter density in synchronous-comoving gauge
given in Sec. 2.9 [Eq. (2.97)]. Now let us derive the parameters of the modified cosmology. They are defined
through the Friedmann equation at time t̃0 where ã(t̃0) = 1. Defining the fractional perturbation to the
Hubble parameter δH through H̃(t̃0) = H0[1 + δH ] and using Eq. (3.9), we obtain

Ω̃m0 = Ωm0[1 + δH ]−2; Ω̃Λ0 = ΩΛ0[1 + δH ]−2 . (3.16)

Finally, in order to derive δH we can make use of the Friedmann equation at t̃0, which yields, for a flat
fiducial cosmology,

Ω̃K0 = − K̃

H̃2
0

= 1− Ω̃m0 − Ω̃Λ0 = 1− (1 + δH)−2 . (3.17)

Since K̃ is given by Eq. (3.15), we can use this relation to solve for δH :

δH =

(
1− K̃

H2
0

)1/2

− 1 . (3.18)

Thus, δH > 0 if K̃ < 0, i.e. in case of an underdense region (∆
(1)
0 < 0). There is no solution if K̃/H2

0 ≥ 1,

or equivalently ∆
(1)
0 ≥ 3Dmd(t0)/(5Ωm0). This is because for such a large positive curvature, the Universe

reaches turnaround at or before ã = 1. This is not a physical problem, it is merely not possible to parametrize

such a cosmology in the standard convention. For practical applications, smaller values of ∆
(1)
0 are in any

case sufficient.
With these relations, it is straightforward to perform N-body simulations which implement a uniform

density perturbation as in Eqs. (3.2)–(3.3). The power spectrum used to generate the initial conditions is
unmodified in shape and amplitude apart from the modification to the linear growth factor in the background
ã(t). One remaining subtlety is that we want to output the data at a fixed physical time tout, which in
N-body codes is usually specified by the scale factor as a(tout) = aout. Therefore we need to determine
the corresponding scale factor in the modified cosmology as ã(tout) = aout [1 + δa(tout)], which can be done

easily numerically for any given value of ∆
(1)
0 .

It is now straightforward to give an operational procedure to derive the exact PBS biases Eq. (3.4) for
any tracer whose formation can be simulated: we run simulations, of sufficient volume to contain a statistical
sample of the tracers of interest, up to a given fixed proper time t, with different parameters following the
prescription above, which implement various values of ∆(t). This allows for a measurement of ng(t,∆(t)).
The Eulerian LIMD biases for the tracers are then given as derivatives of the physical density of tracers ng
with respect to ∆:

bEN (t) = N ! bEδN (t) =
1

ng(t, 0)

∂Nng(t,∆(t))

∂[∆(t)]N

∣∣∣∣
∆=0

, (3.19)

which corresponds to the rigorous definition of Eq. (3.4). Note that a nonlinear implementation of the
separate-universe rescaling is essential if one wants to derive the higher-order biases starting with b2; that is,
the implementation has to correctly take into account the nonlinear evolution of the long-wavelength mode.
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We now specialize to the most commonly considered case of dark matter halos at fixed mass. We define
nh(M, t) as the mean comoving number density of halos per logarithmic mass interval. Since the comoving
density is related to the physical density through nh = a3nh, and correspondingly nh(∆) = ã3nh(∆) in the
modified cosmology, the quantity nh(∆)/nh(0)− 1 is the fractional Lagrangian overdensity of halos induced
by a long-wavelength density perturbation ∆ [see Eq. (3.10)]. Then, the Lagrangian LIMD biases bLN of

halos are given as derivatives of nh(M, t) with respect to ∆
(1)
0 , i.e.

bLN (M, t) = N ! bLδN (M, t) =
1

nh(M, t, 0)

∂Nnh(M, t,∆(t))

∂[∆
(1)
0 ]N

∣∣∣∣∣
∆

(1)
0 =0

. (3.20)

Since we are considering a pure density perturbation, i.e. a spherically symmetric long-wavelength perturba-
tion which does not induce a proper tidal field (Kij = 0), the mapping between bLN and the Eulerian LIMD
biases bEN is exactly given by the mapping described in Sec. 2.1, in particular Eq. (2.16). Note that it is
essential that halos are identified in the separate-universe simulations with respect to a fixed physical density
criterion in the fiducial cosmology; in particular, the overdensity or linking length passed on to the halo
finder (see Appendix D) needs to be adjusted accordingly. We will discuss results of these measurements in
Sec. 4.4.

3.3 PBS biases for universal mass functions

After having defined the rigorous peak-background split biases, we now present a well-known case where
Eq. (3.20) can be evaluated analytically. Motivated by the excursion-set argument (which we will describe
in Sec. 5), the halo mass function, the mean comoving number density of dark matter halos per logarithmic
mass interval, is often parametrized in the form

nh(M) ≡ ∂2N̄h
∂V ∂ lnM

=
ρm
M
νc(M) f [νc(M)] J(M) (3.21)

νc(M) ≡ δcr

σ(M)
; J(M) ≡

∣∣∣∣
d lnσ(M)

d lnM

∣∣∣∣ =
d ln νc(M)

d lnM
, (3.22)

where σ(M) ≡ σ[R(M)] is the variance of the linear matter density field smoothed on the Lagrangian
radius R which is related to the mass M through M = (4π/3)ρmR

3(M), and δcr is the linearly extrapolated
initial spherical overdensity that collapses at the time at which Eq. (3.21) is evaluated (see Sec. 5.2.1). The
scale-independent collapse threshold δcr can be promoted to a mass-dependent barrier B(M). We discuss
different choices of barrier in Sec. 5.9. Furthermore, the so-called multiplicity function f(νc) generally is
an arbitrary function of νc. Finally, the Jacobian J is included in order to convert from an interval in the
variance σ(M) to a mass interval.

Eq. (3.21) is referred to as “universal mass function” and was first introduced by [217]. More generally,
an EdS Universe with a pure power-law matter power spectrum PL(k) ∝ kn obeys a scaling symmetry
(e.g., [218]). Then, the halo mass function as a function of M and z can be exactly written in the form
Eq. (3.21), since νc is invariant under the scaling symmetry and all moments of the matter density are
directly proportional to σ(M) [16]. The fact that the linear matter power spectrum in the standard ΛCDM
cosmology can be fairly well approximated as a power law over a range of scales (thus approximately obeys
the scaling symmetry) is one of the main reasons why Eq. (3.21) gives fairly accurate results in ΛCDM. In
fact, the approximate symmetry can be used to rescale simulations from one cosmology to another [219].
For precision estimates of the halo bias however, the departure of ΛCDM from a power-law EdS Universe
must be taken into account.

In order to derive the bias parameters via Eq. (3.20), we need to know how nh changes under a change in
the background density of the Universe [Eq. (3.2)]. Since the comoving density ρ̃m ≡ ã3%̃m is unchanged [see
the discussion after Eq. (3.8)], the only nontrivial contribution to the LIMD bias comes from the response of
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the barrier to a change in the background density.11 Ref. [15] argued that, under a long-wavelength density

perturbation ∆
(1)
0 , the collapse threshold shifts to

δcr → δcr −∆
(1)
0 (t0) . (3.23)

We now derive why and when this holds in the context of the exact separate-universe picture described
in Sec. 3.2. The threshold δcr is defined as the linearly extrapolated initial density contrast of a region
collapsing at a given proper time t0. Since General Relativity is scale-free, this threshold is independent of
the size and enclosed mass of the perturbation, unless there is an additional scale in the matter sector, for
example the sound horizon of one of the fluid components, which we will ignore here. In an EdS Universe,
a spherical perturbation with a present-day linear fractional overdensity δcr ≈ 1.686 collapses at a = 1 (this
value is derived in Sec. 5.2.1). The same reasoning holds for more general expansion histories, where δcr

assumes other values (e.g., [220]). Since the evolution of a spherical perturbation is independent of the
external Universe (by Birkhoff’s theorem) a perturbation of the same physical density %cr ≡ %m(1 + δcr) will
collapse at the same proper time in a Universe with modified background density following Eq. (3.2). We
now derive what this implies for the significance νc = δcr/σ(M) = (%cr − %m)/δ%RMS, which quantifies how
rare fluctuations above a physical density threshold %cr are in the linearly extrapolated initial density field,
given its root-mean-square fluctuation amplitude δ%RMS = σ(M)%m. Following our discussion in Sec. 3.2, we

add a uniform matter density component ∆
(1)
0 %m to the linear density field. Then, the critical overdensity

changes to

%cr − %̃m = (1 + δcr)%m − (1 + ∆
(1)
0 )%m = (δcr −∆

(1)
0 )%m . (3.24)

Thus, the significance is modified to

ν̃c =
%cr − %̃m
σ(M)%m

=
δcr −∆

(1)
0

σ(M)
. (3.25)

For a mass function of the form Eq. (3.21), changing the background density is thus equivalent to changing

δcr → δcr −∆
(1)
0 . Eq. (3.20) applied to Eq. (3.21) thus immediately yields

bLN (M) =
(−1)N

[σ(M)]N
1

νcf(νc)

dN [νcf(νc)]

dνNc
. (3.26)

This is the widely known expression for the peak-background split Lagrangian bias parameters, which really
are a special case of Eq. (3.20). Furthermore, Eq. (3.26) also holds if f(νc) is given by an integral over
other variables (such as, for example, the peak curvature), as long as these other variables are independent
of δcr [152, 221, 100]. Specifically, the result remains valid if f(νc) depends on ratios of spectral moments,
e.g. σ1(M)/σ(M), since these are not changed by the long-wavelength density perturbation. Eq. (3.26)
has been applied extensively to compute the Lagrangian and Eulerian LIMD bias parameters from analytic
prescriptions of the multiplicity function; see [14, 15, 16] to only cite a few. We will review some of these
prescriptions in Sec. 5 and Sec. 6.

Perhaps the most widely known calculation along these lines is the derivation of the LIMD bias parameters
from the Press-Schechter (PS, [217]) and Sheth-Tormen (ST, [16]) mass functions. The Press-Schechter
multiplicity function, which can be derived analytically starting from simple physical assumptions (see
Sec. 5.2.2), is given by

νcfPS(νc) =

√
2

π
νce
−ν2

c/2 . (3.27)

Applying Eq. (3.26) to this, we immediately obtain for the linear and second-order Lagrangian LIMD bias

11Note that since we are studying an infinite-wavelength perturbation, it does not contribute to the variance σ(M); the effect
of a finite wavelength of the perturbation is captured by higher-derivative biases.
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parameters

(bL1 )PS =
ν2
c − 1

δcr

(bL2 )PS =
ν2
c

δ2
cr

(
ν2
c − 3

)
. (3.28)

We will re-derive these well-known results using the excursion-set formalism in Sec. 5.6.2. We can now map
these to Eulerian biases through Eq. (2.16), to obtain

(bE1 )PS = 1 +
ν2
c − 1

δcr

(bE2 )PS =
8

21

(
ν2
c − 1

δcr

)
+
ν2
c

δ2
cr

(
ν2
c − 3

)
. (3.29)

Now, the agreement between the Press-Schechter mass function and the abundance of halos in N-body
simulations is far from perfect, as is apparent in the left panels of Fig. 9. The same is also true for the linear
bias parameter bE1 of simulated halos when compared with Eq. (3.29) (right panels in Fig. 9). Following the
suggestion of [222] that this discrepancy primarily arises because of the limitations of the Press-Schechter
model, and not the peak-background-split argument, Sheth and Tormen [16] derived an empirical expression
for the multiplicity function which subsequently was shown to be of a functional form expected from a version
of the ellipsoidal collapse model ([223, 224]; see Sec. 5.9),

νcfST(νc) =

√
2

π

[
1 +

1

2p
√
π

Γ

(
1

2
− p
)]−1 [

1 + (qν2
c )−p

]√
q νce

−qν2
c/2 , (3.30)

where p = 0.3 and q = 0.707 were fitted to the measured halo mass function. Therefore, these parameters
generally depend on the precise definition of halos employed in the simulation analysis; we describe the
commonly used halo finding algorithms in Appendix D. The PS mass function corresponds to the special case
p = 0, q = 1 in Eq. (3.30). Note that Eq. (3.30) is normalized to satisfy the constraint

∫
Mnhd lnM = ρm

[as is Eq. (3.27)]. The Eulerian PBS bias parameters bE1 and bE2 inferred from the multiplicity function
Eq. (3.30) on applying the same procedure as for the PS mass function, Eq. (3.26) and Eq. (2.16), are
obtained as

(bE1 )ST = 1 +
qν2
c − 1

δcr
+

2p/δcr

1 + (qν2
c )p

(3.31)

(bE2 )ST =
8

21

(
qν2
c − 1

δcr
+

2p/δcr

1 + (qν2)p

)
+
qν2
c

δ2
cr

(
qν2
c − 3

)
(3.32)

+
2p

δ2
cr

(
−1 + 2p+ 2qν2

c

) 1

1 + (qν2
c )p

.

Ref. [16] found that Eqs. (3.30)–(3.31) provide a much better fit to the mass function and linear bias of
halos than the Press-Schechter prediction. Fig. 9 shows the multiplicity function νcf(νc) (left panels) and
scaled linear Lagrangian bias bL1 (right panels) for halos identified at redshift zobs = 0, 1, 2 and 4. Clearly,
the Sheth-Tormen mass function is a better fit to the data at all masses and redshifts, and so is the PBS
bias prediction based on this mass function. As emphasized by [16], this demonstrates that knowledge of
the mass function also means knowledge of clustering, through the peak-background split.

The accuracy of Eq. (3.26) was further quantified in [226, 227], who empirically calibrated the multiplicity
function of the halos identified in their simulations. They found that the bias parameters derived from this
multiplicity function via Eq. (3.26) are accurate at the 10–20% level. Following our discussion in this section,
this limited accuracy is due to the limitations of the universal mass function prescription [Eq. (3.21)], and
not due to the peak-background split argument itself, which is exact when defined rigorously.
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Figure 9: The multiplicity function f(ν) ≡ νcf(νc) (left panels) and the scaled linear Lagrangian LIMD bias b(ν) − 1 ≡ bL1
(right panels) of halos identified using an FoF halo finder at the output redshifts zobs = 0 (filled triangle), 1 (empty square),
2 (filled circle) and 4 (empty circle). Note that ν ≡ (νc)2 in our notation. The halo bias was measured using the halo power
spectrum (Sec. 4.1). bL1 has been rescaled as indicated by the axis label to show that, for a universal mass function, the
dependence of the PBS bias parameters on cosmology arises only through νc. The solid (red) curves (labeled “GIF”) represent
the relation predicted by the Sheth-Tormen mass function [Eq. (3.30) and Eq. (3.31), respectively], whereas the dotted (blue)
curves (labeled “PS”) show the relations which follow from the Press-Schechter mass function [Eq. (3.27) and Eq. (3.29),
respectively]. Finally, the (green) dot-dashed line (labeled “Zel”) is the mass function in the Zel’dovich approximation [225].
From [16].

Eq. (3.26) is based on a mass-independent critical density, or barrier, δcr. One can generalize this to a
general barrier B(M), so that νc ≡ B(M)/σ(M), which is intended to capture other physical effects, such
as ellipsoidal collapse and the scatter due to the specific realization of small-scale initial conditions (see
Sec. 5.9). We can now make the assumption that Eq. (3.25) analogously holds for a general barrier, yielding

ν̃c =
B(M)−∆

(1)
0

σ(M)
. (3.33)

Then, Eq. (3.26) remains valid even for a mass-dependent barrier. Let us thus summarize the two assump-
tions made in Eq. (3.21) and Eq. (3.26): (i) the abundance of halos depends on the amplitude of the matter
power spectrum only through a single moment σ(M); (ii) the barrier B(M) is unchanged by the presence
of a long-wavelength density perturbation, which allows us to derive the bias parameters from the mass
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function. Birkhoff’s theorem ensures that the second assumption is true for a spherically symmetric setup.
However, real halos are not spherically symmetric, and tidal fields cannot be ignored, rendering the second
assumption an approximation.

Note that, for a general barrier, we have two free functions at our disposal: f(νc) and B(M). These
can, for example, be estimated from the mass function nh(M) and the linear bias b1(M). In that case,
measurements of b1(M) can be matched exactly, and the PBS biases only become predictive for bN with
N = 2, 3, · · · . We will discuss the comparison with N-body simulations in detail in Sec. 4.4.

3.4 Renormalized biases and the PBS*

We now make the connection between the PBS bias parameters defined as response to the transformation
Eq. (3.3) and the renormalized bias parameters defined in Sec. 2.10. We can formally obtain the average
number density of galaxies ng = 〈ng〉 in a Universe with modified background density %̃m = (1 + ∆)%m,
starting from the expansion in terms of the coarse-grained fields δΛ,Kij,Λ, ..., Eq. (2.118). For this, we will
assume that the coarse-graining scale Λ−1 is sufficiently large so that NLO (1-loop) perturbation theory
applies. This assumption is being made merely in order to be able to connect to the perturbative relation
between bare and renormalized bias parameters. Expanding up to cubic order and keeping terms that
depend on ∆, Eq. (2.118) yields

〈ng〉|∆ = n0,Λ

[
1 + cδ,Λ〈δΛ〉∆ + cδ2,Λ〈δ2

Λ〉∆ + cK2,Λ〈(Kij,Λ)2〉∆ + cδ3,Λ〈δ3
Λ〉∆ + cδK2,Λ〈δΛ(Kij,Λ)2〉∆

+ ctd,Λ〈Otd,Λ〉∆ + · · ·
]
. (3.34)

Note that in the presence of ∆, the expectation value of the overdensity 〈δΛ〉∆ no longer vanishes. Here,
both n0,Λ and the cO,Λ refer to the quantities defined in the Universe with background density ρm, i.e.
∆ = 0. Let us expand this expression to linear order in ∆ around ∆ = 0. The expectation values on the
right-hand side are easily calculated at cubic order in perturbation theory. For the linear term, we trivially
have 〈δΛ〉∆ = ∆. In the cubic terms, we can also directly insert δΛ → δΛ + ∆ to obtain

〈δ3
Λ〉∆ = 〈δ3

Λ〉+ 3〈δ2
Λ〉∆ +O(∆2)

〈δΛ(Kij,Λ)2〉∆ = 〈δΛ(Kij,Λ)2〉+ 〈(Kij,Λ)2〉∆ +O(∆2)

〈Otd,Λ〉∆ =
16

21
〈(Kij,Λ)2〉∆ +O(∆2) , (3.35)

where expectation values without subscripts denote those in the fiducial cosmology (∆ = 0), and 〈(Kij,Λ)2〉 =
(2/3)〈δ2

Λ〉. The last line can be obtained from the definition of Otd, Eq. (2.50), and noting that Dij [(δΛ)2 −
3/2(Kij,Λ)2] becomes, upon replacing δΛ(x) with δΛ(x)+∆, Dij [(δΛ)2−3/2(Kij,Λ)2]+2(Kij,Λ + δΛδij/3)∆.

In order to derive the vacuum expectation value of the quadratic operators, 〈δ2
Λ〉∆, 〈(Kij,Λ)2〉∆, we need

to insert the change in the amplitude of the small-scale power spectrum in the presence of a long-wavelength
mode. This can be calculated directly in second-order perturbation theory, either using Eq. (B.14), taking
the angle-averaged squeezed limit of the leading-order bispectrum, or calculating the growth factor in a
modified background cosmology (Sec. 3.2) [228]. Any of these calculations leads to

〈δ2
Λ〉∆ = 〈δ2

Λ〉
(

1 +
68

21
∆

)
+O(∆2) and 〈K2

ij,Λ〉∆ = 〈K2
ij,Λ〉

(
1 +

68

21
∆

)
+O(∆2) . (3.36)

Putting everything together, we obtain

〈ng〉|∆ = 〈ng〉
[
1 + cδ,Λ∆ + ∆σ2(Λ)

{
68

21

(
cδ2,Λ +

2

3
cK2,Λ

)
+ 3cδ3,Λ +

2

3
cδK2,Λ +

32

63
ctd,Λ

}
+O(∆2)

]
,

(3.37)

* This section is of a more technical nature and is not essential for the remainder of the review.
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where σ2(Λ) ≡ 〈δ2
Λ〉 and we have absorbed the ∆-independent terms into 〈ng〉 (consistently at the order we

are working in).
Following Eq. (3.4), we now introduce the strict definition of the PBS bias parameters bN (N ≥ 1) as

the derivative of 〈ng〉 with respect to ∆. Evaluating the derivative on Eq. (3.37), we immediately see that
b1 defined through Eq. (3.4) becomes

b1 = cδ,Λ + σ2(Λ)

{
68

21

(
cδ2,Λ +

2

3
cK2,Λ

)
+ 3cδ3,Λ +

2

3
cδK2,Λ +

32

63
ctd,Λ

}
. (3.38)

This exactly coincides with the renormalized bias parameter given in the previous section, Eq. (2.129). Thus,
the peak-background split bias parameters understood in the sense of Eq. (3.4) are exactly the renormalized
bias coefficients which describe large-scale correlations of tracers [79, 100]. This proof can be straightfor-
wardly generalized to b2, b3, · · · , which then necessitates higher-order perturbative solutions for δ,Kij , and
so on. When neglecting gravitational evolution and performing the renormalization purely in Lagrangian
space, Ref. [100] has shown that this result holds to all orders and for all bias parameters bN . Moreover,
the same renormalized biases describe both tracer auto- and cross-correlations as well as higher N -point
functions such as the bispectrum, as will be discussed in detail in the following Sec. 4. This is ensured by
the renormalization conditions applied in Sec. 2.10.

It is worth emphasizing again the difference between the PBS bias parameters bN and the bare cδN ,Λ:
the bN quantify the response of the cosmic mean abundance of tracers to a change in the background density
of the Universe; specifically, they do not make any reference to the scale Λ. The cδN ,Λ on the other hand
quantify the average response of the abundance of tracers within a region of size Λ−1 to a change in the
average density δΛ within that region, evaluated at δΛ = 0; they thus necessarily depend on the cutoff, i.e.
the filtering kernel WΛ and scale Λ−1. On the other hand, after renormalization we only need a prediction
for 〈ng〉 as function of the background density %m to calculate the LIMD bias parameters bN . Note also
that the bN are closely related to the resummed bias propagators defined in [113] [see Eqs. (83)–(84) there],
while the bare bias parameters cn correspond to the bare propagators [Eqs. (1)–(2) in that paper].
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Having described the general framework of the bias expansion (Sec. 2), and the physical interpretation of
bias parameters offered by the peak-background split argument (Sec. 3), we now turn to the connection with
clustering statistics and actual measurements of the bias parameters. We will discuss various observables
which involve bias parameters and can be used to measure them, including the auto-correlation functions
of galaxies and cross-correlations between galaxies and matter, as well as moments-based and “scatter plot”
methods. In each case, we define the range of scales over which the perturbative bias expansion holds, and
derive how the parameters inferred in each method are precisely related to the bias parameters defined in
Sec. 2. Since this is an important point, let us emphasize again: on the scales where perturbation theory
applies, and barring any systematics in the measurement, all of the various methods to estimate bias recover
the unique, large-scale bias parameters bO defined in Sec. 2. This holds, of course, up to linear combinations
of bias parameters at a given order, which are a matter of choice of basis; we give relations between
various popular choices in Appendix C. In this sense, the bias parameters are physical quantities rather than
observable-dependent fitting parameters. This is not the case for phenomenological fitting relations between,
for example, the galaxy power spectrum and the matter power spectrum for a fiducial cosmological model
(such as, for instance, the “Q model” of [25]). We will not discuss these fitting functions here.

The final goal of the bias expansion is, of course, to predict observed galaxy statistics given a set of bias
parameters as well as a cosmological model with its associated predictions for the statistics of matter. In this
section, we will simplify the treatment by ignoring complications that, while important for actual observed
galaxy statistics, are not directly related to bias, the most important being redshift-space distortions. These,
along with other issues affecting observed galaxy statistics, will be discussed in Sec. 9. The idealized relations
given below are thus strictly valid only for tracers extracted from numerical simulations—such as dark matter
halos—for which we have access to the real-space clustering. Correspondingly, we will denote the tracer
overdensity as δh in this section, and mostly review measurements of halo bias here. These also provide the
context for the models of halo bias discussed in the following sections Sec. 5–6. We emphasize again that
all results are applicable also to galaxy statistics once the effects described in Sec. 9 are added in.

Furthermore, we continue to restrict ourselves to the case of Gaussian initial conditions in this section.
Results for galaxy clustering with primordial non-Gaussianity are discussed in Sec. 7. We will focus on
bias parameters up to third order, as derived in Sec. 2.4 and summarized in Sec. 2.11. This is essentially
the current state-of-the-art in the published literature on galaxy and halo bias. The lowest-order biases are
phenomenologically the most important ones. While linear- and second-order terms are sufficient to describe
the galaxy power spectrum and bispectrum (three-point function) at leading order, respectively, cubic order
terms contribute to the next-to-leading (1-loop) correction to the galaxy power spectrum.

72



At this order, the galaxy as well as halo density contrast can be expressed as

δh = b1δ + b∇2δ∇2δ + ε

+
1

2
b2δ

2 + bK2(Kij)
2 + εδδ

+
1

6
b3δ

3 + bδK2δ(Kij)
2 + bK3(Kij)

3 + btdO
(3)
td + εδ2δ2 + εK2(Kij)

2

+O(δ4) +O[R2
∗∇2(δ2), R4

∗∇4δ] , (4.1)

where ε and εO are stochastic fields that are uncorrelated with δ, Kij (see Sec. 2.8), and we have listed,
in the last line, examples of higher-order terms that are neglected in this expression. Although not made
explicit here, the operators appearing in Eq. (4.1) are strictly the renormalized operators, and the bO are
consequently renormalized bias parameters. Indeed, as we are dealing with measurements as well as physical
models of bias in the following, all instances of the bias parameters appearing in the remainder of the review
are renormalized (with the exception of Sec. 7.1.2, where, for the purposes of derivation, the bare bias
parameters appear).

Note that all observables, fields, and bias parameters depend on the time τ of observation. For clarity,
however, we will drop the time argument throughout this section. We divide the various procedures to
measure bias parameters into four categories:

1. n-point correlation functions: two- and three-point correlation functions, or power spectrum and
bispectrum in Fourier space (Appendix A);

2. Moments: one-point statistics of the halo and matter density smoothed on a large scale R`;

3. Scatter plots of the halo density as a function of the local matter density;

4. Responses: an implementation of the separate-universe approach (or exact PBS) described in Sec. 3.2.

We will successively describe each approach in Sec. 4.1–4.4. We then present a brief overview of published
results for bias parameters (and stochastic amplitudes) obtained using these various methods for dark matter
halos in simulations, and observed galaxies, in Sec. 4.5. Finally, in Sec. 4.6 we will discuss the phenomenon
of assembly bias, which is specific to dark matter halos. This refers to the fact that the bias parameters of
halos depend on other halo properties than just their mass.

4.1 n-point correlation functions

We begin with the measurement of bias parameters from halo n-point correlation functions. This ap-
proach is most closely related to the discussion of Sec. 2. The lowest-order statistics that allow us to
unambiguously measure the first- and second-order bias parameters are, respectively, the two- and three-
point functions. We consider both halo auto-correlations as well as cross-correlations with matter. Once
projection effects are included, auto-correlations are readily measurable for galaxies in real survey data. In
addition, measuring stacked weak gravitational lensing around galaxies (galaxy-galaxy lensing) yields the
galaxy-matter cross-correlation function projected along the line of sight [229], as will be briefly discussed
below.

Apart from the close connection to measurements, the advantage of n-point functions is that, upon
restricting all scales ri to be greater than a minimum scale rmin, or, in Fourier space, all wavectors ki to be
less than some prescribed kmax, one has complete control over nonlinear and higher-derivative corrections.
Moreover, the measurements can be made even more robust by marginalizing over the leading nonlinear
corrections which have a known functional form, as we will see in Sec. 4.1.4.

On the other hand, the main practical disadvantage of this method is that large observed or simulated
volumes are necessary to obtain a high signal-to-noise measurement of n-point statistics on scales above rmin

and/or below kmax. This is because we need a significant number of independent modes in order to reduce
sample variance. In addition, measuring the bias parameters at cubic or higher order becomes increasingly
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difficult, since measurements of higher-order statistics become necessary, for instance the trispectrum in
the case of cubic-order bias parameters. The implementation and the required computational resources for
higher-order statistics become increasingly demanding.

Since this is a substantial subsection, we provide a brief outline here. We begin with the leading two-
and three-point functions in Eulerian space, both in the Fourier- and real-space representations (Sec. 4.1.1).
We then briefly discuss the corresponding results in Lagrangian space (Sec. 4.1.2), which are relevant for
estimating bias parameters from halos identified in N-body simulations. Sec. 4.1.3 then provides a quantita-
tive, albeit simplified and idealized, forecast of the ability of current and future galaxy surveys to measure
the bias parameters and amplitude of the matter power spectrum using the results of Sec. 4.1.1. Next, we
derive the next-to-leading correction to the galaxy two-point function (1-loop power spectrum) in Sec. 4.1.4,
illustrating how the predictions of Sec. 4.1.1 can be taken to higher order and what scalings the higher-order
terms obey.

4.1.1 Two- and three-point functions at leading order

We begin with the leading-order (LO), or tree-level, predictions for the power spectrum and bispectrum of
halos, that is, the two- and three-point correlation functions in Fourier space. The leading-order calculation
of the halo power spectrum and bispectrum requires, respectively, linear- and second-order perturbation
theory (see Appendix B). These leading-order predictions are accurate on sufficiently large scales, roughly
at the level of 10% for k . 0.03hMpc−1 in Fourier space at z = 0 (a more precise calculation is the subject
of Sec. 4.1.4); the range increases at higher redshifts [101]. We will present the corresponding real-space
results, the correlation functions, at the end of this section.

The halo auto-power spectrum and halo-matter cross-power spectrum are given by

P lo
hh(k) ≡ 〈δh(k)δh(k′)〉′lo = b21PL(k) + P {0}ε

P lo
hm(k) ≡ 〈δh(k)δm(k′)〉′lo = b1PL(k) , (4.2)

where, here and throughout, a prime on an expectation value denotes that the momentum-conserving Dirac
delta, (2π)3δD(k+k′) in case of Eq. (4.2), is to be dropped (see Tab. 2). As mentioned in the introduction,
we drop the time argument throughout this section for clarity. Again, we would obtain the same relation
for galaxies if we were able to measure their proper rest-frame density at the true physical position, that

is, without redshift-space distortions and other projection effects. P
{0}
ε = limk→0〈ε(k)ε(k′)〉′ is the scale-

independent large-scale stochastic contribution [see Eq. (2.83) in Sec. 2.8]. Note that this is a renormalized
stochastic term which absorbs scale-independent terms from higher loop integrals (see Sec. 4.1.4). We will

discuss P
{0}
ε in more detail in Sec. 4.5.3. The next-to-leading-order corrections to Phh(k) as well as Phm(k)

from nonlinear evolution of both matter and bias, and from higher-derivative biases, will be described in
Sec. 4.1.4.

Since the halo stochasticity contributes to the halo auto-power spectrum Phh(k) but not to the halo-
matter cross-power spectrum Phm(k), the latter offers the simplest and cleanest measurement of the linear
bias parameter b1 for halos (see e.g. [230, 231, 127]). This technique can also be applied to galaxies,
by measuring the matter distribution through weak gravitational lensing, specifically, the cross-correlation
(“galaxy-galaxy lensing”) of the projected galaxy density with the tangential shear measured from source
galaxies at higher redshifts [94, 232, 233, 234, 235, 236] (see [237] for a recent review). Briefly, for lens galaxies
at a known comoving distance χL and source galaxies following a normalized redshift distribution p(z), the
stacked tangential shear around galaxies in angular multipole space corresponds to a projection of the real-
space galaxy-matter power spectrum, Pgm = b1Pmm at leading order, given in the Limber approximation
[238] by

Cgγ(l) =
3

2
Ωm0H

2
0

[∫
dz p(z)

χ(z)− χL
χ(z)

]
1 + z(χL)

χL
Pgm

(
k =

√
l(l + 1)

χL
, z(χL)

)
. (4.3)

By itself, this observable suffers from a degeneracy between b1 and the matter power spectrum normalization.
This degeneracy can be broken by including the projected auto-correlation of galaxies Cgg(l), and/or the
cosmic shear power spectrum Cγγ(l), as recently applied in [239, 31].
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Alternatively, the degeneracy between bias and amplitude of fluctuations can be broken by measuring the
three-point correlation function (in real space; [240, 241]) or bispectrum (in Fourier space; [242]). Statistical
homogeneity and isotropy dictate that the bispectrum depends on three parameters which describe the shape
and scale of a triangle. The bispectrum thus encodes much more information than the two-point function,
which is a function of one scale only. Moreover, the leading nonlinear (second-order) effects of bias become
apparent in the bispectrum. Finally, the bispectrum contains interesting cosmological information in its
own right [61]. The leading-order (tree-level) expressions for the matter-matter-halo, matter-halo-halo, and
halo-halo-halo bispectra are respectively given by

Blo
mmh(k1, k2, k3) ≡ 〈δ(k1)δ(k2)δh(k3)〉′lo

= b1B
lo
mmm(k1, k2, k3) +

[
b2 + 2bK2

([
k̂1 · k̂2

]2
− 1

3

)]
PL(k1)PL(k2)

Blo
mhh(k1, k2, k3) ≡ 〈δ(k1)δh(k2)δh(k3)〉′lo

= b21B
lo
mmm(k1, k2, k3) + 2PL(k1)P {0}εεδ

+

{
b1

[
b2 + 2bK2

([
k̂1 · k̂2

]2
− 1

3

)]
PL(k1)PL(k2) + (k2 ↔ k3)

}

Blo
hhh(k1, k2, k3) ≡ 〈δh(k1)δh(k2)δh(k3)〉′lo

= b31B
lo
mmm(k1, k2, k3) +B{0}ε (4.4)

+

{
b21

[
b2 + 2bK2

([
k̂1 · k̂2

]2
− 1

3

)]
PL(k1)PL(k2) + 2 b1P

{0}
εεδ

PL(k2)

}
+ 2 perm. .

In the first two lines, we choose k3, and k2, k3, respectively, to refer to halo overdensities. Note that the
bispectra Bmmh and Bmhh are symmetric under interchange of k1, k2 and k2, k3, respectively, while Bhhh
is symmetric under interchange of any of the ki. The leading-order matter bispectrum entering Eq. (4.4) is
given by

Blo
mmm(k1, k2, k3) = 2F2(k1,k2)PL(k1)PL(k2) + 2 perm. , (4.5)

where the F2 kernel is defined in Eq. (B.13). Eq. (4.4) contains the leading stochastic terms discussed in
Sec. 2.8 [cf. Eq. (2.85)], where

P {0}εεδ
≡ lim
k→0
〈ε(k)εδ(k)〉′ and B{0}ε ≡ lim

k1,k2→0
〈ε(k1)ε(k2)ε(k3)〉′ (4.6)

are the cross-power spectrum of the leading (ε) and next-to-leading (εδ) stochastic fields, and the bispectrum
of ε, respectively; both of these are scale-independent in the large-scale limit. The significance of εδ was
discussed in Sec. 2.3, and we will return to the stochastic contributions in Sec. 4.5.3 below. In analogy with
Phm, there are no stochastic contributions to Bmmh, making this the cleanest statistic to measure b1, b2,
and bK2 for halos. For galaxies, if lensing data are available, the projected, real-space matter-matter-galaxy
bispectrum Bmmg can be measured by constructing the galaxy-shear-shear cross-correlation.

The scale and configuration dependence of the halo bispectrum allows for the degeneracy between the
bias and amplitude of fluctuations to be broken. Fig. 10 shows the dependence of the different contributions
to Blo

hhh on (k1, k2, k3). The filled region in each panel is defined by the triangle inequality (k1 ≤ k2 + k3)
with the condition k1 ≥ k2 ≥ k3 that we impose without loss of generality. We also show names that
are commonly used to refer to special triangle configurations; these will again play a role when discussing
primordial non-Gaussianity in Sec. 7. From top to bottom we plot the contributions to Eq. (4.4) that are

proportional to, respectively, b31, b21b2, b21bK2 and b1P
{0}
εεδ for two different scales: the left-hand side plots are

for fixed k1 = 0.01hMpc−1, corresponding to a scale larger than the matter-radiation equality turn-over
of the power spectrum, while the right-hand side plots are for fixed k1 = 0.05hMpc−1, showing the shape
dependence on smaller scales (k1 > keq). In all panels, we normalize the bispectrum to have a maximum
value of 1, in order to highlight the shape dependence. One can find a detailed explanation for the shape
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Figure 10: Illustration of the dependence of the different contributions to Blo
hhh [Eq. (4.4)] on triangle configuration, where

k1 ≥ k2 ≥ k3. The color scale shows the magnitude of each contribution at fixed k1 = 0.01hMpc−1 (left column) and
k1 = 0.05hMpc−1 (right column). We divide each amplitude by the maximum value attained. Commonly used designations
for certain triangle configurations are indicated in the first row. Shown are, from top to bottom: (i) Blo

mmm [Eq. (4.5)],

(ii) Bδ2 (k1, k2, k3) ≡ PL(k1)PL(k2) + 2 perm., (iii) BK2 (k1, k2, k3) ≡ ([k̂1 · k̂2]2 − 1/3)PL(k1)PL(k2) + 2 perm., and (iv)

Bεεδ ≡ P
{0}
εεδ [PL(k2) + 2 perm.]. The prefactor P

{0}
εεδ is irrelevant in this representation. The dotted lines in the third row

indicate the zero-crossing of BK2 ; BK2 is positive (negative) on the left- (right)-hand side of the dotted lines, respectively.

dependence of Blo
mmm in [243]. The different shape dependences are clearly visible by eye. Thus, a precise

measurement of Blo
hhh in principle yields clean measurements of b1, b2, bK2 and P

{0}
εεδ that are independent

of the power spectrum normalization. We will quantify these statements in Sec. 4.1.3.
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An alternative approach to measuring and fitting Eqs. (4.2)–(4.4) was proposed in [244] and applied in
[245], who considered the cross-power spectrum of δh(k) with the Fourier transform of squared smoothed
fields (δ2

R`
)(k), [(Kij

R`
)2](k), where R` is a smoothing scale that is sufficiently large to suppress the higher-

order nonlinear contributions. This method is an extension of efficient higher-order correlation function
estimators used in the analysis of CMB temperature and polarization fields [246, 247]. An advantage of this
approach is that one can circumvent a direct measurement of all triangle configurations of the bispectrum,12

and that it can be extended to extract information in higher-order statistics such as the trispectrum. The
downside of this approach is that nonlinear and scale-dependent corrections are less under control than in
the full n-point approach, as the nonlinear operation (squaring) performed in real space corresponds to a
convolution in Fourier space, which leads to additional high-k contributions, although they are suppressed
by the smoothing.

Finally, the bias parameters can equivalently be measured from real-space statistics. The leading-order
halo two-point auto-correlation function and the halo-matter cross-correlation function are given by the
Fourier transform of Eq. (4.2), or directly from the bias expansion Eq. (4.1):

ξlohh(r) = b21ξL(r), ξlohm(r) = b1ξL(r), (4.7)

where the linear matter two-point correlation function is given by

ξL(r) =

∫

k

PL(k)eik·r =
1

2π2

∫
k2dkPL(k)j0(kr). (4.8)

Here and throughout, we use the shorthand
∫
k
≡
∫
d3k/(2π)3 (see Tab. 4). Note that a constant stochastic

contribution P
{0}
ε in the power spectrum Eq. (4.2) contributes a term P

{0}
ε δD(r) to the two-point correlation

function, and we have not written it here as it only contributes at vanishing, or very small, separation
(see Sec. 2.8 for a detailed discussion). Nevertheless, this contribution is important when evaluating the
covariance of ξhh, which enters the likelihood that needs to be evaluated to obtain the best-fitting b1 and
its measurement uncertainty. It also enters the moments of halos (Sec. 4.2). The three-point functions are
similarly obtained from the bias expansion Eq. (4.1), or alternatively from the Fourier transform of Eq. (4.4),
yielding [251, 252, 253, 254]

ξ
(3),lo
mmh (r1, r2, r3) ≡ 〈δ(x)δ(x+ r1)δh(x+ r2)〉lo

= b1ξ
(3),lo
m (r1, r2, r3) + b2ξL(r2)ξL(r3) + 2bK2ξ

(0)
2 (r2)ξ

(0)
2 (r3)

[
µ2

23 −
1

3

]

ξ
(3),lo
mhh (r1, r2, r3) ≡ 〈δ(x)δh(x+ r1)δh(x+ r2)〉lo

= b21ξ
(3),lo
m (r1, r2, r3) + b1b2

{
ξL(r1)ξL(r3) + ξL(r2)ξL(r3)

}

+ 2b1bK2

{
ξ

(0)
2 (r1)ξ

(0)
2 (r3)

[
µ2

13 −
1

3

]
+ ξ

(0)
2 (r2)ξ

(0)
2 (r3)

[
µ2

23 −
1

3

]}

ξ
(3),lo
hhh (r1, r2, r3) ≡ 〈δh(x)δh(x+ r1)δh(x+ r2)〉lo

= b31ξ
(3),lo
m (r1, r2, r3) + b21b2ξ

(3)
δ2 (r1, r2, r3) + 2b21bK2ξ

(3)
K2(r1, r2, r3) ,

where r1 = |r1| , r2 = |r2| , r3 = |r1 − r2| , and

ξ
(3)
δ2 (r1, r2, r3) = ξL(r1)ξL(r2) + 2 perm.

ξ
(3)
K2(r1, r2, r3) = ξ

(0)
2 (r1)ξ

(0)
2 (r2)

[
µ2

12 −
1

3

]
+ 2 perm. , (4.9)

12This can be a time-consuming process when done in a brute-force way. See [248, 249, 250] for efficient bispectrum estimators.

77



0.0 0.5 1.0 1.5 2.0
r3/r1

0.2

0.4

0.6

0.8

1.0

r 2
/r

1

Qm

r1 = 20 [Mpc/h]

squeezed

0.0 0.5 1.0 1.5 2.0
r3/r1

0.2

0.4

0.6

0.8

1.0

r 2
/r

1

Qm

r1 = 100 [Mpc/h]

elongated elo
ng

at
ed

0.0 0.5 1.0 1.5 2.0
r3/r1

0.2

0.4

0.6

0.8

1.0

r 2
/r

1

QK2

r1 = 20 [Mpc/h]

0.0 0.5 1.0 1.5 2.0
r3/r1

0.2

0.4

0.6

0.8

1.0

r 2
/r

1

QK2

r1 = 100 [Mpc/h]

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 11: Shape dependence of two contributions to the reduced halo three-point correlation function: Qm [Eq. (4.11)] (top

panels), and QK2 = ξ
(3)

K2 (r1, r2, r3)/ξ
(3)

δ2
(r1, r2, r3) (bottom panels), for two different scales: r1 = 20 [Mpc/h] (left panels) and

r1 = 100 [Mpc/h] (right panels). Here, we show all possible triangle configurations satisfying r2 ≤ r1 for a given r1. In order

to highlight the shape dependence, we divide each panel by the maximum value. A horizontal cut r2/r1 ≡ const. in the ξ
(3),lo
m

plot with r1 = 20 [Mpc/h] reveals the well-known “U-shaped” curves of the three-point function. The features seen in the
upper right panel (with r1 = 100 [Mpc/h]) are due to the BAO feature in the linear correlation function.

where µij ≡ r̂i · r̂j is the cosine between the two vectors ri and rj , ξ
(0)
2 (r) ≡

∫
k
PL(k)j2(kr), which is is a

special case of Eq. (6.4) without smoothing (R→ 0), and

ξ(3),lo
m (r1, r2, r3) =

{
34

21
ξL(r1)ξL(r2) +

4

7

[
µ2

12 −
1

3

]
ξ

(0)
2 (r1)ξ

(0)
2 (r2)

− 1

3
µ12

[(
ξL(r1) + ξ

(0)
2 (r1)

)
r1
dξL(r2)

dr2
+ (1↔ 2)

]}
+ 2 perm. (4.10)

is the three-point correlation function of the matter density field at leading order (see, e.g., App. A of
[254]; we have used that j1(x)/x = [j0(x) + j2(x)]/3). Note that, similar to the case of the bispectrum,
statistical homogeneity and isotropy demand that the three-point correlation functions only depend on the
three separations ri. Again, we did not include the stochastic terms that are non-zero only if at least one of
the ri are very small (i.e., non-perturbative).

In order to illustrate its shape dependence, we define the reduced halo three-point functionQhhh(r1, r2, r3) ≡
ξhhh(r1, r2, r3)/ξ

(3)
δ2 , and similarly for the individual contributions defined in Eqs. (4.9)–(4.10). Further,

Qm(r1, r2, r3) ≡ ξ
(3,lo)
m (r1, r2, r3)

ξL(r1)ξL(r2) + 2 perm.
=
ξ

(3,lo)
m (r1, r2, r3)

ξ
(3)
δ2 (r1, r2, r3)

. (4.11)

The nontrivial contributions are shown in Fig. 11. Here, we impose the condition r2 ≤ r1, and show all
regions that satisfy the triangle conditions. The configuration dependence of each term is clearly distinct,
similar to the case in Fourier space. The interpretation of Fig. 11 is, however, complicated by the fact that the
covariance of the three-point function is not diagonal, so that different triangles are significantly correlated.
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On the other hand, the different configurations of the bispectrum shown in Fig. 10 are independent at
leading order.

In this context, it is worth reiterating that the expressions for the power spectrum and bispectrum
Eqs. (4.2)–(4.4) are only strictly correct on large scales. It is not consistent to extend these to smaller scales
by inserting the nonlinear matter power spectrum and bispectrum calibrated with N-body simulations, as
done in some references (e.g., [255, 256]). This is because many higher-order and higher-derivative bias
parameters are implicitly set to zero in this procedure. While this might provide a good empirical match
to halos in simulations, it is not guaranteed to be a good description of the statistics of galaxies. Moreover,
this procedure will in general lead to inconsistent bias parameters when these are measured from different
statistics (e.g., power spectrum and bispectrum), making it impossible to use the synergy between different
statistics.

Finally, while we have restricted to the two- and three-point functions here, the four-point function
(trispectrum) at leading order similarly allows for measurements of the cubic bias parameters written in
Eq. (4.1). Unfortunately, the trispectrum has a small signal-to-noise ratio on large scales once taking
into account the covariance with the two-point function as well as the survey geometry [60], and no full
measurement for either galaxies or halos has been published so far. Hence we do not consider it further
here.

4.1.2 Two- and three-point functions in Lagrangian space

In case of dark matter halos identified in N-body simulations, we can also measure n-point functions
in Lagrangian space, by tracing the halos back to the initial conditions. Then, the contributions due to
nonlinear evolution of the density field disappear in Eqs. (4.2)–(4.4), and the expressions for the n-point
functions simplify. In particular, the leading-order two- and three-point functions become

PL,lohh (k) ≡ 〈δLh (k)δLh (k′)〉′lo = (bL1 )2PL(k) + P
{0}
εL

PL,lohm (k) ≡ 〈δLh (k)δ(1)(k′)〉′lo = bL1 PL(k)

BL,lommh(k1, k2, k3) =

[
bL2 + 2bLK2

([
k̂1 · k̂2

]2
− 1

3

)]
PL(k1)PL(k2) (4.12)

BL,lomhh(k1, k2, k3) = bL1

[
bL2 + 2bLK2

([
k̂1 · k̂2

]2
− 1

3

)]
PL(k1)PL(k2) + P

{0}
εLεLδ

PL(k1) + (k2 ↔ k3)

BL,lohhh (k1, k2, k3) = (bL1 )2

[
bL2 + 2bLK2

([
k̂1 · k̂2

]2
− 1

3

)]
PL(k1)PL(k2)

+ 2bL1 P
{0}
εLεLδ

PL(k1) + 2 perm. +B
{0}
εL

,

where Lagrangian statistics are denoted with a superscript L, and P
{0}
εL

, P
{0}
εLεLδ

and B
{0}
εL

are the La-

grangian counterparts of the stochastic amplitudes defined in Eq. (4.6); again, they are constant on large
scales. Moreover, for conserved tracers such as protohalos, they are the same as their Eulerian counterparts

P
{0}
ε , P

{0}
εεδ , B

{0}
ε . In that case, Eq. (4.12) and Eqs. (4.2)–(4.4) also directly map onto each other through

the relations between Eulerian and Lagrangian bias parameters given in Sec. 2.3. Thus, at each order in
perturbation theory (but excluding higher-derivative terms), a knowledge of one set of bias parameters (ei-
ther Eulerian or Lagrangian) determines the other, and describes both late time Eulerian statistics as well
as Lagrangian statistics of proto-halos in the initial conditions; this includes the stochastic terms, as men-
tioned above. It is also worth noticing that the only corrections to the halo-matter cross-power spectrum
PL,lohm (k) and halo-matter-matter bispectrum BL,lohmm(k) in Lagrangian space are due to higher-derivative
terms [13, 257, 258]. This makes PLhm(k) and BLhmm(k) a convenient tool for measuring the Lagrangian
higher-derivative biases of proto-halos (see e.g. [259, 174]).

4.1.3 A worked example: bias constraints from the leading-order power spectrum and bispectrum

As we have discussed in the previous section, the dependence on scale and triangle configuration of the
halo bispectrum [Eq. (4.4) and Fig. 10] provides ample information on the bias parameters that can be
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extracted from the observed halo sample itself. The bispectrum thus breaks the degeneracy between linear
bias b1 and the normalization of PL(k) that is present in the leading-order halo power spectrum. The same
is expected to hold for galaxies, once projection effects are included. We now investigate this information
gain quantitatively, though in an idealized setting, by using the Fisher information matrix formalism [260]
and applying it to upcoming galaxy surveys. Since we neglect redshift-space distortions (RSD, Sec. 9.3.2),
this is clearly not a realistic, complete forecast. We will discuss this further below.

At leading order, i.e. at second order in perturbation theory, the galaxy power spectrum and bispectrum
are statistically independent. Moreover, different wavenumbers are uncorrelated; that is, the covariance
matrices of power spectrum and bispectrum are diagonal. Then, the full Fisher information matrix is given
by

Fij = F
(P )
ij + F

(B)
ij , (4.13)

where the power spectrum and bispectrum Fisher matrices are respectively given by

F
(P )
ij =

∑

k

1

Var [Pgg(k)]

∂Pgg(k)

∂θi

∂Pgg(k)

∂θj
(4.14)

F
(B)
ij =

∑

(k1,k2,k3)

1

Var [Bggg(k1, k2, k3)]

∂Bggg(k1, k2, k3)

∂θi

∂Bggg(k1, k2, k3)

∂θj
. (4.15)

Here, the sums run over wavenumber bins specified below, and Var [Pgg(k)] and Var [Bggg(k1, k2, k3)] denote
the variances of the binned power spectrum and bispectrum estimators, respectively. For this example, our
parameter vector ~θ contains all first- and second-order bias parameters as well as stochastic amplitudes, in
addition to the amplitude of the primordial power spectrum As (Tab. 1):

~θ =
{
b1, b2, bK2 , lnAs, P {0}ε , P {0}εεδ

, B{0}ε

}
. (4.16)

For the biases bO, we assume fiducial values as indicated in Tab. 6, while for the stochastic amplitudes

we assume as fiducial the values predicted by Poisson statistics, P
{0}
ε = (ng)

−1, P
{0}
εεδ = b1/(2ng), and

B
{0}
ε = (ng)

−2, as derived in Sec. 4.5.3.
Let us briefly discuss the effect of higher-order nonlinear corrections and RSD. These can lead to a

degradation of the idealized bias constraints, since both effects introduce additional free parameters. On
the other hand, RSD lead to anisotropies in the clustering statistics that can break parameter degeneracies.
Furthermore, including nonlinear corrections allows us to include smaller scales, and hence many additional
modes, in the analysis. These effects in turn can lead to an improvement over the idealized constraints
presented here.

The leading-order variance of the binned galaxy power spectrum estimator P̂gg(k) is given by [261]

Var [Pgg(k)] =
1

Nk
[Pgg(k)]

2
, (4.17)

where Nk is the number of independent Fourier modes in the wavenumber bin used to estimate the power
spectrum Pgg(k). Note that in our notation, Pgg(k) includes the stochastic (shot-noise) contribution
[Eq. (4.2)]. We do not take into account the effect of survey geometry and assume that Nk is the same
as that of a cubic box with the survey volume Vsurvey. In that case, Nk is given by

Nk =
1

2

4πk2∆k

(kF )3
=
Vsurvey

4π2
k2∆k , (4.18)

where kF ≡ 2π/V
1/3
survey is the fundamental wavenumber of the survey. Note that the constraint that δg(x)

is a real field reduces the number of independent Fourier modes so that only one half of the total Fourier
volume is counted in the number Nk.
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Table 6: Projected uncertainties on the deterministic bias parameters, b1, b2, bK2 , and the amplitude of the linear power
spectrum, lnAs, from current and upcoming galaxy surveys with listed specifications in an idealized setting. In all cases, we
assume b1 = 1.5, and calculate b2 and bK2 from the relation given in Tab. 7 (b2 ' −0.69), and Lagrangian LIMD (bK2 '
−0.14), respectively. The fiducial values of the stochastic amplitudes are given by Poisson sampling, P

{0}
ε = 1/ng , P

{0}
εεδ =

b1/(2ng), B
{0}
ε = 1/n2

g .

survey
redshift

z̄

Vsurvey

[h−3Gpc3]

104 ng

[h−3Mpc3]

kmax = 0.1h/Mpc kmax = 0.2h/Mpc

100σ(bO)
σlnAs

100σ(bO)
σlnAs

b1 b2 bK2 b1 b2 bK2

eBOSS (LRG) 0.8 6.1 4.4 32 45 30 0.43 7.0 4.5 5.9 0.093

eBOSS (QSO) 1.4 39 1.5 38 51 36 0.51 11 6.5 9.2 0.15

HETDEX 2.7 2.7 3.6 190 260 180 2.6 59 35 49 0.79

PFS 1.5 8.7 4.6 47 66 44 0.62 11 6.7 8.9 0.14

DESI 1.1 40 3.3 18 25 17 0.25 4.4 2.7 3.7 0.059

WFIRST 1.9 13 12 35 49 32 0.46 6.8 4.4 5.6 0.091

Euclid 1.4 63 5.2 15 20 14 0.20 3.3 2.1 2.7 0.044

The leading-order variance of the estimated galaxy bispectrum B̂ggg(k1, k2, k3) is given by [61, 62, 250]

Var [Bggg(k1, k2, k3)] = sB
Vsurvey

Nt
Pgg(k1)Pgg(k2)Pgg(k3) , (4.19)

where sB is a symmetry factor (6 for equilateral triangles, 2 for isosceles triangles, 1 for other triangles),
and Nt is the number of triangle configurations in the bin considered; for simplicity, we use the expression
in the continuum limit, valid if Nt is large:

Nt '
1

k6
F

∫

|k1−p1|<∆k1/2

d3p1

∫

|k2−p2|<∆k2/2

d3p2

∫

|k3−p3|<∆k3/2

d3p3 δD(p1 + p2 + p3)

=

(
3∏

i=1

ki∆ki
k2
F

)
×
{

4π2 , ki = kj + kk

8π2 , otherwise
, (4.20)

where i, j, k ∈ cyclic(1, 2, 3). For this calculation, we use ∆ki = kF as bin width. We consider the following
six galaxy surveys: HETDEX [50], eBOSS [49], DESI [53], PFS [57], Euclid [54] and WFIRST [58]. Their
mean redshift z̄ as well as volume and mean galaxy density assumed for this forecast are given in Tab. 6.

The results of the projected 1-sigma (68% confidence level) uncertainties on the bias parameters b1,
b2, bK2 , and the amplitude of the linear power spectrum, lnAs, after marginalizing over the stochastic

parameters P
{0}
ε , P

{0}
εεδ and B

{0}
ε , are given in Tab. 6. First of all, as we have noted earlier, the bis-

pectrum breaks the notorious degeneracy between the two quantities b1 and lnAs, and we can measure
both parameters simultaneously by combining the power spectrum and bispectrum. Consequently, future
galaxy surveys can constrain b1, b2 and bK2 at the level of tens of percent when including Fourier modes
with k < kmax = 0.1h/Mpc. However, we stress that the constraints depend sensitively on the range of
wavenumbers included: going from kmax = 0.1hMpc−1 to 0.2hMpc−1 improves constraints by a factor of
several, and the constraints are now at the few-percent level. This highlights the importance of an accurate
theoretical model of nonlinear corrections to Pgg, Bggg, as well as their covariance matrices. The precise
value of kmax that leads to optimal unbiased constraints on cosmological parameters and the bO is highly
dependent on the survey considered, in particular its redshift range and the galaxy sample being targeted,
and we refrain from attempting to estimate survey-specific values for kmax here. The constraints quoted in
Tab. 6 should thus only be seen as illustrative figures.
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4.1.4 Next-to-leading-order corrections to the two-point functions

So far, we have derived the leading contributions to the two- and three-point functions of galaxies
and halos on large scales. In order to illustrate how higher-order corrections to the above results can be
derived, we also present the next-to-leading-order (NLO, or 1-loop) correction to the two-point function.
We only discuss real-space predictions without any projection effects. Hence our expressions mostly apply
to halos, but the structure of the perturbative expansion remains the same even when including projection
effects. Deriving the nonlinear correction to the two-point functions requires a third-order calculation in
perturbation theory, since, for any operator O, contributions of the type 〈O(1)O′(3)〉 contribute at the same
order as 〈O(2)O′(2)〉 [262, 128, 197]. Thus, the bias expansion in Eq. (4.1) is necessary and sufficient to
derive this correction. Writing

Phm(k) = P lo
hm(k) + P nlo

hm (k) + · · ·
Phh(k) = P lo

hh(k) + P nlo
hh (k) + · · · , (4.21)

and following the notation of [197], the NLO contributions to the halo-matter and halo-halo power spectrum
are respectively given by13

P nlo
hm (k) = b1

[
P nlo
mm(k)− 2C2

s,effk
2PL(k)

]
+ P̂ nlo

hm (k)

P̂ nlo
hm (k) ≡ bδ2I [δ(2),δ2](k) + bK2I [δ(2),K2](k) +

(
bK2 +

2

5
btd

)
fnlo(k)PL(k)

− b∇2δk
2PL(k) + k2P {2}εεm (4.22)

P nlo
hh (k) = (b1)2

[
P nlo
mm(k)− 2C2

s,effk
2PL(k)

]
+ 2b1P̂

nlo
hm (k) +

∑

O,O′∈{δ2,K2}

bObO′I [O,O′](k) + k2P {2}ε ,

where P nlo
mm(k) is the NLO correction to the matter power spectrum [Eq. (B.18)], C2

s,eff ≡ (2π)c2s,eff/k
2
nl is

the scaled effective sound speed of the matter fluid [83, 84] [cf. Eq. (B.28)] and knl is defined in Eq. (4.25),
while εm is the effective stochastic contribution to the matter density (Appendix B.3). Further,

fnlo(k) = 4

∫

p

[
[p · (k − p)]2

p2|k − p|2 − 1

]
F2(k,−p)PL(p)

I [O,O′](k) = 2

[∫

p

SO(k − p,p)SO′(k − p,p)PL(p)PL(|k − p|)

−
∫

p

SO(−p,p)SO′(−p,p)PL(p)PL(p)

]
, (4.23)

where SO(k1,k2) =





F2(k1,k2), O = δ(2)

1, O = δ2

(k̂1 · k̂2)2 − 1/3, O = K2

. (4.24)

We see that, in addition to14 bδ2 = b2/2 and bK2 , which also enter the leading-order halo three-point

function, one new local bias term appears in the NLO halo power spectra, namely O
(3)
td defined in Eq. (2.50),

with associated bias parameter btd. Thus, only one of four cubic-order local bias parameters contributes
to the next-to-leading-order halo power spectra. We have also included the leading higher-derivative bias
b∇2δ ∝ R2

∗ in Eq. (4.22), where R∗ is the nonlocality scale of the halos or galaxies considered.
Correspondingly, we have also included the scale-dependent stochastic contributions to P nlo

hm and P nlo
hh (k).

The latter is expanded following Eq. (2.88), and is expected to scale as |P {2}ε | ∼ R2
∗P
{0}
ε [127, 177, 178, 179].

13We include the relevant stochastic terms which were not considered in [197].
14We use the bias parameter bδ2 here to make the notation in Eqs. (4.22)–(4.24) more compact.
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Figure 12: Left panel: illustration of halo auto- (red, top line) and cross-power spectra (green, middle line), and the matter
power spectrum (blue, bottom line) at z = 0. The solid lines show the total LO plus NLO result, while the dashed curves
show the LO (linear) prediction only. The bias parameters used here are b1 = 1.50, b2 = −0.69, and bK2 = −0.14, as in
Tab. 6, while b∇2δ = R2

∗ with R∗ = 2.61h−1 Mpc. btd = 23/42(b1 − 1) is taken from the Lagrangian LIMD prediction

(Sec. 2.4). The stochastic amplitudes are taken from the Poisson expectation, P
{0}
ε = 1/nh and P

{2}
ε = −R2

∗/nh, with

nh = 1.41 · 10−4(h−1 Mpc)−3. We have set P
{2}
εεm = 0 in P nlo

hm (k). Right panel: fractional size of the NLO contributions to
the matter and halo-matter cross-power spectrum at z = 0. The red dashed line shows the result for Phm(k) for the fiducial
bias parameters given above. The different shaded areas around P nlo

hm show the effect of rescaling the various bias parameters
by a factor in the range [0.5, 2]. Clearly, the contributions from different bias parameters exhibit similar dependencies on k,
and are in general difficult to disentangle using only the power spectrum. The perturbative description is expected to fail for
k & 0.25hMpc−1, where P nlo

mm(k) becomes as large as the LO prediction PL(k).

We will return to this in Sec. 4.5.3. It is often assumed that there is no stochastic contribution to the
halo-matter cross-power spectrum. However, this is only true at lowest order. The nonlinear small-scale
modes of the density field are responsible for both the halo stochasticity ε and the stochastic contribution
to the matter density field εm, which, as discussed in Appendix B.3, is due to the effective pressure of the
nonlinear matter fluctuations and scales as k2 in the low-k limit. Hence, one has to allow for a correlation

between the two stochastic fields, leading to the term k2P
{2}
εεm in P nlo

hm , which is comparable to the other
NLO contributions. Note that it could be either positive or negative.

The magnitude and scale dependence of the NLO corrections to the halo and matter power spectra is
shown in Fig. 12. As expected, we see that the corrections become increasingly important towards smaller
scales (higher k). We see a particularly steep suppression of Phh(k), which, for our fiducial parameters, is

dominated by the higher-derivative stochastic contribution k2P
{2}
ε . The right panel of Fig. 12 shows the

fractional size of the NLO correction to Pmm(k) and Phm(k). Depending on the value of the various bias
and stochastic parameters, the NLO correction could be either positive or negative (shaded regions), and
cancellations between the different NLO contributions can occur. In any case, as soon as the fractional
size of the NLO correction approaches order unity, we expect that higher-order loop contributions which we
have not included become comparable to P nlo

hm (k) as well, and hence the perturbative expansion ceases to
converge.

The NLO halo-matter power spectrum adds five additional free parameters to the ones present at leading

order (b1, P
{0}
ε ). These can, in principle, be disentangled due to the different scale dependence of each term.

However, as illustrated in Fig. 12, these scale dependences are sufficiently similar that it is difficult to
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disentangle the various higher-order bias parameters in practice; note that there is only a limited range
in wavenumbers that can be used for the parameter estimation, due to the presence of higher loop and
derivative corrections (see below). Nevertheless, the leading-order bispectrum can be used to determine b2
and bK2 , leaving only btd, b∇2δ, and P

{2}
εεm to be constrained from the NLO correction to the halo-matter

cross-power spectrum.
In order to gain a more detailed understanding of the magnitude of the corrections in Eq. (4.22), let us

approximate the matter power spectrum by a power law,

PL(k) ≈ 2π2

k3
nl

(
k

knl

)n
, (4.25)

where knl is the nonlinear scale at which the dimensionless matter power spectrum ∆2(k) = k3PL(k)/(2π2)
becomes unity. This yields, for example,

I [δ2,δ2]

PL(k)
= 2

(
k

knl

)3+n ∫ 1

−1

dµ

2

∫ ∞

0

x2dx
[(
x
√

1 + x2 − 2xµ
)n
− x2n

]
. (4.26)

While other NLO loop-integral terms have different angular integrands, the scaling ∝ (k/knl)
3+n is common

to all (see also Fig. 12). Note that, depending on the value of n, the integral over x might need to be
regularized in the UV (ultraviolet, small-scale, or large-x, limit of the integral), while the integral is safe from
divergence in the IR (infrared, large-scale, or small-x, limit of the integral), because of the term subtracted
in Eq. (4.23); in any case, this does not affect the scaling with k/knl. This scaling allows us to estimate the
importance of higher-order terms. For example, 2-loop corrections correspondingly scale as (k/knl)

2(3+n)

for a scale-free power spectrum [218]. For our reference ΛCDM cosmology, we have approximately15 knl(z =
0) = 0.25hMpc−1 and n = d lnPL/d ln k|knl = −1.7, so that the one-loop terms scale approximately as
(k/knl)

1.3. Of course, this is only a rough approximation as PL(k) cannot be approximated as a power
law over the entire relevant range of scales. In particular, since n becomes positive for k . 0.02hMpc−1,
the NLO terms eventually scale as k2 for sufficiently small values of k. Nevertheless, such estimates are
important as they allow us to marginalize over higher-loop corrections and rigorously take into account the
uncertainty in the prediction of Eq. (4.22) [263].

The higher-derivative term ∝ b∇2δ obeys a scaling with k (∝ k2) that is in general different from that
of the NLO corrections (∝ k3+n). Further, the former involves an additional scale, R∗. Thus, we have two
independent expansion parameters,

εloop ≡
(
k

knl

)3+n

≈
(

k

0.25hMpc−1

)1.3

, and εderiv. ≡ k2R2
∗ . (4.27)

Thus, depending on the halo or galaxy sample, the leading higher-derivative term could be negligible com-
pared to the NLO corrections on the scales of interest, e.g. 0.01 . k[hMpc−1] . 0.2, or could be significantly
larger. If εderiv. is comparable to εloop on the scales considered, then both NLO and leading higher-derivative
corrections should be included. This is what we have assumed in Eq. (4.22). More generally, when going to
higher orders, one would then include terms that involve the same powers of εloop and εderiv.. For example,
at 2-loop order, these are the terms of order ε2loop, εloopεderiv., and ε2deriv.. On the other hand, if the two
expansion parameters are substantially different, then it is necessary to retain terms that are higher order
in the larger parameter. For example, if εderiv. � εloop, one should allow for additional higher-derivative
terms, which leads to contributions ∝ {k4R4

∗, k
6R6
∗, · · · }PL(k) in Eq. (4.22) [128, 264, 265]. The cutoff of

the perturbative approach then is at k ≈ 1/R∗. All of this applies analogously to the bispectrum and higher
n-point functions.

Finally, the higher-derivative stochastic contributions, which scale as k2 (as opposed to k2PL(k) as
the higher-derivative bias contribution), are higher order in terms of their k scaling, but the amplitude

15This was obtained by fitting a power law to PL(k) over the range k ∈ [0.1, 0.25]hMpc−1.
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could be large for very rare high-mass halos. Note that, in the definition of I [O,O′] [Eq. (4.23)], we have
subtracted any possible constant term in the k → 0 limit, since such a constant term is absorbed by the

renormalized stochastic term P
{0}
ε ; this corresponds to the term P0 ≡ b22

∫
q
|PL(q)|2 in [266], and evaluates

to a finite but significant value for a ΛCDM power spectrum. In principle, one should also subtract the term
k2∂2I [O,O′]/∂k2|k=0 (and corresponding higher-order terms), since it is absorbed by the higher-derivative

stochastic term. However, as long as the amplitude of P
{2}
ε is allowed to be free, it can absorb the contribution

from the local bias loop integrals (note that new terms with the same scaling appear at each higher loop
order).

The prediction for P nlo
hm , P nlo

hh in Eq. (4.22) is unambiguous; however, the various contributions can be
broken down in a variety of different ways [128, 137, 267], of which Eq. (4.22) is only one option. Also,
when using Eq. (4.22) in conjunction with Eq. (4.2) to fit the data, one should, strictly speaking, include
the leading connected 4-point function (trispectrum) in the covariance of Phh and Phm, as this is also a
third-order contribution in perturbation theory. In practice, this leads to fairly small corrections to the
uncertainties of inferred bias parameters [268].

Finally, the standard NLO result given in Eq. (4.22) does not provide a very good description of the power
spectrum and correlation function around the scale of the BAO feature (0.05hMpc−1 . k . 0.2hMpc−1).
This is because large-scale modes introduce displacements which lead to a significant smoothing of the BAO
feature. This deficiency can be improved by resumming these displacement terms [269, 270, 271, 272].
We briefly describe this resummation, which applies in the same way to biased tracers as to matter, in
Appendix B.4.

Previous derivations have obtained a subset of the terms in Eq. (4.22); for example, [79] derived the
analogous result in LPT for LIMD Lagrangian bias, where bK2 and btd are set to zero at the initial time (see
Sec. 2.4). Ref. [266, 273] assumed LIMD Eulerian bias, setting bK2 and btd to zero at the final time. Ref. [255]
used renormalized bias parameters, but also set bK2 = 0 = btd, and replaced b1(PL +P nlo

mm) with b1 times the
matter power spectrum given by the closure theory prescription [274], finding fairly good agreement with
simulation measurements of Phm(k) up to k = 0.3hMpc−1 at z = 0. Note however that this does not prove
that bK2 and btd vanish; as emphasized above, using the correct values for all bias parameters is essential in
order to obtain a consistent prediction for all halo statistics (including auto- and cross-, two- and three-point
functions). Ref. [141] derived the one-loop power spectrum in LPT with general Lagrangian bias functions
cLN (k1, · · · ,kN ). This approach is somewhat different from the renormalized, perturbative bias expansion
discussed in Sec. 2 which leads to Eq. (4.22), in that one needs a “microscopic” model for the free functions
cLN (k1, · · · ,kN ). The example of inserting a bias parameter multiplied by N powers of a filtering kernel
WR(k) corresponds to introducing a finite physical cutoff scale Λ ∼ R−1 in the loop integrals. This is again
in contrast to Eq. (4.22), which is explicitly independent of any cutoff (see Sec. 6.9.3 for a more detailed
comparison). More generally, it is worth noting that predictions from Eulerian SPT and Lagrangian LPT,
while they agree by definition on large scales, begin to diverge when extrapolated beyond their regime of
validity.

4.2 Moments

Historically, the first studies of bias considered the moments of the one-point distribution, i.e. number
counts, of biased tracers within volumes of a fixed size R`, also referred to as counts-in-cells. Specifically,
the moments are defined as 〈[δg,`(x)]n[δ`(x)]m〉, where n,m = 0, 1, · · · and δg,`, δ` denote the galaxy and
matter density fields, respectively, both smoothed on the scale R`. These moments have been estimated on
low-redshift galaxy catalogs as early as the 1970s [5, 275, 276, 277, 278, 279, 280, 281]. The moments can
be conveniently rescaled to define the hierarchical amplitudes in terms of the skewness, kurtosis, and higher
reduced moments of the filtered galaxy density field δg,`:

〈δ3
g,`〉c
〈δ2
g,`〉2

,
〈δ4
g,`〉c
〈δ2
g,`〉3

, (4.28)

and so on, where a subscript c denotes the connected part of the moment. The skewness captures the
asymmetry in the volume fraction of underdense and overdense regions of the galaxy density field. The
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original motivation for the definitions in Eq. (4.28) was the fact that, in “hierarchical models” of clustering,
the amplitudes 〈δNg,`〉c/〈δ2

g,`〉N−1 are independent of time and scale R` [6, 282, 283], as confirmed by gravity-
only simulations with power-law initial conditions [284, 285, 286, 287, 288]. For realistic CDM power
spectra, however, there are deviations from the hierarchical clustering prediction, which result in significant
R`-dependent corrections to 〈δNg,`〉c/〈δ2

g,`〉N−1 [289, 286, 290]. A generalization of the moments in Eq. (4.28),
the two-point moments [102, 291] employs the joint expectation value of powers of δg,`, δ` at two different
locations. Ref. [292, 293] considered rare excursions of the smoothed density field, which are related to
moments and amenable to analytical statistical techniques.

For a LIMD bias expansion and assuming hierarchical clustering, the second and third moments can
be combined to yield estimators of b1 and b2 [294]. Note that, since both numerator and denominator
have some non-vanishing noise, care must be taken in constructing unbiased estimators of the hierarchical
amplitudes [295]. Early applications of this method to simulations were presented in [296, 110, 297, 298].
More recent analyses can be found in [299]. Ref. [300] present a method to use the moments of weak lensing
convergence and projected galaxy density to estimate the linear bias, which is the analog in moments to the
galaxy-galaxy lensing angular power spectrum Eq. (4.3).

The advantage of moments-based methods for measuring bias is that they are simple to implement on
galaxy catalogs or simulation outputs. Namely, we merely have to throw spheres randomly in the simulated
volume, or divide the simulation volume into a grid, and compute fractional densities. The disadvantages
are that large smoothing scales need to be chosen to ensure that nonlinear corrections are under control
(& 30h−1 Mpc [301, 254], see also below), and that more complicated moments than those in Eq. (4.28)
need to be included in the analysis to disentangle the different bias parameters at a given order, for example
b2 and bK2 . The tidal bias bK2 and stochastic contributions such as εδ, which appear in the halo bispectrum
Eq. (4.4) and, thus, contribute to the skewness, were neglected in the references listed above. Finally,
application to observational data sets is further complicated by the usually non-trivial survey geometry and
mask.

In the following, we again neglect redshift-space distortions and other projection effects to discuss mo-
ments of the smoothed halo density field δh,` as extracted from N-body simulations. We will derive the
leading-order prediction for the moments in the general perturbative bias expansion, and show how the bias
parameters estimated using this method are related to those obtained from halo n-point functions on large
scales. For this, we introduce a slightly different bias expansion to Eq. (4.1) by writing

δh,`(x) = bm1 (R`)δ`(x) +
1

2
bm2 (R`)

(
[δ`(x)]2 − σ2(R`)

)
+ bmK2(R`)

(
K2
` (x)− 〈K2

` 〉
)

+ εm
` (x) + εm

δ,`(x)δ`(x) + · · · , (4.29)

where O` denotes an operator O smoothed on the scale R`, and K2
` ≡ Kij,`K

ij
` . Note the difference to the

expression obtained if one were to smooth Eq. (4.1): there, one would obtain [δ2]` while here we have [δ`]
2.

Correspondingly, we have introduced a different set of bias parameters here, the moments biases bmO(R`)
which depend on the scale R`. The relation between the bmO , the moments, and the bO of Eq. (4.1) will
become clear momentarily.

We begin with the variance:

σ2
hm(R`) ≡ 〈δ`(x)δh,`(x)〉 lo

= bm1 (R`)σ
2(R`)

lo
= b1σ

2(R`)

σ2
hh(R`) ≡ 〈δh,`(x)δh,`(x)〉 lo

= [bm1 (R`)]
2σ2(R`) + 〈(εm

` )2〉 lo
= b21σ

2(R`) + 〈ε2
`〉 , (4.30)

where, for each line, the first relation in the lo limit is that obtained using the moments-bias expansion
Eq. (4.29), while the second is what is obtained in the large-scale bias expansion Eq. (4.1). Further,

〈(εm
` )2〉 = 〈ε2

`〉 = P {0}ε V −1
` , (4.31)

where V −1
` = [

∫
d3xW 2

` (x)] is the inverse of the volume of the filtering kernel W` ≡ WR` . As emphasized
in Eq. (4.30), these results hold only for sufficiently large smoothing scales so that nonlinear and higher-
derivative corrections become unimportant; specifically, these scale as σ4(R`) and R2

∗σ
2
1(R`), respectively,

where σn(R`) is defined in Tab. 4.
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Eq. (4.30) shows that we have bm1 (R`) = b1 at this order, and that the variance of the stochasticity
agrees as well. Note that these relations also receives corrections of order R2

∗σ
2
1(R`), and R2

∗
∫
k
k2W 2

` (k),
respectively. These corrections not only depend on the filter scale R`, but the shape of the filter as well, in
particular its behavior at high k.

We now consider third-order moments. Specifically, we focus on halo-matter-matter moments as these do
not receive stochastic contributions at leading order and are thus convenient to single out the deterministic
bias parameters; more generally, this holds for all moments involving only one power of the halo field. We
will see that the differences between the (renormalized) bias parameters appearing in the n-point functions
of Sec. 4.1 and those defined through Eq. (4.29) now become apparent. Consider the halo-matter-matter
moment, which via Eq. (4.29) becomes at leading order

〈δ2
` (x)δh,`(x)〉 lo= bm1 (R`)〈δ3

` 〉+
1

2
bm2 (R`)

〈
δ2
`

[
δ2
` − σ2(R`)

] 〉
+ bmK2(R`)

〈
δ2
`

[
K2
` − 〈K2

` 〉
] 〉

= bm1 (R`)〈δ3
` 〉+ bm2 (R`)σ

4(R`) . (4.32)

Note that in our choice of bias expansion Eq. (4.29), bmK2(R`) does not contribute to 〈δ2
` δh,`〉. This changes

for example if one replaces the operator K2 with G2 ≡ K2− (2/3)δ2 [254]. In order to measure both bm2 and
bmK2 , we also need to measure an independent third moment, in particular one that includes the smoothed
tidal field [118, 245],

〈K2
` (x)δh,`(x)〉 lo= bm1 (R`)〈K2

` δ`〉+
1

2
bm2 (R`)

〈 [
δ2
` − σ2(R`)

]
K2
`

〉
+ bmK2(R`)

〈 [
K2
` − 〈K2

` 〉
]
K2
`

〉

= bm1 (R`)〈K2
` δ`〉+

8

45
bmK2(R`)σ

4(R`) , (4.33)

which now yields an estimate of bmK2(R`). Here, we have used that 〈K2
` 〉 = (2/3)σ2(R`). Similarly to the

n-point functions, where higher-order terms in perturbation theory lead to corrections of order (k/knl)
3+n,

higher-order corrections to the moments enter as higher powers of σ2(R`), in particular σ6(R`) in the case of
Eqs. (4.32)–(4.33). We will now show that there is a well-defined procedure for mapping the bm2 (R`), b

m
K2(R`)

to parameters b2, bK2 measured from n-point functions in the large-scale limit; however, they are not
equal, a fact which has been ignored in nearly all of the literature on moments of biased tracers (see e.g.
[226, 299, 254], with the notable exception of [245]). The precise relation depends on the matter power
spectrum shape as well as the scale R` and type of smoothing filter used.

Let us first briefly make a technical note. The moments of biased tracers on some physical scale R`
are an observable just like the n-point functions discussed in Sec. 4.1. Thus, the moments biases appearing
in Eqs. (4.32)–(4.33) are also physical renormalized bias parameters, but defined using different renormal-
ization conditions than those employed for the biases bO defined through n-point correlation functions, as
described in Sec. 2.10.4. That is, Eq. (4.29) should strictly be written in terms of renormalized opera-
tors [δ2]m(R`), [K2]m(R`), and so on, which are defined through the renormalization conditions given in
Eq. (2.130), rather than Eq. (2.126) which defines the operators [δ2], [K2] that are employed in Sec. 4.1.
This means that the two sets of bias parameters can be mapped onto each other, via a transformation that
is calculable at a given order in PT.

To obtain the relation between the bmO(R`) and the bO, we evaluate Eqs. (4.32)–(4.33) as integrals over
the leading-order halo-matter-matter bispectrum Blo

mmh,

〈δ2
` (x)δh,`(x)〉 = b1〈δ3

` 〉+
1

2
b2〈δ2

` [δ2]`〉+ bK2〈δ2
` [K2]`〉+ · · ·

lo
=

∫

k1

∫

k2

W`(k1)W`(k2)W`(k12) (4.34)

×
{
b1B

lo
mmm(k1, k2, k12) +

[
b2 + 2bK2

([
k̂1 · k̂2

]2
− 1

3

)]
PL(k1)PL(k2)

}
.

and similarly for 〈K2
` (x)δh,`(x)〉. We now see the source of the differences between the n-point biases bO

and the moments biases bmO(R`): the former are defined without making reference to any scale R`, which
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Figure 13: Elements of the bias transformation matrix MOO′ [Eq. (4.36)] as a function of σ(R`), for two filters: real-space
tophat (lower, thick set of lines) and Gaussian (upper, thin set of lines). Specifically, we show the departure of the linear map
from the identity. The top axis shows the corresponding smoothing scale RTH

` for the tophat filter. The dotted line shows the
order of magnitude of higher-order corrections ∝ σ2(R`).

only enters when smoothing the halo density field δh → δh,` after the bias expansion; hence, the correlators
contain [O]`. On the other hand, the operators [O]m(R`) corresponding to the bmO(R`) make reference to the
smoothed linear density and tidal field [Eqs. (4.32)–(4.33)], and thus depend explicitly on the scale R`. Note
that an exactly analogous result, with bO → bLO, is obtained when considering moments of the proto-halo
density field in Lagrangian space. In that case, the skewness of δ` vanishes.

The leading-order relation in PT between the different bias definitions can now be read off by comparing
Eq. (4.32) and Eq. (4.34). For the linear bias parameter, we obtain simply

bm1 (R`)
lo
= b1 , (4.35)

in agreement with Eq. (4.30). Thus, as long as NLO corrections of order σ2(R`) and R2
∗σ

2
1(R`) can be

neglected, the linear moments bias is exactly equal to the linear bias inferred from the large-scale two- or
three-point function. For the second-order biases, there is a nontrivial mapping already at leading order:

bmO(R`)
lo
=

∑

O′=δ2,K2

MOO′(R`)bO′ , where O,O′ ∈ {δ2, K2} and

MOO′(R`) = σ−4(R`)

(
1
2 〈[δ2]`δ

2
` 〉 1

2 〈[K2]`δ
2
` 〉

45
8 〈[δ2]`K

2
` 〉 45

8 〈[K2]`K
2
` 〉

)

lo

. (4.36)

Note that bδ2 = b2/2, and 〈[δ2]`K
2
` 〉 = 〈[K2]`δ

2
` 〉 at leading order. Fig. 13 shows the three independent

elements of MOO′(R`) as function of σ(R`) and for two different filters; the fourth element MK2δ2 is simply
proportional to Mδ2K2 . More specifically, we show the departure from the identity matrix. Clearly, the
biases inferred from moments through Eq. (4.32) in general differ significantly from the biases inferred from
the three-point function in a strongly R`-dependent way. The R`-dependence of MOO′(R`) that is evident
from Fig. 13 is due to the fact that PL(k) is not a pure power law (for which the coefficients would be
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R`-independent), but instead the effective power law index depends on the smoothing scale R`. Again,
these results hold equally for proto-halo moments in Lagrangian space.

Nevertheless, there is an unambiguous transformation between the two bias definitions. Note that it is
essential that all bias parameters that are relevant at a given order are included (only 2 at second order,
but, for example, 4 at third order) in order to obtain the correct transformed biases. Moreover, if σ2(R`)
is not sufficiently small, there are significant nonlinear corrections to the relation Eq. (4.36). The order
of magnitude of higher-order contributions, i.e. σ2(R`), is shown by the dotted line in Fig. 13; if this
quantity is not small, then the bmO(R`) cannot be related to the large-scale biases bO within the framework
of perturbation theory.

For the real-space tophat filter, the bias transformation matrix MOO′ is numerically close to the identity
(within 3–15% depending on R`). Still, for precision bias measurements the difference between say b2 and
bm2 (R`) is not negligible. For the Gaussian filter, the differences between b2 and bm2 (R`) are significant and
cannot be neglected for any interesting filter scales. It might seem surprising that bmδ2(R`) is fairly close to
bδ2 (assuming σ2(R`) is negligible) for the tophat filter, given that they are related to different moments.
To see why, let us write

W`(k12) = W`(k1)W`(k2)f`(k1, k2, k̂1 · k̂2) . (4.37)

If f` = 1, then the moment Eq. (4.34) reduces to the hierarchical result, and we recover bmδ2(R`) = bδ2 +
O(σ2(R`)). For a Gaussian filter, we simply have f` = exp(−k1k2µR

2
` ). A real-space tophat filter on the

other hand satisfies W 2
` (x) = W`(x)/V`, where V` = 4πR3

`/3 is the volume of the filter. This implies that

∫

k1

|W (k1)|2f(k1, k, µ) =

∫

k1

|W (k1)|2 = 1 , (4.38)

so that f(k1, k, µ) is close to unity. This explains why, for the tophat filter, 〈[δ2]`δ
2
` 〉 ≈ σ4(R`) while

〈[K2]`δ
2
` 〉 � σ4(R`), so that the moments biases for this filter are close to the large-scale renormalized

biases.
In order to determine the leading corrections of order σ2(R`) in Eq. (4.36), one has to evaluate the NLO

corrections to Phm and Bhmm, respectively, which include higher-order and higher-derivative biases. Specif-
ically, the leading correction to bm1 (R`) [Eq. (4.30)] is given by the integral over Eq. (4.22). The contribution
proportional to b1 captures the nonlinear evolution of matter. However, there are additional contributions
at the same order which involve four additional bias parameters. The number of additional biases entering
bm2 (R`) due to the NLO contribution to the halo-matter-matter bispectrum is even larger. Thus, in order
to obtain rigorous, predictive measurements for the biases from moments, one has to restrict to the regime
σ(R`)� 1. At low redshifts, significant nonlinear corrections already appear for cell sizes R` . 50h−1 Mpc
[302].

A related, but subtly different method to measure LIMD bias parameters was proposed in [303, 304],
where halos identified at a given redshift were traced back to the initial conditions, yielding the Lagrangian
density field of halos δLh (q). The Lagrangian bias parameters—including those induced by higher-derivative
operators—can be obtained by cross-correlating the Lagrangian halo field δLh with nonlinear transformations
of the matter density field [305, 306]. The Hermite polynomials HN provide a suitable basis to measure the
Lagrangian LIMD bias parameters. Namely, one measures the joint moments

MLCC
N (R`) =

〈
[1 + δLh (q)]HN

[
δ

(1)
` (q)

σ(R`)

]〉
, (4.39)

where LCC stands for “Lagrangian cross-correlation.” Crucially, unlike in the moments method discussed
above, the halo density field itself is not smoothed. This method can be implemented simply by summing

HN [δ
(1)
` (qi)/σ(R`)] evaluated at the Lagrangian halo positions qi. Since the Hermite polynomials are orthog-

onal with respect to a Gaussian weight, they have the useful property that 〈HN (ν)HM (ν)〉 = δNM 〈ν2〉N/2
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for a zero-mean Gaussian variate ν. At leading order, the first two bias parameters can be related directly
to the large-scale renormalized biases bN :16

MLCC
1 (R`) = bL1

〈δ(1)δ
(1)
` 〉

σ(R`)
+O

(
R2
∗
〈∇2δ(1)δ

(1)
` 〉

σ(R`)

)

MLCC
2 (R`) = bL2

(
〈δ(1)δ

(1)
` 〉

σ(R`)

)2

+O
(
R2
∗
〈∇2δ(1)δ

(1)
` 〉

σ(R`)

)
. (4.40)

Since these are Lagrangian moments, corrections to these expressions arise only from higher-derivative bias
terms, starting with bL∇2δ, just as is the case for PLhm, Eq. (4.12) [156, 305, 100, 303, 304]. Thus, in the large-

R` limit where R2
∗〈∇2δ(1)δ

(1)
` 〉 � σ2(R`), the bLCC

N (R`) are simply related to the large-scale renormalized
Lagrangian biases. This is a significant difference from the moments biases discussed above, and stems from

the fact that the halo density field is not smoothed in this method. For reference, 〈δ(1)δ
(1)
` 〉/σ2(R`) evaluates

to ∼ 1.1− 1.2 for a tophat filter, depending on R`.
For smaller smoothing scales, corrections induced by higher-derivative terms ∝ ∇2δ, and so on, become

important. From the point of view of the general bias expansion, the perturbative expansion breaks down
unless R` is much larger than the nonlocality scale R∗ ∼ R(M) for the halos considered. On the other
hand, in the context of the peak approach (Sec. 6), all higher-derivative contributions to Eq. (4.40) are
controlled by the peak constraint and the filtering kernel, and measurements for any value of R` can be
interpreted in the context of this model [see, e.g., 304, 306]. This method can be generalized to measure
several different Lagrangian bias parameters, as was shown in [306] who measured the bias coefficient b(∇δ)2 .
Sec. 6.7 describes this approach in more detail in the context of the peak formalism.

4.3 Scatter-plot method

We now turn to a frequently employed method to measure bias which, as we will see, is an application of
the moments discussed in Sec. 4.2. Consider the conditional probability distribution of the smoothed halo
density field δh,`(x) at an arbitrary location, given a fixed value of the smoothed matter density δ`(x) at
that location:

P (δh,`|δ`) =
P (δh,`, δ`)

P (δ`)
. (4.41)

Note that we are not choosing any particular location, and statistical homogeneity then allows us to drop
the argument x on the PDFs. In the following, we will drop the subscript ` for clarity, as all moments in the
following will be defined for a fixed scale R`, and correspondingly denote σ ≡ σ(R`). The conditional PDF
Eq. (4.41) has been studied extensively in the literature [176, 307, 308, 309]. The biases can be inferred by
applying Eq. (4.41) to simulations as follows [17, 302, 307, 310]. First, one measures the halo and matter
fractional density perturbations, δh,` and δ`, for example by counting halos in randomly thrown spheres of
radius R` in the simulation volume. One then obtains the mean relation between δh,` and δ` by creating
a “scatter plot” (see Fig. 14), and taking the mean of δh,` in slices of δ`. Mathematically, in the limit of
infinite statistics, this corresponds to measuring

〈δh|δ〉 =

∫
dδh δhP (δh|δ) . (4.42)

Then, one fits a quadratic or higher-order polynomial to 〈δh|δ〉 as function of δ. The coefficients of the
polynomial then yield the estimates of the scatter-plot bias parameters. The order of the polynomial that
is necessary depends on R`: at large smoothing radii R`, the matter fluctuations are sufficiently small that

16R` corresponds to R0 in [304]. Note that they use 〈δ(1)
R(M)

δ
(1)
` 〉 instead of 〈δ(1)δ

(1)
` 〉 to convert their results to the large-

scale bias, where R(M) is the Lagrangian radius of halos. This however has negligible numerical impact for the scales R0 ≥
50h−1 Mpc used there (see Sec. 6.7 for a discussion). Further, 〈δ(1)

R(M)
δ
(1)
` 〉/σ

2(R`) = S×/S0 in the notation of [304].
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a truncation at third order is appropriate. In the following, we thus assume that the smoothing scale R`
is sufficiently large so that a perturbative treatment is applicable, just as we have done for the moments
derived in the previous section.

Let us begin with linear theory, where δ follows a Gaussian distribution with variance σ2 ≡ σ2(R`),
and the halo overdensity is given by δh ≡ δh,` = b1δ + ε where ε is a Gaussian stochastic variable. The
corresponding variance of δh is given in Eq. (4.30), and hence we have

P (δh, δ)
∣∣∣
linear

∝ exp

(
−1

2
(δh, δ)C

−1(δh, δ)
>
)
, where C =

(
b21σ

2 + 〈ε2〉 b1σ
2

b1σ
2 σ2

)
, (4.43)

and 〈ε2〉 ≡ 〈(εm
` )2〉 = P

{0}
ε V −1

` at this order. This yields

P (δh|δ)
∣∣∣
linear

∝ exp

[
−
(
δh − b1δ

)2

2〈ε2〉

]
. (4.44)

The expectation value of δh conditioned on δ is then simply obtained as

〈δh|δ〉
∣∣∣
linear

= b1δ . (4.45)

Thus, the derivative of 〈δh|δ〉 with respect to δ, or equivalently the coefficient of the linear term of a
polynomial fit to 〈δh|δ〉, yields the (renormalized) bias parameter b1 = bm1 (R`). Eq. (4.44) clearly shows
that the scatter in δh at fixed δ is related to the stochasticity ε (see Eq. (4.30) and [176]). However, both of
these statements strictly hold in the limit of R` →∞; for a finite scale R`, Eq. (4.44) receives corrections of
order σ2 = σ2(R`) from NLO terms involving the quadratic and cubic bias parameters, just as was discussed
for the quadratic moments in Sec. 4.2. Note that, in case of scatter-plot bias estimates, there are further
corrections of the same order from the non-Gaussianity of P (δh, δ).

We now turn to the leading non-Gaussian, i.e. second-order, contributions to the conditional PDF. At
this order, the PDF acquires a skewness and, using the Edgeworth expansion, can be written as

P (δh, δ)
∣∣∣
2nd

=

{
1− 1

6

[
〈δ3〉 ∂

3

∂δ3
+ 3〈δ2δh〉

∂2

∂δ2

∂

∂δh
+ 3〈δδ2

h〉
∂

∂δ

∂2

∂δ2
h

+ 〈δ3
h〉
∂3

∂δ3
h

]}
P (δh, δ)

∣∣∣
linear

. (4.46)

Upon inserting this into Eq. (4.42), the second derivative with respect to δ of 〈δh|δ〉 evaluated at δ = 0
yields

∂2

∂δ2

〈
δh

∣∣∣δ
〉∣∣∣

2nd, δ=0
=

1

σ4

[
〈δ2δh〉 − b1〈δ3〉

]
+O(σ2) = bm2 (R`) +O(σ2) , (4.47)

where we have used Eq. (4.32). This is precisely (1/2 of) the quadratic coefficient of a polynomial fit to 〈δh|δ〉.
Thus, in the large-scale limit, the second-order scatter plot bias measurement yields exactly the second-order
moments bias discussed in Sec. 4.2 for the same filter WR` . The two differ by NLO corrections that scale as
σ2, but which are in principle calculable. Similar results hold if one were to construct the conditional PDF
with respect to the tidal field smoothed on scale R`, P (δh|K2). In order to connect to the biases measured
from n-point functions, one needs to apply the transformation in Eq. (4.36). For measurements which use
R` . 40h−1 Mpc and tophat filters, the higher-order contributions which scale as σ2(R`) are however still
larger than the effects of the transformation Eq. (4.36), as shown in Fig. 13.

Fig. 14 shows typical scatter plots of δh,` vs. δ` for different cell sizes and redshifts, and polynomial fits
to the mean relation [307]; again, the coefficients of the polynomial fits correspond to the bias parameters
inferred from this method. The variance of the matter density in cells σ2 for each case is indicated in the
caption. For the larger cells shown, R` ' 80h−1 Mpc, the mean relation is well fitted by a second-order
polynomial. The curvature of this fit corresponds to the quadratic moments bias bm2 (R`); specifically, we see
a negative (z = 0) or positive (z = 0.5) value of bm2 (R`). In the excursion set and peaks models (Sec. 5–6),
this is explained by the different peak significance of halos with fixed mass M & 1013 h−1M� at z = 0 and
z = 0.5, respectively.
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Figure 14: Scatter plots of the halo density contrast δh,` vs. matter density contrast δ` in spherical tophat cells of different
radii and redshifts, as indicated in the caption. Only halos with n = 50 or more particles are included; this corresponds to a
minimum halo mass of 1.17× 1013 h−1 M�. The solid lines represent the least-squares fits of a quadratic polynomial yielding
estimates of the first two LIMD moments bias parameters. The variance of the matter density field in each case, clockwise
from the top left, is σ2(R`) = 0.085, 0.010, 0.006, 0.051. From [307].
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Figure 15: Top panel: comparison between the linear halo bias from separate-universe simulations (green dots), and from
clustering (red crosses; displaced slightly horizontally for clarity). Error bars that are not visible are within the marker size.
The solid black curve is the Tinker et al. (2010) [312] best fit curve for b1 given in Tab. 7, while the dot-dashed green curve is
the excursion set peak (ESP) prediction [derived from Eq. (6.75) via the PBS approach, Sec. 3.3]. Also shown are the results
obtained by applying Eq. (3.26) for a constant barrier B = δcr to the Tinker et al (2008) [313] and Sheth-Tormen [16] mass
functions (blue dashed curves; see also Fig. 9). Bottom panel: relative difference between the measurements and the fitting
formula from Tinker et al. (2010). From [314].

For the smaller cell result at z = 0.5 (bottom-left panel), discreteness effects, which arise from the fact
that there can only be an integer number of halos per cell, are apparent. This implies that the cell size is
not much larger than the mean inter-halo separation, which is of order R(M). For cells this small, non-
perturbative effects such as exclusion become relevant. This points to the fact that scatter plot results for
small R` cannot be rigorously connected with perturbative predictions on large scales.

The stochasticity between δh,` and δ`, which is responsible for the scatter around the mean relation
in Fig. 14, is taken into account in the perturbative approach by the stochastic fields ε, εδ, · · · . This is
appropriate as long as the scatter is small [note that both 〈ε3〉 and 〈εεδ〉 contribute to Eq. (4.46) at leading
order, although they do not enter the second derivative at δ = 0 in Eq. (4.47)]. This observations has led
some authors to propose that, in the non-perturbative regime, the deterministic bias expansion be replaced
by a more general bias distribution function [175, 176]. Another approach is to construct the scatter plot in
terms of the log-transformed fields ln(1 + δ) and ln(1 + δh) [311]. However, these small-scale measurements
strictly apply to counts-in-cells only. Namely, their results cannot be applied to the computation of the
large-scale n-point correlations estimated using direct pair counting.

4.4 Response approach

We now turn to an alternative approach to measuring bias which is motivated by the rigorous definition of
the peak-background split derived in Sec. 3.2. Specifically, the LIMD bias parameters of halos are measured
through the response of the halo abundance to an infinite-wavelength density perturbation [Eq. (3.4)],
implemented by performing a series of N-body simulations with different amounts of spatial curvature
following the separate-universe approach. Moreover, it is possible to generalize this idea to other bias
parameters, for example the tidal bias or higher-derivative biases, by measuring the response of the halo
abundance to modified initial conditions that contain certain configurations of amplified long-wavelength
modes. We use the term “response bias” to encompass all of these methods. Here, we will focus on the
LIMD bias parameters bN of dark matter halos.
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Figure 16: Left figure, top panel: same as Fig. 15, but for the quadratic Eulerian bias b2. Bottom panel: relative difference
between measurements and the theoretical prediction of the excursion set peaks (ESP). In each panel, the clustering points
have been displaced horizontally as in Fig. 15. Right figure: as left, but for the cubic Eulerian bias b3. From [314].

Clearly, this method is restricted to simulated tracers, and cannot be applied to actual observed galaxies.
However, for simulations it offers several advantages. First, this approach directly isolates the desired bias
parameters without needing to fit several parameters at the same time. Second, as we are dealing with an
infinite-wavelength perturbation, we are not limited by the theoretical uncertainty of the perturbation theory
predictions for finite-wavelength modes (Sec. 4.1.4). Finally, by using the same initial seeds for simulations
with different long-wavelength modes, we can cancel cosmic variance to a large extent. In principle, this
method is able to achieve a higher statistical precision on bias parameters for a given simulation volume than
n-point functions. Whether this is attained in practice depends on the precise estimator used in measuring
the response (for example, binned halo counts in [314, 315], and the cumulative mass function in [316]).
Generally, one expects the statistical advantage of the response approach to be more important for higher-
order biases, as can be seen when comparing the error bars in the lower panels of Fig. 15 and Fig. 16 (left
panel).

This novel method has been applied in three recent papers [314, 315, 316], where [314] went to nonlinear
order while [315, 316] only measured the linear bias b1. All three references found consistency between the
response approach and the n-point function measurements of b1, as well as b2 in the case of [314]. Fig. 15
shows a comparison of the linear bias of dark matter halos measured from the halo-matter cross-power
spectrum on large scales, and that measured from the separate-universe response [314]. Fig. 16 shows the
analogous result for the quadratic and cubic biases b2, b3. This shows explicitly that, if carefully measured,
both techniques unambiguously measure the same bias parameters (the same is true for the moments-based
approaches, provided sufficiently large smoothing scales are chosen and the transformation Eq. (4.36) is
applied). Ref. [314] also provided fitting formulas for b2, b3 in terms of b1 (Fig. 17), combining results at
various redshifts since the relation was found to be redshift-independent. The fitting formulas are given in
Tab. 7. The fitting formula for b2(b1) given in [310], obtained from fits to the two- and three-point correlation
functions in real space, agrees with the one given in Tab. 7, with differences much smaller than the error
bars on the measurements.

Figs. 15–16 also compare the simulation results to predictions based on the peak-background split applied
to universal mass functions (Sec. 3.3). Once a specific barrier B is assumed, the PBS allows for a derivation
of all LIMD bias parameters bN from a given halo mass function. The simplest and most common choice
is B = δcr. Figs. 15–16 show the result of applying this to the Sheth-Tormen ([317], see Eq. (3.31) for
the explicit expressions) and Tinker et al (2008) [313] mass function prescriptions. Even though the latter
provides a very accurate mass function, the linear bias derived via the PBS and simple collapse threshold is
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Figure 17: Eulerian bias parameters b2 (left panel) and b3 (right panel), each divided by b1, as a function of b1 obtained from
separate-universe simulations and for different redshifts. The dashed curves show the third-order best-fit polynomials which
are summarized in Tab. 7. From [314].

only accurate at the ∼ 10% level, as shown previously in [226, 312, 227]. The agreement is even worse for
b2, with up to 50% discrepancy at low mass, although the absolute difference between the PBS predictions
and the measurements is similar to that in b1.

Finally, Figs. 15–16 also show the biases predicted by the excursion set peak (ESP) approach, described in
detail in Sec. 6.8, which includes a stochastic moving barrier motivated by simulation results. At high mass,
this performs much better, at least for b1, showing that, in the context of the PBS applied to universal mass
functions, the choice of barrier is a key ingredient in deriving accurate bias parameters. In this context,
it is important to note that previous results on the inaccuracy of PBS bias parameters [226, 227] relied
on the simple constant threshold B = δcr. This shows that the cause of theses inaccuracies is not the
peak-background split itself. Interestingly, the results of Fig. 17 show that there is still some universal
scaling behavior in the higher-order bias parameters of halos: the relations b2(b1) and b3(b1) are found to be
independent of redshift to within the uncertainties. For this reason, the fitting formulas of these relations
(Tab. 7) are expected to depend only weakly on cosmology.

We conclude this discussion by reiterating that the “inaccuracy of the peak-background split” depends
on what one defines PBS to mean, and summarize it as follows:

• As shown in Sec. 3, local bias parameters derived using the PBS implemented via the separate-
universe response approach are physically the same parameters as those obtained from large-scale n-
point correlations. Implementations of both approaches in N-body simulations have clearly confirmed
this (Figs. 15–16).

• PBS biases derived using universal mass function based on a simulation-calibrated stochastic moving
barrier [318, 303] are accurate to a few percent for b1, at least at high masses [314].

• The PBS using the constant spherical collapse barrier is no better than 10% for b1, and worse for b2
[226, 227, 314].

4.5 An overview of bias measurements

We now briefly review actual measurements of bias parameters for dark matter halos in simulations
and observed galaxies. We then review measurements and physical models of halo stochasticity, i.e. the
stochastic amplitudes Pε, Bε, · · · which enter halo n-point statistics.
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4.5.1 Halo bias

Early measurements of the large-scale halo bias using two-point functions are presented in, e.g., [296,
16, 319, 320, 321]. Some of the most accurate recent measurements of the linear halo bias can be found
in [312], who used Phh(k) on large scales to infer b1 for spherical overdensity (SO) halos in a large suite
of N-body simulations (see Appendix D for a brief description of halo finding algorithms). For this, they

assumed that P
{0}
ε = 1/nh. They also cross-checked the results with the linear bias parameter measured

from the halo-matter cross-power spectrum, and find that, within the uncertainty of the measurements, the
deviation from perfect Poisson stochasticity (Sec. 4.5.3) does not significantly affect the bias measurement.
The resulting fitting function, which is accurate to 5–10% for a wide range of SO halo definitions and ΛCDM
cosmologies, is summarized in Tab. 7. Note that the universality of b1, i.e. that its mass and cosmology
dependence are completely described by the parameter νc = δcr/σ(M), is not perfect (see Fig. 1 in [312]).
As discussed in detail in Sec. 4.4, Ref. [314] showed that the bias fitting function agrees very well with the
response bias measurements (see Fig. 15). It is well established that the bias b1 of halos, at fixed halo mass,
also depends on other halo properties. This is known as assembly bias and will be discussed in Sec. 4.6.

Robust measurement of the large-scale nonlinear halo bias parameters from n-point functions have only
been published fairly recently. Refs. [322, 323] combined measurements of halo two- and three-point functions
to infer b1, b2 assuming Eulerian LIMD bias, i.e. setting bK2 = 0 in Eqs. (4.2)–(4.4). Ref. [323] did not find
complete consistency between two- and three-point function measurements (see also [308]), which could be
an indication that bK2 is an important ingredient [118, 129] (see below). Refs. [137, 267] included the NLO
corrections to Phm in addition to the leading-order bispectrum Blo

hmm(k1, k2, k3) of friends-of-friends (FoF)
halos, to measure b1, b2, bK2 , and btd. Note that they used different parametrizations for the operators K2

and Otd (see Appendix C for the relations between various different parametrizations). Ref. [137] set b∇2δ

to zero, and performed a fit including modes with k . 0.1hMpc−1 at z = 0, while Ref. [267] fit up to scales
of 0.15hMpc−1 in the bispectrum and 0.3hMpc−1 in the power spectrum. The linear and quadratic bias
parameters obtained from the two-and three-point functions were all found to be consistent.

Regarding real-space measurements, Ref. [301] analyzed N-body simulations using the LIMD bias as-
sumption and found a 10% deviation of the linear growth factor estimated by combining the two-point
and three-point correlation functions. Later, the same group [254] presented measurements of b1, b2 and
bK2 from the two-point halo-halo and halo-matter correlation functions, as well as the halo-matter-matter
three-point function in real space. They found consistency in the measured value of b1 from the two- and
three-point functions, and, furthermore, confirmed the necessity of including bK2 to correctly fit the latter.

Let us now briefly discuss the significance of the numerical results obtained for bK2 and btd. Early
studies of bK2 found consistency with the Lagrangian LIMD prediction of bK2 = −2/7(b1−1). This includes
Refs. [129], who used Eulerian measurements of Bmmh, the same observable used by [118]. The latter,
however, found evidence for a departure from the Lagrangian LIMD prediction at low halo mass, with
bK2 > −2/7(b1 − 1). Similar deviations were also reported for low mass halos in [254] from an analysis of
the three-point correlation function. Importantly however, these authors obtained bK2 < −2/7(b1 − 1). By
contrast, the results of [121], obtained using the Lagrangian bispectrum [Eq. (4.12)], indicate a departure
from Lagrangian LIMD at high masses, whereas LIMD provides a good fit at low masses. Subsequently,
Ref. [137] presented combined constraints from the cross-power spectrum Phm and bispectrum Bmmh, which
are shown in Fig. 18. While they follow the general trend of the Lagrangian LIMD prediction, there are
some indications for a deviation at lower values of b1, corresponding to a Lagrangian tidal bias bLK2 < 0 for
low-mass halos. These results were very recently confirmed by two studies [324, 325] who used the cross-
correlation of halos with quadratic operators constructed from the smoothed density field, first proposed
by [244]. Another recent study [326] measured bLK2 directly using the method described in Sec. 4.2 (see
Sec. 6.7 for the theoretical background), and found results consistent with Lagrangian LIMD, albeit with

large error bars. Finally, Ref. [245] presented different estimates of the moments bias bm,LK2 using halos in
Lagrangian space. Their “PBS estimator” corresponds to the scatter-plot method described in Sec. 4.3
applied in Lagrangian space using a cell size R` ≈ 150h−1 Mpc, which strongly suppresses higher-order
corrections. Note that this yields the moments biases in our notation, which they correct to obtain the
large-scale bLK2 using the results of Sec. 4.2. They found strong evidence for bLK2 6= 0, with bLK2 positive
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Figure 18: Eulerian tidal bias parameter bK2 , measured for FOF-identified dark matter halos, as a function of their linear
Eulerian bias b1. The points show the measurements from [137] at the redshifts indicated, while the dashed line shows the
fitting formula derived by [245] from their measurements (at z = 0 and z = 1) using halo moments in Lagrangian space, and
converted to the large-scale Eulerian bias parameter. The solid line shows the prediction of the Lagrangian LIMD ansatz,
bK2 = (−2/7)(b1 − 1) [Sec. 2.3].

(negative) for low (high) mass halos. The fitting function for bK2(b1) they obtain from their measurements
is also shown in Fig. 18. There is significant disagreement with the results from the halo bispectrum by
[137]. This disagreement, which could possibly be due to the nontrivial conversion from the measured halo
moments to the large-scale bias bK2 , clearly warrants further investigation.

Only few measurements of the cubic-order bias parameter btd have been reported [137, 267], which were
based on the NLO halo power spectrum. Ref. [137] found broad consistency with the Lagrangian LIMD
prediction for the combination [see Eq. (C.23)]

b3nl ≡ −
32

21

(
bK2 +

2

5
btd

)
Lagr. LIMD

=
32

315
bL1 , (4.48)

which is proportional to the combination of bias parameters that multiplies fnlo(k)PL(k) in the NLO halo
power spectrum [Eq. (4.22)]. The second equality follows from the Lagrangian LIMD prediction for bK2 and
btd. Note, however, that the constraints on the combination b3nl from [137] are based on its contribution
to the NLO halo power spectrum, and are thus strongly degenerate with the contribution from the higher-
derivative bias b∇2δ (see Fig. 12), for which Ref. [137] assume b∇2δ = 0. Thus, further measurements are
needed to break the degeneracy between b3nl (or btd) and b∇2δ.

Turning to the higher-derivative bias b∇2δ, the first constraints have been placed by studies testing the
scale dependence of bias on large scales [105, 327]. More recent measurements include those of [264]. For
their mass bin “2”, which follows the definition of Table 1 in [328], they obtain a value of b∇2δ that is of
order 3[R(M)]2, although b∇2δ = 0 is only ruled out at the ∼ 1.3σ level, and no constraint is found for the
other mass bins. On the other hand, Ref. [267] quote values for b∇2δ that are much smaller than [R(M)]2

when using either of the two different definitions of bcs given there [Eq. (18) and Eq. (31)]. Thus, there is
still large uncertainty in the magnitude of higher-derivative biases for halos. Note that there is a strong
degeneracy in shape between the contribution from b∇2δ and the NLO term controlled by bK2 + (2/5)btd
(e.g., [197]; see Fig. 12). Thus, without an independent constraint on (or assumption about) the third-order
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Bias Fitting formula Mass range Halo finder Reference

b1 = 1−Aναc [ναc + δαcr]
−1 +Bνβc + Cνγc −0.4 . νc . 0.6 SO [312]

A = 1 + 0.24 y e−(4/y)4

, α = 0.44y − 0.88

B = 0.183, β = 1.5

C = 0.019 + 0.107y + 0.19e−(4/y)4

, γ = 2.4

b2 = 0.412− 2.143 b1 + 0.929 (b1)2 + 0.008 (b1)3 1 . b1 . 9 SO [314]

b3 = −1.028 + 7.646 b1 − 6.227 (b1)2 + 0.912 (b1)3 1 . b1 . 9 SO [314]

Table 7: Published fitting formulas for bias parameters of dark matter halos in ΛCDM N-body simulations. These phe-
nomenological fitting functions should only be trusted within the mass range over which they were calibrated on simulations;
the respective approximate range, in terms of νc or b1, is indicated. The third column indicates how halos were identified
(Appendix D): using spherical overdensity (SO) or friends-of-friends (FOF) algorithms. In [312], halos are identified using a SO
criterion ∆SO defined with respect to the background matter density, where y = log10 ∆SO, νc = δcr/σ(M), and δcr = 1.686 is
fixed independently of the background cosmology; Ref. [314] use an SO finder with ∆SO = 200. Note that the fitting formulas
for b2(b1), b3(b1) provided in Refs. [227, 310] agree with those of [314] to well within the error bars. We choose the latter here
as it was calibrated over a larger range of b1.

bias parameter btd, the higher-derivative bias is very difficult to extract from the halo power spectrum.
Higher-derivative biases can be measured more easily in Lagrangian space, using either the halo-matter

power spectrum [259, 174] or the projection method of [304, 306] discussed near the end of Sec. 4.2. In
particular, [259, 174] measured the so-called peak bias b01, which contributes to −bL∇2δ along with the leading
contribution from the filtering kernel [Eq. (2.69) in Sec. 2.6], and obtained a contribution b01 ≈ 2[R(M)]2

for halos with mass M ≥ 8 × 1012 h−1M�, with only a weak departure from the simple [R(M)]2 scaling
with mass. The negative sign of this contribution to bL∇2δ is the opposite of what simple filtering yields, but
is expected if halos collapse from Lagrangian patches near initial density peaks [221] (Sec. 6.6.1). However,
due to the impact of halo velocity bias on the evolution of higher-derivative biases, it is not possible to relate
Lagrangian higher-derivative biases to their Eulerian counterpart without using a model for the amplitude
and time evolution of velocity bias [152, 174, 329] (see the discussion in Sec. 2.7). Further, Ref. [306]
measured bL(∇δ)2 ∼ −R(M)3.5 (which corresponds to χ1 in their notation).

We summarize the most precise recently published fitting functions for the leading halo bias parameters
in Tab. 7.

4.5.2 Galaxy bias

As we have discussed in Sec. 1.1, the linear bias parameter b1 has been measured many times in galaxy
surveys over the past 50 years. Here, we briefly review the measurements of nonlinear bias parameters from
higher-order correlation functions. Ref. [330] and [331] have measured the linear and second-order LIMD
bias parameters from galaxies in, respectively, IRAS (Infrared Astronomical Satellite) and 2dFGRS (2dF
Galaxy Redshift Survey), using the bispectrum (they set bK2 = 0). The results for b2, a marginally detected
value of b2 ≈ −0.3 for IRAS and a result consistent with zero for 2dFGRS, are broadly consistent with
the expectation for dark matter halos of the same linear bias b1 (b1 ≈ 0.76 and 1.0, respectively). Later,
Ref. [332] showed that the relation between b1 and b2 predicted by the PBS relation Eq. (3.26) for halo
mass functions can explain the amplitude of the galaxy bispectrum for equilateral configurations extracted
from SDSS data. The three-point correlation function of the SDSS luminous red galaxy (LRG) sample
was measured by [333]. Ref. [334] measured b2 from the three-point correlation function of the WiggleZ
survey. For the recent SDSS-III CMASS sample, Ref. [335] have constrained b2 by combining the power
spectrum and bispectrum, while Ref. [336] used the three-point function. Further, Ref. [337] employed
the position-dependent correlation function [338], which corresponds to an integral over the three-point
function in the squeezed limit, to constrain b2 for the same galaxy sample. All three references emphasize
that, unfortunately, these estimates are still limited by residual systematic uncertainties (in particular due to
redshift-space distortions) in the model that is used to fit the bias parameters. A related method to estimate
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the bispectrum in the squeezed configuration has been applied to the cross-correlation of the Lyman-α forest
power spectrum and CMB lensing [339] to constrain the bias parameters b1 and b2 of the Lyman-α forest.

4.5.3 Stochasticity

The deterministic bias contributions discussed so far in this section are only a subset of the complete bias
expansion, Eq. (4.1) up to third order, which also contains stochastic terms. We now discuss these stochastic
contributions, restricting ourselves to the results obtained for halos in simulations. The qualitative picture
also applies to galaxies; we will return to additional stochastic effects which appear for galaxies in Sec. 9.1.
We begin with the most frequently studied contribution Pε(k) = 〈ε(k)ε(k′)〉′. If halos are a perfect Poisson

sample with a mean comoving density (per logarithmic mass interval) nh, then Pε(k) = P
{0}
ε = 1/nh.

Moreover, under this assumption the shot noise of halos of different mass is uncorrelated. One can succinctly
summarize this prediction as [340]

Pε(k;M,M ′) ≡ 〈ε(k,M)ε(k′,M ′)〉′ Poisson
=

δD(lnM − lnM ′)

nh(M)
. (4.49)

However, this is only approximately correct for actual halos [341, 127, 177, 342, 307]. On scales much
smaller than the Lagrangian radii R(M), R(M ′) of the halos, one expects Eq. (4.49) to be accurate, since
the likelihood of a halo center being located within a given cell is then a true Poisson process. Thus, Eq. (4.49)
is expected to hold for k � [R(M)+R(M ′)]−1 [340]. On the other hand, on large scales k � [R(M)+R(M ′)]
the halo model paradigm (see [343] for a comprehensive overview) provides a different constraint. If we make
the assumption that all matter is contained within virialized halos, then mass and momentum conservation

of matter imply that the matrix P
{0}
ε (M,M ′) = limk→0 Pε(k;M,M ′), which quantifies the halo stochasticity

in the large-scale limit, has a zero eigenvalue, whose eigenvector corresponds to weighting each halo by mass
[177, 340]. This is because any stochastic contribution to the nonlinear matter power spectrum has to scale
as k4 on large scales [344]. Thus, within the halo model framework, the mass-weighted power spectrum of
all halos enjoys zero stochasticity [345]. In the presence of a diffuse matter component that is not associated
with halos of any mass, this constraint does not need to hold exactly. No further robust constraints on
Pε(k;M,M ′) are known beyond these two limiting cases, although, as mentioned above, the transition
between the two limits is expected to happen at the Lagrangian radius k ∼ R−1(M) of halos, i.e. the same
scale that determines the amplitude of higher-derivative biases. Hence, one expects that

∣∣∣P {2}ε

∣∣∣ ∼ [R(M)]2P {0}ε , where P {2}ε ≡ ∂Pε(k)

∂k2

∣∣∣∣
k=0

, (4.50)

keeping in mind the caveat about possible contributions that are controlled by knl instead of R(M) (Sec. 2.8).
Importantly, beyond the large-scale limit, measurements of stochasticity depend on the precise definition of
the “deterministic” part of halo clustering, for example whether NLO corrections which involve higher-order
biases are included following Sec. 4.1.4. The reason is that higher-order terms which are not accounted
for in the deterministic model can contribute to the inferred stochastic contribution (e.g. [126, 127, 346]).
Finally, an upper bound can be placed on the leading stochastic contribution to the halo-matter cross-power
spectrum [Eq. (4.22)] by assuming that the fields ε (halos) and εm (matter) are perfectly correlated. This
leads to ∣∣P {2}εεm

∣∣ ≤
√
P
{0}
ε P

{4}
εm , (4.51)

where P
{4}
εm is the leading stochastic contribution to the matter power spectrum in the EFT approach

(Appendix B.3).
Ref. [177] presents a detailed simulation study of the halo stochasticity covariance, which they estimated

as

P̂ε(k;M,M ′) ≡
〈

[δh(k;M)− b1(M)δm(k)] [δh(k′;M ′)− b1(M ′)δm(k′)]
〉′
, (4.52)

by dividing the halo mass range (∼ 1013 − 3 · 1015 h−1M�) into 10 bins of equal number density. The
linear bias was determined using Phm(k) for k < 0.024hMpc−1. Interestingly, they do find an eigenvalue of
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P̂ε(k;M,M ′) that is significantly lower than 1/nh, whose eigenvector is close to mass-weighting, as expected
from the halo model argument made above. This is also reflected in the components of P̂ε(k;M,M ′) at high
masses, which are lower than the Poisson expectation. Moreover, there is one eigenvalue that is significantly
larger than 1/nh. The components of the associated eigenvector appear to be close to the quadratic bias
b2(M). The other eigenvalues were found to be consistent with 1/nh. All these results were found to be
roughly scale independent for k . 0.2hMpc−1. The structure of the halo stochasticity matrix is relevant
for methods that use multiple, weighted tracers within the same volume to reduce the sample variance and
shot noise in constraints of scale-dependent bias from primordial non-Gaussianity (see Sec. 7.6.2).

All these features can be qualitatively understood through a toy model of the clustering of proto-halos
in Lagrangian space, combining exclusion at small-scale r < R(M), and nonlinear bias at larger scales
r > R(M) [178]. In this ansatz, including quadratic LIMD bias, the stochastic contribution to the proto-
halo power spectrum in Lagrangian space takes the form

Pε(k,M)
k→0
=

1

nh
+

1

2
(bL2 )2

∫ ∞

R(M)

d3r [ξL(r)]2 − (bL1 )2

∫ R(M)

0

d3r ξL(r)− Vexcl , (4.53)

where the second-term on the right-hand side is the k → 0 limit that is subtracted in I [δ2,δ2], and the
exclusion volume is Vexcl = 4πR3(M)/3. Note that while Eq. (4.53) is given in Lagrangian space, the
constant stochastic contribution to Phh(k) in the large-scale limit trivially transforms to Eulerian space,
since δEh = δLh +δ at linear order. Eq. (4.53) clearly shows that exclusion lowers the stochasticity (whence the
low eigenvalue < 1/nh), whereas nonlinear bias enhances it (whence the large eigenvalue > 1/nh). Further,
the scale dependence of the stochastic contribution is controlled by the scale R(M). Quantitative agreement
is difficult to obtain with such perturbative toy models because stochastic contributions to the low-k power
spectrum are genuinely non-perturbative as discussed in Sec. 2.8 (see [347] for a non-perturbative, albeit
one-dimensional approach).

We finally briefly discuss theoretical expectations for the other two stochastic amplitudes P
{0}
εεδ and B

{0}
ε

that have appeared in our discussion of halo n-point functions. First, for Poisson shot noise, the skewness is

given by B
{0}
ε = (nh)−2; more specifically, if the stochasticity in halo counts of different mass is independent,

we have [340]

Bε(k;M,M ′,M ′′) ≡ 〈ε(k,M)ε(k′,M ′)ε(k′′,M ′′)〉′ Poisson
=

δD(lnM − lnM ′)δD(lnM − lnM ′′)

[nh(M)]2
. (4.54)

Corrections to the Poisson bispectrum from exclusion and nonlinear bias are of similar magnitude as in the
case of Pε [348]. Under the same assumptions as made for Eq. (4.49) and Eq. (4.54), the cross-correlation
of ε and εδ for halos is given by [323, 349, 340]

Pεεδ(k;M,M ′) ≡ 〈ε(k,M)εδ(k
′,M ′)〉′ Poisson

=
1

2
b1(M)

δD(lnM − lnM ′)

nh(M)
. (4.55)

The interpretation of this result is quite simple: a large-scale density perturbation δ modulates the local
halo abundance, with δh = b1δ at linear order, and correspondingly modulates the shot noise amplitude.

At this point, it is worth making the connection to some previous references [116, 350, 176] which, instead
of the relation Eq. (4.2), included the stochasticity by defining a scale-dependent bias b̌1(k) and correlation
coefficient řgm(k),

Phh(k) = [b̌1(k)]2Pmm(k); Phm = b̌1(k)řgm(k)Pmm(k) , (4.56)

where in some references the Poisson expectation is subtracted from the halo auto-power spectrum Phh →
P p.sub.
hh (k) ≡ Phh(k) − n−1

h . The real-space version of Eq. (4.56) is adopted in [351, 352]. These can be
related to the quantities defined in Eq. (4.2) via [353]

b̌1(k) = b1

√
1 + P

{0}
ε /[b21Pmm(k)] ; řgm(k) =

b1

b̌1(k)
. (4.57)
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In the Poisson-subtracted case, P
{0}
ε should be replaced with P

{0}
ε − n−1

h here. Ref. [354] includes one-loop
nonlinear evolution in this parametrization. Ref. [350] estimated b̌1(k) and řgm(k) from SDSS galaxies on
large scales, finding significant departures from the Poisson expectation. However, Ref. [355] pointed out
that this could be caused by errors in the selection function. The author estimated the correlation coefficient
to be larger than 0.9; a similarly high value > 0.95 was found by [356] for 2dF galaxies using counts-in cells.

The parametrization Eq. (4.56) does not cleanly distinguish between the shape of the matter power
spectrum on large scales and the small-scale physics of halo formation, which are included in Eq. (4.2)

through the constants b1, P
{0}
ε . Equivalently, the deterministic and stochastic (noise) contributions are not

cleanly separated. Hence, Eq. (4.2) is preferred in the modern literature.

4.6 Halo assembly bias

So far, we have only considered the dependence of the halo bias parameters on mass and redshift.
However, it is now well established that halo bias depends on various other properties of halos at fixed mass
and redshift. These dependencies have come to be known summarily as assembly bias. This section provides
a brief overview of these results.

While the first numerical studies did not provide any conclusive evidence for a dependence of halo
clustering on additional properties [357, 358], Refs. [359, 360, 361] showed that, at fixed halo mass and
redshift, halos in dense regions collapse at a slightly higher redshift than in underdense environments, where
the local environment density was defined as the matter density in spheres of radius Renv ∼ fewh−1 Mpc
centered on the halo. The local environment density is expected to correlate with the halo formation time,
and indeed Ref. [362] found a dependence of halo bias, at fixed mass, on the halo formation time, as shown in
Fig. 19. As the halo profile shape or concentration also correlates with the halo assembly history [363, 364],
assembly bias has also been found in terms of concentration. Assembly bias has since been found in several
other halo properties, and most likely cannot be explained completely by the halo formation history [365].
We now provide an overview of the trends found in the literature to date, before discussing implications for
models of halo biasing:

• Concentration: this parameter quantifies the shape of the spherically averaged halo profile. It is
determined either by fitting a profile of the NFW form [366] to the measured halo profile, or by
matching the measured maximum circular velocity of the halo to the NFW profile prediction. The
latter estimate is sensitive to substructure, and less reliably related to the halo profile shape.

• Formation redshift: this is commonly defined as the epoch, phrased in terms of cosmological redshift,
at which the main progenitor of the halo assembled 50% of the final halo mass. A large formation
redshift thus corresponds to early-formed, or old, halos.

• Lagrangian slope: defined as d〈δ(1)〉proto-halo/dM , this is measured in [367] by estimating the over-
density of the Lagrangian proto-halo patch, and taking its derivative with respect to mass using the
measured halo assembly history (i.e., removing particles first that have joined the halo last).

• Spin parameter: a measure of the angular momentum of halos, this is defined as λ = |J |/(
√

2M∆V∆R∆),
where R∆, M∆ denote the radius and mass within which the mean density reaches ∆ times the back-
ground matter density ρm, and V∆ = (GM∆/R∆)1/2 is the circular velocity at R∆.

• Halo sphericity: this parameter is defined as the square-root of the ratio of smallest to largest elements
of the diagonalized inertia tensor within R∆.

• Velocity anisotropy: the parameter β is defined as β = 1− σ2
v,t/(2σ

2
v,r), where σ2

v,t, σ
2
v,r are the mean

tangential and radial velocity dispersions within the halo, respectively. A value of β = 0 corresponds
to an isotropic velocity dispersion; positive values correspond to preferentially radial orbits, while
negative values imply more circular orbits.

• Subhalo mass fraction: this is defined as the fraction of the total mass within R∆ which is in the
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Halo property Low-mass halos High-mass halos

Concentration1 [363, 368, 231, 230, 302, 369, 370, 371, 365] ↗ ↘
Formation redshift [362, 363, 368, 231, 230, 365] ↗ →
Lagrangian slope [367] ↗
Spin parameter [231, 369, 371, 365] ↗ ↗
Sphericity2 [369, 371] ↗ ↗
Subhalo mass fraction3 [231, 365] ↘ ↗
Velocity anisotropy β [369] ↘ ↘
Late-time accretion rate4 [371, 365] ↘
1 Note that different definitions of concentration are used in the literature. Refs. [363, 368, 230, 370, 365] use that

obtained from a fit to the density profile, while Refs. [231, 302, 369, 371] use that obtained from the maximum
circular velocity.

2 Similar trends are found for the sphericity of the velocity field within halos [369].
3 Ref. [365] use the number and average separation of subhalos for high-mass halos, and find the same trend.
4 Ref. [371] finds trends that are not strictly monotonic.

Table 8: Overview of assembly bias trends that have been reported in the literature. An upward pointing arrow means that bias
increases with increasing value of the given property, while a downward pointing arrow denotes a decreasing bias. A horizontal
arrow indicates absent or weak trends, while no symbol indicates no known constraints. “Low-” and “high-mass” halos refer
to halos with M �M? and M �M?, respectively.

form of self-bound substructures. Similar trends hold for the mass fraction in the main subhalo [231].
Other subhalo-related properties are the number of subhalos and their mean separation from the
center-of-mass of the main halos [365].

• Late-time accretion rate: this is defined as d lnM∆/d ln a = −d lnM∆/dz by following the halo’s main
progenitor.

Tab. 8 presents a summary of the trends with the properties listed above which have been reported in
the literature. We split the trends into those for low-mass and high-mass halos, distinguished through the
characteristic mass M?(z) of halos collapsing at redshift z, defined through

σ(M?, z) = δcr . (4.58)

We focus here on the trends in the linear bias b1; only Refs. [302, 370, 371] have measured assembly bias
in higher-order LIMD bias parameters. They found the same qualitative trends also in the higher-order
biases. Most results presented in Tab. 8 are for spherical-overdensity identified halos with ∆ = 200; those
of [369] are for FoF halos. Recently, Ref. [372] explored the dependence of assembly bias on the halo
definition employed, and found that, while assembly bias can be mitigated by a judicious choice, no single
halo definition can absorb all assembly bias effects. Clearly, the trends shown in Tab. 8 are only a subset
of all possible correlations of bias with halo properties. For example, Ref. [373] very recently showed a
significant trend with the distance to the nearest more massive halo (“neighbor bias”).

Despite the fact that the reported results in the literature are in good agreement overall, an important
caveat to the comparison of different results is that they do not strictly have to agree, since the bias has
been estimated using different approaches and different scales. Refs. [362, 363, 231, 367, 369, 365] used the
halo correlation function on scales in the range 10− 60h−1 Mpc, while [302] used moments. None of these
references have converted their results to the bias parameters strictly in the large-scale limit. Ref. [230]
employed the halo-matter cross-power spectrum on scales k . 0.1hMpc−1, which, following the discussion
in Sec. 4.1, should fairly accurately measure the large-scale linear bias. Finally, Refs. [370, 371] used
the response approach based on separate-universe simulations. These strictly recover the large-scale bias
parameters. Note that Ref. [374] recently reported strongly scale-dependent features of assembly bias in the
halo correlation function, although these are restricted to very small scales r . 10h−1 Mpc.
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Figure 19: Bias of halos identified at z = 0, as a function of mass and formation redshift, i.e. the redshift when the most
massive progenitor halo reaches 1/2 of the final halo mass. The dotted black curve represents the mean bias in a given mass
bin, whereas the solid red and blue curve show results for the 20 percent oldest and youngest halos, respectively. Similarly, the
red and blue dashed curves refer to the upper and lower 10th percentile. Note that the halo mass is in units of M? [Eq. (4.58)].
From [362].

For low-mass halos, late-forming (younger) halos have higher concentration, but lower bias than the
early-forming (older), more concentrated halos. This trend for assembly bias with respect to concentration
reverses for high-mass halos. This reversal has so far not been conclusively detected for the assembly bias
with respect to formation time. The trend with concentration at high masses can be explained within
the excursion set approach, as discussed in Sec. 5.10. Note that this requires going beyond the canonical
formulation of the excursion set theory based on sharp k-space filters [375, 376], in which the fluctuations
that collapse to form halos are statistically independent of the larger scales, i.e. their environment.

Another interesting trend is the dependence on the slope of the Lagrangian density profile of halos.
Ref. [367] found that high-mass halos with steeper (more negative) slopes are less biased than those with
shallower slopes. If shallower slopes are associated with lower final concentrations, then this trend matches
that found for concentrations. On the other hand, if one relates the Lagrangian slope to the late-time
accretion rate of halos, where shallower (less negative) slopes correspond to higher accretion rates [376], the
halo assembly bias found with respect to Lagrangian slope has the opposite sign of that found with respect
to direct measurements of the accretion rate [371].

At low mass (M . M?), the trend with concentration reverses sign, so that the more concentrated
halos are clustered more strongly. In this regime, one also observes a strong trend with formation time,
with early-forming halos being more clustered. This low-mass trend is illustrated in Fig. 19 where halos
of a given mass are split according to their formation redshift. The effect becomes very significant for
M . M?. Refs. [377, 378, 379] proposed that the assembly bias seen at low mass originates from tidal
interactions with a larger neighbor. The mass accretion onto these “harassed” or “backsplash” low-mass halos
is suppressed at late time by the tidal field of massive neighboring halos. This tidal stripping significantly
affects the formation history of many field halos. The detailed zoomed simulation study of [380], as well
as the correlation of halo bias with the tidal field (estimated on a scale of a few halo virial radii) found by
[381], support this picture.

Observationally, constraining halo assembly bias is a difficult measurement, as one needs to identify at
least two observable proxies, one for halo mass as well one that correlates with halo formation time or profile
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shape at fixed mass. The mean halo mass of a given sample can be constrained by gravitational lensing.
Various detections have been claimed in the literature [382, 383, 384, 385], although all of them have been
disputed [386, 387], due to different projection and selection effects which mimic the assembly bias signature.
The upper limits placed by [386, 387] are still completely consistent with the level of assembly bias expected
in the standard ΛCDM cosmology.

Finally, it is worth noting that assembly bias is an important effect in phenomenological approaches to
galaxy clustering that populate halos with galaxies; the most well-known approaches, which we will review
in Sec. 9.1, are halo occupation distributions and sub-halo abundance matching. This is because certain
types of galaxies might preferentially reside in, say, early-forming halos within a given mass range. Then,
their clustering will not follow those of all halos of this mass, but only a special subset which, due to
assembly bias, has different clustering properties [388, 389, 390]. We will return to this point in Sec. 9.1,
but emphasize already here that this issue does not affect the general perturbative bias expansion: since the
bias parameters directly describe the statistics of galaxies, without the intermediate step of the clustering
of halos at fixed mass, this approach is entirely insensitive to assembly bias.
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In this and the next section, we review the predictions for the bias of dark matter halos in two well-
developed physical models of halo formation: the excursion-set formalism (this section) and the peak ap-
proach (Sec. 6). To set the frame and illustrate the basic physical assumptions of these models, we begin
with a discussion of recent simulation studies of the connection between virialized halos and their progenitors
in the initial density field (Sec. 5.1).

Next, we introduce in detail the spherical collapse solution (Sec. 5.2.1), which provides an idealized model
of halo formation. Moreover, it yields a natural, typical value of the mean overdensity of the Lagrangian
regions (proto-halos) that form halos at late times. This fractional overdensity δcr can then be used, for
example, in the simple Lagrangian thresholding model introduced in Sec. 2.1. If näıvely applied, however,
as is done by Press-Schechter theory (Sec. 5.2.2), the thresholding model leads to a mass function (number
density of halos per unit mass) which is not properly normalized because of the so-called cloud-in-cloud
problem (Sec. 5.2.3); that is, the matter density contained in halos, when integrating over all halo masses,
is a factor of 2 smaller than the actually available matter density. The excursion-set formalism (Sec. 5.3)
solves the cloud-in-cloud problem by adding the first-crossing condition. In the subsections that follow, we
discuss the predictions for the halo mass function and bias from the excursion-set formalism with a constant
threshold δcr (Sec. 5.4–5.8) as well as a general threshold (moving, fuzzy barrier in Sec. 5.9). Finally, in
Sec. 5.10, we revisit the phenomenon of assembly bias (Sec. 4.6) in the context of the excursion-set formalism.

In Sec. 5 and Sec. 6, the analysis will always be done in Lagrangian space, and in terms of the linear

density contrast δ
(1)
R smoothed at a radius R. In these sections, we therefore simplify the notation with

respect to that used in previous sections, to conform more closely with that followed in the literature. For
convenience, we list frequently used symbols in Tab. 9 (p. 111).

Before delving into the details of the standard excursion-set picture which we will describe in Sec. 5.2–5.7,
let us summarize the qualitative predictions for halo bias in this picture. Since the only quantity appearing

in the calculation is the smoothed linear density field δ
(1)
R (q), the Lagrangian halo density field can be
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written as a local function of δ
(1)
R and its derivatives with respect to R. Specifically,

δLh (q)
∣∣∣
exc. set

= F
[
δ

(1)
R (q), ∂δ

(1)
R (q)/∂R, · · ·

]

= bL1 δ
(1)(q) +

1

2
bL2 [δ(1)]2(q) + · · ·

+ bL∇2δ∇2δ(1)(q) + bLδ∇2δδ
(1)(q)∇2δ(1)(q) + · · ·

+ bL∇4δ∇4δ(1)(q) + · · · , (5.1)

where here and throughout this section, we drop the time arguments, as all quantities are linearly extrapo-
lated to the time τ0 of identification of halos. We have used that the higher-derivative terms introduced by

smoothing δ(1) → δ
(1)
R can all be written as ∇2nδ(1) (see Sec. 2.6), which also holds for ∂δ

(1)
R /∂R, leading to a

Lagrangian LIMD bias expansion with a subset of higher-derivative terms. Note that no stochastic contribu-
tions are predicted by the standard excursion set, though a shot-noise term ε is often added empirically. We
will generalize this version of the excursion-set picture in Sec. 5.9, where we also take into account the tidal
field in Lagrangian space, and discuss stochasticity in the threshold. These lead to additional contributions
to the bias expansion beyond Eq. (5.1).

5.1 General considerations about the formation of dark matter halos

Since numerical simulations give us access to the entire formation history of dark matter halos, they
enable us to ascertain the validity of the approximations made in Lagrangian approaches such as excursion
sets or peaks. The correspondence between halos identified at low redshift and their progenitors in the initial
conditions—the so-called proto-halos—can be studied on an object-by-object basis. Here, proto-halos are
the Lagrangian regions obtained by tracing the dark matter particles belonging to virialized halos back to
their initial positions. The typical comoving size of proto-halos of mass M thus is the Lagrangian radius
R(M) which encloses M at the mean comoving density ρm.

In the excursion-set formalism, proto-halos are modeled as regions where the smoothed linear matter
density on the scale R(M) is above a threshold δcr. Moreover, any regions which are included in a region
above threshold identified at a larger smoothing scale are excluded. On the other hand, the peak approach
models proto-halos as local maxima of the linear density smoothed on the scale R(M).

Ref. [391] were the first to investigate the robustness of the correspondence between peaks in the initial
density field and proto-halos. On analyzing 323-particle N-body simulations of fairly small box size (L ∼
14h−1 Mpc), they concluded that the resolved dark matter halos form preferentially around high peaks of
the initial density field. However, Ref. [392] used simulations evolving 1443 particles in a much larger box
(L = 50h−1 Mpc) and found a rather weak association between initial density peaks and collapsing halos.
Their conclusions were confirmed partially by [393], who studied the properties of proto-halos in N-body
simulations of 2563 particles in a box of size L ' 85h−1 Mpc. The latter concluded that nearly half of the
galactic-sized proto-halos do not contain a linear density peak within their Lagrangian volume.

Recently, Ref. [394] revisited this issue using two high-resolution 10243 N-body simulations in boxes of
size 1200 and 150h−1 Mpc, respectively. They found that essentially all the proto-halos trace Lagrangian

patches with a linearly extrapolated density contrast δ
(1)
R & O(1). In addition, as many as ∼70% of all

halos identified with an FoF algorithm (with NFoF > 100) in both of their simulations can be properly
identified with a peak in the linear density field (i.e. the peak resides in the Lagrangian halo patch) when
smoothed on mass scales 0.7M ≤ Mpk ≤ 1.3M (Fig. 20). Here, M is the mass of the actual halo, given
by the number of bound dark matter particles, while Mpk is the peak mass, i.e. the mass enclosed in the
filter. The fraction of peak associations increases to 85% upon extending the search to the mass range
0.5M ≤ Mpk ≤ 2M . Furthermore, the fraction depends strongly on halo mass, with as many as ∼91% of
halos with M > 5× 1014 h−1M� forming in the vicinity of peaks of the expected characteristic mass.

However, a non-negligible portion of halos show a considerable disparity between the predicted and
measured masses. For example, ∼20% of halos with > 100 particles have Mpk < M , 15% of which do not
contain any peaks on any mass scale within a factor of four of the true halo mass scale. The authors refer to
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Figure 20: Examples of the overdensity field in the vicinity of four proto-halos. The top panels display results for halos with
Mpk < Mhalo/4, where Mpk is the mass enclosed within the filter radius R at which a peak was found. The bottom panels
show results for two similar mass halos, yet with Mpk ≈Mhalo. Linearly extrapolated density fields have been smoothed with a
tophat filter with R = R(Mhalo). Particles that belong to the FoF halos at z = 0 are shown as red dots. In all panels, contours
highlight the density gradients in the neighborhood of the halo. A density contrast δR = 1 is shown as an orange curve, while
the threshold for spherical collapse, δR = δcr = 1.686, is shown as a thick yellow line. From [394].
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these as “peakless” halos (see the upper panels in Fig. 20). The increasing fraction of “peakless” halos with
decreasing mass reflects the fact that the approximation of an isolated spherical collapse of a perturbation
centered around a density peak becomes increasingly inaccurate as the halo mass decreases.

These numerical findings help us in understanding the validity of the various approximations made in
Lagrangian bias models. The standard Press-Schechter and excursion-set theory discussed in Sec. 5.2 –
Sec. 5.8 rely on two key assumptions:

• The collapse of dark matter halos is approximately spherical.

• Proto-halo patches are characterized by a linearly extrapolated overdensity δ
(1)
R equal to the spherical

collapse threshold δcr, Eq. (5.9).

In light of the numerical studies reviewed above, these assumptions are expected to be valid at high mass
M � M? only. Two important additional ingredients can be taken into account in order to improve the
accuracy of Lagrangian bias models:

• The shear field, which is expected to be partly responsible for both the “peakless” halos and the
mass dependence of the critical density threshold. In a first approximation, the effect of shear can be
modeled as a moving barrier as discussed in Sec. 5.9.

• The peak constraint, i.e. the fact that halos collapse around local maxima in the initial density field.
This extension is the focus of Sec. 6.

The peak constraint resolves a fundamental limitation of the excursion-set formalism, which stems from
the assumption that the total mass fraction enclosed in halos with mass greater than M is the same as the
total volume fraction of above-threshold smoothed Lagrangian regions, with filter size R = R(M). For this
assumption to hold, the smoothed density of all points inside halos must exceed the threshold. This is not
guaranteed for actual halos. In particular, depending on the density profile, the outer part of halos can have
values of the smoothed density that are significantly below the threshold (see Fig. 21 for an illustration).
Indeed, the comparison between the halo mass function calculated from the excursion-set formalism with
constant threshold and N-body simulations shows that the theory underpredicts the abundance of massive
halos [395, 318, 396]. Moreover, this assumption is the very foundation of the excursion-set formalism.
The two adjustable components in the excursion-set formalism, the scale dependence and fuzziness of the
collapse threshold, are not directly related to the above-mentioned deficiency. This problem is addressed in
the peak formalism (Sec. 6) where we define the center of halos as peaks of the density field. Hence, we do
not need to rely on the volume fraction in order to calculate the halo abundance. Recently, the virtues of
both approaches have been combined in the excursion-set peaks ansatz, which we will discuss in Sec. 6.8.

5.2 From Press-Schechter to excursion sets

5.2.1 The spherical collapse model of halo formation

Let us consider a spherical region with uniform density of initial radius Ri and initial average density
contrast ∆i in an expanding Universe [108, 397] with mean comoving matter density at the initial time
ρm,i ≡ ρm(ti). That is, the total mass of the overdensity is M = (4π/3)R3

i ρm,i(1 + ∆i). For simplicity, we
only present the case of an Einstein de-Sitter (EdS) Universe, although the effects of cosmological constant
as well as curvature of the Universe can easily be incorporated [398, 376].

The interior of a spherically symmetric perturbation embedded in an FRW spacetime evolves indepen-
dently of the surrounding spacetime and is only determined by the total mass enclosed [399, 400, 401]. The
equation of motion of the radius R of the spherical region is given by

d2R

dt2
= −GM(< R)

R2
= −4πG

3
ρm,i(1 + ∆i)

R3
i

R2
= −H

2
i R

3
i

2R2
(1 + ∆i), (5.2)

where Hi = 2/(3ti) is the Hubble rate at the initial time ti. It is worth noting that Eq. (5.2) holds for
arbitrarily large-scale spherical perturbations; i.e. we do not need to assume R � H−1. Integrating once
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Figure 21: Illustration of a two-dimensional Gaussian density field δ(R) smoothed on different scales R: 0.4h−1 Mpc (top
left), 1h−1 Mpc (top right), 2h−1 Mpc (bottom left). The side length is 50h−1 Mpc. In the bottom-right panel, we superimpose
the fields with R = 1h−1 Mpc and R = 2h−1 Mpc, along with the spherical collapse threshold (δcr = 1.686, black plane). In
the excursion-set approach, the mass fraction of halos is set equal to the fraction of area above the threshold at the smoothing
scale R(M). Note that there are regions which are above threshold at the larger smoothing scale R = 2h−1 Mpc but below
the threshold at R = 1h−1 Mpc. This illustrates the so-called cloud-in-cloud problem that is discussed in Sec. 5.2.3.

over time, we obtain the energy conservation equation:

1

2
Ṙ2 − H2

i R
3
i

2R
(1 + ∆i) = constant ≡ E . (5.3)

The spherical region is unbound if E > 0, i.e. if the initial expanding velocity exceeds Ṙi ≥ HiRi
√

1 + ∆i,
but it will eventually turn around and re-collapse if E < 0. If ∆i � 1, then the initial velocity can be
obtained by matching the linear adiabatic growing mode, Ṙi = HiRi(1 − ∆i/3). The total energy then
becomes

E = −5

3

(HiRi)
2

2
∆i, (5.4)

and the turn around, or maximum, radius is obtained by setting Ṙ = 0 and solving Eq. (5.3) for R:

Rta =
3

5

(
1 + ∆i

∆i

)
Ri . (5.5)

109



The exact solution of Eq. (5.2) is given by a cycloid, which can be parameterized with a variable θ:

R =
Rta

2
(1− cos θ) , t =

tta
π

(θ − sin θ), (5.6)

where tta is the time at turn-around (θ = π). Noting the similarity between the case at hand and the
Keplerian radial orbit (with semi-major axis R = Rta/2 and period T = 2tta), we use Kepler’s third law to
relate Rta and tta as 8GMt2ta = π2R3

ta.
The parametric solution yields a relation between θ and the overdensity ∆,

1 + ∆ =
ρm,i(1 + ∆i)R

3
i

ρmR
3

= (1 + ∆i)

(
t

ti

)2(
Ri
R

)3

=
9

2

(θ − sin θ)2

(1− cos θ)3
. (5.7)

At early times (θ ' θi), we reproduce the linear growing modes ∆(t) ' 3θ2/20 ' ∆i(t/ti)
2/3 ∝ a(t)

in the EdS Universe. Moreover, the coefficients of the higher-order terms in the expansion of ∆(t) in
powers of a(t) are precisely the coefficients of the operators δn in the n-th order contribution to the density
field in perturbation theory (e.g., 17/21 at second order, 341/567 at third order, and so on). Then, the
spherical region evolves nonlinearly as time proceeds, reaching 1 + ∆ta ' 9π2/16 ' 5.55 at turn-around
time (θ = π). The spherical collapse model predicts the collapse to a singularity R = 0 at θ = 2π. This
is of course unphysical. Instead, gradient instabilities, which occur as soon as mass shells cross in physical
space, will break spherical symmetry and lead to a complex bound structure. We can estimate the final
radius and density of this structure (halo) assuming perfect virialization. The virial theorem then states
that E = T + W = W/2, where T is the kinetic energy while W is the potential energy. Since W = E
holds at turn-around, we obtain for the radius of the virialized halo, Rvir = Rta/2. Further assuming that
virialization is completed precisely at θ = 2π, the formal collapse epoch, we obtain for the density of the
virialized halo

1 + ∆vir = (1 + ∆ta)

(
ρm,ta
ρm,vir

)(
Rta

Rvir

)3

= (1 + ∆ta)

(
tta
tvir

)2(
Rta

Rvir

)3

= 18π2 ' 178. (5.8)

The corresponding linear density contrast at the time of virialization (collapse), which defines the critical
density δcr, is

δcr ≡ ∆(1)(tvir) = ∆i

(
tvir

ti

)2/3

=
3

5

(
3

4

)2/3

(θvir − sin θvir)
2/3

=
3

5

(
3π

2

)2/3

' 1.686 . (5.9)

There is some arbitrariness in the definition of the virialization epoch. Analytic arguments [402] and N-
body simulations [403] show that the virialization process is not instantaneous. Furthermore, halos are often
identified with threshold values ∆vir different from 178 [313]. Therefore, the corresponding linear density
contrast δcr also depends on the halo identification procedure. Nevertheless, in the high-mass limit where
the spherical collapse assumption works best, Ref. [404] argues that a threshold δcr = F−1(∆vir), where F
is the spherical collapse mapping from linear to nonlinear densities, should be used for halos identified with
a nonlinear threshold ∆vir. For ∆vir = 200, this rare-event limit yields δcr ' 1.59. While this prescription
is somewhat supported by N-body simulations [405], we will assume Eq. (5.9) as default value here.

As the linear growth factor is a monotonically increasing function of time, one can use it as a clock
to measure the virialization time; thus, a spherical region of radius R will be virialized and form a halo
when the linearly extrapolated density contrast exceeds δcr. This motivates the Press-Schechter theory that

estimates the abundance of halos by interpreting the fraction of thresholded (δ
(1)
R > δcr) Lagrangian volume,

following Sec. 2.1, as the fraction of mass contained in halos with mass greater than M = (4π/3)ρmR
3.

Clearly, the spherical collapse is only a very rough toy model for how gravitational collapse to bound
structures actually happens. In particular, tidal fields, angular momentum, as well as the effect of small-
scale perturbations are entirely neglected. Models in which halos form through ellipsoidal collapse provide a
better description of the formation times of dark matter halos [406, 403]. Therefore, δcr should be regarded
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Quantity Symbol

Smoothed linear density contrast δ(R) ≡ δ(1)
R (q)

Variance of the smoothed density field S ≡
〈
[δ(R)]2

〉

Cumulative collapsed mass fraction F (> M)

Differential volume fraction f(M) = −dF (> M)/dM

Multiplicity function f(νc) = f(M) |dM/dνc|
Differential survival probabilities of random walks:

from (∞, 0) to (R, δ) Π(δ;R)

from (R`, δ`) to (R, δ) Π[(δ;R), (δ`;R`)]

Conditional survival probability for a walk to arrive at (R, δ),

given constraint that δ(R`) = δ` Π(δ;R|δ`;R`)

Table 9: List of symbols used throughout Sec. 5.

as an idealized reference value, which we will later generalize to a scale-dependent stochastic barrier B(σ)
(see Sec. 5.9). In practice, since there is some freedom in the definition of a virialized dark matter halos
(see Appendix D), the value of δcr effectively depends on the halo identification algorithm and, thus, can
deviate from 1.686. This effective threshold can be measured by extrapolating the linear overdensity of the
Lagrangian regions that collapse to form halos to the limit M →∞ (see Fig. 26 on p. 132).

Note that a similar calculation can be done for the formation of cosmic voids [407]. In particular, for

very underdense spherical regions with a linearly extrapolated fractional underdensity δ
(1)
` . −1, Ref. [408]

has found that δ`(τ) = (1− δ(1)
` (τ)/1.5)1.5 is a good approximation to the interior density, which might be

useful to model the bias relation in cosmic voids along with the arguments in Sec. 2.1 [409].

5.2.2 Press-Schechter formalism

We now recap the original derivation of the Press-Schechter mass function [217] (see also Sec. 2.1). The
key assumptions are

• The linear matter density contrast δ(1), whence the smoothed density contrast δ
(1)
R , follows Gaus-

sian statistics. One must relax this assumption in the presence of primordial non-Gaussianity (see
Sec. 7.4.2).

• A Lagrangian region of volume V = (4π/3)R3 collapses to form a halo of mass M = ρmV when its

density contrast δ
(1)
R (linearly extrapolated to the epoch of interest) exceeds the spherical collapse

threshold δcr.

Given the second assumption, the fraction of Lagrangian volume belonging to halos of mass greater than M
is [cf. Eq. (2.5)]

pG(δ
(1)
R > δcr) =

1√
2πσ2(R)

∫ ∞

δcr

dδ exp

[
−1

2

δ2

σ2(R)

]
=

1

2
erfc

[
δcr√

2σ(R)

]
. (5.10)

Here, pG stands for the Gaussian cumulative PDF, and erfc denotes the complementary error function
defined in Tab. 2 on p. 10. R is the Lagrangian radius corresponding to the halo mass M ,

M = 3.1389× 1011h−1M�

(
Ωm
0.27

)(
R

h−1Mpc

)3

, (5.11)

and σ(R) is the root-mean-square of the linear smoothed density perturbations on the scale R,

S ≡ σ2(R) ≡
〈(

δ
(1)
R

)2
〉

=

∫

k

PL(k)W 2
R(k) , (5.12)
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where WR(k) denotes the filtering kernel in Fourier space. Note that, in Eq. (5.10), the smoothing scale R is
held fixed although the volume fraction is an integral over contributions from halos with Lagrangian radius
greater than R. This will be dealt with by taking a derivative with respect to mass.

Given the fundamental assumption of the excursion set stated in Sec. 5.1, the Lagrangian volume fraction
F (> M) of the total mass enclosed in halos of mass greater than M follows immediately from Eq. (5.10):

F (> M) =
1

ρm

∫ ∞

M

d lnM ′M ′nh(M ′) = pG(δ
(1)
R > δcr) . (5.13)

Therefore, the differential volume fraction in halos of mass M is

f(M) ≡ −dF (> M)

dM
, (5.14)

which formally leads to the halo mass function, i.e. the comoving number density of halos per logarithmic
mass interval,

nh(M) ≡ d2Nh

dV d lnM
= ρmf(M) = −ρm

dF (> M)

dM
. (5.15)

Unfortunately, this mass function does not appear to be properly normalized, as an integration over all the
mass included in halos only recovers half of the total mass:

∫ ∞

0

d lnMM nh(M) = −ρm
∫ ∞

0

dM
dF

dM
= −ρm

[
pG(R =∞)− pG(R = 0)

]
=

1

2
ρm . (5.16)

On the other hand, the basic premise of this argument states that, when including arbitrarily small halo
masses, the mass in halos should add to the total matter density, since

lim
R→0

σ(R) =∞ and lim
R→∞

σ(R) = 0 , (5.17)

so that there are no regions that do not collapse to halos of some (arbitrarily small) mass. Note that we
have assumed a hierarchical density field without any cutoff here. To resolve this issue, Ref. [217] introduced
an ad hoc, “fudge” factor of two which leads to the Press-Schechter (PS) mass function:

nh,PS(M) = ρm

(
−2

dF

dM

)
=
ρm
M

√
2

π
νce
−ν2

c/2

∣∣∣∣
d lnσ(R)

d lnM

∣∣∣∣ , (5.18)

where νc ≡ δcr/σ(R) is the significance of the critical density in terms of the standard deviation of matter
fluctuations on the scale R. Massive halos, for which νc � 1, are rare, while low-mass halos such that νc � 1
are common. It is convenient to parametrize the halo mass function with a multiplicity function νcf(νc)
defined as

νcf(νc)
dνc
νc

=
M

ρm
nh(M)

dM

M
. (5.19)

The notation dνc implicitly signifies that σ is varied while δcr is kept fixed. As we shall see in Sec. 5.3,
this multiplicity function corresponds to the first-crossing distribution of random walks in the excursion-set
theory. Hence, the halo mass function can be recast into the generic form

nh(M) =
ρm
M
νcf(νc)

∣∣∣∣
d lnσ(R)

d lnM

∣∣∣∣ . (5.20)

Note that the Jacobian often appears as d ln νc/d lnM in the literature. Still, one should keep in mind that
σ is varied while δcr is held fixed. In Press-Schechter theory, the multiplicity function is

νcfPS(νc) =

√
2

π
νce
−ν2

c/2 . (5.21)
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Eq. (5.20) is frequently referred to as universal mass function (we have already encountered this form
in Sec. 3.3), since it only depends on redshift, cosmological parameters, and the power spectrum of initial
fluctuations through νc = δcr/σ(M) [16, 395]. As discussed in Sec. 3.3, in an EdS universe with exact power-
law initial conditions, the mass function can always be written in this form. In a more general cosmology,
for example a realistic ΛCDM model, the multiplicity function will also depend on variables other than the
peak significance νc. For example, the mass function of density peaks (see Sec. 6) cannot be written in the
form Eq. (5.20). Still, the cosmology dependence of the peak multiplicity function is captured by a small
set of moments σn(R).

5.2.3 Cloud-in-cloud problem and its resolutions*

Despite an unsatisfactory treatment of the normalization, the Press-Schechter formalism captures the
qualitative features of the halo mass function measured in N-body simulations (a power-law function with
an exponential cutoff; see Fig. 9). As such, it provides a baseline for more detailed models of the halo mass
function. In this section, we review the origin of the factor of two difference in the normalization of the
Press-Schechter mass function, and the attempts to resolve the issue.

Refs. [410, 375] explained the underlying reason for the “fudge factor” in the Press-Schechter formalism.
Namely, the Press-Schechter approach does not take into account the possibility that an underdense region
identified on a scale R may be embedded in a halo on a bigger scale R′ > R (see the derivation of Eq. (5.15)
above). This is the so-called cloud-in-cloud problem first identified in [411] and named in [410].

To properly address this problem, we have to take into account the underdensities δ
(1)
R < δcr that belong

to a collapsed region with larger radius R′ > R. That is, the fraction of Lagrangian volume belonging to
collapsed objects with mass greater than M , F (> M), should be written as

F (> M) = pG(δ
(1)
R > δcr) +

∫ δcr

−∞
dδ
dpG
dδ

pup (δ(r>R) > δcr; δ) , (5.22)

instead of Eq. (5.10), which includes only the first term. Here, δ(r>R) denotes the linear density contrast
smoothed over some radius r greater than R, whereas the first-crossing probability pup (subscript up because
the first crossing always happens upward) in the second term of Eq. (5.22) is the probability that regions

with δ
(1)
R < δcr belong to a collapsed object with larger radius. In other words, it is the probability that

there exists R′ > R such that δ
(1)
R′ > δcr. Importantly, Eq. (5.22) is, by construction, properly normalized

as pup → 1 in the small-scale limit R → 0 (where σ(R) → ∞). This means that, for a sufficiently small
length scale, virtually all underdense regions are parts of collapsed objects of bigger size. Note, however,
that it is still not obvious why the second term on the right-hand side of Eq. (5.22) (the probability that an
underdense region is part of a bigger collapsed object) is exactly the same as the first term (the probability
that the density contrast of a given region exceeds critical value δcr).

Alternatively, Ref. [412] formulates the cloud-in-cloud problem as a lack of distinction between sub-halos,
i.e. collapsed regions (with size R) enclosed in a bigger collapsed region (with size R′), and isolated collapsed
regions. In their formulation, the cloud-in-cloud problem can be resolved upon introducing a conditional
probability function p(M,M ′), which quantifies the probability that an overdense region of mass M belongs
to a larger isolated region of mass M ′(≥ M). This can also be interpreted as a probability distribution of
substructure of mass M inside a larger, isolated virialized object of mass M ′. Thus, Eq. (5.13) becomes

F (> M) =
1

ρm

∫ ∞

M

dM ′nh(M ′)p(M,M ′). (5.23)

Clearly, the function p(M,M ′) satisfies p(M,M ′) = 0 when M > M ′, and limM ′→M+ p(M,M ′) = 1 by

* This section is of a more technical nature and a slight digress. Readers interested in the excursion set itself may go
directly to Sec. 5.3.
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construction. In addition, the M → 0 limit of Eq. (5.23) yields [see Eq. (5.13) and Eq. (5.16)]:

F (> 0) =
1

ρm

∫ ∞

0

dM ′nh(M ′)p(M → 0,M ′) =
1

2
. (5.24)

This implies p(M → 0,M ′) → 1/2 in order to ensure that the halo mass function be correctly normalized.
That is, only half of the small scale (M �M ′) regions in the collapsed halos of mass M ′ are dense enough
to form a sub-halo. This follows from the fact that, on extremely small scales (M → 0), the threshold
density contrast δcr can be safely ignored compared to the standard deviation of matter perturbations:
δcr �

√
σ2
M − σ2

M ′ . Comparing Eq. (5.23) to Eq. (5.13), however, we find that the Press-Schechter case
corresponds to setting p(M,M ′) = 1 for all M ′ > M , which means that the Press-Schechter formalism
implicitly assumes that every collapsed region is part of a bigger isolated region. This fallacious assumption
also leads to an error in the normalization, as p(M,M ′) has the wrong asymptote in the limit M � M ′.
Finally, in analogy with the step following Eq. (5.13), we take the mass derivative of Eq. (5.23) which leads
to an integro-differential equation,

dF (> M)

dM
= − 1

ρm
nh(M) +

1

ρm

∫ ∞

M

dM ′nh(M ′)
dp(M,M ′)

dM
, (5.25)

which allows us to solve for nh(M) for a given function dp(M,M ′)/dM .
In both formulations of the cloud-in-cloud problem, new functions pup(δ(r>R) > δcr; δ) and p(M,M ′) are

introduced to describe the statistics of small-scale regions (either over-dense or under-dense) in conjunction
with the large-scale collapsed regions. The excursion-set formalism provides a systematic way of calculating
those functions given the statistical properties of the underlying matter density field. In fact, as we shall see
shortly, the correct normalization of the Press-Schechter mass function can be derived within an excursion-
set approach based on the sharp-k filter, in which fluctuations on different smoothing scales are completely
uncorrelated.

5.3 Excursion-set formalism: setting up the scene

The basic building block of the excursion-set formalism is the smoothed, linearly evolved initial density
field at a point q:

δ(R) ≡ δ(1)
R (q) =

∫
d3xWR(|x|)δ(1)(q + x) . (5.26)

Since we always center the filter at the same Lagrangian position q, regardless of the value of R, and we
always deal with the linear density field, we will omit the explicit dependence on q and the superscript (1)

to simply write δ(R) ≡ δ(1)
R (q) in this section (see Tab. 9). Frequently used filtering kernels WR(x) and their

Fourier transform can be found in Appendix A.2. Note that the shape of the filter in real space reflects the
Lagrangian density profile of halos. In this regard, the sharp-k filter is not realistic, as the corresponding
real-space filtering kernel WR(x) is not always positive.

The statistical properties of the smoothed density field δ(R) are entirely specified by its correlation
functions. In particular, when the initial density contrast follows Gaussian statistics, the linear matter
power spectrum extrapolated to the present epoch PL(k) encodes the entire statistics (Appendix A.3).

We are now ready to formulate the excursion-set formalism for halo statistics. The key assumption is
highlighted in the following box:

At a given redshift z, a Lagrangian point q belongs to a halo of size R if R is the maximum smoothing
scale at which the smoothed linear density contrast δ(R) exceeds the critical density contrast δcr(z).

The spherical collapse model (Sec. 5.2.1) provides the connection between the extrapolated density field
δ(R) and dark matter halos. Appealing to the assumption of statistical homogeneity of the Universe and
the ergodicity of the cosmic density field, the probability that a random Lagrangian point q belongs to a
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Figure 22: Relation between the halo mass (M), Lagrangian radius (R) and the r.m.s. density fluctuation smoothed on the
scale R, σ(R), at z = 0 for three different filters: tophat filter (red solid line), Sharp-k filter (green dashed line), and Gaussian
filter (blue dot-dashed line). Note that σ(R) for the tophat filter is always larger than the others because the ringing of the
spherical Bessel function captures power from higher-k modes than the other two filters. Throughout this section, we use R,
M , and S interchangeably.

halo of mass between M and M + dM is proportional to the fractional number density of halos in the same
mass range. This allows us to calculate the halo mass function nh(M).

Note, however, that the excursion set with a constant critical density threshold generically underestimates
the collapsed fraction [395, 318, 396]. As we have mentioned earlier, this is because any region below the
threshold that is associated with a collapsed object is not counted as a part of the collapsed region in the
excursion set. N-body simulations show that the underestimation is most severe for massive halos. A possible
remedy to this problem is to reduce the threshold in a mass-dependent way, although this does not address
the underlying physical deficiency of the approach. An alternative is to explicitly (albeit approximately)
incorporate the associated regions below the threshold as is done in the peak model (Sec. 6), where all the
mass associated with a peak in the smoothed Lagrangian density field is counted towards the final halo, and
one does not have to calculate the collapsed volume fraction explicitly.

When implementing the excursion-set formalism, we start from an infinitely large smoothing radius R
around any given point in the Universe. Since the density averaged over this region is the cosmic mean
density, the density contrast must vanish as R → ∞. We then gradually decrease the smoothing length
R, and trace the evolution of the density contrast δ(R) smoothed at scale R. We proceed further until the
smoothed density contrast first exceeds the critical value δcr(z), which signifies that the point belongs to a
halo with mass given by the smoothing radius. The density contrast at any given smoothing scale fluctuates
around zero with corresponding variance σ2(R). Unlike what is done in the Press-Schechter formalism
however, excursion-set theory records the “trajectory” δ(R) starting from R =∞ in order to find the first-
crossing fraction. In this way, the cloud-in-cloud problem is resolved by counting only isolated virialized
regions and keeping track of underdensities within larger virialized objects.

Trajectories can be thought of as random walk with R as time variable (Fig. 23). Alternatively, they
can also be parametrized with the variance S(R) ≡ σ2(R) of density fluctuations at smoothing scale R
[Eq. (5.12)]. For standard cosmological models, S(R) is a monotonically decreasing function of the filtering
scale R and, therefore, is in one-to-one correspondence with R and M . Hence, we shall hereafter use M , R
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and S interchangeably when we describe the halo scale. The relation between them is shown in Fig. 22 for
our fiducial cosmology.

In order to find the first-crossing probability as a function of either R, S or M , given the matter power
spectrum PL(k), one can use Monte-Carlo techniques [375, 318]. Analytical solutions of the excursion set
are available in some specific cases. In particular, two exact solutions for the excursion set formalism are
known in two extreme cases, where the statistics of density contrast at different smoothing scales are (i)
completely independent (for example, when employing sharp-k filtering [375]), or (ii) completely correlated.
Expansions around these exact solutions are often employed in the literature [413, 153] in order to solve
excursion-set problems for more realistic filter shapes, such as a real-space tophat.

5.4 Survival probability, halo mass function, and bias

One of the key quantities computed in the excursion-set formalism is the differential survival probability
Π(δ;R0) that the density field δ(R) does not exceed the critical value δcr for all smoothing radii R greater
than R0, and reaches some value δ at smoothing radius R0: δ(R0) = δ.

The knowledge of Π(δ;R0) leads to the halo mass function as follows. Firstly, we calculate the probability
that the smoothed density contrast never exceeded δcr for all radii greater than R0 by integrating the
differential survival probability Π(δ;R0) from −∞ to δcr. Its complement is the probability that δ(R)
exceeded δcr at least once at some radius R > R0, i.e. it is the fraction F (> M) of random field points
belonging to halos of mass greater than M(R0):

F (> M) = 1−
∫ δcr

−∞
dδΠ(δ;R0) . (5.27)

The differential volume fraction

f(M)dM = − dF (> M)

dM
dM =

dR

dM

∂

∂R

[∫ δcr

−∞
dδΠ(δ;R)

]
dM , (5.28)

must now be interpreted as a first-crossing distribution, i.e. the probability that the smoothed density
contrast exceeds the threshold δcr within a mass range [M,M + dM ]. The halo mass function follows from
Eq. (5.15),

nh(M) = ρmf(M) = ρm

[
dR

dM

∂

∂R

∫ δcr

−∞
dδΠ(δ;R)

]
. (5.29)

To calculate the halo bias in the excursion-set formalism, we consider a conditional survival probability
in analogy with the peak-background split discussed in Sec. 3. Namely, the LIMD bias is given by the
response of the number density of collapsed objects to a long-wavelength density perturbation δ` ≡ δ(R`),
where R` � R is some arbitrary large scale, in the large-scale limit R` →∞. Therefore, we must compute
the fraction F (> M |δ`) of overdense regions conditioned on the presence of a long-wavelength density
perturbation.

In line with the aforementioned argument, the number density of collapsed objects with size R in the
large-scale region with density contrast δ` is given by the conditional survival probability Π(δ;R|δ`;R`):

nh(M |δ`;R`) = ρm

[
dR

dM

∂

∂R

∫ δcr

−∞
dδΠ(δ;R|δ`;R`)

]
. (5.30)

The density contrast in Lagrangian space then reads (cf. the discussion in Sec. 2.1)

1 + δLh ≡
nh(M |δ`, R`)

nh(M)

=
f(M |δ`;R`)

f(M)
=

[
∂

∂R

∫ δcr

−∞
dδΠ(δ;R)

]−1 [
∂

∂R

∫ δcr

−∞
dδΠ(δ;R|δ`;R`)

]
. (5.31)
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Here, the conditional probability can be evaluated as

Π(δ;R|δ`;R`) =
Π[(δ;R), (δ`;R`)]

Π(δ`;R`)
, (5.32)

where Π[(δ;R), (δ`;R`)] is the survival probability that the smoothed density contrast is δ` at the larger
smoothing scale R` (background scale), and δ at the smaller smoothing R (peak scale). This can be pictorially
represented as random walks starting from (δ,R) = (δ`, R`) instead of the origin (δ,R`) = (0,∞) (see
Fig. 24).

Similarly, with the variance S as time variable, the fraction of random walks f(S) that first cross the
barrier in the range [S, S + dS] is related to the halo mass function through

f(S)dS =
1

ρm
nh(M)dM . (5.33)

Therefore, we have the relation
f(M)dM = f(S)dS = f(νc)dνc . (5.34)

Since νc = δcr/
√
S, this yields also

νcf(νc) = 2Sf(S) . (5.35)

Furthermore, the bias coefficients are computed by considering

1 + δLh =
f(S|δ`;S`)
f(S)

. (5.36)

Note again that the LIMD bias parameters, which describe the response to an infinite-wavelength density
perturbation, are obtained in the limit S` → 0. The leading correction for a finite S` can be mapped onto
a higher-derivative bias b∇2δ [152, 305].

5.5 Numerical solution of excursion sets: Langevin equation

One approach to derive the first-crossing distribution is to simulate a random walk of the density at
a fixed location, with a smoothing radius decreasing from R = ∞ or, equivalently, a variance increasing
from S = 0. In this case, the excursion-set formalism reduces to a diffusion problem that is described by
the Langevin equation where the rate of change of the smoothed linear density field δ(R) as a function of
smoothing length is given by a stochastic force Q(R) [375] (this force also depends on the position q, which
we suppress throughout since it is arbitrary, but fixed):

dδ(R)

dR
= Q(R) . (5.37)

The stochastic force has a vanishing expectation value 〈Q(R)〉 = 0, but nonzero variance. For any isotropic
filtering kernel, the covariance, or two-point function, of the stochastic force is given by

〈Q(R1)Q(R2)〉 =

∫

k

PL(k)
dWR1

(k)

dR1

dW ∗R2
(k)

dR2
. (5.38)

5.5.1 Monte-Carlo solution with sharp-k filter

Solving the Langevin equation is particularly simple for the case of the sharp-k filter, because stochastic
forces at each step are independent owing to the Gaussian nature of the linear density field, and the statistical
homogeneity of the Universe. For the sharp-k filter, the derivative is dWR(k)/dR = dΘH(1 − kR)/dR =
−k/R δD (k − 1/R), where ΘH is the Heaviside step function. Consequently, Eq. (5.38) becomes

〈Q(R1)Q(R2)〉 = − k2PL(k)

2π2

∣∣∣∣
k= 1

R1

1

R2
1

δD (R1 −R2) . (5.39)
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This suggests rewriting the Langevin equation in terms of ln k ≡ − lnR:

dδ(R = 1/k)

d ln k
= Q(ln k) , (5.40)

where

〈Q(ln k1)Q(ln k2)〉 =
k3

1PL(k1)

2π2
δD(ln k1 − ln k2) . (5.41)

Eq. (5.41) allows us to generate realizations of the stochastic force Q(ln k) from a given linear matter power
spectrum PL(k). We can calculate the density contrast δ(R = 1/k) from the formal solution of Eq. (5.40),
which may be written as

δ(R) =

∫ − lnR

−∞
d(ln k′)Q(ln k′) , (5.42)

and from there calculate the survival probability Π(δ;S) as the fraction of random walks that first cross the
barrier δcr(z) between S and S + dS.

Note that both the Langevin equation for sharp-k filtering, Eq. (5.40), as well as the stochastic force,
Eq. (5.41), do not explicitly depend on the step R or the density contrast δL. Therefore, changing the initial
time Rinit and the density contrast δ(Rinit) simply re-defines the integration boundaries of Eq. (5.42). The
usual choice for evaluating the halo mass function is to set the initial value as (Rinit, δ(Rinit)) = (∞, 0),
because the density contrast averaged over the entire Universe vanishes.

In practice, the numerical implementation can be done as follows. Upon discretizing the steps in Fourier
space, ln ki = (∆ ln k)i, the stochastic force is drawn from a Gaussian distribution centered around zero and
with variance

σ2
Q =

k3
i PL(ki)

2π2∆ ln k
. (5.43)

Then, a random walk of the density contrast can be calculated by discretizing the integration as

δ(R) =
∑

ki<1/R

ri

√
k3
i P (ki)

2π2
∆ ln k (for the sharp-k filter) , (5.44)

where ri is a random number drawn from the normal distribution N (0, 1). For illustration, we show in
Fig. 23 two excursion-set random walks with the sharp-k filter as solid lines.

5.5.2 Monte-Carlo solution with general filters

Dor general filter functions, such as the real-space tophat or Gaussian filters, the derivative dWR(k)/dR
is not a Dirac delta in Fourier space, and the stochastic forces at different smoothing lengths Q(Ri), Q(Rj)
are no longer independent from each other. That is, the stochastic force at each step Q(Ri) depends on the
entire set of previous steps {Q(R0),Q(R1), · · · Q(Ri−1)}, so that that the random walk is non-Markovian.
In principle, for a given filter function and linear matter power spectrum, one can draw a random Gaussian
realization of Q(Ri) from the full covariance matrix 〈Q(Ri)Q(Rj)〉 given in Eq. (5.38).

Alternatively, we can exploit the fact that the linear density contrast δ(k) is Gaussian, which in particular
implies that Fourier amplitudes of different wavenumber are independent. To do so, we first re-write the
smoothed linear density field in Eq. (5.26) in Fourier space as

δ(R) =

∫

k

δ(k)WR(k), (5.45)

where we set the Lagrangian coordinate of interest q = 0 without loss of generality. Comparing this to
the case for the sharp-k filter in Eq. (5.42), it is clear that the stochastic force Qsk(k) in the sharp-k case
precisely corresponds to the linear density contrast integrated over a spherical shell in Fourier space with
fixed logarithmic width d ln k. Using this, we can write the solution of the Langevin equation in terms of
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Figure 23: Two sets of three example excursion-set random walks of the Lagrangian density contrast δ(R) as a function of
the filter radius R. Lines with the same color show the same realization of excursion-set random walk but with three different
filter functions: sharp-k filter (solid lines), Gaussian filter (dashed lines), tophat filter (dotted lines). While the blue (bottom)
realization has not formed a halo for scales R > 0.1 [Mpc/h], the red (upper) realization forms a halo at R = 1 ∼ 3 [Mpc/h]
depending on the filter function. For this calculation, we use 4000 equal steps in logarithmic space between k = 10−4h/Mpc
and 102h/Mpc.

the filter function WR(k) and sharp-k stochastic force Qsk(k) as

δ(R) =

∫ ∞

0

d(ln k′)Qsk(ln k′)WR(ln k). (5.46)

Note that the integration runs from 0 to ∞. By taking a derivative of Eq. (5.46) with respect to R, we find
the stochastic force Q(R) for a general filter function which satisfies the required covariance matrix given in
Eq. (5.38).

For a given set of stochastic forces Qsk(ki), or a given set of random variables ri in Eq. (5.44), the
corresponding excursion-set random walk with filter WR(k) can be calculated from the discretized version
of Eq. (5.46),

δ(R) =
∑

i

riWR(ki)

√
k3
i P (ki)

2π2
∆ ln k (for a generic filter) . (5.47)

Here, i labels the steps in log wavenumber that are sampled. For comparison, we overlay in Fig. 23 two
random walks obtained with a Gaussian (dashed lines) and tophat (dotted lines) filter. They were generated
with the same sequence of random numbers ri used for the sharp-k random walk. As the random walk at
each radius depends on all Fourier modes (the dependence is determined by the filter function), the random
walk with real-space tophat and Gaussian filters are correlated and, consequently appear much smoother
than that constructed with the sharp-k filter.

5.6 Analytical approaches I: excursion set with uncorrelated steps

Although the survival probability, mass function and halo bias can be calculated numerically as explained
in Sec. 5.4, there are a number of analytical studies of the excursion-set formalism in the literature. The
analytical approaches help us better understand the problem, in addition to providing closed form expressions
for the halo bias. We shall now review some of the recent developments along this direction. Throughout,
S ≡ σ2(R), while s is a dummy time variable.
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5.6.1 Completely independent (Markovian) steps with sharp-k filter

Consider first the excursion-set random walks with sharp-k filter. The real-space kernel corresponding
to this choice is oscillatory and thus very different from physical Lagrangian density profiles of halos. Never-
theless, this case is the most popular in the literature because an exact solution to the first-crossing problem
can easily be derived.

As we have shown in Sec. 5.5.1, the shark-k filtering guarantees (for Gaussian initial conditions) that
the steps of the random walk are fully independent or Markovian. That is, the density contrast δ(s+ ∆s) is
only determined by the density contrast at the previous step δ(s), and the variance ∆s: the steps which the
random walk has gone through to reach δ(s) are irrelevant. When performing the step from s to s+ ∆s (i.e.
the filter decreases from R to R−∆R), the difference δ(s+ ∆s)− δ(s) in the density contrast is a Gaussian
random variate with zero mean and variance ∆s. Only Fourier modes in the range k ∈ [1/R, 1/(R −∆R)]
contribute to this random variate, proving that the step is independent from all the others.

Since the sum of independent Gaussian random variables is also a Gaussian with a variance given by the
sum of individual variances, the probability distribution of trajectories reaching δ(S) = δ at time S is

pG(δ)dδ =
1√
2πS

e−δ
2/2Sdδ . (5.48)

Then, the differential survival probability is given by [414]

Π(δ;S) =

{
1√
2πS

[
e−δ

2/2S − e−(2δcr−δ)2/2S
]

(δ < δcr)

0 (δ ≥ δcr)
. (5.49)

This can be understood as follows. The total fraction of trajectories attaining (S, δ) with δ < δcr is given in
Eq. (5.48), which is the first term in Eq. (5.49). However, not all trajectories passing through (S, δ) always
remained below the threshold δcr at earlier time. Therefore, we must subtract all paths which crossed the
threshold δcr for some S′ < S. To estimate this fraction, consider a path reaching (δ, S) after crossing δcr

at an earlier time S′ < S. We can construct another path which arrives at (S, δcr + (δcr − δ)) and which, at
time S′ < s < S, is the exact reflection of the original path off the “mirror” δ = δcr. Clearly, this reflection
establishes a one-to-one correspondence between trajectories ending up at (S, 2δcr − δ) and the paths that
reach (S, δ) after crossing the threshold at time S′ < S. Therefore, we must subtract pG(2δcr − δ) from
pG(δ), which is nothing but Eq. (5.49).

The survival probability is thus given by

∫ δcr

−∞
dδΠ(δ;S) =

∫ δcr

−∞

1√
2πS

[
e−δ

2/2S − e−(2δcr−δ)2/2S
]
dδ = erf

[
δcr√
2S

]
, (5.50)

from which we calculate the collapsed fraction as

F (> M) = 1−
∫ δcr

−∞
dδΠ(δ;S) = erfc

[
δcr√
2S

]
. (5.51)

This yields the halo mass function, via Eq. (5.29),

nh,sk(M) =
ρm
M
νcfsk(νc)

∣∣∣∣
d lnσ(R)

d lnM

∣∣∣∣ , (5.52)

where

νcfsk(νc) =

√
2

π
νce
−ν2

c/2 . (5.53)

This shows that the Markovian (sharp-k) excursion-set formalism recovers the Press-Schechter mass function
[Eq. (5.18)] with the correct normalization factor.
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5.6.2 Halo bias with sharp-k filter

In order to calculate the Lagrangian bias coefficients, we need to evaluate the conditional survival prob-
ability

Π(δ;S|δ`;S`) =
Π [(δ;S), (δ`;S`)]

Π(δ`;S`)
. (5.54)

For the case of a sharp-k filter, each step of the random walk is independent so that the trajectory is invariant
under translation—that is, it does not matter where the walk has started. Consequently, the differential
survival probability is given by

Π [(δ;S), (δ`;S`)] = Π(δ − δ`;S − S`)Π(δ`;S`). (5.55)

We can then calculate the conditional collapsed fraction from a simple rescaling of Eq. (5.51),

F (> M |δ`;S`) = erfc

[
δcr − δ`√
2(S − S`)

]
. (5.56)

The conditional mass function immediately follows,

nh,sk(M |δ`) =
ρm
M

2Sfsk(S|δ`;S`)
∣∣∣∣
d lnσ(R)

d lnM

∣∣∣∣ , (5.57)

with a conditional first-crossing distribution fsk(S|δ`;S`) given by

fsk(S|δ`;S`) =
1√
2π

δcr − δ`
(S − S`)3/2

exp

[
− (δcr − δ`)2

2(S − S`)

]
. (5.58)

Therefore, the halo density contrast in a Lagrangian region of size R` and overdensity δ` is

1 + δLh (δ`) ≡
fsk(S|δ`, S`)
fsk(S)

=

(
1− δ`

δcr

)(
S

S − S`

)3/2

exp

[
− (δcr − δ`)2

2(S − S`)
+
δ2
cr

2S

]
, (5.59)

which, in the limit where R` →∞ and S` → 0, reduces to the Lagrangian LIMD bias expansion:

1 + δLh (δ`) =

(
1− δ`

δcr

)
exp

[
(2δcr − δ`)δ`

2S

]
= 1 +

δ`
σ(R)

(
νc −

1

νc

)
+

1

2

δ2
`

σ2(R)

(
ν2
c − 3

)
+O(δ3

` ), (5.60)

The linear- and second-order coefficients of δ` in Eq. (5.60) are, respectively, the linear- and the second-order
Lagrangian LIMD bias parameters.

Let us compare this with the bias parameters predicted by the peak-background split following Sec. 3.3,
which are given by

bLn = (−1)n
1

nh,sk(M)

∂nnh,sk(M)

∂δncr

. (5.61)

It is easy to see, via Eqs. (5.52)–(5.53), that these are exactly the same as Eq. (5.60), the biases derived in
the excursion set from the conditional first crossing distribution in the large-scale limit S` → 0. Explicitly,
the first two bias parameters are the same as Eq. (3.28),

(bL1 )sk = (bL1 )PS = − 1

nh,sk(M)

∂nh,sk(M)

∂δcr
=

1

σ(R)

(
νc −

1

νc

)
(5.62)

(bL2 )sk = (bL2 )PS =
1

nh,sk(M)

∂2nh,sk(M)

∂2δcr
=

1

σ2(R)

(
ν2
c − 3

)
. (5.63)

Note that, in the limit σ(R) → ∞, the linear bias bL1 tends towards −1/δcr. That is, unlike the simple
thresholding procedure described in Sec. 2.1, low mass objects are predicted to be anti-biased. This can be
traced to the first-crossing constraint, which results in low-mass isolated virialized objects being preferentially
found in underdense regions.
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δcr

s0s1s2 si ≡ iε sN = S

δ0δ1
δ2

δi

δN

δ̃0 δ̃1
δ̃2

δ̃i

δ̃N

ε↔

Figure 24: Illustration of the variables used in Sec. 5.6.3. We show two excursion-set paths with exactly the same realization
of the local density field, but with different large-scale environment. The blue path starts from δ(S0 = 0) = 0, corresponding
to an environment at the cosmic mean density, while the green path starts from δ(S0 = 0) = δ̃0 > 0, corresponding to an
overdense environment.

5.6.3 Expanding around the Markovian (sharp-k) solution*

Above we have obtained an analytical solution for the excursion set in the Markovian case, i.e. with a
sharp-k filter. For other filters, the covariance matrix of the stochastic force Q [Eq. (5.37)] is non-diagonal,
which means that all steps at different filter radii are correlated. As a result, the random walk is generally
non-Markovian. We now describe generalizations of the excursion-set procedure that are able to deal with
these non-Markovian walks, as long as the cross-correlation between steps of the random walk remains small.

An approximation due to [413, 415, 416] describes the correlated random walks in terms of a path-integral
of discretized trajectories (with step size ε ≡ si+1 − si, that is, si = iε) starting from δ0 ≡ δ(s = 0) and
reaching sN ≡ S. They first write down a joint probability distribution function W(δ0; δ1, · · · δN ) in the
N -dimensional space of random walk trajectories δi ≡ δ(si). This is given by (see Fig. 24 for an illustration
and definitions of symbols)

W(δ0; δ1, · · · , δN ) =
〈
δD
(
δ(s1)− δ1

)
· · · δD

(
δ(sN )− δN

)〉

=

∫ ∞

−∞

dλ1

2π
· · ·
∫ ∞

−∞

dλN
2π

ei
∑
i λiδi

〈
e−i

∑
i λiδ(si)

〉
, (5.64)

where we have used the Fourier representation of the Dirac delta distribution δD(x). The differential survival
probability Π[(δ0; s0 = 0), (δN ; sN )] immediately follows from W(δ0; δ1, · · · , δN ) since it is the probability
that the path (δ1, · · · , δN−1) never exceeded the threshold density contrast δcr along the path:

Πε(δ0; δN ; sN ) =

∫ δcr

−∞
dδ1 · · ·

∫ δcr

−∞
dδN−1W(δ0; δ1, · · · , δN ) . (5.65)

Here, we define the shorthand notation of Πε(δ0; δN ; sN ) ≡ Πε[(δ0; s0), (δN ; sN )] where the subscript ε in
Eq. (5.65) reminds us that we are dealing with a discrete random walk, and we have to eventually take the
limit ε→ 0 at the end of the calculation.

* This section is of a more technical nature and is not essential for the remainder of the review. The main result of this
section are Eqs. (5.75)–(5.77).
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Because δ(si) follow Gaussian statistics, the random variateX ≡ i∑i λiδ(si) is also Gaussian distributed.
Therefore, we can simplify further the expectation value of the exponential17 in Eq. (5.64) to

〈
exp

[
−i
∑

i

λiδ(si)

]〉
= exp


1

2

〈(
i
∑

i

λiδ(si)

)2〉
 = exp


−1

2

∑

ij

λiλj 〈δ(si)δ(sj)〉


 . (5.66)

The differential survival probability then reads, by combining Eq. (5.64) and Eq. (5.66),

Πε(δ0; δN ; sN ) =

∫ δcr

−∞
dδ1 · · ·

∫ δcr

−∞
dδN−1

∫ ∞

−∞

dλ1

2π
· · ·
∫ ∞

−∞

dλN
2π

exp


i

N∑

i=1

λiδi −
1

2

N∑

i,j=1

λiλj 〈δ(si)δ(sj)〉


 .

(5.67)

Note that, once the differential survival probability Πε(δ0; δN ; sN ) is known, the survival probability, col-
lapsed fraction F (> M) and mass function f(M) follow from the steps described in Sec. 5.4. Also note that,
for the sharp-k filter, each increment in δ(si) is independent. Therefore, the two-point correlator is given by

〈δ(si)δ(sj)〉 = min (si, sj) = εmin(i, j), (5.68)

and the PDF can be calculated analytically:

Πsk
ε (δ0; δN ; sN ) =

∫ δcr

−∞
dδN−1

1√
2πε

exp

[
− (δN − δN−1)2

2ε

]
Πsk
ε (δ0; δN−1; sN−1). (5.69)

This equation is indeed consistent with the fact that the sharp-k filtering yields a Markovian process and,
therefore, yields the differential survival probability Eq. (5.49).

One intermediate result for the sharp-k filter case shown in [413] is the finite-ε correction. The ε→ 0 limit
solution in Eq. (5.49) vanishes when the random walk ends at the critical density δ = δcr, Πsk

ε (δ0; δcr;S) = 0,
or begins from the critical density Πsk

ε (δcr; δ;S) = 0. With the finite step size ε, Ref. [413] has shown that
the leading corrections for these cases are of order

√
ε. Namely,

Πsk
ε (δ0; δcr;S) =

√
ε

πS3
(δcr − δ0) exp

[
− (δcr − δ0)2

2S

]
+O(ε) (5.70)

Πsk
ε (δcr; δ;S) =

√
ε

πS3
(δcr − δ) exp

[
− (δcr − δ)2

2S

]
+O(ε) (5.71)

if δ0 and δ are both smaller than δcr. The finite-ε corrections are necessary to calculate the non-Markovian
correction because the same parameter ε appears when converting a finite sum, for example, in Eq. (5.73),
to the continuous limit as

∑→ 1/ε
∫
ds.

For the general filters other than the sharp-k filter, different time steps are correlated, and the two-point
correlators may be written as (for 0 ≤ si ≤ sj)

〈δ(si)δ(sj)〉 = si + ∆(si, sj) ' si + κ
si(sj − si)

sj
, (5.72)

where ∆(si, sj) ≡ ∆ij is the cross-correlation between different smoothing scales (∆ij = 0 for the sharp-k
case). Therefore, κ parametrizes the deviation from the sharp-k case for which we have an analytical solution.
For the spherical tophat filter (which [413] refers to as sharp-x filter), κ ' 0.4592 − 0.0031 (R/[1Mpc/h])
whereas, for the Gaussian filter, κ ' 0.35 for a ΛCDM linear power spectrum. Next, Ref. [413] integrated

17For a Gaussian random variable X,
〈
eX
〉

= exp
[

1
2

〈
X2
〉]

. One way to prove this relation is to Taylor-expand the left-hand

side and use Wick’s theorem:
〈
X2n

〉
= (2n− 1)!!

[〈
X2
〉]n

.
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Eq. (5.67) with Eq. (5.72) by treating ∆ij (and therefore κ) as a small perturbation. To linear order in κ,
the differential survival probability is

Πε(δ0; δN ; sN ) = Π(0)
ε (δ0; δN ; sN ) +

1

2

N∑

i,j=1

∆ij

∫ δcr

−∞
dδ1 · · ·

∫ δcr

−∞
dδN−1

∂

∂δi

∂

∂δj
Wsk(δ0; δ1, · · · , δN ; sN ),

(5.73)

where the leading-order term Π
(0)
ε is the same expression as the sharp-k filtering case, which reduces to

Eq. (5.49) in ε→ 0 limit. Wsk is the probability density function of the sharp-k case, that is, a multivariate
Gaussian with diagonal covariance matrix, where the variance s(Ri) is calculated with the general filter of
interest. Note that s(Ri) = σ2(Ri) depends on the shape of filter chosen (Fig. 22).

The perturbative expansion is justified as the maximum of ∆ij/si ' κ(1− si/sj) < κ is less than unity;
at the same time, however, truncation at the leading order may not lead to an accurate approximation as
κ ' 0.3− 0.4. The linear-order result is, in the ε→ 0 limit, given by

∆Π(δ;S) = κ
∂

∂δ

[
δcr(δcr − δ)

S
erfc

(
2δcr − δ√

2S

)]

+
κδcr√
2πS

∂

∂δ

[
e−(δcr−δ)2/(2S)

∫ S

0

ds

s
e−δcr/(2s) erfc

(
(δcr − δ)

√
s

2S(S − s)

)]
, (5.74)

which, on using Eq. (5.29), yields the halo mass function

nh(M) =

√
2

π

ρm
M

[
(1− κ)νce

−ν2
c/2 +

κνc
2

Γ

(
0,
ν2
c

2

)] ∣∣∣∣
d lnσ

d lnM

∣∣∣∣ , (5.75)

where the incomplete Gamma function is Γ(0, x) =
∫∞
x
e−td ln t. This mass function has been found to be

in good agreement with simulations [417, 418]. The linear and quadratic Lagrangian bias parameters can
be calculated from the peak-background split approach in the same way as in Eq. (5.62), leading to18

bL1 (νc) =
1

δcr

[
1− κ+ κ

2 e
ν2
c/2Γ(0, ν2

c /2)
]
{

(1− κ)(ν2
c − 1) +

κ

2

[
2− eν2

c/2Γ

(
0,
ν2
c

2

)]}
, (5.76)

bL2 (νc) =
1

δ2
cr

[
1− κ+ κ

2 e
ν2
c/2Γ(0, ν2

c /2)
] {(1− κ)ν4

c + (4κ− 3)ν2
c − κ

}
, (5.77)

where the appropriate value for κ should be inserted, depending on the filter used.

5.7 Analytical approaches II: excursion set with correlated steps

Another method to computing the first-crossing probability as a function of the filtering scale R for
general (non sharp-k) filters is to expand around the completely-correlated solution (the original Press-
Schechter result) [396, 419, 153, 305, 420]. This method originated from the observation of [410] that the
trajectories δ(R) can, to a first approximation, be decomposed into a series of independent steps (in lnR) of
finite size ∆. Here, the critical step size ∆ is a correlation length, i.e. δ(R) at two different smoothing scales
R1 and R2 are strongly correlated if | lnR1 − lnR2| . ∆, and weakly correlated if | lnR1 − lnR2| & ∆. In
the limit ∆→ 0, we recover the Markovian walks (sharp-k filtering case, Sec. 5.6.1) whereas, in the opposite
limit ∆→∞, the walks are referred to as completely correlated.

18This expression corrects a typo in [416].
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5.7.1 First-crossing with completely correlated steps

As noted in [419], an example of completely correlated walks is the set of straight lines passing through
the origin and a point (δ, S). These curves are fully characterized by the slope ν = δ/

√
S. The first-

crossing distribution associated with this ensemble of walks will depend on the assumed distribution of ν. If
this distribution is Gaussian, p(ν) = exp(−ν2/2)/

√
2π, then the corresponding survival probability for the

constant barrier of height δcr is given by

∫ δcr

−∞
dδΠ(δ;S) =

∫ δcr/
√
S

−∞
dν p(ν) =

1

2

(
1 + erf

(
δcr/
√

2S
))

. (5.78)

Consequently, the fraction of walks first crossing the barrier in the range (S, S + dS) is one half of the
solution for completely uncorrelated steps,

Sf(S) =
1

2
Sfsk(S) =

1

2

δcr√
2πS

e−δ
2
cr/2S , (5.79)

i.e. the original Press-Schechter solution [217] (see Sec. 5.2.2) with a halo mass function of

nh(M) =
ρm
M

δcr√
2πS

e−δ
2
cr/2S

∣∣∣∣
d lnσ

d lnM

∣∣∣∣ . (5.80)

This expression characterizes very well the first-crossing distribution at small S (that is, for high-mass halos),
even when the steps are not fully correlated [421]. Comparison with Monte-Carlo realizations of random
walks show that, at small S, the first-crossing distribution also asymptotes to 1/2 times the corresponding
distribution for sharp-k walks when the shape of the underlying power spectrum is varied, or primordial
non-Gaussianity (PNG) is added [421].

PNG generates a skewness in the initial density field which affects the first-crossing distribution and,
thus, the halo mass function. This effect is largest at high mass because the tails of the density PDF p(δR)
are very sensitive to any non-zero skewness in the initial conditions [422, 423, 424]. In practice, non-Gaussian
corrections to the initial density PDF can be computed using e.g. saddle-point techniques and Edgeworth
expansions [425, 426, 427]. We will not discuss this issue any further here, and refer the reader to [428] for
additional details on the halo mass function in the presence of PNG. The effect of PNG on the clustering of
biased tracers in the context of the excursion set is the topic of Sec. 7.4.2.

5.7.2 Up-crossing probability distribution function*

In order to calculate the survival probability, one must in principle enforce the constraint δ(s) < δcr for
all scales s < S. When the steps are strongly (yet not perfectly) correlated, however, Refs. [153, 396] (see
also [429]) have suggested to replace this condition with the milder requirement that the first crossing must
happen from below: δ(S −∆S) < δcr and δ(S) > δcr. In the limit of small increment ∆S, the condition of
first crossing happening from below is equivalent to

δcr < δ(S) < δcr + δ′∆S , (5.81)

where a prime denotes a derivative with respect to S. For this condition to make sense, we must have δ′ ≥ 0.
Therefore, when identifying the fraction of walks which up-cross δcr in the range (S, S + ∆S) as the

fraction of Lagrangian volume enclosed in halos of the corresponding mass M , the multiplicity function is
given by

f(S)∆S =

∫ ∞

0

dδ′
∫ δcr+δ

′∆S

δcr

dδ P (δ, δ′) ≈ ∆S

∫ ∞

0

dδ′ δ′ P (δ = δcr, δ
′) . (5.82)

* This section is of a more technical nature and is not essential for the remainder of the review. Readers can go directly
to Sec. 5.7.3 where the halo bias obtained from this method is discussed.
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Here, the joint probability distribution of δ and δ′ is given by

P (δ, δ′) =
γ

π
√

1− γ2
exp

[
− 2γ2

1− γ2

{
δ2

4Sγ2
− δδ′ + Sδ′2

}]
, (5.83)

where

γ2 ≡ [〈δ(S)δ′(S)〉]2
〈[δ(S)]2〉 〈[δ′(S)]2〉 , (5.84)

and we have 〈δ(S)δ′(S)〉 = 1/2 since δ′(S) is the derivative of δ(S) with respect to S = 〈δ2(R[S])〉. Then,
the conditional probability P (δ′|δcr) has mean 〈δ′

∣∣δcr

〉
= δcr/2S and variance Var(δ′|δcr) = 1/(4SΓ2), where

Γ2 ≡ γ2/(1 − γ2). The integral in Eq. (5.82) can, then, be easily performed so that the first-crossing
distribution reads

Sf(S) =
e−δ

2
cr/2S

2
√

2πS
δcr

[
1 + erf

(
Γδcr/

√
2S
)

2
+

e−Γ2δ2
cr/2S

√
2π/S Γδcr

]
. (5.85)

The bias parameters can be correspondingly computed by considering the first crossing distribution with
the additional constraint that the excursion-set random walks went through δ` ≡ δ(S`) on the large scale
S` � S, analogously to the Markovian case (Sec. 5.4). The conditional first crossing can be calculated
similarly to Eq. (5.82) except that we now need to integrate the conditional probability function P (δ, δ′|δ`)

f(S|δ`;S`)∆S =

∫ ∞

0

dδ′
∫ δcr+δ

′+∆S

δcr

dδP (δ, δ′|δ`) ≈ ∆S P (δcr|δ`)
∫ ∞

0

dδ′ δ′P (δ′|δcr, δ`). (5.86)

Upon taking the limit ∆S → 0, we obtain

f(S|δ`;S`) = P (δcr|δ`)
∫ ∞

0

dδ′ δ′ P (δ′|δcr, δ`) (5.87)

for the constant deterministic barrier that we are considering here. In order to obtain the conditional
probability, we use that the joint probability of (δ, δ′, δ`) is a trivariate Gaussian [305] specified by the
parameters that we have defined earlier and the variance of the long-wavelength fluctuations S` ≡

〈
δ2
`

〉
=〈

δ2(R`)
〉
, the covariance of long- and short-wavelength fluctuations, S× ≡ 〈δ(S)δ(S`)〉, and the cross-

correlation coefficient between δ′(S) and δ(S`), ε× = 2S 〈δ′(S)δ(S`)〉 /S×. Then, the mean and variance of
the conditional Gaussian distribution function P (δ′|δcr, δ`) = P (δ′, δcr|δ`)/P (δcr|δ`) are

δ̄′(R) ≡ 〈δ′(R)|δcr, δ`〉 =
1

2SQ

[
δc× + ε×

S×
S`

(
δ` − δcr

S×
S`

S`
S

)]
, (5.88)

and

σ̄2(R) ≡ Var (δ′(R)|δcr, δ`) =
1

4SΓ2

[
1− Γ2S`

QS

S2
×(1− ε×)2

S2
`

]
, (5.89)

with

δc× ≡ δcr −
S×
S`
δ` , Q ≡ 1− S2

×
SS`

= 1−
(
S×
S`

)2
S`
S
. (5.90)

Finally, integrating over Gaussian conditional distribution function P (δ′|δcr, δ`) yields the conditional first-
crossing probability distribution function as [305]

Sf(S|δ`;S`) = SP (δcr|δ`)
∫ ∞

0

dδ′δ′P (δ′|δcr, δ`)

= S
δ̄′e−δ

2
c×/2SQ

√
2πSQ

[
1 + erf

(
δ̄′(S)/

√
2σ̄(S)

)

2
+

e−δ̄
′2(S)/2σ̄2(S)

√
2π(δ̄′(S)/σ̄(S))

]
. (5.91)
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Note that explicit expressions for S× and ε× can be derived for e.g. power-law spectra with Gaussian filter.
In the case of the sharp k-space filter, S×/S` = 1 and ε× = 0. Although f(S|δ`;S`) in Eq. (5.91) remains
positive even when δ` > δcr, we need to impose the condition δ` ≤ δcr in order to satisfy the “first crossing”
criterion.

5.7.3 Halo mass function and bias

The first-crossing PDF in Eq. (5.85) can be directly translated to the halo mass function through

nh(M) =
ρm
M

2Sf(S)

∣∣∣∣
d lnσ

d lnM

∣∣∣∣ =
ρm
M

e−δ
2
cr/2S

√
2πS

δcr

[
1 + erf

(
Γδcr/

√
2S
)

2
+

e−Γ2δ2
cr/2S

√
2π/S Γδcr

] ∣∣∣∣
d lnσ

d lnM

∣∣∣∣ . (5.92)

Here, Γ2 = γ2/(1−γ2) and γ is the cross-correlation coefficient between δ(S) and δ′(S) defined in Eq. (5.84).
This mass function is in general not normalized to unity owing to the imperfect correlation between δ and
δ′. Comparison with Eq. (5.80) shows that the square bracket in Eq. (5.85) is the leading-order correction
to the fully correlated solution, which is attained in the limit Γ → ∞ i.e. when δ and δ′ are completely
correlated (γ = 1). Note that this limit is hardly achieved in reality; for a Gaussian filter and a power-law
power spectrum PL(k) ∝ kn, Γ2 = (3 + n)/2 for example, and the limit can only be achieved when n→∞.
Therefore, the first-crossing distribution of partially correlated walks is fundamentally different than that
of either entirely correlated or fully Markovian walks. Surprisingly, Monte-Carlo realizations of the first-
crossing distributions indicate that the approximation Eq. (5.92) works very well over a large range of scales
for a range of choices of power spectrum and filters (including tophat-filtered ΛCDM spectra) [153]. Note
that, for “moving barriers” δcr → B(S), the halo mass function is not simply given by Eq. (5.92) with δcr

replaced by B(S) because the derivative with respect to S in Eq. (5.81) also brings a factor of B′(S) which
changes the lower limit of the integral in Eq. (5.82). We will discuss this in Sec. 5.9.

We then calculate the halo bias parameters from the conditional first-crossing probability distribution
function in Eq. (5.91):

nh(M |δ`;S`) =
ρm
M

√
2S

π

δ̄′e−δ
2
c×/2SQ

√
Q

[
1 + erf

(
δ̄′(S)/

√
2σ̄(S)

)

2
+

e−δ̄
′2(S)/2σ̄2(S)

√
2π(δ̄′(S)/σ̄(S))

] ∣∣∣∣
d lnσ

d lnM

∣∣∣∣ , (5.93)

where we refer to Sec. 5.7.2 for the definition of the symbols. Because in this case the first-crossing prob-
ability depends on two distinct variables δ and δ′ ≡ dδ/dS, the halo bias is bivariate and we shall denote
the corresponding (Lagrangian) bias parameters as bLij . Note that δ′ is a higher-derivative operator, and

proportional to R2∇2δ at leading order in derivatives (see Sec. 2.6). Thus, the Lagrangian LIMD biases are
given by bLn0, while the bLni with i > 0 are higher-derivative biases. We see that the Lagrangian halo density
δLh predicted by this ansatz can be expanded as written in Eq. (5.1).

When the peak-background split is implemented with conditional mass functions, one considers the limit
R` � R or, equivalently, S` → 0 at fixed value of δ` [15, 16]. Particular attention must be paid to the
ratio S×/S`, which tends towards O(1) in this limit (the exact value depends on the shape of the filter).
Hence, on taking the limit R` → ∞, all the corrections to Q = 1, σ̄2 = (4SΓ2)−1 vanish, except for
δc× = δcr − δ`(S×/S`) ≈ δcr − δ`, which implies δ̄′ → (δcr − δ`S×/S`)/(2SQ). In other words, the result is
the same as differentiating w.r.t. δcr, and one recovers the linear Lagrangian LIMD bias parameter from the
peak-background split, Eq. (3.26). Explicitly, for the constant barrier considered here, this yields

bL10 ≡ −
[
νcf(νc)

]−1 ∂
[
νcf(νc)

]

∂δcr
=
ν2
c − 1

δcr
+

1
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√

2)

2

√
2πΓνc

e−Γ2ν2
c/2

]−1

(5.94)

bL20 ≡
[
νcf(νc)

]−1 ∂
2
[
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c
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1 +

1 + erf(Γνc/
√

2)

2

√
2πΓνc

e−Γ2ν2
c/2

]−1

, (5.95)

where we have inserted Eq. (5.85) for νcf(νc) = 2Sf(S). The Lagrangian bias for completely correlated
walks (which equals the Markovian result Eq. (5.62) since the corresponding multiplicity functions differ
only by a constant factor of 2) is recovered in the high-peak limit νc � 1.
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Ref. [152] showed that, on simultaneously taking the limit S×/
√
SS` → 0 but retaining the dependence

on ε×, one can obtain higher-derivative biases such as b∇2δ from Eq. (5.93), generalizing the PBS approach to
higher-derivative biases. This corresponds to the dependence of δLh on other variables apart from δ, such as δ′

or the curvature∇2δ. In this particular limit, we still find Q→ 1, σ̄2 → (4SΓ2)−1 and δc× → δcr−δ`(S×/S`).
However, we now have

δ̄′ → 1

2s

[
δcr −

S×
S`

(
1− ε×

)
δ`

]
. (5.96)

Taking the ratio of the conditional to unconditional first-crossing distributions and expanding in powers of
δ`, we eventually obtain

1 + δLh (δ`) =
f(S|δ`;S`)
f(S)

= 1 +
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S`

(
bL10 + ε×b

L
01

)
δ` +

1

2

(
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)2 (
bL20 + 2ε×b

L
11 + ε2×b

L
02

)
δ2
` + . . . (5.97)

which differs from the Lagrangian LIMD expansion owing to the presence of higher-derivative bias contribu-
tions induced by δ′. These arise with non-zero powers of ε×. The appearance of ε× in Eq. (5.97) indicates
that the bias in Fourier space is ∝ k2. Namely, we have at linear order δLh (k) = cL1 (k)δ(1)(k) with [305]

cL1 (k) =

(
bL10 +

k2S

〈[δ′(S)]2〉b
L
01

)
WR(k) (5.98)

This shows that excursion-set theory generically predicts a k-dependence in Fourier space. The peak theory
discussed in Sec. 6 and, more generally, any Lagrangian bias scheme more sophisticated than LIMD (e.g.
[113]) leads to k-dependent Lagrangian bias functions cLn(k1, . . . ,kn). Crucially however, the k-dependence
can be mapped exactly onto the general set of higher-derivative terms described in Sec. 2.6 in all cases.

We can read off both the LIMD bias parameters bLi0 and the higher-derivative bias parameters bLij (j > 0)
from Eq. (5.97). In particular, we have

bL01 =
1

δcr

{
1−

[
1 +

1 + erf(Γνc/
√

2)

2

√
2πΓνc

e−Γ2ν2
c/2

]−1}
. (5.99)

Note that the bL0j , which represent the jth-order response of the first-crossing distribution to a long-
wavelength perturbation δ′`, are dimensionless because the derivative is taken with respect to the variance
S. Adding Eq. (5.94) and Eq. (5.99), the first-order Lagrangian biases are linearly related through

bL10 + bL01 =
δcr

S
. (5.100)

Similar relations hold at any order, as well as for more sophisticated Lagrangian prescriptions such as the
peak constraint [305, 221]. They can be used to infer the value of the higher-derivative, or “scale-dependent”,
bias parameters once the LIMD, or “scale-independent” biases are known. These relations follow from the
possibility of expanding the joint distribution of δ and δ′ in Hermite polynomials. In fact, the bLij can
be written as an ensemble average over Hermite polynomials [99, 305, 430]. We will discuss polynomial
expansions in more detail in Sec. 6.6.1, and show that this can be generalized to variables which do not
follow Gaussian distributions.

5.8 Summary: bias of halos in the standard excursion-set formalism

So far in this section, we have reviewed the theoretical predictions for the linear and second-order LIMD
bias parameters from the excursion-set formalism with a constant density threshold δcr. This approximation
is motivated by the spherical collapse model (Sec. 5.2.1). Therefore, these results are built on a strongly
simplified scenario of halo formation.

When employing this assumption, however, exact analytical solutions are known for two special cases
of the excursion set: when each step of the random walk is (i) completely independent from the previous
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Figure 25: Excursion-set predictions for the Eulerian bias parameters b1 (upper left panel) and b2 (upper right panel) for
halos at redshift z = 0 (red lines). Also shown is the result from N-body simulations, parametrized using the fitting functions
given in Tab. 7 in Sec. 4 (using ∆SO = 200). The lower panels show the corresponding fractional deviation of the excursion-set
predictions from the N-body results. We show four excursion-set predictions (all with δcr = 1.686 and using b1 = 1 + bL1 and
b2 = bL2 + 8/21bL1 ): (1) Markovian, or Press-Schechter case [Eqs. (5.62)–(5.63), dotted lines], (2) first order in the κ-expansion
around the Markovian case [Eqs. (5.76)–(5.77), dot-dashed lines], (3) first order in the Γ expansion around the fully correlated
case [Eqs. (5.94)–(5.95), dashed lines], and (4) the numerical integration result of the exact Langevin equation with a tophat
filter [Eq. (5.47); thick solid line]. We have integrated the Langevin equation to obtain 5 billion independent random-walk
chains, each with 2000 steps from R = 103.5 h−1 Mpc to 10−1.5 h−1 Mpc. An accurate determination of b2 demands even
more random-walk chains, however. Note that, even with the numerical solution of the Langevin equation, the excursion-set
predictions do not agree well with the bias parameters measured from N-body simulations.

steps (Markovian case obtained by employing the sharp-k filter, Sec. 5.6.1), or is (ii) completely correlated
with the previous steps (Sec. 5.7.1). Both cases are far from being realistic descriptions of Lagrangian halo
density profiles. For more general filters, approximate solutions can be obtained by expanding around these
analytic solutions, as shown in Sec. 5.6.3 and Sec. 5.7.3.

Specifically, the predictions for the linear and second-order bias parameters are given in:
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• Eqs. (5.62)–(5.63) for the Markovian treatment (sharp-k filter, or Press-Schechter)

• Eqs. (5.76)–(5.77) for the expansion around the Markovian case (i.e. 0 < κ < 1)

• Eqs. (5.94)–(5.95) for the expansion around the fully correlated case (Γ� 1).

For both expansions around analytical solutions, we recover a multiplicity function that is proportional to
that of the Markovian case in certain limits, namely κ → 0 and Γ → ∞, respectively. Note however that
they describe expansions around two completely different solutions. We compare these three predictions
in Fig. 25, assuming a spherical tophat filter for σ(M), and a constant density threshold δcr = 1.686.
Further, we choose κ = 0.44 in Eqs. (5.76)–(5.77). For Eqs. (5.94)–(5.95), we calculate Γ from our reference
cosmology (Tab. 1) which gives Γ = [0.35...0.57] in the mass range plotted in Fig. 25. We also show the
result of a numerical integration of the Langevin equation Eq. (5.47) for the tophat filter. For both b1 and
b2, the κ-expansion follows the exact numerical result more closely than the Γ-expansion. For both b1 and
b2, all four predictions agree for high-mass halos, but diverge for lower-mass halos. Note, however, that the
excursion-set predictions do not agree well with the bias parameters measured from N-body simulations,
which are represented in Fig. 25 using the empirical fitting formulas given in Tab. 7 (Sec. 4.5). This also
holds for the numerical integration of the Langevin equation, which corresponds to the exact solution of the
excursion set. This result illustrates the need for a more realistic description of the collapse, to which the
spherical model is a crude approximation. We turn to extensions such as the ellipsoidal collapse model and
stochastic barriers next.

5.9 Beyond the spherical collapse model

For an initially spherical perturbation, the spherical collapse solution is a good approximation until the
first orbit crossing. However, actual overdense regions in a Gaussian density field are not spherical, but
triaxial [431, 13, 432]. Moreover, the traceless part of ∂i∂jΦ, i.e. the tidal shear Kij , has been shown
to play a crucial role in the formation of nonlinear structures [433, 434, 435, 436]. N-body simulations
have established that the principal frame of the proto-halo strongly correlates with the local tidal field
[437, 393, 438, 394, 439, 440]. The collapse of an isolated, homogeneous ellipsoid has been studied extensively
[441, 442, 443, 444, 445], although these are still only approximations to actual Lagrangian proto-halo
patches. In the formulation of [435], the initial conditions and external tides are chosen to recover the
Zel’dovich approximation in the linear regime. For a given fixed Lagrangian overdensity, the final density
can attain a range of values depending on the local tidal shear, as estimated through ellipsoidal collapse
calculations in [446, 447].

In a first approximation, the dynamics of ellipsoidal collapse can be incorporated through a mass-
dependent, or “moving” barrier B(S) in the excursion-set approach. The tidal shear effectively slows down
the collapse of low-mass objects and, therefore, yields a barrier B(S) which grows monotonically with S.
As a result, the relative abundance of high-mass objects increases [448], such that the multiplicity function
f(νc) furnishes a better fit to the halo mass function measured in N-body simulations [224].

In practice, whereas the spherical evolution leads to a condition on the trace δ of the deformation tensor
only, the critical density for non-spherical collapse will also depend on the other two invariants of ∂i∂jΦ
(equivalently, tr[(Kij)

2] and tr[(Kij)
3]). Following [136, 121, 196], the three invariants of the second-rank

tensor ∂i∂jΦ can be conveniently parametrized as (see Sec. 2.2)

δ , K2 ≡
3

2
tr
(
K2
ij

)
, K3 ≡

9

2
tr
(
K3
ij

)
. (5.101)

In K2, a multiplicative factor of 3/2 is added such that
〈
K2

〉
= S, which implies that, for Gaussian initial

conditions, 5K2 is χ2-distributed with 5 d.o.f.. Similarly, the factor of 9/2 in the definition of K3 ensures

that |K3| ≤ K
3/2
2 . Note that K2 = 3e2 + p2, where e and p are the shear ellipticity and prolateness [223].

Ellipsoidal collapse will then give rise to a dependence of δLh on K2, K3 of the form (see also Sec. 2.4)

δLh (q) = bL1 δ +
1

2
bL2 δ

2 + bLK2
K2 +

1

6
bL3 δ

3 +
5√
7
bLK3

K3 + bLδK2
δK2 + . . . . (5.102)
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This generalizes the Lagrangian LIMD bias obtained in the standard excursion set, as summarized in
Eq. (5.1), to include the local tidal terms induced by non-spherical collapse. Specifically, the bias parameters
introduced in Eq. (5.102) are related to those defined in Sec. 2.4 through

bLK2
=

2

3
bLK2 ; bLδK2

=
2

3
bLδK2 ; bLK3

=
2
√

7

45
bLK3 . (5.103)

In order to calculate the Lagrangian tidal bias parameters bLK2
, bLK3

, and so on, we need a model for
the barrier B, which now characterizes the first-crossing of multidimensional random walks (δ,K2, . . . ) [449,
224, 450, 451, 326]. That is, a complete theory of Lagrangian bias must take into account the dependence of
the galaxy number density on K2` and K3` separately, but this has not been done yet. As a rule of thumb,
any additional variable adds a dimension to the first-crossing problem. For illustration, Ref. [121] considered
the simple model

B(S,K2) = δcr

(
1 +

√
K2/Kc

)
, (5.104)

which is motivated by setting p = 0 in the moving barrier of [223]. Here, Kc is a characteristic scale for
the effect of tidal shear. The barrier depends on S, but only through K2 ∝ S. Furthermore, we always
have B ≥ δcr since K2 ≥ 0. In analogy with our previous calculation of the Lagrangian LIMD bias bLn , the
tidal bias bLK2

can be obtained by considering the response of the unconditional first-crossing distribution to
a long-wavelength perturbation K2`. The conditional distribution f(S|δ`,K2`;S`) now describes the first-
crossing distribution of 2-dimensional walks that start from some non-zero δ` and K2`. Of course, if the
shape of the overdensity also affects the collapse, then the barrier would also depend on the misalignment
between the tidal shear and shape tensor [326].

In practice, a simpler approach, in which K2 is replaced by its mean value 〈K2〉 = S, provides a good
approximation to the exact result [224]. In this approximation, the barrier becomes B(S,K2) → B(S) ≈
δcr(1 +

√
S/Kc), such that f(S|δ`,K2`;S`) is well represented by one-dimensional walks crossing the barrier

δcr

[
1 +

√
(S +K2`)/Kc

]
− δ` . (5.105)

Expanding this barrier in a series of powers of δ` and K2` and dividing by the unconditional first-crossing
distribution, we arrive at

δ2
crb

L
K2
≈ −ν3

c

δcr

Kc

(
1 +

δcr

νcKc

)
, (5.106)

in the limit νc � 1. Unsurprisingly, bLK2
< 0 since a large shear increases the barrier height and, therefore,

impedes the collapse of halos. Furthermore, bLK2
∝ − σ0

Kc
bL2 in the high-peak limit, so that the spherical

collapse approximation—within which only the LIMD bias parameters are non-zero in Lagrangian space—is
recovered. Higher-order local bias parameters involving K2 can be computed analogously. Evidence for a
non-zero bLK2 has recently been presented in the literature (see the discussion in Sec. 4.5.1).

Numerical implementations of the ellipsoidal collapse [e.g., 223, 452, 453] and numerical studies of La-
grangian halos [e.g., 318, 394] have shown that the collapse barrier is “fuzzy”, i.e. there is a range of values
of δcr at fixed S. This is apparent in Fig. 26, which shows the distribution of smoothed linear overdensities
associated with Lagrangian regions collapsing into halos [318]. Namely, for each halo identified in N-body
simulations, one can trace its constituent dark matter particles back to their initial position, and compute
the initial overdensity in a tophat sphere centered at the initial center-of-mass. These overdensities, once
linearly extrapolated to z = 0, furnish a snapshot of the collapse barrier. As seen in Fig. 26, the mean as
well as median barriers increase with decreasing halo mass, in broad agreement with the ellipsoidal collapse
prediction. The scatter Σ around the mean barrier is generated by variables other than the density such as
the local shear, coupling with the large-scale environment. Note that Σ is proportional to σ(M), which is
consistent with a lognormal distribution of the barrier.

Thus, an alternative to explicitly including the tidal shear in the barrier is to use a “fuzzy” moving
barrier, which includes scatter around the mean, such as the square-root barrier [419]

B(S) = δcr

(
1 + β

√
S/δcr

)
, (5.107)
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Figure 26: Smoothed linear overdensity, extrapolated to z = 0 for the Lagrangian regions that collapse and form halos by
z = 0, as a function of halo mass parametrized through σ(M) . Circles correspond to the mean overdensities, whereas diamonds
show the median overdensities. The errorbars indicate the halo-to-halo scatter. Shown for comparison are the spherical collapse
barrier (blue dashed line), the ellipsoidal collapse barrier of [223] (red dashed line), and the collapse barrier associated with the
Sheth-Tormen mass function [16] (green dashed line). The upper panel shows the scatter Σ in the barrier height as a function
of σ(M). From [318].

where β can be calibrated with N-body simulations using the method of [318] discussed above. For the
purpose of predicting the halo mass function nh(M) and LIMD bias parameters bN , this approximation is
more convenient than introducing an explicit dependence on the shear Kij and other fields. The results in
Sec. 5.6–5.7 can indeed be extended to this barrier. Moreover, this ansatz is adopted in the excursion-set
peak approach described in Sec. 6.8. Alternatively, the scatter has also been modeled as a “diffusive barrier”
in the context of the path integral approach described in Sec. 5.6.3 [454]. The resulting mass functions have
been found to be in good agreement with simulations [417, 418].

One should bear in mind that the scatter in the barrier reflects the existence of hidden variables and,
therefore, is a consequence of projecting the actual, multi-dimensional collapse barrier onto a simpler sub-
space in which S is the sole variable. A moving barrier B(S) cannot fully capture the dependence of halo
collapse on the tidal shear (or deformation) tensor Kij unless the latter is explicitly accounted for. As we
shall see in Sec. 7.4, a microscopic description of the barrier B in terms of Kij is, in fact, essential to obtain
a physically consistent prediction for the non-Gaussian bias in Lagrangian bias models.

5.10 Halo assembly bias in the excursion-set formalism

As discussed in Sec. 4.6, studies of halo clustering in numerical simulations have established that, at fixed
halo mass, the halo bias depends on other properties such as formation time, concentration, or environment
density, a phenomenon known as assembly bias. In the high-mass limit and for halo properties that can
be related to Lagrangian quantities, the excursion set provides a physical picture for the origin of assembly
bias, as we will now discuss. This holds in particular for the environment density and formation time.
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Figure 27: Trajectories δ(R) as a function of the tophat smoothing radius R, extracted from random realizations of the
linear density field. All the trajectories obey the constraint δ(R) = δcr at the halo scale. The green and red curves show the
realizations which have δ(Renv) = +2σenv and −2σenv, respectively. The thick dashed and dot-dashed curve represent the
average trajectory δ̄(R|δenv). Here, we have used Renv = 5h−1 Mpc.

Assembly bias cannot be explained in the standard Markovian formulation of excursion-set theory (see
Sec. 5.6.1) since there is no correlation between the largest scales which characterize the clustering, and the
small scales which characterize the accretion history [455]. Of course, correlations will arise as soon as the
Markovian assumption is relaxed.

As shown in [456] and [367], the trend at high halo mass can be explained with the statistics of correlated
random walks δ(s). To see this, we follow common practice and adopt the redshift z1/2 at which one half of
the mass has been accreted onto the halo as a proxy for the halo formation redshift. Simple considerations
suggest a correlation between the large-scale overdensity δenv and the slope δ′ [456, 452]. A peak constraint
as invoked in [367] leads to similar conclusions since the peak curvature J1 (see Sec. 6.3)) strongly correlates
with δ′ (J1 and δ′ are, in fact, completely correlated for a Gaussian filter, see Sec. 6.8). Namely, when the
value of δ is held fixed to δ = δcr at the halo mass scale, we find:

δenv > 0 ⇐⇒ smaller δ′ ⇐⇒ low z1/2 (5.108)

δenv < 0 ⇐⇒ larger δ′ ⇐⇒ high z1/2 .

To illustrate this point, we have extracted trajectories δ(R) smoothed with a tophat filter, as shown in Fig. 27.
All the trajectories are subject to the two constraints δ(R) = δcr on the halo scale, and δ(Renv) = ±2σenv

[R = 1.5h−1 Mpc and Renv = 5h−1 Mpc for illustration]. The solid and dashed thick curves show the
expected “mean” field δ̄(R|δenv) subject to the large-scale constraint. The horizontal lines represent the
collapse barrier B(z) = δcrD(z0)/D(z) at redshifts z0 and z1 > z0, where z0 is the redshift at which the
linear density field δ(R) is extrapolated. Clearly, the steeper the slope |δ′(R)|, the higher z1/2 is, since,
at constant final mass M (i.e. R), the collapse barrier B(z) is reached relatively earlier. Furthermore,
these early-forming halos reside in more isolated environment (underdense regions with δ` < 0) with less
late-time accretion, which leads to steeper halo profiles or higher concentration. The converse holds for the
late-forming halos which preferentially collapse in regions with δ` > 0.

Now, δenv > 0 corresponds to halos with a larger bias. An easy way to see this is to re-express bL1 ≡ bL10
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defined in Eq. (5.94) as

bL1 =
ν2

δcr(1− γ2)
− 2Γ2δ̄′ , (5.109)

where δ̄′ is the average of the slope given the threshold and first-crossing constraints δ ≡ δcr, δ
′ ≥ 0. When

the large scale overdensity δenv is fixed, then δ̄′ is replaced by some δ′ < δ̄′ if δenv > 0, and δ′ > δ̄′ if δenv < 0.
Consequently, bL1 is larger than average if δenv > 0, and smaller if δenv < 0. We thus reach the conclusion
that “young” halos (i.e., those with low z1/2) have lower concentration and are more strongly clustered than
“old” halos (i.e., those with high z1/2). This prediction is consistent with the N-body results for high-mass
halos. At low mass (M . M?), however, the assembly bias seen in N-body simulations is reversed, such
that low-concentration halos are more biased (see Sec. 4.6).

The excursion-set formalism can also be adapted to investigate the impact of the anisotropic cosmic web
on assembly bias. For instance, Ref. [457] investigated the effect of tides generated by filaments—modeled
as one-dimensional saddle points—on the properties of neighboring halos. In the excursion-set language,
the presence of a saddle point adds a contribution of the form r̂ir̂jKij , where r̂ is the unit separation vector
between the halo and the saddle, to the mean and covariance of δ and δ′. This quadrupolar term, which is
negative along the filament axis and positive perpendicular to it, can be used to quantify the response of
halo counts, accretion rate and formation times to the presence of a nearby filament.
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The peaks approach to the clustering of dark matter halos is built upon the assumption that halos form
from peaks in the initial Lagrangian density field [431, 458, 12, 459, 13]. This is clearly an oversimplification
of the complicated process of halo formation. Nevertheless, peaks provide an interesting non-perturbative
toy model of discrete tracers which exhibits several interesting features of the bias expansion of general
tracers (Sec. 2), including nonlinear and higher-derivative bias as well as stochasticity. The fundamental
quantity in peak theory is the set of local maxima of the smoothed density field; therefore, peaks define a
point process. Since the evolved density field is highly nonlinear, the peak constraint is generally applied to
the initial (Lagrangian) Gaussian density field, with the assumption that the most prominent peaks should
be in one-to-one correspondence with luminous galaxies or massive halos in the Universe.

The formalism became popular after [12] demonstrated that the bias inherent to overdense regions of the
Universe could explain the higher clustering amplitude of Abell clusters (see the discussion in Sec. 2.1). The
first numerical and analytic investigations of density peaks of the initial, Gaussian density field have been
performed in [459, 13]. Since then, their abundance, clustering and internal properties have been studied
in detail. In particular, their profiles have been investigated in an attempt to predict internal properties of
virialized halos such as their profiles and angular momentum [460, 433, 461, 462, 463, 464, 465, 466, 467, 468].
As this review is focused on large-scale bias, however, we shall not discuss this aspect here. Some of these
results have been used to constrain the power spectrum of matter density perturbations [469, 470] (using
the fact that the number density of peaks in a Gaussian random field is sensitive to the shape of the power
spectrum of density perturbations); to model the column density distribution of the Lyman-α forest [471],
the cosmic web [472] or the alignment of galactic spins [473]; to study velocity bias and redshift-space
distortions [474, 475, 257] as well as assembly bias [367]; and to generate constrained realizations of the
large-scale structure [476, 477]. Furthermore, the peak formalism has been applied to study the importance
of higher-derivative bias on the BAO scale [156, 152], and to understand the interplay between bias and
gravitational evolution [152, 174]. More recently, [396] have proposed an approach which combines peak
theory with the excursion-set approach described in the previous section, while [196] have shown how the
peak clustering statistics can be derived from a perturbative bias expansion.

The empirical evidence for the association of massive halos with Lagrangian density peaks is reviewed
in Sec. 5.1. Briefly, while massive halos with M � M? are, to a good approximation, in one-to-one
correspondence with prominent (νc � 1) initial density peaks—simply because they are very rare and their
proto-halo patch is approximately spherical [13]—the association weakens as one goes to lower halo mass.
In fact, overdense regions of a Gaussian density fields are inherently triaxial [431, 13, 432]. Furthermore,
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as discussed in Sec. 5.9, the initial shear field, i.e. the tidal field Kij
R smoothed on the peak scale, certainly

plays an important role in the formation of nonlinear structures [433, 434, 478, 479]. Taking into account
these complications would very likely extend the predictability of peak theory to lower halo mass. The peak-
patch picture of [435, 465, 466] has taken steps in this direction by incorporating the ellipsoidal collapse,
solving the cloud-in-cloud problem and relying on an exclusion algorithm to avoid overlap of peak-patches.
However, this approach does not allow for analytical expressions of the large-scale clustering of peak patches,
although it is guaranteed to fit into the general bias expansion of Sec. 2 on scales where perturbation theory
applies. Moreover, we expect the same qualitative features to appear within the simple thresholded peaks
approach. Therefore, we shall hereafter restrict ourselves to the spherical approximation, and ignore the
finite extent of the peak-patches (except for the filtering kernel). We will discuss each of these issues in
detail in the context of the analytical peak model. As we will see, many insights can be gained even with
the simplifications made here.

The outline of this section is as follows:

• Sec. 6.1 to Sec. 6.4 review the basic formalism, introduce the peak constraint and present a simple
derivation of the peak number density (1-point function).

• Sec. 6.5 reviews calculations of peak correlation functions, while Sec. 6.6 delineates the peak bias expan-
sion and its connection with the peak-background split and renormalization. Sec. 6.7 illustrates how
the LIMD as well as higher-derivative peak bias parameters can be measured from N-body simulations
using cross-correlations at two scales (see Sec. 4.2).

• Sec. 6.8 presents the excursion-set peaks (ESP) approach, which merges ideas from excursion-set theory
(see Sec. 5) with the peak formalism.

• Sec. 6.9 focuses on the gravitational evolution of Lagrangian peaks, with a particular emphasis on the
peak velocity bias.

Throughout this section, the peak number densities are defined as comoving Lagrangian densities. The
definition of symbols used in this section can be found in Tab. 10.

6.1 Spectral moments and characteristic scales

The fundamental ingredient in all calculations within the peak approach is the smoothed initial density

field δ
(1)
R , extrapolated to the collapse epoch τ0 using linear theory, where τ0 does not necessarily correspond

to today’s epoch. In this section, we will denote the smoothed linear density field as δR(q) ≡ δ
(1)
R (q),

where q is the Lagrangian position. This is the same field as used in the thresholding example considered
in Sec. 2.1. However, owing to the peak constraint, the clustering properties of density peaks also depend
on the statistics of the first and second derivatives ∂iδR(q) and ∂i∂jδR(q) of the smoothed density field.
Throughout, we assume δR to be a homogeneous Gaussian random field of zero mean.

It is convenient to introduce the normalized dimensionless variables ν ≡ δR/σ0(R) [to be distinguished
from the peak significance νc ≡ δcr/σ0(R)], ηi ≡ ∂iδR/σ1(R) and ζij ≡ ∂i∂jδR/σ2(R) (Tab. 10), where
σn(R) are the spectral moments of the matter power spectrum smoothed on the scale R,

σ2
n(R) ≡

∫

k

k2nW 2
R(k)PL(k) , (6.1)

where WR(k) is a spherically symmetric filtering kernel. Note that this includes σ(R) ≡ σ0(R) as a special
case. Here and in what follows, we omit the dependence on conformal time, which should always be taken
to be the time at which halos are identified. Further, we shall often drop the argument R when no confusion
is possible. The window function WR(k) reflects the fact that the formation of a given, isolated dark matter
halo is insensitive to small-scale (UV) matter density fluctuations with k � 1/R. The filter shape WR(k)
and its corresponding filtering scale R(M) ∝ M1/3 can be measured upon tracing halos back to the initial
conditions [e.g. 174, 480]. Numerical simulations indicate that WR(k) is more extended than a tophat, but
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Quantity Symbol

Zero-lag spectral moments σn(R) [Eq. (6.1)]

Correlation functions (non-zero lag spectral moments) ξ
(n)
` (R, r) [Eq. (6.4)]

Spectral shape parameters γn(R) [Eq. (6.3)]

Normalized smoothed density ν(q) ≡ 1
σ0
δR(q)

Normalized smoothed density gradient ηi(q) ≡ 1
σ1
∂iδR(q)

Normalized smoothed density Hessian ζij(q) ≡ 1
σ2
∂i∂jδR(q)

Eigenvalues of −ζij λ1, λ2, λ3

Rotational invariants of ζij J1, J2, J3

Peak curvature J1 ≡ − tr[ζij ]

Scaled, uniformly distributed invariant x3 ≡ J3/(J2)3/2

Lagrangian number density of BBKS peaks npk(q)

Mean comoving BBKS peak number density npk

Derivative of δR with respect to smoothing scale µR = − dδ
dR

Lagrangian number density of ESP peaks nESP(q)

Mean comoving ESP peak number density nESP

Lagrangian 2-point correlation function of peaks ξLpk(r)

Orthogonal polynomials and their duals On(w), O?n(w)

Polynomials corresponding to J2 and J3 Flm(5J2, J3)

n-th order Lagrangian bias cLn(k1, . . . ,kn)

n-th order Eulerian bias cEn (k1, . . . ,kn, τ)

Linear peak displacement spk(k, τ)

Linear peak velocity bias cv,pk(k)

Linear peak velocity dispersion σv,pk(τ)

Table 10: List of symbols used throughout Sec. 6. Note that J1 is often denoted as u in the literature.

more compact than a Gaussian [367, 480]. In order for the peak constraint to be meaningful, the actual
filtering kernel WR(k) used must be such that the convergence of the spectral moments up to σ2(R) is
ensured. While this is not the case for the tophat filter, this is certainly true for the Gaussian filter and,
apparently, also for the actual filter WR(k), which can be measured upon tracing back halos to the initial
conditions [367, 174, 480]. In what follows, we will assume a Gaussian filter for simplicity, until we reach
the excursion-set peaks, Sec. 6.8, where a tophat filter is used to smooth the density and a Gaussian is used
to smooth its derivatives.

Following Ref. [13] (BBKS), characteristic scales can be defined by taking ratios of spectral moments.
In particular,

Rn(R) ≡
√

3
σn(R)

σn+1(R)
(6.2)

defines an ordered sequence of characteristic lengths R0 ≥ R1 ≥ R2 ≥ . . . for typical values of interest of R,
due to the shape of the linear matter power spectrum PL(k). The first two scales are the typical separation
R0 between zero-crossings of the density field, and the mean distance R1 between stationary point [13, 472].
These are the only scales involved in the calculation of the peak correlation functions. For subsequent use,
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we also introduce the dimensionless parameters

γn(R) =
σ2
n(R)

σn−1(R)σn+1(R)
(6.3)

which quantifies the range over which R−3(kR)2(n−1)PL(k)W 2
R(k) is significant, i.e. whether it is sharply

peaked or broad.
The analogous quantities to σ2

n at non-zero separation are defined as follows:

ξ
(n)
` (R, r) =

∫

k

k2(n+1)W 2
R(k)PL(k) j`(kr) , (6.4)

where j`(x) are spherical Bessel functions. As ` is increased at fixed r, these harmonic transforms become
increasingly sensitive to the small scale power.

The auto- and cross-correlations of the fields ηi(q), ν(q) and ζij(q) can generally be decomposed into
components with definite transformation properties under three-dimensional rotations. Explicit expressions
can be found in [481, 156, 152].

6.2 The Kac-Rice formula

Let {q1, q2, · · · , qp, · · · } be the Lagrangian positions of point particles such as centers of halos in some
(finite or infinite) volume. The comoving Lagrangian density ng(q) of these point particles (for a brief
introduction to point processes in a cosmological context, see [482]) is formally written as a sum of Dirac
distributions

ng(q) =
∑

p

δD(q − qp) . (6.5)

As shown in [483, 484, 13], in the case of stationary points (maxima, minima and saddle points) of a random
field, the density nsp(q) can be entirely expressed in terms of ν and its derivatives. To see why this is the
case, note that the density of stationary points, defined as points qp where the gradient of the density field
satisfies ηi(qp) = 0, can be written as

nsp(q) = δD[η(q)]

∣∣∣∣
∂η(qp)

∂qp

∣∣∣∣ , (6.6)

where the Jacobian ensures that one obtains a proper density following Eq. (6.5). Thus, we need to evaluate
the derivative of the gradient η with respect to q. Now, in the neighborhood of a stationary point located
at qp, the gradient is given by

ηi(q) =

√
3

R1
ζij(qp) (q − qp)j +O

(
(q − qp)2

)
. (6.7)

Then, Eq. (6.6) can be rephrased as

nsp(q) =
∑

p

δD(q − qp) =
33/2

R3
1

|det ζij(q)|δD[η(q)] , (6.8)

provided that the Hessian ζij is invertible. The Dirac delta δD[η(q)] ensures that all the extrema are
included. This expression, known as the Kac-Rice formula [483, 484] holds for arbitrary smooth random
fields.

Since we are only interested in counting the density maxima, we further require that ζij(qp) be negative
definite at the position qp of the stationary point. Finally, one usually restricts the set to those maxima
with a certain threshold height νc following [12, 13], as in the case of thresholding (Sec. 2.1). The localized
number density of “BBKS peaks” of height νc then reads

npk(q) =
33/2

R3
1

|det ζij(q)|δD[η(q)] ΘH(λ3)δD[ν(q)− νc] , (6.9)
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where ΘH is the Heaviside step function and λ3 is the smallest eigenvalue of−ζij . The determinant somewhat
complicates calculations. To circumvent this difficulty, one could weight the peaks by the inverse of |detζij |
[485]. However, it is unclear how such a weighted field exactly relates to dark matter halos.

6.3 Rotational invariants and their distribution
Since clustering statistics of peaks are invariant under three-dimensional rotations, they depend only

on the scalar functions that can be constructed from the independent variables ν, ηi, ζij (each of which
contains, respectively, one, three and six degrees of freedom). Furthermore, since the peak constraint does
not induce a dependence on ηiζijηj , only five scalar functions are relevant: ν(q), J1(q) = − tr

(
ζij(q)

)
, the

essentially χ2-distributed quantity η2(q) =
∑
i η

2
i (q), and the two rotational invariants

J2(q) =
3

2
tr
(
ζ̄2
ij(q)

)
J3(q) =

9

2
tr
(
ζ̄3
ij(q)

)
, (6.10)

where ζ̄ij = ζij + (1/3)J1δij are the components of the traceless part of the Hessian (ζij). We will group all
these rotational invariants into the vector of variables

w ≡
{
ν(q), J1(q), 3η2(q), 5J2(q), J3(q)

}
, (6.11)

and denote their PDF as p(w). The reason for using 3η2 and 5J2 will become apparent shortly. The
remaining 10−5 = 5 angular degrees of freedom, which we group into the vector Ω, characterize the direction
of the gradient ∇δR (two angles) and the orientation of the principal axis frame of ζij (three “Euler” angles).
The corresponding PDF is p(Ω). These angles will factorize out of the following calculations, so we can
simply ignore them.

For Gaussian initial conditions, the probability density p(w) simplifies to

p(w) =
5
√

5

8π2
√

3

√
η2

√
1− γ2

1

exp

[
−ν

2 + J2
1 − 2γ1νJ1

2(1− γ2
1)

− 3

2
η2 − 5

2
J2

]
. (6.12)

Importantly, we always have J2 > 0 and J2
3 ≤ (J2)3 since ζij is symmetric. Therefore, p(w) is normalized

such that

1 =

∫ +∞

−∞
dν

∫ +∞

−∞
dJ1

∫ ∞

0

d(3η2)

∫ ∞

0

d(5J2)

∫ +J
3/2
2

−J3/2
2

dJ3 p(ν, J1, 3η
2, 5J2, J3) , (6.13)

even though it does not explicitly depend on J3. Clearly, the integral over J3 is trivial and results in 5J2

being χ2-distributed with 5 degrees of freedom. These 5 degrees of freedom correspond to the 5 independent
components of ζ̄ij . This is the reason for writing 5J2. Similarly, one can easily show that 3η2 is χ2-distributed
with 3 degrees of freedom. Note also that

∫
dΩ p(Ω) = 1.

The variable J3 does not explicitly appear in Eq. (6.12) because it is, in fact, uniformly distributed. In
order to emphasize the point, we introduce x3 ≡ J3/(J2)3/2. Then, p(w)dw can be written as

p(w)dw = N (ν, J1)dνdJ1 × χ2
3(3η2)d(3η2)× χ2

5(5J2)d(5J2)× 1

2
ΘH(1− x2

3)dx3 . (6.14)

In the above expression, N (x, y) is a bivariate Normal distribution with unit variances,

N (ν, J1) =
1

2π
√

1− γ2
1

exp

[
−ν

2 + J2
1 − 2γ1νJ1

2(1− γ2
1)

]
, (6.15)

whereas χ2
k(x) is the χ2 distribution with k degrees of freedom,

χ2
k(x) =

1

2k/2Γ(k/2)
xk/2−1e−x/2 . (6.16)

Clearly, x3 has uniform probability density in the range −1 ≤ x3 ≤ +1; thus, we can think of it as the
cosine of an angle. Note, however, that the “angle” x3 has nothing to do with spatial rotations. In fact, as
the cubic root of the characteristic polynomial det(ζ −λI), where I is the 3× 3 identity matrix, x3 itself is a
rotational invariant. Below, we will see that, unlike Ω which does not contribute to the clustering of peaks,
J3(q) actually does contribute, and, therefore, x3 does not describe a rotation in space.
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6.4 Average peak number density*

Owing to the peak constraint, the calculation of the N -point correlation functions of peaks of a 3-
dimensional random field requires the evaluation of high-dimensional integrals over a joint probability dis-
tribution in 5N variables, after the 5N angular variables have been integrated out. Therefore, even the
evaluation of the 1-point correlation function or average density of peaks npk is not completely trivial.

The average number density of peaks of a 3-dimensional Gaussian random field,

npk(νc) ≡
〈
npk(q)

〉
=

∫
d5w npk(w) p(w) , (6.17)

was first calculated in BBKS [13]. Here however, we shall not proceed along the lines of [13], who explicitly
wrote the volume element d6ζij in terms of the three eigenvalues λi of −ζij . Rather, we will follow the
calculation of [196], which exploit the invariance under rotations and, hence, is far simpler.

Namely, the peak constraint implies that all three eigenvalues of the Hessian ζij be negative. In terms of
the rotational invariants, the restriction to local maxima of the density field translates into the conditions
J1 > 0, J2 < J2

1 and J3 < (J1/2)(J2
1 − 3J2). Taking into account the symmetry of ζij , the last condition

implies that x3 must satisfy
− 1 < x3 < min

[
1, (y/2)(y2 − 3)

]
, (6.18)

where y ≡ J1/
√
J2. This splits the parameter space into two different regions depending on whether the

inequality (y/2)(y2−3) < 1 holds. For 0 < J2 < J2
1/4, one finds −1 < x3 < +1 whereas, for J2

1/4 < J2 < J2
1 ,

the more stringent constraint −1 < x3 < (y/2)(y2−3) applies. Therefore, the multiplicative factor of ΘH(λ3)
in the localized peak number density Eq. (6.9) can also be written as

ΘH(λ3) = ΘH(J1)

{
ΘH

(
J2

1/4− J2

)
+ ΘH

(
J2 − J2

1/4
)

ΘH

(
J2

1 − J2

)

×ΘH

(
y3/2− 3y/2− x3

)}
. (6.19)

We are now in the position to derive the well-known BBKS formula for the average peak number density
npk in a very simple way. To compute npk, one usually expresses the measure d(5J2) in terms of the ellipticity
v, the prolateness w and three Euler angles so that, in these new variables, J2 = 3v2 +w2. The calculation
would then proceed along the lines of BBKS. However, this change of variable is, in fact, unnecessary as
the calculation can be explicitly carried out in the variables J1, 5J2 and x3 on imposing the aforementioned
conditions. To illustrate this point, we begin by rewriting the determinant |det(ζij)| in Eq. (6.9) in terms
of the Ji. Introducing s ≡ 5J2, we obtain

|det(ζij)| =
1

27

(
J3

1 −
3

5
sJ1 −

2

53/2
s3/2x3

)
, (6.20)

since det(ζij) is always negative for density maxima. The integral over the variables 5J2 and x3 becomes

∫
dsχ2

5(s)

∫
dx3

1

2
ΘH(1− x2

3)
∣∣det(ζij)

∣∣ΘH(λ3) (6.21)

=
1

27/233Γ(5/2)

{∫ 5J2
1/4

0

ds

∫ +1

−1

dx3 +

∫ 5J2
1

5J2
1/4

ds

∫ √5/s(J1/2)(5J2
1/s−3)

−1

dx3

}

×
(
J3

1 −
3

5
sJ1 −

2

53/2
s3/2x3

)
s3/2e−s/2 ,

* This section is of a more technical nature and is not essential for the remainder of this section. The main result of this
section is Eq. (6.23).
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and can be computed straightforwardly. Taking into account two additional multiplicative factors of 33/2,
one arising from npk(y) and the other from the integral over χ2

3(3η2)δD(η), we find

33

∫
dsχ2

5(s)

∫
dx3

1

2
ΘH(1− x2

3)
∣∣det(ζij)

∣∣ΘH(λ3) (6.22)

=

√
2

5π

[(
J2

1

2
− 8

5

)
e−5J2

1/2 +

(
31

4
J2

1 +
8

5

)
e−5J2

1/8

]
+

1

2

(
J3

1 − 3J1

)

×
[

Erf

(√
5

2
J1

)
+ Erf

(√
5

2

J1

2

)]
≡ f(J1) ,

which is precisely the function f(J1) defined in [13]. The rest of the calculation is trivial, and we immediately
recover their well-known expression for the average peak abundance npk(νc),

npk(νc) =
1

(2π)2R3
?

G0(γ1, γ1νc)e
−ν2

c/2 , (6.23)

where the function G0 is a special case of

Gn(γ1, ω) =

∫ ∞

0

duunf(u)
e−(u−ω)2/2(1−γ2

1)

√
2π(1− γ2

1)
, (6.24)

and f(u) is the function defined in Eq. (6.22). The integration over u must generally be performed nu-
merically. Note that, within the peak formalism, npk is then related to the mean halo abundance through
npk(νc)dνc = nh(νc)d lnM .

It is worth noticing that, while the exponential exp[−(u− ω)2/2(1− γ2
1)] decays rapidly to zero, unf(u)

are rapidly rising. As a result, the integrands are sharply peaked, and the functions Gn(γ1, w) receive most
of their contribution around the maximum of the peak. For large values of ω, we find that G0 and G1

asymptote to

G0(γ1, ω) ≈ ω3 − 3γ2
1ω +B0(γ1)ω2 e−A(γ1)ω2

(6.25)

G1(γ1, ω) ≈ ω4 + 3ω2
(
1− 2γ2

1

)
+B1(γ1)ω3 e−A(γ1)ω2

. (6.26)

The coefficients A(γ1), B0(γ1) and B1(γ1) are obtained from the asymptotic expansion of the Error function
that appears in Eq. (6.22). We have explicitly

A =
5/2

(9− 5γ2
1)
, B0 =

432
√

10π (9− 5γ2
1)

5/2
, B1 =

4B0

(9− 5γ2
1)
. (6.27)

The value of νc at which npk(νc) attains its maximum depends sensitively on the value of γ1. For small
γ1 . 0.3, the peak is at νc ' 0, reflecting the fact that there is significant power on all scales. For large
γ1 & 0.7, most of the power is in a narrow range of wavenumber, so that density maxima are much more
likely to reach heights well above typical, 1σ fluctuations of the density field.

6.5 Two-point correlation functions of peaks

While the average number density of peaks has been worked out analytically in [13], progress with the
computation of the peak correlation functions, which is difficult to perform rigorously, has been relatively
slow. Even though the peak correlation functions do not generally have explicit analytical expressions, they
provide much information on ideas such as the peak-background split and its range of validity. Furthermore,
in low dimensions they can be solved numerically and, therefore, furnish insights into non-perturbative
effects such as small-scale halo exclusion. For illustrative purposes, we will focus on BBKS peaks defined
through Eq. (6.9), but the following considerations can be straightforwardly extended to the excursion-set
peaks discussed in Sec. 6.8.
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6.5.1 The peak-density cross-correlation function

Let us begin with the cross-correlation function ξpk,δ(r) between peaks of height νc and the Lagrangian
density field. This is the Fourier transform of PLhm(k) considered in Sec. 4.1.2, evaluated for peaks. Further,
it corresponds to the average Lagrangian density profile 〈δ(r)|peak at 0〉 around peaks. Unlike the peak
auto-correlation function, the cross-correlation function can be derived in closed form [13], and is given by

ξLpk,δ(r) = bL10ξ
(0)
0 (R, r) + bL01ξ

(1)
0 (R, r) =

[
bL10 − bL01∇2

]
ξ

(0)
0 (R, r) (6.28)

in the notation adopted here. We have used the relation ∇2ξ
(0)
0 = −ξ(1)

0 in the second equality. In the
notation of [257], bL10 = bν and bL01 = bζ , while in the notation of Sec. 2 and Sec. 4, bL10 = bL1 and −bL01

contributes to the leading Lagrangian higher-derivative bias bL∇2δ, along with the contribution from the

filtering kernel in ξ
(0)
0 (R, r) derived in Eq. (2.69) (Sec. 2.6). The linear BBKS peak bias parameters are

given by

bL10 =
1

σ0

(
νc − γ1J̄1

1− γ2
1

)
, bL01 =

1

σ2

(
J̄1 − γ1νc

1− γ2
1

)
, (6.29)

where J̄1 ≡ G1(γ1, γ1νc)/G0(γ1, γ1νc) is the average curvature of peaks of height νc. We will see in Sec. 6.6.1
that these bias parameters can be obtained directly from the peak abundance Eq. (6.9) using a peak-
background split argument. Note that bL10 and bL01 satisfy the relation

bL10 +

(
σ2

1

σ2
0

)
bL01 =

νc
σ0

, (6.30)

analogous to Eq. (5.100); the additional factor of σ2
1/σ

2
0 arises from the fact that, unlike in Eq. (5.100),

bL01 defined here has dimensions of length2. Let us also mention that ξ
(0)
0 (r) in Ref. [257] corresponds to

Eq. (7.10) in Ref. [13]. Although the latter equation appears to have an additional factor of 1/3 that

multiplies the factors of ∇2ξ
(0)
0 , this is only because Ref. [13] measures r in units of R1.

6.5.2 The peak auto-correlation function

Unlike the peak-matter cross-correlation function, the auto-correlation function of peaks is a significantly
more involved calculation. However, it exhibits interesting features beyond those present in Eq. (6.28), in
particular nonlinear bias and stochasticity. To begin, we define the fractional peak overdensity through

δLpk(q) =
npk(q)

npk
− 1 , (6.31)

where npk is the average peak number density, Eq. (6.23). The peak auto-correlation function is then given
by the expectation value of the product δLpk(q1)δLpk(q2), which reads

〈
δLpk(q1)δLpk(q2)

〉
=

1

n2
pk

〈∑

α

∑

β

δD(q1 − qα) δD(q2 − qβ)
〉
− 1 (6.32)

=
1

n2
pk

δD(q1 − q2)
〈∑

α

δD(q2 − qα)
〉

+
1

n2
pk

〈∑

α6=β

δD(q1 − qα) δD(q2 − qβ)
〉
− 1

=
1

npk
δD(q1 − q2) +

1

n2
pk

∑

α6=β

〈
δD(q1 − qα) δD(q2 − qβ)

〉
− 1

=
1

npk
δD(q2 − q1) + ξLpk(r) , (6.33)

with r = |q2− q1|. The first term on the right-hand side comes from self-pairs, which are usually ignored in
the calculation of the 2-point correlation function in real space, but are relevant in Fourier space; the second
term is the usual correlation function ξLpk(r) of peaks excluding self-pairs.
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Before turning to the calculation of ξLpk(r), let us consider the issue of stochasticity in a bit more detail.

The contribution n−1
pk δD(r) corresponds to Poisson shot noise, and yields an exactly constant contribution

n−1
pk to the Fourier transform PLpk(k) of Eq. (6.33). The actual stochastic contribution to the peak power

spectrum on large scales can be obtained by using the fact that the deterministic contribution scales as
PL(k) ∝ kns−1 in the large-scale limit, as it does for any physical biased tracer. The stochastic contribution
can then be isolated as the constant that remains when sending k to exactly zero:

P
{0}
ε,pk ≡ lim

k→0
PLpk(k) =

1

npk
+

∫
d3r ξLpk(r) . (6.34)

If
∫
d3r ξLpk(r) does not vanish, then peaks show super-Poisson or sub-Poisson noise in the low-k limit of the

power spectrum. In fact, simple arguments suggest that peak-peak exclusion should contribute a negative

white-noise term, so that P
{0}
ε,pk < 1/npk (see [127, 177, 178] for a discussion of halo exclusion). Thus, peaks

provide a nontrivial example of stochasticity beyond the usual Poissonian counts-in-cells prediction [71, 486].
We now turn to the proper 2-point correlation function ξLpk(r) of peaks of height νc. Let p2 be the joint

probability for the vector of independent components y ≡ {ν, ηi, ζij} at positions q1 and q2. Note that,
since r provides a preferred direction, it is no longer sufficient to write the peak abundance solely in terms
of the five invariants w. Then, ξLpk(r) formally reads

1 + ξLpk(r) =
1

[npk(νc)]2

∫
d10y1

∫
d10y2 npk(y1)npk(y2) p2(y1,y2) (6.35)

where, for shorthand convenience, subscripts denote quantities evaluated at different Lagrangian positions
q1, q2, where r = |q2−q1|, and npk(y) is given by Eq. (6.9). It is now clear why the evaluation of Eq. (6.35)
is tedious: one must evaluate the joint probability distribution p2(y1,y2) for the 2× 10-dimensional vector
of variables, which involves a 20-dimensional covariance matrix.

Several numerical and analytical investigations have been performed to evaluate Eq. (6.35). Early work
[459, 487, 488] focused on Monte-Carlo realizations of 1-dimensional Gaussian (and non-Gaussian) random
fields to estimate the peak 2-point correlation function down to small separations where peak-peak exclusion
becomes important. Ref. [13] worked out analytically the peak 2-point correlation function in the large-
scale limit, neglecting spatial derivatives of the matter correlation function. This essentially corresponds to
performing a LIMD bias expansion as in Sec. 2.1. Refs. [489, 490, 491] obtained asymptotic expansions
appropriate for high peak threshold νc � 1. Leading-order derivations are presented in [481, 156, 257],
whereas [152, 221] obtained the full NLO (1-loop) expression.

In the following section, we will describe in detail a rigorous perturbative approach to deriving ξLpk(r) on
large scales where the matter correlation function ξL,R(r) is small. Before we discuss this approach, let us
make a few general comments:

• The peak auto-correlation function generally reaches the value ξLpk = −1 in the limit r → 0, because
the probability of finding two maxima arbitrarily close together is suppressed for the smoothed density
field. This small-scale peak exclusion is clearly seen in the one-dimensional calculation of [488, 347].
As discussed above, this is related to the fact that

∫
d3r ξLpk(r) does not generally vanish for density

peaks. As a consequence, P
{0}
ε,pk 6= 1/npk so that the noise is not Poissonian. The one-dimensional

calculation of [178] has shown that the small-scale peak exclusion can qualitatively reproduce the
shot-noise matrix measurements of [177].

• As pointed out in [156], the higher-derivative peak bias bL01 can significantly amplify the contrast of
the BAO feature in the clustering of initial density peaks if bL01 > 0, as illustrated in Fig. 28. This

arises from the fact that ξ
(1)
0 (R, r) is equal to −∇2ξ

(0)
0 (R, r), and the BAO feature is enhanced through

the derivative of the correlation function (see also the discussion in Sec. 2.6). The analysis of [152]
further includes the gravitational evolution to ascertain the extent to which the initial BAO sharpening
survives at late time. A crucial component of this analysis is velocity bias. We will return to these
issues in Sec. 6.9.
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Figure 28: A comparison between the un-smoothed Lagrangian matter correlation function (bL10)2ξL(r) (black, dot-dashed)
and the Lagrangian correlation function ξLpk(r) of νc = 2 peaks (red, solid) around the BAO feature. In order to obtain

the peak correlation function, the density field was smoothed with a Gaussian filter on mass scale M = 3 × 1013 h−1M�.

The dot-long dashed, short-dashed and long-dashed curves represent the individual contributions (bL10)2ξ
(0)
0 = (bL1 )2ξL,R,

2bL10b
L
01ξ

(1)
0 = −2bL1 b

L
∇2δ
∇2ξL,R and (bL01)2ξ

(2)
0 = (bL∇2δ

)2∇4ξL,R to the linear peak correlation function. A nonzero bL01
restores, and even amplifies the acoustic peak otherwise smeared out by the filtering of the matter density field. Note that
the second- and higher-order contributions to ξLpk(r) are so small on these scales that they do not lead to visible differences.

From [152].

6.6 Perturbative peak bias expansion

While [152] showed that the first- and some of the second-order contributions to ξLpk(r) (those depending

on ν ∝ δR and J1 ∝ −∇2δR) could be obtained from a peak-background split formulated in terms of
conditional mass functions, validating thereby the peak-background split calculation of [110] of the LIMD
biases bLi0, they could not determine the physical origin of the other second-order contributions. This was
clarified in [221, 196].

Let us go back to the definition of ξLpk(r) through Eq. (6.33). Since it describes the 2-point correlation

of a scalar variable δpk(q), which, moreover, only depends on the variables ν, ηi and ζij , ξ
L
pk(r) can be

expanded in two-point correlations of all independent scalars constructed from ν, ηi, ζij ; that is, exactly
the five quantities in the vector w [Eq. (6.11)]. Note that we have also relied on the absence of coupling
between ηi and ζij in the BBKS peak prescription. That is, the peak correlation function can be obtained
perturbatively by writing the peak density perturbation δLpk(q) as

δLpk(q) = F
[
ν(q), J1(q), 3η2(q), 5J2(q), J3(q)

]

= cνν(q) + cν2ν2(q) + cJ1J1(q) + cνJ1ν(q)J1(q) + · · · , (6.36)

where in the second line we have written a few example terms up to second order, multiplied by bias
coefficients. This corresponds to a specific Lagrangian bias expansion of the type discussed in Sec. 2.3 and
2.4, see Tab. 11 (p. 145). Specifically, all terms involving the tidal field Kij are absent, and the higher-
derivative terms only consist of powers of (∇δ)2 and all scalar combinations of ∂i∂jδ, in addition to the
terms obtained by expanding the filtering kernel WR(k) (Sec. 2.6); as discussed there, this is only a subset of
all higher-derivative operators that could be present. The physical reason is, again, the simplification made
by assuming the density peak constraint and spherical collapse approximation.

Now we are faced with two issues: first, in order to obtain a prediction for the peak correlation function,
we need to calculate the values of the bias parameters; second, when calculating the two-point function
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Peak model (Sec. 6) General expansion (Sec. 2–4)

bLij (−1)ji!j! bLδi(∇2δ)j
1

χLi bL(∇δ)2i

ωLlm higher-derivative bias involving J2, J3 constructed from (∂i∂jδ)
1 For j > 0, there are further contributions to bL

δi(∇2δ)j
from the expansion of the filtering kernel

(Sec. 2.6).

Table 11: Conversion between peak biases (left) and those appearing in the general bias expansion (right).

using Eq. (6.36) directly, we obtain a large number of zero-lag terms which spoil the perturbative expansion
on large scales as described in Sec. 2.10.1. The second problem can be solved by replacing the fields in the
second line of Eq. (6.36) with renormalized operators, multiplied by renormalized bias parameters:

δLpk(q) = σ0b
L
10[ν](q) +

1

2
σ2

0b
L
20[ν2](q) + σ2b

L
01[J1](q) + σ0σ2b

L
11[νJ1](q) + · · · . (6.37)

Powers of σi have been introduced to ensure that the renormalized bias parameters are defined relative
to the physical (unnormalized) fields. As shown in [221, 196], the renormalized operators as well as their
coefficients can be derived at all orders, given the Gaussian nature of the density field, by making use of
orthogonal polynomials O?n

(
w(q)

)
:

δLpk(q) =
∑

n 6={0}

σ[n]bLnO
?
n

(
w(q)

)
. (6.38)

Here, n = {i1, i2, i3, i4, i5} is a list of indices that denote the highest power of each of the 5 variables
w = {ν, J1, η

2, J2, J3} in the operator O?n, while σ[n] is a shorthand for the product σi10 σ
2i3
1 σi2+2i4+3i5

2 .
Thus, {O?n}n corresponds to the entire set of renormalized operators that can be constructed from the 5
invariants contained in w. Correspondingly, the coefficients bLn are physical, renormalized bias parameters
which are measurable for example through large-scale correlations, and are given by the 1-point ensemble
averages

σ[n]bLn ≡
1

npk

〈
npk(q)On[w(q)]

〉
. (6.39)

Here, O?n and On are dual polynomials satisfying (see Appendix A.3)

〈O?n(q)On′(q)〉 = δnn′ , (6.40)

and δnn′ =
∏5
k=1 δiki′k . Thus, by making use of a perturbative bias expansion, we have reduced the very

complicated problem of calculating the peak two-point function Eq. (6.35) to the much simpler problem
of calculating the auto- and cross-correlations of the scalars ν, η2, Ji, and the bias parameters Eq. (6.39)
which are one-point expectation values. Moreover, as we will see in Sec. 6.6.2, we can straightforwardly
derive higher-order peak correlation functions in this approach as well, while their calculation based on
the joint probabilities p3, p4, . . . would be prohibitive. Note, however, that it is not possible to obtain the
non-perturbative stochastic contributions in this way.

In the following subsection, we will derive the specific form of the polynomials, and relate their associated
bias parameters to the peak-background split. Note that the polynomials are defined up to multiplicative
constants which can be re-absorbed in the bias parameters bLn. In what follows, like in Sec. 2, we will
adopt a normalization such that the peak LIMD bias parameters bLi0 correspond to the parameters bLi used
throughout (see Tab. 11 for the correspondence between the peak bias parameters used here and those used
in Sec. 2–4).
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6.6.1 Polynomials, bias parameters and the peak-background split

The relevant polynomials are those associated with the distribution of the invariants w. Namely, for
the variables ν and J1 distributed according to the bivariate normal distribution N (ν, J1) [Eq. (6.15)],
the orthogonal polynomials are the bivariate Hermite Hij(ν, J1). For the χ2 variate 3η2 with 3 degrees of

freedom, these are the generalized Laguerre polynomials L
(1/2)
q (3η2/2), which are orthogonal over [0,∞) with

respect to the χ2-distribution χ2
3(3η2) with k = 3 degrees of freedom. Finally, for the jointly distributed

variables (J2, J3), the polynomials are [196]

Flm(5J2, J3) = (−1)l

√
Γ(5/2)

23mΓ(3m+ 5/2)
L

(3m+3/2)
l (5J2/2)Lm(x3) , (6.41)

where Lm(x) are Legendre polynomials, and the factor of (−1)l ensures that the term with highest power
of J2 always has positive sign. The Legendre polynomials Lm(x3) appear because they are the orthonormal
polynomials associated with the uniform distribution on the interval [−1, 1], i.e. ΘH(1−x2

3)/2 in Eq. (6.14).

Note that both Lq and Flm are self-dual, i.e. L
(1/2)?
q = L

(1/2)
q and F ?lm = Flm owing to the factorization

of the PDF of (5J2, x3). Finally, we slightly modified the notation of [492] so that their Fl0 agree with
the above definition. The physical origin of the appearance of these orthogonal polynomials can be found
in the peak-background split: Long-wavelength background perturbations locally modulate the mean of the
distributions N (ν, u), χ2

3(3η2) and χ2
5(5J2)ΘH(1 − x2

3). The resulting non-central distributions can then be
expanded in the appropriate set of orthogonal polynomials.

The bias coefficients of the BBKS peaks are given by the ensemble average Eq. (6.39). For the variables
(ν, J1), these are

σi0σ
j
2b
L
ij =

1

npk

〈
npkHij(ν, J1)

〉
(6.42)

=
1

npk

∫
d5w npk(w)Hij(ν, J1) p(w) ,

where the peak constraint in npk(w) selects spatial locations corresponding to density peaks. Factors of 1/σ0

and 1/σ2 are introduced because bias factors are ordinarily defined relative to the physical field δ
(1)
R (q) and

its derivatives, e.g. ∇2δ
(1)
R (q), rather than the normalized variables ν, J1. In the particular cases ij = (10)

and (01), we recover Eq. (6.29). Explicit expressions for the density bias parameters bLi0 can be found in
[110], whereas bLij with j ≥ 1 can be found in [152, 221].

Since the bivariate Hermite polynomials can be generated through the shift N (ν, J1) → N (ν + ν`, u →
J1 + J1`), where ν` and J1` are long-wavelength background perturbations uncorrelated with the (small-
scale) fields ν(q) and J1(q), bLij are peak-background split biases as in [12]. Thus, we find again that
the renormalized, physical bias parameters are exactly those obtained from the peak-background split as
discussed for the LIMD biases bLi0 in Sec. 3. Note also that, owing to the fact that ν and J1 are correlated
variables, the bLij can also be derived by considering only the long-wavelength perturbation ν` as done in [152].
Furthermore, since a shift in the mean curvature is equivalent to the replacement ω → ω−J1` in Eq. (6.24),
the bLij can also be obtained as derivatives of the mean peak abundance with respect to ω as explained in

[100]. This is in precise analogy to the peak-background split definition of the LIMD bias parameters bLi
as responses of the mean abundance (Sec. 3). Finally, the same reasoning holds if one exchanges J1 for the
slope δ′R = dδR/dR considered in Sec. 5.7.1, because δ′ and J1 are completely correlated for a Gaussian
smoothing kernel. Hence, the bLij which arise from (δ, δ′) can also be written down as ensemble average of
bivariate Hermite polynomials [305, 430].

Similarly, the bias parameters associated with the invariant 3η2 are derived from the generalized Laguerre
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polynomials, i.e.

σ2q
1 χLq =

1

npk

〈
npk L

(1/2)
q (3η2)

〉
(6.43)

=
(−1)q

npk

∫
d5w npk(w)L(1/2)

q (3η2/2) p(w) .

The factor of (−1)q ensures that the term with the highest power of J2 always has a positive sign. The first

generalized Laguerre polynomials are L
(α)
0 (x) = 1 and L

(α)
1 (x) = −x+ α+ 1. Taking into account the peak

constraint, the lowest-order bias parameter thus is [221]

χL1 =
1

σ2
1npk

∫
d5w npk(w)

(
3

2
η2 − 3

2

)
p(w) (6.44)

= − 3

2σ2
1

.

Note that 3η2/2 − 3/2 ≥ −3/2. Therefore, since
∫
dw p(w) = npk, we always have χL1 ≥ (−3/2)σ2

1

regardless of the peak properties (height, curvature, etc). The effect of a background (long-wavelength)
perturbation η` on the components of the density gradient is ηi → ηi + ηi,`. The components ηi,` need
not be the same for distinct i. However, owing to invariance under rotations, only the magnitude of the
vector

∑3
i=1(ηi,`)

2 ≡ η2
` matters. As a result, the background fluctuation effectively perturbs χ2

3(3η2) into

a non-central χ2-distribution, with non-centrality parameter λ =
√
η2
` . Equivalently, the q-th order bias

parameters χLq can also be written as the derivatives ∼ 〈∂qnpk/∂(η2)q〉, again paralleling the case of LIMD
biases described in Sec. 3.1.

Finally, the bias parameters ωLlm, which correspond to the variables J2 and J3, are given by

σ2l+3m
2 ωLlm =

1

npk

〈
npk Flm(5J2, J3)

〉
(6.45)

=
1

npk

∫
d5w npk(w)Flm(5J2, J3)p(w) .

Here again, the bias coefficients ωLlm can be derived through a peak-background split upon considering long-
wavelength perturbations J2l and J3l to the second- and third-order invariant traces of ζ̄ij . The computation
of ωL10 is straightforward, and one obtains [221]

ωL10 = − 5

2σ2
2

(
1 +

2

5
∂α lnG

(α)
0 (γ1, γ1ν)

∣∣∣
α=1

)
, (6.46)

where Gα0 is defined in Eq. (6.24). Note that J2(q) quantifies the ellipticity of the peak density profile. In
the high-peak limit, ωL10 → 0 reflecting the fact that the most prominent peaks are nearly spherical.

The previous expressions correspond to restricted expansions in each of the five invariants. The fully
general bias parameters bLn of BBKS peaks take the generic form [196]

σi0σ
2q
1 σj+2l+3m

2 bLijqlm =
1

npk

〈
npkOijqlm(w)

〉

≡ 1

npk

〈
npkHij(ν, J1)(−1)qL(1/2)

q (3η2/2)Flm(5J2, J3)
〉
. (6.47)

This defines the orthogonal polynomials Oijqlm(w). Here we have again taken out factors of σi, so that the
BBKS peak bias factors bLijqlm are defined relative to the unnormalized fields δR(q), ∇δR and so on, as is

conventional in large-scale structure. Note that, in general, the bLn do not factorize into a product of bLij ,

χLq and ωLlm, which correspond to the subsets bLij = bLij000, χLq = bL00q00, and ωLlm = bL000lm because of the
cross-correlation between the variables.

Fig. 29 illustrates the behavior of the BBKS peak bias parameters bLij , χ
L
q and ωLlm up to quadratic order.

The bias parameter bL01 (which contributes to −bL∇2δ) is always positive whereas σ2
1χ

L
1 is negative and equal

to −3/2 at all peak heights [see Eq. (6.44)].
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Figure 29: First-order (left panel) and second-order (right panel) Lagrangian peak bias parameters assuming a constant barrier
B(σ0) = δcr. The bias parameters have been multiplied by the appropriate factors of σi, so that they all are dimensionless. The
second-order bias factors σ2

0b
L
20, σ0σ2bL11 and σ2

2b
L
02 are associated with the normalized variables ν(q) and J1(q), whereas σ2

1χ
L
1

and σ2
2ω

L
10 multiply the contributions from η2(q) and J2(q) (see text), respectively. Vertical lines mark the peak significance

at which the halo mass is M = 1012, 1013, 1014 and 1015 h−1 M� (from left to right). Dashed curves indicate negative values.
Results are shown at z = 0 for the ΛCDM cosmology defined in Sec. 1.3. From [221].

6.6.2 Renormalization and peak correlation functions

Having obtained the renormalized bias parameters bLn in the previous section, we can now use Eq. (6.38)
to derive the n-point functions of peaks on large scales, by perturbatively expanding in the correlation
functions of ν, J1, · · · . For this, we need the orthogonal polynomials O?ijqlm to those that appeared in
Sec. 6.6.1. Their properties and construction are described in Appendix A.3. Let us give one example,

[
ν2J1

]
≡ H?

21(ν, J1) = ν2J1 − J1 − 2γ1ν . (6.48)

As in the case of the standard univariate Hermite polynomials, lower-order terms appear in addition to the
leading-order term ν2J1 which exactly cancel the zero-lag terms or self-correlators that appear in correlators
of ν2J1 with other operators. Consider for example its auto-correlation function,

〈[
ν2(q1)J1(q1)

][
ν2(q2)J1(q2)

]〉
= 2〈ν(q1)ν(q2)〉2 〈J1(q1)J1(q2)〉 (6.49)

+ 4〈ν(q1)ν(q2)〉 〈ν(q1)J1(q2)〉 〈ν(q2)J1(q1)〉 .

We see that the terms of order < 3 in H?
21(ν, J1) exactly cancel all the zero-lag contributions. Only the

products of 2-point correlators at finite separation (which are the only nontrivial irreducible correlation
functions for Gaussian random fields, see Appendix A) survive. Thus, our expansion in orthogonal polyno-
mials is, in fact, equivalent to the renormalization procedure described in Sec. 2.10.1 (see also [493]). We
have correspondingly denoted the operator H?

21(ν, J1) with [ν2J1]. Note that this property of course relies
on the Gaussianity of the linear density field.

Similar considerations apply to the other variables considered here. For a single density variable, the
polynomials are univariate Hermite polynomials as was already pointed out by [99]. Note that a diagram-
matic reasoning along the lines of [141] also explains why the self-correlators disappear. In fact, the Inte-
grated Perturbation Theory (iPT) diagrammatic approach is fully equivalent to an expansion in orthogonal
polynomials [494].
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We now have all the necessary ingredients to write down the perturbative bias expansion of BBKS peaks
according to Eq. (6.38). Up to second order, we have

δLpk(q) = bL10δR(q)− bL01∇2δR(q) (6.50)

+
bL20

2

(
δ2
R(q)− σ2

0

)
− bL11

(
δR(q)∇2δR(q) + σ2

1

)

+
bL02

2

[(
∇2δR

)2
(q)− σ2

2

]
+ χL1

[(
∇δR

)2
(q)− σ2

1

]

+ ωL10

[
3

2

(
∂i∂jδR −

1

3
δij∇2δR

)2

(q)− σ2
2

]
+ . . . .

The absence of Lagrangian tidal shear terms (∝ K2(q), K3(q); see Sec. 5.9) follows from the spherical col-
lapse assumption. This series can be used to compute all the N -point correlation functions of BBKS peaks
in Lagrangian space. Furthermore, it is also valid in the presence of weak primordial non-Gaussianity (see
Sec. 7.4.3). When expanded in this form, δLpk(q) is generally not a count-in-cell (measurable) density, but
should be understood as a mean peak field given a certain realization of the density field and its derivatives,
after averaging over small-scale perturbations. This is because we have not included the stochastic contri-
butions induced by the small-scale perturbations in a given realization, as described in Sec. 2.8. Since the
stochastic contributions have a finite variance when averaged over a finite volume, Eq. (6.50) is equivalent
to Eq. (6.9) only in the limit of infinite “survey” volume, in which case ergodicity ensures that the series co-
efficients are the average bias parameters given above. As any perturbative expansion, this effective density
contrast formally satisfies δLpk(q) ≥ −1 only if all the terms in the infinite series expansion are included.

Expressing the right-hand side of Eq. (6.50) as a Fourier transform and collecting all possible combinations
of rotational invariants involving exactly n powers of the linear density contrast field δ(1), the perturbative
peak bias expansion takes the form

δLpk(q) =

∞∑

n=1

1

n!

∫

k1

· · ·
∫

kn

cLn(k1, . . . ,kn)
[
δ(1)(k1) . . . δ(1)(kn) + · · ·

]
eik1···n·q , (6.51)

where the Lagrangian peak bias functions cLn(k1, . . . ,kn) are defined at the collapse time τ0, and the ellipsis
in the square bracket stands for terms of order n − 2, n − 4, and so on. These terms are present because
each integrand corresponds to a sum of n-th order renormalized operators written in Fourier space, which
contain lower-order operators as counter-terms. For n = 2 for instance, the term in square brackets is

[
δ(1)(k1)δ(1)(k2)−

〈
δ(1)(k1)δ(1)(k2)

〉]
(6.52)

so that, in the calculation of 〈δLpk(q1)δLpk(q2)〉, we obtain using Wick’s theorem (see Appendix A.3)

〈[
δ(1)(k1)δ(1)(k2)−

〈
δ(1)(k1)δ(1)(k2)

〉][
δ(1)(k3)δ(1)(k4)−

〈
δ(1)(k3)δ(1)(k4)

〉]〉
eik12·q1+ik34·q2

=

[〈
δ(1)(k1)δ(1)(k3)

〉〈
δ(1)(k2)δ(1)(k4)

〉
+
〈
δ(1)(k1)δ(1)(k4)

〉〈
δ(1)(k2)δ(1)(k3)

〉]
eik12·q1+ik34·q2 . (6.53)

Thus, only those correlators that involve fields at different Lagrangian positions remain. Note that, since
〈δ(1)(k1)δ(1)(k2)〉 is non-zero only if k1 + k2 = 0, this term is multiplied by a factor of cL2 (k1,−k1) which
precisely corresponds to the second-order zero-lag terms in Eq. (6.50). At order n ≥ 3, terms of the
form δ(1)(k1)〈δ(1)(k2)δ(1)(k3)〉, and so on, are correspondingly subtracted in Eq. (6.51). Furthermore, we
emphasize that cLn(k1, · · · ,kn) are not free functions, but a convenient way to collect all renormalized
Lagrangian bias terms at a given order. Eq. (6.51) with the peak constraint is a particular case of a
Lagrangian bias expansion in the iPT framework [79, 113, 141].
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Armed with this result, it is straightforward to write down the n-point functions of peaks. For the
cross-correlation functions between peaks and matter in Fourier space, we have (cf. Sec. 4.1.2)

PLpk,m(k) = cL1 (k)PL(k) , BLpk,mm = cL2 (k1,k2)PL(k1)PL(k2) , (6.54)

where the renormalized Lagrangian peak “bias functions” are

cL1 (k) ≡
(
bL10 + bL01k

2
)
WR(k) (6.55)

cL2 (k1,k2) ≡
{
bL20 + bL11

(
k2

1 + k2
2

)
+ bL02k

2
1k

2
2 − 2χL1 (k1 · k2) (6.56)

+ ωL10

[
3 (k1 · k2)

2 − k2
1k

2
2

]}
WR(k1)WR(k2) .

These definitions agree with the renormalized Lagrangian bias functions introduced by [113] in the context
of the integrated perturbation theory (iPT) (see also [495, 151]). Specifically, they are the ensemble averages
of functional derivatives [113],

cLn(k1, . . . ,kn) = (2π)3n

∫

k′

〈 DnδLX(k′)

Dδ(1)(k1) . . .Dδ(1)(kn)

〉
(6.57)

=

D∑

α1,...,αn=1

1

nX

〈 DnnX
Dyα1

. . .Dyαn

〉
Uα1

(k1) . . .Uαn(kn) ,

where δLX ≡ nX/nX − 1 is the fractional Lagrangian overdensity of a generic biased tracer, y = {y1, . . . , yD}
are the linear operators from which the Lagrangian bias relation is constructed, and the kernels Uα are
defined as

yα(k) = Uα(k) δ(1)(k) . (6.58)

For the BBKS peak constraint, for instance, y = {ν, ηk, ζij} and D = 10, with corresponding kernels given
by

{
Uα(k)

}
=

{
1

σ0
WR(k),

i

σ1
kkWR(k), − 1

σ2
kikjWR(k)

}
. (6.59)

For n = 1, Eq. (6.57) then gives

cL1 (k) =
1

npk


 1

σ0

〈Dnpk

Dν

〉
+

i

σ1

∑

i

ki

〈Dnpk

Dηi

〉
− 1

σ2

∑

i,j

kikj

〈Dnpk

Dζij

〉
WR(k) , (6.60)

which, upon taking into account invariance under rotations and symmetrizing the arguments, returns
Eq. (6.55) [494]. Higher-order Lagrangian bias functions can be computed analogously.

Eq. (6.54) has exactly recovered the result for the two-point function in Sec. 6.5.1. However, we have
also easily obtained the corresponding three-point function. This is equivalent to the result derived for
the general bias expansion in Eq. (4.12), with additional higher-derivative terms whose bias coefficients are
unambiguously predicted by the peak formalism. Furthermore, the peak auto-power spectrum can formally
be written as

PLpk(k) = [cL1 (k)]2PL(k) +
∑

n≥2

1

n!

∫

p1

· · ·
∫

pn

[
cLn(p1, · · · ,pn)

]2
PL(p1) · · ·PL(pn)(2π)3δD(p1...n − k) +

1

npk
,

(6.61)

in agreement with the iPT approach [79]. It is instructive to compare this result, up to order n = 2, to the
NLO Eulerian halo power spectrum in the general perturbative bias expansion derived in Sec. 4.1.4. In order
to compare at the same order in perturbations, we should only keep the terms ∝ [cL1 (k)]2 and [cL2 (k1,k2)]2
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in Eq. (6.61). First, notice that, since the renormalized bias expansion Eq. (6.51) is written in terms of
the initial density field, the Lagrangian-space power spectrum of peaks does not contain cross-correlations
between linear and cubic contributions, as these are completely absorbed in the leading-order contribution
via renormalization (see also Sec. 2.10.1). Second, by construction, the BBKS peak number density does not
depend on the tidal field, leading to the absence of bLK2

in Eq. (6.61). Third, there are no contributions from
gravitational evolution, and tidal operators such as K2 and Otd can be consistently set to zero. Fourth,
the peak power spectrum contains linear and second-order higher-derivative terms encoded in cL1 (k) and
cL2 (k1,k2); in Eq. (4.22), we have only included the linear higher-derivative term. Finally, the loop integrals
in Eq. (6.61) are explicitly regularized through the filtering kernels WR(ki), while no such kernel is present
in Eq. (4.22). On large scales, the difference amounts to a k-independent constant, which in the general

perturbative bias expansion is absorbed by the renormalized stochastic amplitude P
{0}
ε .

Peaks are not the only example of biased tracers that yield higher-derivative bias terms. Excursion-set
approaches can produce such terms as soon as the window is not a sharp k-space filter [305], as we have
seen in Sec. 5.9. In all cases, the form of the higher-derivative terms is dictated by the fact that the tracer
density is a scalar quantity [113] (see Sec. 2.6).

6.7 Bias parameters from cross-correlations at two smoothing scales*

The peak-background split also works with perturbations of long, but finite wavelength, provided one
takes into account the correlation between the long and short modes. Therefore, it should be possible to
measure the bias parameters using cross-correlations at two different scales R and R`, where R corresponds
to the halo scale and R` > R (the smoothing scale R` can take any value as long as it is distinct from the
halo smoothing scale). This leads to the “Lagrangian cross-correlation” (LCC) moments discussed at the
end of Sec. 4.2. Some of this idea can be traced backed to [152], where the authors showed how to recover
the higher-derivative peak bias factors from a conditional mass function. The point was first made clear
in [305], who demonstrated that the bias factors bLij can be computed from one-point measurements rather
than computationally more expensive n-point correlation functions.

This approach was implemented by [303, 304] to halos extracted from N-body simulations in order to
test the predictions of peak theory. Namely, halos were traced back to their proto-halo patch in the initial
conditions (since one is interested in measuring Lagrangian biases); the linear density field was smoothed
on a scale R` & R, and the quantity Hn(ν` = δ`/σ0l) was computed (for n = 1, 2) at the location of each
proto-halo. In the peak approach, the overdensity of proto-halos is given by 1 + δLh = npk/npk. Therefore,
the average of Hn(ν`) over all proto-halos reads

MLCC
n (R`) ≡

1

Nh

Nh∑

p=1

Hn[ν`(qp)] =

∫ +∞

−∞
dν`N (ν`)

〈
1 + δLh

∣∣ν`
〉
Hn(ν`) (6.62)

=
1

npk

∫
d5w npk(w) (−εν)

n

(
∂

∂ν
+
εJ1

εν

∂

∂J1

)n
p(w)

=
∑

i+j=n

n!

i!j!
(σ0εν)i(σ2εJ1

)jbLij ,

where
〈
1 + δLh

∣∣ν`
〉

is the average number density of proto-halos (relative to the mean) in the presence
of a long-wavelength density perturbation, p ∈ {1, · · · , Nh} is the index labeling the proto-halos, and
εX = 〈ν`(x)X(x)〉 denotes the cross-correlation between ν` and the variables X = (ν, J1) defined at the
halo smoothing scale. Relations between bias factors of a given order (which arise owing to their close
connection with Hermite polynomials, see e.g. [305]) can then be used to extract a measurement of each bLij
(see [303, 304] and Sec. 4.5 for an overview of the results).

Note that the expression Eq. (6.62) is slightly different from that obtained in the context of the general

* This section is of a more technical nature and is not essential for the remainder of this section.
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perturbative bias expansion, Eq. (4.40) in Sec. 4.2: instead of the moment σ0εν = 〈ν`δR〉 = 〈δ`δR〉/σ(R`),
the general bias expansion yields a proportionality factor of 〈δ`δ〉/σ(R`). The difference is explained by
the fact that the peak approach works with the density field smoothed on the peak scale R(M), while the
general bias expansion does not perform such a smoothing. The difference between the two is, as expected,
absorbed by higher-derivative bias terms. Specifically, noting that Eq. (4.40) assumes that R` � R(M) in
order for the perturbative approach to be valid, we have

〈δ`δR〉 =

∫

k

WR`(k)WR(k)PL(k) ≈
∫

k

WR`(k)
[
1− cWR2k2 + · · ·

]
PL(k) = 〈δ`δ〉+ cWR

2〈δ`∇2δ〉+ · · · ,
(6.63)

where cW is a constant depending on the filter employed (for example, cW = 1/10 for a real-space tophat
filter). The assumption that R` � R(M) implies that the smoothing kernel WR(k) can be expanded in this
integral, since the contribution of modes of order k & 1/R is highly suppressed by WR`(k). The last term
is precisely a higher-derivative term of the order indicated in Eq. (4.40). Thus, once the smoothing kernel
WR(k) is expanded, the result from the general bias expansion agrees with the peak approach. The only
difference is that higher-derivative biases contain the contributions from the smoothing kernel in the general
bias expansion, while the latter remain implicit in the peak expressions.

As shown by [306], this approach can be generalized to measure the higher-derivative peak bias factors.
The main difference is the appearance of other polynomials and distributions. Consider the bias factors χLk
associated with η2(x) for illustration. In analogy with Eq. (6.62), the ensemble average of L

(1/2)
n (3η2

` ) at
the proto-halo positions is

1

Nh

Nh∑

p=1

L(1/2)
n

(
3η2
` (qp)

2

)
=

∫ ∞

0

d(3η2
` )χ2

3(3η2
` )
〈
1 + δh

∣∣3η2
`

〉
L(1/2)
n

(
3η2
`

2

)
. (6.64)

The calculation is somewhat more intricate than for Hermite polynomials because the bivariate Normal
distributions (which arise from the conditioning on scale R`) are replaced by bivariate χ2-distributions. For

n = 1 for instance, a little algebra shows that the average of L
(1/2)
1 (3η2

`/2) at the location of proto-halos is

1

Nh

Nh∑

i=1

L
(1/2)
1

(
3η2
` (qp)

2

)
= −ε2σ2

1χ
L
1 , (6.65)

where the cross-correlation coefficient ε is

ε2 ≡
〈
η2η2

`

〉
−
〈
η2
〉〈
η2
`

〉
√(〈

η4
〉
−
〈
η2
〉2)(〈

η4
`

〉
−
〈
η2
`

〉2)
=

(
σ2

1×
σ1sσ1`

)2

. (6.66)

Here, η2
` = (∇δ`)2/σ2

1` is the long-wavelength perturbation and the subscript “×” denotes the splitting of
filtering scales, that is, one filter is on scale R while the second is on scale R`. Note that, unlike the average
of Hn(ν`), the right-hand side of Eq. (6.65) involves only one bias factor because the variable η2 does not
correlate with the others.

This approach has been applied to measure the Lagrangian LIMD biases [303, 304], the higher-derivative
Lagrangian bias χL1 , or equivalently bL(∇δ)2 [306], and the tidal-shear bias bLK2

[326], by stacking the tidal

invariant K2 defined in Eq. (5.101) at the positions of proto-halos. For a summary of these measurements,
see Sec. 4.5.1.

6.8 Excursion-set peaks

In contrast to the excursion-set approach, in which the basic ingredient is random walks at all points
in space (see Sec. 5), the peak formalism focuses on the subset of points that correspond to initial density
maxima, i.e. peaks. In fact, these two approaches are not irreconcilable as was shown in [396]. Similar ideas
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can already be found in the early work of [496]. However, before we discuss the relation between peak theory
and excursion sets, we will first address the equivalent of the cloud-in-cloud problem in the context of peak
theory. The cloud-in-cloud problem in the excursion-set formalism is discussed in detail in Sec. 5.2.3.

So far, in order to make the connection with the abundance of dark matter halos, we have implicitly
assumed that there is an one-to-one correspondence between halos of mass M collapsing at redshift z and
maxima of the initial density field smoothed on the scale R(M) and of height δcr(z). This is a good
approximation at least for relatively massive objects (see Sec. 5.1). Therefore, the halo mass function (the
number density of halos per logarithmic mass bin d lnM) is given by [497, 496, 410]

nh(M)d lnM = npk(νc)dνc ≡
ρm
M
fpk(νc)dνc , (6.67)

where fpk(νc)dνc is the analog of the excursion-set multiplicity function, that is, the fraction of peaks (instead
of random walks) at the smoothing scale R(M) with height in the range [νc, νc + dνc]. In the case of BBKS
peaks (cf. Sec. 6.4),

fpk(νc) =
M

ρm
npk(νc) =

(
V

V?

)
G0(γ1, γ1νc)

e−ν
2
c/2

√
2π

, (6.68)

plays the role of the multiplicity function. Here, V = M/ρm is the Lagrangian volume occupied by a halo
of mass M , while V? = (2π)3/2R3

1 is the characteristic volume occupied by a peak on the smoothing scale
R. Note that fpk = fpk(δcr, σi) truly is a function of δcr and the spectral moments σi. Unfortunately, the
prescription Eq. (6.67) does not ensure that a peak of height νc identified at the filtering scale R is not
embedded in a bigger collapsed object.

To remedy this problem, one considers trajectories δ(R) as a function of R at the location of initial
density maxima in analogy with the excursion-set formalism [496, 429, 396]. To ensure that peaks-in-peaks
are not counted, we must enforce the constraint that a peak identified in the density field smoothed on scale
R is not included in a peak identified on a larger smoothing scale. This peak-in-peak effect is difficult to
handle because of the correlated nature of the walks δ(R) for realistic filters such as tophat or Gaussian.
Namely, one should in principle consider an infinite number of constraints for each filtering scale between R
and infinity. As discussed in Sec. 5.7, this condition can be approximated by the milder requirement that
the density contrast of the maxima satisfies

δ(R) > δcr, δ(R+ dR) < δcr , (6.69)

as proposed by [429]. These two inequalities enforce the condition that maxima of height δcr are just at the
edge of disappearing. As in Sec. 5.7, they can be combined into the constraint

δcr < σ0ν < δcr −
dδ

dR
dR ≡ δcr − δ′(R)dR , (6.70)

where throughout this section a prime denotes a derivative with respect to the filtering scale. For the
condition Eq. (6.70) to make sense, we must have δ′(R) ≤ 0 or, equivalently, the random walk δ(R) must
up-cross the threshold δcr. The analysis of [421] shows that this up-crossing is, to a good approximation, a
first-crossing down to peak height of order unity. The combination of the BBKS peak constraint with this
up-crossing condition has been dubbed excursion-set peaks or ESP by [396].

The ESP approach still suffers from some of the limitations inherent to the excursion-set approach: in
particular, as it is solely based on the quantities at the position xpk of the host halo, information about
the halo merger history (the presence of local density maxima within the Lagrangian patch, for example)
is incomplete. To overcome this, the peak-patch approach of Ref. [435] (see Sec. 5.1) relies on a more
sophisticated description of the collapse which considers the behavior of δ (and the other relevant variables)
in a neighborhood of qpk and on various filtering scales. This issue becomes important when considering
lower-mass halos, where the dynamics increasingly deviates from spherical collapse. Another issue is that
any Lagrangian-based prescription of halo abundance and clustering requires spectral moments of the linear
power spectrum [see Eq. (6.1)], which are not always finite for the real-space tophat filter. To alleviate this
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problem, Refs. [303, 304, 306] have used a Gaussian filter whenever a calculation using tophat filter is not
convergent. In practice, the Gaussian filter radius RG was determined from the tophat filter radius RT
through the requirement

〈δG|δT 〉 =
〈δG(q)δT (q)〉√
〈δ2
G〉〈δ2

T 〉
= δcr , (6.71)

where δG and δT are the density field smoothed with a Gaussian and real-space tophat filter, respectively.
This ensures that a peak with δT = δcr also satisfies 〈δG〉 = δcr on average. Clearly, it would be desirable to
have a less ad hoc treatment along the lines of [480] for instance.

The number of virialized objects nESP(R) per smoothing interval dR is then equal to the number of
trajectories that both satisfy the peak constraint and up-cross the threshold δcr on scale R. For convenience,
we introduce the normalized variable µ ≡ −δ′/σδ′ with σδ′ =

√
〈δ′2〉, so that the up-crossing condition

becomes µ ≥ 0. We then have

nESP(R) ∆R =

∫ ∞

0

dµ

∫ νc+(σδ′/σ0)µ∆R

νc

dν

∫ +∞

−∞
dJ1· · ·

∫ +J
3/2
2

−J3/2
2

dJ3
33/2

R3
1

∣∣det(ζij)
∣∣δD
[
η(q)

]
ΘH(λ3) p(w) (6.72)

≈ 33/2

R3
1

∫ ∞

0

dµ

∫ +∞

−∞
dJ1· · ·

∫ +J
3/2
2

−J3/2
2

dJ3
σδ′

σ0
µ
∣∣det(ζij)

∣∣δD
[
η(q)

]
ΘH(λ3)δD

[
ν(q)− νc

]
p(w) ∆R ,

where the number density of ESP peaks is expressed as a function of R and, in the second line, we have
assumed that ∆R is infinitesimal. Further, in the ESP approach the rotational invariants in Eq. (6.11)
are supplemented by µ, i.e. w ≡

{
ν(q), J1(q), µ(q), 3η2(q), 5J2(q), J3(q)

}
. Using dνc/dR = −νcσ′0/σ0

and Eq. (6.17), we can read off the number density of ESP peaks as a function of νc from the variable
transformation nESP(νc) = nESP(R)dR/dνc. Therefore, we can define the ESP equivalent of the local
number density Eq. (6.9) of BBKS peaks of height νc as

nESP(q) =

(
1

νcγνµ

)
µΘH

[
µ(q)

]
× npk(q) , (6.73)

upon taking advantage of the definition of the cross-correlation between ν and µ: γνµ = −σ′0/σδ′ . For a
Gaussian filter, µ is precisely equal to J1Rσ2/σδ′ , in which case both δ′ and the peak curvature J1 are
perfectly correlated (see also the discussion on assembly bias in Sec. 5.10). Hence, in this specific case, the
condition λ3 ≥ 0 automatically ensures µ ≥ 0. This implies that ESP and BBKS peaks are the same for a
Gaussian filter.

Eq. (6.73) can be generalized to moving, deterministic or stochastic collapse barriers, δcr → B, upon
making the replacements δD(ν−νc)→ δD(ν− B̃) and ΘH(µ)→ ΘH(µ+ B̃′), where B̃ ≡ B/σ0. The second
condition constrains the slope of the (correlated) walk to be steeper than that of the barrier at up-crossing.
When the barrier is stochastic however, the following two physical pictures are possible, as was pointed out
by [306]: either each walk “sees” a moving barrier whose shape changes from peak to peak, or each walk
“sees” a constant flat barrier whose height varies as a function of R. In the second case, the condition
µ ≥ −B′ must be replaced by µ ≥ 0. Here, we will follow [306] and adopt the second interpretation. This
somewhat simplifies the calculation, while yielding only a percent-level difference.

As discussed in Sec. 5.9, each variable which the collapse threshold B depends on beyond the density
adds a dimension to the first-crossing problem, and introduces scatter in the (σ, δ)-plane. To account for the
scatter in the collapse threshold, Ref. [303, 306] considered the square-root barrier Eq. (5.107), B̃ = νc + β,
where the stochastic variable β follows a distribution p(β) which is represented by a lognormal. This furnishes
a good description of the actual collapse thresholds as a function of halo mass [318]. Using the definition of
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Figure 30: Top panel: Logarithmic mass function of SO halos (with ∆SO = 200) extracted from N-body simulations. Different
symbols refer to different redshifts as indicated in the figure. The solid, dotted and dashed curves represent the ESP prediction
at z = 0, 1 and 2. Bottom panel: Fractional deviation of the simulations from the ESP prediction. In both panels, error bars
denote the scatter among realizations. From [499].

f(J1), Eq. (6.22), the multiplicity function of ESP peaks reads19

fESP(νc) = V nESP(νc) =

(
V

V?

)
1

νcγνµ

∫
dβ p(β)

∫ ∞

0

dµµ

∫ ∞

0

dJ1 f(J1)N (νc + β, J1, µ) , (6.74)

where N (ν, J1, µ) denotes a trivariate normal distribution with vanishing mean and unit variances. In
addition to the terms appearing in the bias expansion Eq. (6.50) of BBKS peaks discussed earlier in this
section, the expansion for ESP peaks will include terms depending on δ′.

However, a dependence on tidal fields, K2(q), K3(q) as defined in Sec. 5.9, will arise only if deviations
from the spherical collapse are modeled explicitly. Such extensions of the peak constraint (along the line of
[121] and, recently, [498]) are desirable since they would provide a physical description as well as predictions
for the scatter β. As we shall see in Sec. 7.4, a first-principle description of the scatter in Lagrangian bias
models is in fact essential for the non-Gaussian bias consistency relation.

Using Eq. (6.67), the halo mass function predicted by the ESP approach eventually is

nh(M) = ρm fESP(νc)
dνc
dM

= −1

3
MR

(
σδ′γνµνc

σ0

)
V −1fESP(νc) . (6.75)

One should bear in mind that, when more than one filters are employed to calculate the rotational invariants
(to ensure the convergence), then the multiplicative factor of R in the above expression is the smoothing
radius of the normalized density field ν. For instance, in the ESP implementation of [303, 306], a tophat
filter is used to define ν and µ, whereas a Gaussian filter is used for the variables J1, η2, J2 and J3 in order
to ensure the convergence of σ1 and σ2. In this case, R would be the tophat radius.

19This expression can be simplified with Bayes’ theorem, N (ν, J1, µ) = N (ν, J1)N (µ|ν, J1), so that the integral∫∞
0 dµµN (µ|ν, J1) analogous to Eq. (5.82) takes a compact form similar to Eq. (5.85).
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Predictions for the halo mass function based on Eq. (6.75) were presented in [500], while [501, 502]
discussed the implications for halo mass accretion histories. Ref. [303] included a halo mass definition which
uses a tophat filter in real space together with the mean dependence and scatter of the critical collapse
threshold on the halo mass. Comparison with N-body simulations shows that the ESP model provides a
good fit to the mass function of spherical-overdensity (SO) halos (identified with a constant overdensity
threshold ∆SO = 200) if one assumes a simple square-root barrier B(s) = δcr + β

√
s with lognormal scatter

p(β) [303, 306]. Fig. 30 indeed shows that the ESP prediction fares reasonably well at redshift zero, which was
used to calibrate the free parameters describing the square-root barrier. Notwithstanding, it underestimates
the abundance of massive halos at higher redshift. Note, however, that the figure is generated with the
same mean

〈
β
〉

and variance Var(β) at all redshifts [499], even though these were inferred from halos which
virialized at z = 0 only. It is likely that the mean and variance in the linear collapse threshold depend on
redshift. Including this dependence may improve the agreement with simulations at higher redshift.

Finally, the results described in Sec. 6.7 on the estimation of Lagrangian bias parameters directly apply
to the ESP model, provided X is replaced by X = (ν, J1, µ) and npk by nESP.

6.9 Gravitational evolution of Lagrangian density peaks

In this section, we show how the peak statistics in Lagrangian space can be related to the Eulerian
(late-time) statistics by approximately modeling gravitational evolution. Specifically, we will assume that
the halo centers are test particles that do not interact with each other and that locally flow with the dark
matter. We will begin with a derivation of the velocity bias of peaks, and use that in conjunction with the
continuity equation to derive the time evolution of the linear LIMD and higher-derivative peak bias from
initial Lagrangian space to Eulerian space (bL01 → bE01). Next, we will discuss how a phase-space treatment
can predict the time evolution of the Lagrangian peak correlation function at any order. We will employ
the Zel’dovich approximation for simplicity. Because of this, we do not recover the correct gravitational
evolution discussed in Sec. 2.3–2.4 at second and higher order [503, 504, 505]. Nevertheless, it illustrates the
possibilities and challenges for including gravitational evolution in the peak formalism.

6.9.1 Velocity bias

The peak model is an explicit realization of biased tracers that have biased velocities. The velocity bias
arises from the correlation between linear velocities and density gradient. In particular, the linear-order,
3-dimensional velocity dispersion of Lagrangian density peaks is [13]

σ2
v,pk(τ) ≡ 〈v2

pk(q, τ)〉 = (Hf)2σ2
−1

(
1− γ2

0

)
, (6.76)

where γ0 is defined in Eq. (6.3). Thus, the velocity dispersion of peaks is smaller than that of the dark
matter filtered on the same scale, 〈v2

R〉 = (Hf)2σ2
−1. It is because large-scale flows are more likely to be

directed toward peaks than to be oriented randomly [13, 506, 474, 475]. An important consequence is that
the linear peak velocities are biased according to the relation

vpk(q, τ) = vR(q, τ)− (Hf)
σ2

0

σ2
1

∇δR(q, τ) , (6.77)

which can be inferred from a calculation of peak pairwise velocity statistics or the redshift-space linear
power spectrum in the distant-observer limit [156, 257]. Furthermore, this also implies that the linear peak
displacement spk is biased [152, 174]. Namely, spk is given in Fourier space by

spk(k, τ) =

(
1− σ2

0

σ2
1

k2

)
WR(k)s(1)(k, τ) , (6.78)

where s(1) is the linear displacement field [see Eq. (B.16)]. This defines the time-independent linear peak
velocity bias cv,pk(k) [156, 257]

cv,pk(k) =

(
1− σ2

0

σ2
1

k2

)
WR(k) , (6.79)
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such that spk(k, τ) = cv,pk(k)s(1)(k, τ). In the notation of Sec. 2.7, β∇2v = σ2
0/σ

2
1 plus a contribution from

the expansion of the filtering kernel WR(k). Note that cv,pk depends on k and on the smoothing scale R, but
not on the peak height ν nor on time; equivalently, β∇2v only depends on the radius R. Since σ0/σ1 ∝ R,
which is the only scale in the problem, we expect this velocity bias to increase with halo mass. As we can
see, spk differs from the matter displacement s(1) by the filtering kernel, which arises from the fact that halo
internal motions do not affect the motion of the host halo, and by the factor of (1− k2σ2

0/σ
2
1).

It is important to distinguish between local and statistical velocity bias. The former means that the
velocities of biased tracers are locally different than that of the dark matter; that is, a local observer would
measure a relative velocity between the tracer and the dark matter. The latter implies that the tracers
locally flow with the dark matter, but their velocities are statistically biased. This can occur essentially
as a selection effect, if the tracers reside in special locations where the velocity is smaller or larger than
at randomly chosen locations. In the peak approach, both effects are present in the form of the window
function WR(k) (local part) and the factor 1− (σ0/σ1)2k2 (statistical part).

Let us now discuss in more detail the relation between Eq. (6.76) and Eq. (6.77). Clearly, taking the
ensemble average of the square of Eq. (6.77) yields Eq. (6.76), as it should. However, Ref. [257] also pointed
out that, for Eq. (6.79),

(Hf)−2σ2
v,pk =

1

2π2

∫ ∞

0

dk PL(k) c2v,pk(k)

= (Hf)−2〈vR · vpk〉 =
1

2π2

∫ ∞

0

dk PL(k) cv,pk(k)WR(k) . (6.80)

That is, the variance of peak velocities, involving an integral over c2v,pk, is equal to the peak–smoothed dark
matter velocity variance, which involves cv,pk only. This identity indicates that, at the peak position, the
velocities of the peak and the filtered matter distribution are the same. This follows from our assumption
that the peaks locally flow with the smoothed dark matter.

A further requirement on the peak velocity bias is that, in real space, it has to be a higher-derivative
operator which maps a vector (velocity) field onto another vector field. Homogeneity and isotropy then
require that it is built from powers of the Laplacian ∇2, or equivalently, powers of k2 in Fourier space.
Therefore, we generically expect the lowest-order k-dependence to scale as cv,pk(k) = (1−R2

vk
2)WR(k), for

some constant Rv. This second requirement, together with Eq. (6.80), then uniquely yields the velocity bias
Eq. (6.79). Note that, for instance, the choice cv,pk(k) = [1− (σ−1/2/σ0)2 k]WR(k) also satisfies Eq. (6.80),
but does not arise from a local operator in real space.

6.9.2 Linear evolution: continuity equation

Having discussed the origin of the peak velocity bias, we proceed forward and compute the time evolution
of the linear peak bias using the continuity argument invoked in [152]. This generalizes the discussion of
[115] to a linearly biased displacement/velocity field, and parallels the discussion in Sec. 2.7. Integrating the
linear continuity equation ∂δpk/∂τ = −∇ · vpk, and evaluating the result in Fourier space, the first-order
Eulerian peak bias function reads

cE1 (k, τ) = cv,pk(k) +
D(τ0)

D(τ)
cL1 (k, τ0) , (6.81)

where the first-order Lagrangian peak bias function is defined in Eq. (6.55) and we have momentarily restored
the time-dependence of cL1 for clarity. This relation is a particular case of Eq. (2.82). Note however that,
unlike in Sec. 2.3 and Sec. 2.7, τ parametrizes the trajectory of the peak-patch from the Lagrangian (τ = 0
initial conditions) to Eulerian (collapse epoch at τ = τ0) space (though the peak trajectory can formally be
extended beyond τ0). Therefore,

cE1 (k, τ)δR(τ) = cE1 (k, τ)
D(τ)

D(τ0)
δR(τ0)

τ→0
= cL1 (k, τ0)δR(τ0) . (6.82)
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That is, we recover the Lagrangian bias Eq. (6.55) in the limit τ → 0 when peaks are defined relative to
the density field linearly extrapolated to τ0, which is our convention throughout this section. The Eulerian
peak bias cE1 is scale-independent in the limit kR � 1, as expected from “local bias theorems” [104, 105].
Eq. (6.81) represents the fact that peaks stream towards (or move apart from) each other in high (low)
density environments. This effect is higher order in derivatives, as any velocity bias (statistical or local) has
to be.

On splitting Eq. (6.81) into its higher-derivative (∝ k2) and local (k-independent) terms, we obtain

bE10(τ) ≡ 1 +
D(τ0)

D(τ)
bL10(τ0), bE01(τ) ≡ −σ

2
0

σ2
1

+
D(τ0)

D(τ)
bL01(τ0) . (6.83)

The first relation is the usual relation Eq. (2.32) for the Eulerian, linear bias [15]. The second relation
implies that, in the idealized limit τ → ∞, the higher-derivative bias parameter approaches the negative,
R-dependent constant −σ2

0/σ
2
1 as structure grows and D−1(τ) shrinks. The higher-derivative contribution

to the linear peak bias function cE1 (k, τ) thus persists at late time if the linear velocities are statistically
biased [152]. Note that since bL01 is always positive (see Fig. 29), the contribution from the linear velocity
bias suppresses the amplitude of bE01(τ0). In fact, bE01(τ0) even becomes negative for peaks corresponding to
M . 5× 1013 h−1M�.

A temporally constant velocity bias might seem to be at odds with the prediction of a two-fluid calculation
(dark matter and halos) which yields a decaying velocity bias [118]. However, as we discuss in Sec. 2.7, these
two results simply correspond to different assumptions about the time dependence of the force difference
between matter and halos; Eq. (6.83) assumes a relative force that is constant in time, while the calculation
of [118] assumed an instantaneous force in the initial conditions. Recent work has shown conclusive evidence
for a statistical bias of the form Eq. (6.79) in two-point statistics of the initial halo velocities [259, 174].
Since, in the linear regime, the acceleration is parallel to the initial velocity, this implies that the linear
velocity bias cv,pk does not decay, but remains constant throughout time. In other words, the gravitational
force acting on initial density peaks is biased at the linear level [174, 507] (see the discussion in Sec. 2.7). The
recent measurements of [174], which are not volume weighted and thus less plagued by numerical artifacts
(see [173] for a discussion), appear consistent with this interpretation.

Finally, we have thus far assumed that the peak velocity is equal to that of the smoothed dark matter
component evaluated at the peak position. In practice however, the halo velocity is commonly computed as
the center-of-mass velocity of all the particles belonging to the halo. Assuming that effects related to the
finite extent of dark matter halos introduce a time dependence in the window, i.e. WR →W (k, τ), the halo
velocity bias at any time τ ≥ τi reads [329]

cv(k, τ) = W (k, τ) +
(
cv(k, τi)−W (k, τi)

)(D(τi)

D(τ)

)3/2

−D−3/2(τ)

∫ τ

τi

dτ ′W ′(k, τ ′)D3/2(τ ′) , (6.84)

where W ′ = ∂W/∂τ . There are thus two contributions to cv(k, τ): one from W [i.e. the smoothing WR(k)
in Eq. (6.79)] and one from W ′. The second contribution proportional to W ′ dominates for τ ' τi, but is
negligible at late time τ � τi. Therefore, any measurement of a higher-derivative term, apart from that
induced by the window function WR, in the velocities of proto-halos should be attributed to a statistical
velocity bias. This furnishes a clean way of disentangling statistical biases from effects induced by the time
dependence of the halo profile.

6.9.3 Evolution at higher order

We now compute the evolution of the peak two-point statistics using the phase-space distribution of
peaks, that is, the joint distribution of peak velocities. Assuming that each halo center is in one-to-one
correspondence with a peak, the Eulerian comoving position and proper velocity of a halo can in general be
expressed through the mapping

xpk(τ) = qpk + s(qpk, τ) , vpk(τ) = a(τ)
∂

∂τ
s(qpk, τ) , (6.85)
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where qpk is the initial position of the halo center, and s(q, τ) is the displacement. For simplicity, we will
work within the Zel’dovich approximation [508, 509], but the results can be extended to include higher-order
Lagrangian displacements. In this approximation, the peaks displacement is given by Eq. (6.78),

spk(q, τ) = − D(τ)

D(τ0)

(
∇
∇2

δR +
σ2

0

σ2
1

∇δR

)
(q, τ0) (6.86)

∂

∂τ
spk(q, τ) = −fH D(τ)

D(τ0)

(
∇
∇2

δR +
σ2

0

σ2
1

∇δR

)
(q, τ0) , (6.87)

where we have explicitly written the dependence on τ0 to emphasize the fact that the linear fields are
normalized relative to the collapse epoch.

Consider now an ensemble of realizations of some Lagrangian, biased point process. The correlation
function ξLpk(r, τ) is related to the zeroth moment of the joint probability p2(ṽ1, ṽ2; r, τ |pk) to have a pair
of peaks separated by a distance r and with normalized velocities ṽ1 and ṽ2 [510, 152],

n2
pk

[
1 + ξLpk(r, τ)

]
=

∫
d3ṽ1d

3ṽ2 p2(ṽ1, ṽ2; r, τ |pk) , (6.88)

where we have introduced the scaled velocity ṽ = v/Hfσv, where σv ≡ σ−1(z) is proportional to the 3-
dimensional variance of the matter velocity field, such that 〈ṽ2〉 = 1. When the peak motions are governed
by Eq. (6.87), p2(ṽ1, ṽ2; r, τ |pk) can be easily related to the joint probability distribution at the initial time
τi � τ0,

p2(ṽ1, ṽ2; r, τ |pk) =

∫
d3q δD(q + σv[ṽ2 − ṽ1]− r) p2(ṽ1, ṽ2; q, τi|pk) . (6.89)

Here, q is the Lagrangian separation vector. Note that the 2-point correlation function depends only on r,
even though the probability p2(ṽ1, ṽ2; r, τ |pk) also depends on ṽi · r.

We have implicitly assumed that each observed tracer corresponds to a unique Lagrangian patch. Like in
the peak-patch picture of [435] (see Sec. 5.1), the merging history depends on the details of the small-scale
matter distribution inside the patch. Here, however, we are not following the merging of sub-clumps, but
rather the motion and collapse of the patch as a whole. Given that the number of patches is conserved
by definition, Eq. (6.89) is equivalent to Liouville’s theorem, which states that the phase space density of
conserved tracers is conserved.

Eq. (6.89) is especially useful when one knows how to calculate distributions in the initial conditions.
For a bias prescription that can be specified through a finite number of constraints, e.g. for the BBKS peaks
considered here,

p2(ṽ1, ṽ2; q, τi|pk) =

∫
d13u1

∫
d13u2 npk(u1)npk(u2) p2(u1,u2; q, τi) , (6.90)

where u is a vector containing the 13 variables that describe both the BBKS peak constraint and the initial
relative velocity (i.e., u = {ν, ηk, ζij , ṽl}), and p2 is the joint-probability of u1 = u(x1) and u2 = u(x2).
Note that the number density npk of BBKS peaks, Eq. (6.9), does not depend on ṽi as this is prohibited
by the equivalence principle (Sec. 2.10.2). For Gaussian initial conditions, p2 is a multivariate Gaussian. In
this case, expressing the Dirac delta in Eq. (6.89) as the Fourier transform of a uniform distribution and
integrating out the velocities, the 2-point correlation function of discrete tracers can eventually be written
as

n2
pk [1 + ξpk(r, τ)] =

∫

k

∫
d3q eik·(r−q)

∫
d10y1

∫
d10y2 npk(y1)npk(y2) p2(y1,y2; q, τi) (6.91)

× exp

(
−1

2
σ2
v k
>Ck + iσvk ·∆s

)
,

where p2(y1,y2; q, zi) is the joint PDF for y = {ν, ηk, ζij} at Lagrangian position q1 and q2, ∆si =
〈
(s1 −

s2)i
∣∣pk
〉

is the relative peak displacement, and Cij ≡
〈
(s1 − s2)i(s1 − s2)j

∣∣pk
〉
−∆si∆sj is its covariance
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matrix. Note that the Gaussian integral over velocities introduces the displacement covariance matrix,
rather than its inverse.

Eq. (6.91) is the exact result within the Zel’dovich approximation. Therefore, it is important to realize
that, even though momentum conservation is ensured at leading order only, our approximation is invariant
under generalized Galilei transformations [198, 199, 200] — that is, uniform, but time-dependent boosts, see
Sec. 2.10.2 for the explicit definition — since relative displacements are unchanged. This ensures that the
effect of very-long-wavelength perturbations vanishes in the equal-time, 2-point peak correlation function
Eq. (6.91) [511, 201, 203, 271].

Following [152], the integrand of Eq. (6.91) can be expanded in powers of the linear power spectrum
PL(k) such that, at NLO in the Zel’dovich approximation, we have

ξpk(r, τ) =

(
D(τ)

D(τ0)

)2 ∫

k

e−
1
3k

2σ2
v,pk(z)

[
cE1 (k, τ)

]2
PL(k) eik·r + ξMC(r, τ) +O(3) . (6.92)

Here, cE1 is defined in Eq. (6.81), and O(3) denotes the NNLO (next-to-next-leading order, or two- and
higher-loop) contributions, the linear power spectrum PL is evaluated at the collapse time τ0, and the NLO
mode-coupling term ξMC(r, τ) is given by

ξMC(r, τ) ≡
∫

k

PMC(k, τ)eik·r

PMC(k, τ) ≡ 1

2

(
D(τ)

D(τ0)

)4 ∫

k1

∫

k2

[
cE2 (k1,k2, τ)

]2
PL(k1)PL(k2) (2π)3δD(k − k12) . (6.93)

The quadratic (Eulerian) peak bias function cE2 is given by

cE2 (k1,k2; τ) =
1

2

[
1 +

(
k1

k2
+
k2

k1

)
µ+ µ2

]
cv,pk(k1)cv,pk(k2) +

D(τ0)

D(τ)
cL1 (k1)cv,pk(k2)

(
1 +

k1

k2
µ

)
(6.94)

+
D(τ0)

D(τ)
cL1 (k2)cv,pk(k1)

(
1 +

k2

k1
µ

)
+

(
D(τ0)

D(τ)

)2

cL2 (k1,k2) .

Therefore, the peak constraint yields a 2-point correlation function (Fig. 31) consistent with that inferred
in Lagrangian PT (e.g. [510, 117, 512, 79]) with the additional feature that the Lagrangian bias functions
contain higher-derivative terms, and the displacement to the Eulerian position is modified owing to a velocity
bias. Note also that, although [152] did not consider Lagrangian tidal shear bias, it is straightforward to
include this contribution into cL2 following [513].

It should be noted that, unlike semi-analytic methods which resum part of the perturbative expansion
(such as e.g. RPT [73]), our perturbative solution is the series expansion of the exact, Zel’dovich approxi-
mated correlation function. Therefore, even though our truncated perturbative expansion formally violates
Galilei-invariance at any order (see [203] for a related discussion), it will automatically satisfy Galilei-
invariance on the scales where the expansion has converged towards the full Zel’dovich result [514]. At
NLO, the convergence is achieved at the 1% level across the BAO. Of course, the mode-coupling is not given
correctly due to the Zel’dovich approximation. To remedy this problem, one has to consider higher-order
displacements in LPT [135, 503, 512].

We now discuss the relation of this result to the NLO halo power spectrum in the general bias expansion
derived in Sec. 4.1.4. First, the bias functions cE1 and cE2 contain a subset of the local bias terms obtained
in the general bias expansion, as discussed in Sec. 6.6.2. However, they contain additional higher-derivative
terms, which are higher order following the perturbative counting in Sec. 4.1.4 (see the caveats of the
counting mentioned there). On the other hand, due to the Zel’dovich treatment of nonlinear evolution and
the absence of Lagrangian tidal bias, Eqs. (6.92)–(6.93) do not contain contributions from the coupling of
cubic and linear terms. Further, unlike the results in Sec. 4.1.4, where the loop momentum attains arbitrarily
high values, in Eqs. (6.92)–(6.93) the integrals are cut off on the scale k ∼ R−1 by the filtering kernel WR(k).
Finally, unlike the contributions I [O,O′](k) appearing in Sec. 4.1.4, whose low-k limits are subtracted, here

160



Figure 31: Redshift evolution of the correlation function of νc = 2 (2σ) peaks collapsing at z0 = 0.3 as predicted by Eq. (6.92).
The curves from bottom to top represent ξpk(r, z) at redshift z =∞, 5, 2, 1, 0.5 (dotted curves) and z = z0 (solid curve). Only
the correlation function at the collapse epoch (z = z0) can be measured in real data. For comparison, the dashed curves show
the correlation function at z =∞ and z = z0 in a LIMD bias approximation. From [152].

the mode-coupling term contributes a non-vanishing white noise in the limit k → 0 which adds to the Poisson
noise 1/npk. There are infinitely many such white-noise contributions induced by higher-order terms in the
bias expansion. All these non-vanishing contributions in the limit k → 0 renormalize 1/npk into an effective
white noise term, which can generally be super- or sub-Poissonian depending on the halo mass considered.
This effect physically arises from small-scale exclusion and, therefore, cannot be modeled perturbatively.
Note however that, in the peak approach, the “renormalized” white noise amplitude in the limit k → 0 can
be obtained from a numerical evaluation of

∫
d3rξLpk(r) through Eq. (6.34) (see the discussion in Sec. 4.5.3

and [178, 347]).
Furthermore, the contribution proportional to cL1 c

L
2 ∂
−1δ · ∂δ, where cLn are Lagrangian bias functions,

shifts the position of the BAO peak, as was first pointed out in [269, 515]; this term is of course also present
in the NLO contribution to the two-point function derived in the general bias expansion (Sec. 4.1.4). The
higher-derivative correction to the second-order bias function does not change the strength of the effect
significantly, which is dominated by the quadratic LIMD bias bL20. Importantly, this nonlinear shift can
be either accounted for in a forward analysis [269, 516], or reversed using a suitable reconstruction of the
linear displacement field [517]. Alternatively, the “linear point”, which lies midway between the dip at
r ∼ 90h−1 Mpc and the BAO peak at r ∼ 105h−1 Mpc, is weakly affected by nonlinearities and could also
be used for distance measurements [518, 519, 520].

Before concluding, let us illustrate how gravitational motions from the initial to final time wash out most
of the Lagrangian higher-derivative bias induced by the peak constraint, by considering the peak correlation
function ξpk(r, z) around the BAO scale (see Sec. 6.5.2). Fig. 31 shows the redshift evolution of ξpk(r, z),
as predicted by Eq. (6.92), for νc = 2 BBKS peaks from the initial conditions τi = 0 (z = ∞) (bottom
dotted curve) until halo collapse at τ = τ0. The latter is assumed to take place at z0 ≡ z(τ0) = 0.3 (top
solid curve). For illustration purposes, ξpk(r) is also shown at the intermediate redshift values z = 5, 2,
1 and 0.5. For comparison, the bottom and top dashed curves represent the initial and final correlation
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function in the LIMD approximation, in which all the peak bias parameters are set to zero except for bLN0,
the velocity bias has been turned off so that σv,pk = σv,dm, and filtering is absent (cf. Fig. 4 in Sec. 2.1).
As the redshift decreases, gravitational instability generates coherent motions which amplify the large-scale
amplitude of the peak correlation function, together with random motions which increasingly smear out the
initial BAO feature. Although the randomness in the large-scale flows is less important for the peaks than
for the LIMD-biased tracers (owing to the velocity bias), the final correlation function of peaks is noticeably
more similar to that of the LIMD-restricted tracer than it was initially. Still, mild differences remain at
z = z0 between the peak and LIMD predictions, especially around the BAO feature. This residual higher-
derivative bias, which strongly depends on the halo mass, is a subtle combination of the higher-derivative
terms in the Lagrangian bias functions cLn(k1, . . . ,kn) and of the velocity bias.
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So far, we have made the assumption of adiabatic Gaussian initial perturbations, which forms a key
prediction of the inflationary paradigm [521]. Moreover, the cosmic microwave background has placed
stringent upper limits on deviations from Gaussianity in the initial conditions, known under the term
primordial non-Gaussianity (PNG). Nevertheless, there is still significant unconstrained parameter space
for PNG which offers rich insights into the physics of inflation (see Sec. 7.2, and [522, 523, 524] for reviews).
This provides strong motivation to study the impact of PNG on large-scale structure.

The connection between the clustering of galaxies on large scales and the statistics of the initial conditions
has been studied since the 1980s, including the seminal papers [525, 526, 422, 527, 528, 529, 530] (see also [70]
for an overview). In the 2000s, it was realized that non-Gaussianity in the initial conditions is likely to be only
a small correction to the non-Gaussianity induced by nonlinear gravitational evolution [531]. Refs. [67, 62]
then developed techniques to disentangle primordial and late-time non-Gaussianities in the bispectrum of
the large-scale structure. Finally, this field experienced another breakthrough with the discovery of the
strong effect of PNG of the local type (local PNG) on the clustering of galaxies on large scales [68] (although
this effect was already implicitly contained in the results of [525, 526]). We now know that galaxy clustering
can provide independent constraints on the magnitude of local PNG that are competitive with those from
the CMB and, in the long run, may even give the best constraints (Sec. 7.6). Moreover, constraints from
galaxy bias are based on small-scale modes k & 0.3hMpc−1 (of order of the formation scale R−1

∗ of tracers),
while the CMB probes modes with k . 0.1hMpc−1. Given the possibility of a scale dependence in the PNG,
as predicted from several models of the early Universe, the two should therefore be seen as complementary
probes of PNG. The effect of PNG on large-scale structure has recently been reviewed in [428, 523, 532].
Here, we significantly expand their discussion of bias in the presence of PNG, and include results derived in
the past several years.

We begin in Sec. 7.1 by describing the effect of PNG in the framework of the general bias expansion
described in Sec. 2, starting with the simplest type, local PNG, in Sec. 7.1.1–7.1.2. For clarity, we refer to
the additional terms introduced in the bias expansion in the presence of PNG as non-Gaussian bias. Local
PNG exemplifies the essential physics of the effect of PNG on galaxy clustering, without the complications of
more general non-Gaussian initial conditions, which are then considered in Sec. 7.1.3–7.1.4. The discussion
of additional terms appearing on smaller scales (Sec. 7.1.5) concludes the treatment of PNG in this context.
Sec. 7.1.6 provides a brief summary of the contributions to the general bias expansion at leading order in the
amplitude of PNG, complementing the summary in Sec. 2.11, and also gives the contributions to the two-
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and three-point functions of galaxies in their rest frame, extending the results given in Sec. 4.1.1. We briefly
discuss the implications for early-Universe physics of detecting and constraining the various signatures of
PNG in the clustering of galaxies in Sec. 7.2. In order to obtain quantitative constraints on PNG however,
we need predictions for the new bias coefficients that appear in the presence of PNG. The PBS argument
of Sec. 3 can be used to derive these, as described in Sec. 7.3. We then show in Sec. 7.4 how, for any given
“microscopic” Lagrangian model of tracers, the effect of PNG on the n-point functions in Lagrangian space
can be fully predicted. This includes the thresholding (Sec. 2.1), excursion set (Sec. 5) and peak models
(Sec. 6), which are considered in turn in Sec. 7.4.1–7.4.3.

Finally, the comparison of the theoretical predictions of halo bias in the presence of PNG with N-body
simulations is discussed in Sec. 7.5. We present current and forecasted observational constraints on local
PNG using galaxy clustering in Sec. 7.6, generalizing the forecast in Sec. 4.1.3.

7.1 Primordial non-Gaussianity in the general bias expansion

In this section, we describe in detail how the general bias expansion described in Sec. 2.5–2.8 can be
extended to include non-Gaussian initial conditions. For this, we will restrict to the leading contributions in
the limit of weak PNG, which are described by the three- and four-point functions of the initial conditions. As
we will see, these are phenomenologically by far the most important contributions given current constraints
on large-scale PNG.

7.1.1 Primordial non-Gaussianity of the local type

PNG deals with the statistical properties of the initial conditions for structure formation. These are
usually phrased in terms of the primordial Bardeen potential φ [533], which is, in turn, directly related to
the curvature perturbation in comoving gauge R by φ = (3/5)R for modes that enter the horizon during the
matter-dominated epoch [534]. The Newtonian potential Φ(k) is related to φ(k) during matter domination
by the transfer function T (k) which satisfies T (k) = 1 for k � keq, where keq ' 0.02hMpc−1 is the
wavenumber that entered the horizon at matter-radiation equality. Thus, φ is related to the linear density
field by

δ(1)(k, τ) =M(k, τ)φ(k) where M(k, τ) =
2

3

k2T (k)Dmd(τ)

Ωm0H2
0

. (7.1)

Here, Dmd(τ) is the linear growth factor normalized to a(τ) during the matter-dominated epoch. To be
precise, following our discussion in Sec. 2.9, δ(1) defined in Eq. (7.1) is the matter density contrast in
synchronous-comoving gauge. In the following, we will drop the explicit time dependence on δ and M, as
well as the bias parameters, but include it again in Sec. 7.1.6.

In all previous sections, we have assumed that φ = φG is a Gaussian random field, which is completely
described by its power spectrum Pφ(k). The simplest way to generate non-Gaussian initial conditions is
to perform a local, nonlinear transformation of such a Gaussian field φG, φ(x) = f(φG(x)). Since the
root-mean-squared value of φ is less than 10−4, a Taylor expansion converges rapidly, and so we only keep
the leading nonlinear term. This leads to

φ(x) = φG(x) + fnl
[
φ2
G(x)− 〈φ2

G〉
]

+O(φ3
G) . (7.2)

This is the definition of local quadratic PNG, parametrized by the parameter fnl as first introduced in [535].
The term −fnl〈φ2

G〉 ensures that 〈φ〉 = 0.
At leading order in fnl, the only poly-spectrum beyond the power spectrum is the bispectrum,

Bφ(k1,k2,k3) = 2fnl[Pφ(k1)Pφ(k2) + 2 perm.] . (7.3)

Note that if we want to derive the N -point functions of φ at order f2
nl, we also have to include the next term

gnlφ
3 appearing in the expansion Eq. (7.2), as both are of the same perturbative order. From Eq. (7.1), we

immediately obtain the leading primordial contribution to the matter bispectrum,

B(1)(k1,k2,k3) ≡M(k1)M(k2)M(k3)Bφ(k1,k2,k3) . (7.4)
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That is, this is the synchronous-comoving-gauge matter bispectrum at early times τ → 0. A particularly
important regime for the effects of PNG on galaxy clustering is the squeezed limit, where two wavenumbers
are much larger than the third. In this limit, the matter bispectrum Eq. (7.4) becomes

B(1)(k1,k2,k3)
k1'k2�k3= 4fnlM(k3)Pφ(k3)PL(kS) +O

(
k2

3

k2
S

)

= 4fnlM−1(k3)PL(k3)PL(kS) +O
(
k2

3

k2
S

)
, where kS ≡ k1 +

1

2
k3 . (7.5)

In the second line, we have used the relation between φ(k) and δ(1)(k), Eq. (7.1).

7.1.2 General bias expansion with local PNG

Let us go back to the expression for the galaxy-matter cross-power spectrum in the large-scale limit
(k → 0), Eq. (4.2) or Eq. (2.121) in Sec. 2.10:

〈δg(k)δ(k′)〉
∣∣∣
lo

Gauss
= b1〈δ(1)(k)δ(1)(k′)〉 . (7.6)

In the case of Gaussian initial conditions, the NLO correction to this expression (or 1-loop power spectrum)
derived in Sec. 4.1.4 involves the second- and third-order density field induced by gravitational evolution
as well as nonlinear bias contributions. The NLO contribution is suppressed on large scales by (k/knl)

3+n,
where n is the effective power spectrum index and knl(τ) & 0.2hMpc−1 is the nonlinear scale [Eq. (4.25) in
Sec. 4.1.4; higher-derivative corrections are similarly suppressed by (kR∗)

2].
Now let us consider the leading correction to the galaxy-matter cross-power spectrum induced by local-

type PNG, which corresponds to the following two contributions:

〈δg(k)δ(k′)〉
∣∣∣
PNG

=
1

2
b2

〈(
δ(1)
)2

(k)δ(1)(k′)

〉
+ bK2

〈(
K

(1)
ij

)2

(k)δ(1)(k′)

〉
, (7.7)

since now the bispectrum of the linear (initial) density field δ(1) no longer vanishes. The notation (δ(1))2(k)
denotes the Fourier transform of the square of the density field, which is given by a convolution in Fourier

space, and analogously for the tidal field (K
(1)
ij )2(k). Now, for reasons that will become clear shortly, we re-

introduce the artificial smoothing of the density field appearing in the bias operators on the scale R = Λ−1,
which was employed in Sec. 2.10 to make the distinction between large (perturbative, or background) and
small (non-perturbative, or peak) scales rigorous. In the end, all observables should be independent of
Λ, and we can take the limit Λ−1 → 0. Correspondingly, we denote the “bare” bias coefficients with cO.
Eq. (7.7) becomes

〈δg(k)δ(k′)〉
∣∣∣
PNG

=
1

2
c2,Λ

〈(
δ

(1)
Λ

)2

(k) δ(1)(k′)

〉
+ cK2,Λ

〈(
K

(1)
ij,Λ

)2

(k) δ(1)(k′)

〉
, (7.8)

We now evaluate the first contribution using Eq. (7.4), yielding [536, 100]

〈(
δ

(1)
Λ

)2

(k) δ(1)(k′)

〉′
=

∫

p

B(1)(p,k − p,k′)WΛ(p)WΛ(|k − p|)

≈ 4fnl

∫

p

|WΛ(p)|2PL(p)M−1(k)PL(k) = 4fnlσ
2(Λ) 〈φ(k)δ(1)(k′)〉′ . (7.9)

In the second approximate equality, we have assumed that k � p ∼ Λ, where the integral peaks, so that B(1)

is evaluated in the squeezed limit Eq. (7.5). Further, σ2(Λ) is the variance of the density field smoothed on
the cutoff scale R = Λ−1. We will discuss the sub-leading terms in k/Λ in Sec. 7.1.5, which are similar to the
higher-derivative bias contributions discussed in Sec. 2.6; physically, the squeezed limit is a good assumption
as long as the scales on which galaxy statistics are measured are much larger than the scales over which
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galaxies form. The second term in Eq. (7.8), 〈(K(1)
ij,Λ)2(k)δ(1)(k′)〉, precisely yields Eq. (7.9) multiplied by a

factor of 2/3.
Perhaps surprisingly, we see that (δΛ)2 and (Kij,Λ)2 need to be renormalized at leading order in per-

turbation theory in the presence of local PNG, since their correlation with δ(1) on large scales is strongly
cutoff-dependent, as it is proportional to σ2(Λ). Moreover, the contribution in Eq. (7.9) is not small on
large scales. Rather, it becomes even larger than the Gaussian leading-order contribution in Eq. (7.6) for
sufficiently small k; note that, on large scales k < keq ' 0.02hMpc−1, M−1(k) ∝ (k/H0)−2. This result is
clearly not satisfactory, but can be cured by adding counter-terms to δ2,K2 which absorb this unphysical
contribution and yield renormalized operators:

[δ2](k) = (δ2
Λ)(k)− 4fnlσ

2(Λ)φ(k) + [Gaussian counter-terms] (7.10)

[K2](k) = (K2
Λ)(k)− 8

3
fnlσ

2(Λ)φ(k) + [Gaussian counter-terms] . (7.11)

What is crucial about these counter-terms induced by PNG is that they both involve the Bardeen potential
φ directly, without any derivatives. Such a term cannot be generated by gravitational evolution, as we have
seen in Sec. 2.5, since the gravitational potential is not locally observable; only density and tidal effects
proportional to second spatial derivatives of φ are.

In the presence of local PNG, therefore, we need to add fnlφ to the list of operators that appear in the
bias expansion [537, 538],

δg

∣∣∣
PNG

⊃ bφ fnl[φ] . (7.12)

While [φ] is strictly a renormalized operator, it does not receive any counter-terms at leading order in fnl.
Adding this new linear-order operator to the bias expansion leads to a leading-order large-scale galaxy-
matter cross-power spectrum given by

P lo
gm(k) ≡ 〈δg(k)δ(k′)〉′lo = b1〈δ(1)(k)δ(1)(k′)〉′ + bφfnl〈φ(k)δ(1)(k′)〉′

=
[
b1 + bφfnlM−1(k)

]
PL(k) , (7.13)

which now includes the leading terms on large scales in a proper cutoff-independent way. Similarly, we find
for the leading-order galaxy auto-power spectrum in the presence of local PNG

P lo
gg (k) =

[
b1 + bφfnlM−1(k)

]2
PL(k) + P {0}ε , (7.14)

where P
{0}
ε ≡ limk→0〈ε(k)ε(k′)〉′ is the leading-order stochastic contribution which is scale-independent on

large scales and thus of the same form as in the Gaussian case. This shows that PNG of the local type leads to
a scale-dependent bias ∝ k−2 in the large-scale two-point function of tracers [68, 536] (see Fig. 32 on p. 186).
This is a unique smoking-gun signal for PNG, as neither any local process nor nonlinear gravitational
evolution can generate such a scale dependence, as we have explained above. The term proportional to
(c2,Λ/2)〈(δ2

Λ)(k)δΛ(k′)〉 in Eq. (7.8) on the other hand must be seen as an artifact of the bare bias expansion
which is absorbed in the renormalized operator [δ2]. Correspondingly, the new bias parameter bφ has nothing
to do with b2 a priori. We will show how bφ can be derived using a generalized PBS argument in Sec. 7.3.

The physical interpretation of Eqs. (7.13)–(7.14) is the following. If the initial potential fluctuations have
a bispectrum given by Eq. (7.3), then long-wavelength potential perturbations modulate the initial amplitude
of small-scale perturbations. Consider a long-wavelength mode φ(k`), and a patch much smaller than the
wavelength of this mode. If we measure the local power spectrum of small-scale density perturbations within
such a patch at position x, denoted as PL(kS |x), then Eq. (7.5) states that this is modulated by

PL(kS |x) =
[
1 + 4fnlφ(k`)e

ik`·x
]
PL(kS) , (7.15)

where PL(k) is the matter power spectrum averaged over the entire initial conditions. To see this, simply
multiply this relation by φ(k′`)e

ik′`·x, take the expectation value, and integrate over d3x. This recovers
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the initial matter bispectrum in the squeezed limit, Eq. (7.5). We thus see that the amplitude of small-
scale perturbations in the initial conditions is modulated by long-wavelength potential perturbations via
4fnlφ(k`). Since the abundance of halos and galaxies is sensitive to the amplitude of initial fluctuations,
their abundance is correspondingly modulated by 4fnlφ(k`) [539], leading to the scale-dependent bias in
Eq. (7.13). In Sec. 2.5, we were able to absorb the amplitude of small-scale perturbations completely through

stochastic contributions such as P
{0}
ε since, in the Gaussian case, the small-scale initial perturbations are

statistically the same everywhere. This changes in the non-Gaussian case, and the relevant quantity that
determines the effect on bias is the squeezed-limit bispectrum, as we have seen.

The term bφφ(k) is the leading PNG contribution to bias, but it is not the only one. The non-Gaussianity
present in the initial conditions couples to gravitational evolution, and modifies the growth of matter per-
turbations as well (see Fig. 6 on p. 34). Changing the statistics of the small-scale initial conditions at
q = xfl(0) will modify the subsequent evolution along the fluid trajectory xfl(τ) [267, 540]. At lowest order
in derivatives and linear order in fnl, the bias operators we need to include consist of all combinations of
fnlφ with the Gaussian operators we have listed in Sec. 2.5. A crucial point here is that φ = φ(xfl(0)) = φ(q)
is to be evaluated at the Lagrangian position q that corresponds to the Eulerian position (x, τ) [538, 541],

φ(q) = φ(x)− si(x, τ)∂iφ(x) + · · · , (7.16)

where we have expanded to second order in perturbations. This is because the coupling is present in the
initial conditions, and not induced by evolution. In fact, this holds for any imprints present in the initial
conditions, including isocurvature modes between baryons and CDM (see Sec. 8.2). In summary, working
in Eulerian frame, the basis of operators introduced in Sec. 2.5.3, Eq. (2.64), needs to be augmented by the
following additional terms up to third order in case of local-type PNG:

1st fnlφ(q) (7.17)

2nd fnlTr[Π[1](x)]φ(q)

3rd fnlTr[(Π[1](x))2]φ(q) , fnl(Tr[Π[1](x)])2φ(q) ,

where Π
[1]
ij = Kij +(δij/3)δ ∝ ∂i∂jΦ. We have emphasized the distinction between Eulerian and Lagrangian

arguments. The continuation to higher orders in perturbation theory is now obvious. When deriving the
statistics of galaxies at a given order in perturbation theory, one also expands φ(q) following Eq. (7.16)
as we will see in Sec. 7.1.6. This however does not lead to additional bias parameters, as the amplitude
of the displacement terms is controlled by the corresponding bias parameter (for example, bφ). The fully
Lagrangian basis can be analogously constructed out of φ(q) and Eq. (2.61).

Eq. (7.17) only gives the leading non-Gaussian contribution O(fnl). At O(f2
nl), one needs to add φ2(q)

to the list, and, following our discussion after Eq. (7.3), also needs to keep cubic non-Gaussian terms ∝ gnl.
However, all these terms have an extremely small observable effect on LSS statistics [540]. For example,
one would have to measure the bispectrum of tracers with all three k modes of order aH, which is unlikely
to yield a significant detection in the foreseeable future, unless the cubic non-Gaussianity amplitude is very
large, gnl & 104. For this reason, we restrict to linear order in fnl in the bias expansion throughout. Of
course, even this will generate terms of order f2

nl and f3
nl in the tracer power spectrum and bispectrum,

respectively. These terms should be kept as they become important if a single k mode becomes of order aH.
The bias terms listed in Eq. (7.17) only apply to the case of PNG of the local type. However, the

generalization to other forms of the squeezed-limit bispectrum is straightforward, and only amounts to
replacing φ(q) with a nonlocal transformation of the potential. We will describe this next.

7.1.3 Beyond local-type PNG

We now consider the generalization of the results of the last section to arbitrary quadratic non-Gaussianity,
that is, PNG described to leading order by a three-point function or bispectrum. The impact of an arbi-
trary three-point function on the two-point function of galaxies was first considered in [542], who used the
thresholding model described in Sec. 2.1 (based on [525]; see Sec. 7.4.1). Ref. [543] explored the effects of

167



multi-field inflation on bias (we will discuss this in Sec. 7.1.4). The leading scale-dependent bias induced by
PNG on large scales for a generic primordial bispectrum was derived by [544], who generalized the physical
argument of [539], while [545] derived the same in the high-peak limit, and [495] adopted the iPT approach
(Sec. 6.6.2). Finally, [98, 546, 547] identified a missing contribution to the scale-dependent bias from PNG
when the PNG is not of the local type; we will return to this issue in Sec. 7.3.

Our treatment here continues to follow the philosophy of the general perturbative bias expansion (Sec. 2.5)
and is most closely related to that in [540], which in turn had precursors in [537, 100]. The only assumptions
made in this treatment are (i) gravity is described by General Relativity, and (ii) the initial conditions are
given by weakly non-Gaussian adiabatic perturbations φ. No assumptions are made regarding universality
of the galaxy or halo mass function, or the high-peak limit.

General quadratic PNG is often parametrized by a generalization of the local expansion Eq. (7.2) [544,
546],

φ(k) = φG(k) +

∫

k1

∫

k2

Knl(k1,k2)φG(k1)φG(k2)(2π)3δD(k − k12) , (7.18)

where φG(k) is a Gaussian field, and Knl(k1,k2) is a kernel. The kernel Knl is not uniquely determined
by the bispectrum of φ [544, 546], which raises the worry that a prediction for the non-Gaussian bias based
only on Bφ is ambiguous. Fortunately, this is not the case. Instead of adopting the expansion Eq. (7.18) to
derive the effects of PNG on galaxy bias, we will build the bias expansion upon the n-point statistics of φ
directly.

As discussed in Sec. 7.1.2, since we are interested in the clustering of galaxies on scales much larger than
the scales (∼ R∗) on which galaxy formation happens, the kinematic regime of the three-point function that
is relevant for bias is the squeezed limit where one mode k3 = k` is much smaller than the other two modes
k1, k2. The bispectrum can then be written as

Bφ(k1,k2,k`) =A(kS , k`)Pφ(k`)Pφ(kS) +O
(
k2
`

k2
S

)

=
∑

J=0,2,4,...

AJ(kS , k`)LJ(k̂S · k̂`)Pφ(k`)Pφ(kS) +O
(
k2
`

k2
S

)
, (7.19)

where kS ≡ k1 + k`/2 = −k2 − k`/2 as above and LJ are the Legendre polynomials. In the squeezed
limit, only even multipoles can contribute to the bispectrum for symmetry reasons. This can be seen by
considering the local small-scale power spectrum of φ, Pφ(kS |x), analogously to Eq. (7.15): since this is
the power spectrum of a real scalar field, we have to have Pφ(kS |x) = Pφ(−kS |x). This requires the
absence of odd multipole contributions in Eq. (7.19) [548, 540]. In the following, we will assume that Bφ is
scale-invariant and write

AJ(kS , k`) = 4aJ(k`/kS)α , (7.20)

where aJ and α are dimensionless constants. General scale-invariant bispectrum shapes can be approximated
by considering a sum of several contributions {aJ,i, αi} [549]; note that α can be a real number. The local
form Eq. (7.3) is a special case of Eq. (7.19) with J = 0, α = 0 and a0 = fnl. The factor of 4 in Eq. (7.20)
is motivated by the kernel expansion Eq. (7.18); the dimensionless coefficients aJ quantify the quadratic
coupling strength of the field φ.

Let us consider the case J = 0 first, and look again at the galaxy-matter cross-power spectrum before
renormalization. As in the case of local PNG, we need to deal with the term (1/2)c2,Λδ

2
Λ(x) in the bare bias

expansion, which now becomes [544], in analogy with Eq. (7.9),

〈(
δ

(1)
Λ

)2

(k)δ(1)(k′)

〉
= 4a0σ

2
−α/2(Λ) kα〈φΛ(k)δ(1)(k′)〉 , (7.21)

where the spectral moment σ−α/2(Λ) is defined in Tab. 4 [see also Eq. (6.1); note that this definition is valid
for non-integer n]. Again, we find a cutoff-dependence that needs to be renormalized. In this case, due to
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the factor kα in Eq. (7.21), we have to add a different counter-term to obtain the renormalized operator [δ2],

[δ2](k) = (δ2
Λ)(k)− 4a0σ

2
−α/2(Λ)kαφ(k) + [Gaussian counter-terms] . (7.22)

The same again holds for the renormalized operator [K2], up to a factor of 2/3. The reasoning of Sec. 7.1.2
now goes through in exactly the same way. We have to introduce an additional bias operator defined by

ψ(q) ≡
∫

k

kαφ(k)eik·q . (7.23)

The Eulerian basis of bias operators in general PNG with J = 0 is then directly obtained from Eq. (7.17)
by replacing fnlφ→ a0ψ, yielding

J = 0 : 1st a0ψ(q) (7.24)

2nd a0Tr[Π[1](x)]ψ(q)

3rd a0Tr[(Π[1](x))2]ψ(q) , a0(Tr[Π[1](x)])2ψ(q) .

The physical reason behind the new operator ψ(q) is the same as for local PNG: Eq. (7.19) for J = 0
states that the local initial matter power spectrum is rescaled by a single long-wavelength mode ψ(k`) via

PL(kS |x) =
[
1 + 4a0ψ(k`)e

ik`·xk−αS
]
PL(kS) . (7.25)

This modulation is mediated by ψ(k`), which now appears in the bias expansion. From Eq. (7.24), the
leading-order cross- and auto-correlations of galaxies are then given by

P lo
gm(k) =

[
b1 + bψa0k

αM−1(k)
]
PL(k)

P lo
gg (k) =

[
b1 + bψa0k

αM−1(k)
]2
PL(k) + P {0}ε . (7.26)

We see that, on large scales, there is a scale-dependent bias ∝ k−2+α. For α = 0, we clearly recover the
case of local-type PNG. For α = 2, the non-Gaussian contribution to the galaxy two-point function is
scale-independent on large scales and thus degenerate with the Gaussian term (linear bias b1). This is not
surprising, since for α = 2, ψ ∝ ∇2φ, which on large scales is simply proportional to the matter density. This
applies to the equilateral and orthogonal shapes of PNG generated during single-field inflation, and raises
the question of whether these shapes can be constrained using the scale-dependent bias. A scale-dependence
in the bias ∝ T−1(k) does arise due to the transfer function on smaller scales k & keq. On those scales, the
transfer function is no longer constant. However, for adiabatic perturbations, we can expand the inverse of
the transfer function as T−1(k) = 1 + t1(k/keq)2 + t2(k/keq)4 + · · · , where ti are factors of order unity. This
correspondingly leads to a scale-dependent bias of

bψf
α=2
nl k2M−1(k) ∼ fα=2

nl R2
∗H

2
0T
−1(k) ∼ const + fα=2

nl R2
∗H

2
0

(
k2

k2
eq

+
k4

k4
eq

+ · · ·
)
, (7.27)

where we have introduced fα=2
nl = a0(α = 2) and assumed that bψ ∼ R2

∗ is controlled by the characteristic
scale of the tracer R∗, the Lagrangian radius in case of halos (this will be justified in Sec. 7.3). These terms
scale in the same way with k, but are much smaller than the Gaussian higher-derivative bias b∇2δ∇2δ, ...
(Sec. 2.6) unless fα=2

nl & 103 [540]. However, this degeneracy can be broken if the scale dependence of the
bias at k & keq can be measured with sufficient precision, so that the different scales R∗ and k−1

eq involved
in the higher-derivative and PNG contributions can be disentangled. Ref. [550] show that constraints on
fα=2
nl from the scale-dependent bias can still be obtained; however, the partial degeneracy with the higher-

derivative and NLO (1-loop) contributions to the galaxy power spectrum increases the uncertainty on fα=2
nl

by a factor of ∼ 40 over the case where all higher-derivative and nonlinear bias contributions are absent.
Let us now briefly consider the case J = 2, i.e. a primordial bispectrum that is anisotropic in the squeezed

limit [551]. Such a form can, among other non-standard physics, indicate the presence of a massive spin-2
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(tensor) field during inflation (see Sec. 7.2). In this case, [δ2] receives a somewhat different counter-term
[540]

[δ2](x) = δ2(x)− 16

105
a2σ

2
−α/2(Λ)ψij(q)Kij(x) , (7.28)

where ψij(q) is a traceless tensor field derived from the Bardeen potential via

ψij(q) ≡
∫

k

3

2

(
kikj

k2
− 1

3
δij
)
kαφ(k)eik·q . (7.29)

This type of PNG corresponds to an anisotropic modulation of the local small-scale power spectrum by
long-wavelength potential perturbations via [552]

PL(kS |x) =

[
1 + 4a2ψij(k`)

kiSk
j
S

k2+α
S

eik`·x

]
PL(kS) . (7.30)

If the small-scale matter power spectrum can be measured directly, this effect can also be used to search for
spin-2 fields by constructing an estimator for ψij based on the local power spectrum PL(kS |x) [553].

Up to cubic order, the following terms then enter the bias expansion for PNG with J = 2:

J = 2 : 1st − (7.31)

2nd a2 Π
[1]
ij (x)ψij(q)

3rd a2 Tr[Π[1](x)]Π
[1]
ij (x)ψij(q) , ψij(q)Π

[2]
ij (x) .

Note that the leading non-Gaussian contribution to the bias expansion, Π
[1]
ij ψ

ij = ψijK
ij , is a second-order

term. For this reason, anisotropic PNG with J = 2 does not lead to a prominent large-scale signature in
the galaxy two-point function. It does however produce a scale dependence ∝ k−2+α in the quadrupole
of the galaxy bispectrum [540] (see Sec. 7.1.6), which for α < 2 is a smoking-gun signature of inflationary
physics just as the scale-dependent bias from local PNG is. Further, the same effect produces a strong
scale-dependence in the two-point function of galaxy shapes which are expected to keep a memory of an
anisotropic local initial power spectrum of small-scale fluctuations [552, 554].

Finally, in the presence of the next-higher spin contribution to PNG, J = 4, we need to introduce a tensor
field ψijkl which is trace-free and symmetric with respect to all indices [540]. Thus, symmetry dictates that
the leading contribution (at lowest order in derivatives) is at cubic order,

J = 4 : 1st − (7.32)

2nd −
3rd a4 Π

[1]
ij (x)Π

[1]
kl (x)ψijkl(q) .

This leads to a characteristic scale-dependent signature only in the galaxy 4-point function (trispectrum).

7.1.4 Stochasticity from PNG

We now turn to the contributions from PNG to the stochastic terms in the bias expansion, discussed
for Gaussian initial conditions in Sec. 2.8, beginning with the isotropic case, J = 0. By assumption, the
stochastic variables ε, εO introduced there only depend on the statistics of the small-scale initial perturba-
tions. As long as the coupling between long and short modes is completely captured by Eq. (7.25), all effects
are accounted for in our non-Gaussian basis Eq. (7.24). In this case, the list of terms in the Gaussian case,
Eq. (2.87) in Sec. 2.8, only needs to be augmented by terms of the same type multiplied by a0ψ(q),

J = 0 : 1st − (7.33)

2nd a0εψ(x)ψ(q)

3rd a0εψδ(x)ψ(q)Tr[Π[1](x)] .
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Here, the fields εψ, εψδ are characterized by their 1-point moments just as their counterparts for Gaussian

initial conditions. For anisotropic PNG, for example J = 2, a stochastic term εijψψij is the leading contri-
bution. However, since the small-scale modes do not know of any preferred direction at leading order, this
contribution has to be a higher-derivative contribution: εijψ(k) = kikj ε̂ψ(k), where ε̂ψ approaches white
noise on large scales. This further suppresses its numerical importance.

One can show that Eq. (7.33) together with Eq. (2.87) comprise the complete set of stochastic fields
as along as the initial conditions are derived from a single statistical field, corresponding to a single set of
random phases (App. B of [540]). This is the case for the ansätze Eq. (7.2) and Eq. (7.18) considered above.
However, if the initial Bardeen potential φ consists of a superposition of two or more independent fields with
different amounts of non-Gaussianity, for example

φ(q) = ϕG(q) + σG(q) + fσnlσ
2
G(q) , (7.34)

where ϕG and σG are independent Gaussian random fields, then Eq. (7.24) together with Eq. (7.33) are not
sufficient. Such models are characterized by a large trispectrum 〈φ(k1)φ(k2)φ(k3)φ(k4)〉 (Fourier transform
of the four-point correlation function) in the collapsed limit, where the ki are comparable in magnitude
but either |k13| or |k24| is much smaller [555, 556]; the trispectrum amplitude in this limit is customarily
parametrized by a parameter τnl. A contribution of this type leads to a cutoff-dependent loop contribution in
the galaxy two-point function which is not absorbed by ψ(q) or any other term in the basis Eq. (7.24). Thus,

for this type of PNG it is necessary to add an independent field ψ̂, with associated bias parameter bψ̂, to

the bias expansion, where ψ̂ is uncorrelated with the Gaussian part of the initial conditions φ [543, 556, 540]
[in contrast with ψ, which is completely correlated with φ, Eq. (7.23)]. This potentially large contribution
to galaxy clustering on large scales was already pointed out by [557].

Since ψ̂ is uncorrelated with long-wavelength modes of φ and only correlates with itself, it does not affect
the galaxy-matter cross-correlation, but gives a non-vanishing contribution to the galaxy power spectrum

P lo
gg (k) ⊃ τnl(bψ̂)2 Pψ̂(k) . (7.35)

For the local-type example given in Eq. (7.34), we have Pψ̂(k) = Pφ(k). Thus, this term will be one of the
dominant terms on sufficiently large scales. In this case, the leading-order correlation coefficient between
matter and galaxies becomes

rlogm(k) ≡ Pgm(k)√
Pgg(k)Pmm(k)

∣∣∣∣∣
lo

fnl 6=0
=

bψPδψ(k)√[
(bψ)2Pψ(k) + (τnl/f2

nl)(bψ̂)2Pψ̂(k)
]
PL(k)

, (7.36)

where Pψδ(k) ≡ 〈ψ(k)δ(1)(k′)〉′. This is equal to unity if and only if τnlbψ̂ = 0, otherwise the correlation
coefficient between matter and galaxies is less than one. Note the very different scale dependence of the
correlation coefficient compared to the Gaussian case, Eq. (2.35), discussed in Sec. 2.3. Hence, by measuring
the correlation coefficient between galaxies and matter on large scales, we can determine whether the col-
lapsed limit of the four-point function exceeds the value predicted for initial conditions sourced by a single
degree of freedom.

7.1.5 Beyond the squeezed limit

The leading non-Gaussian contribution to the galaxy two-point function for general scale-invariant
quadratic PNG is given by Eq. (7.26), which was derived by evaluating the primordial bispectrum in the
squeezed limit. This limit however is only valid if modes with wavelength of order the separation k do not
contribute appreciably to the variance [σ(R∗)]

2 of the small-scale density field on the scale R∗ relevant for
the formation of the tracer. Empirically, one finds that the squeezed limit is no longer a good approximation
when k approaches the peak of the matter power spectrum (k ∼ 0.02hMpc−1) [544]. We can deal with
this issue perturbatively by expanding the initial matter bispectrum beyond the leading squeezed limit.
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Assuming a scale-free bispectrum of primordial potential perturbations as given in Eq. (7.19), we obtain
(see [558] for details),

B(1)(k1,k2,k`) = 4
∑

J=0,2,4,...

{
a
{0}
J

(
k`
kS

)α
+ a
{2}
J

(
k`
kS

)α+2

f
{2}
J (kS) + · · ·

}
Pφ(k`)PL(kS) . (7.37)

The subleading term is no longer scale-free, since it involves derivatives of the transfer function dT (k)/dk.

However, given a primordial power spectrum and bispectrum, the subleading coefficient a
{2}
J and function

f
{2}
J (kS) are uniquely determined. Moreover, if α is the only (non-analytic) scaling dimension in the full

bispectrum, which holds for commonly considered shapes such as local, equilateral, orthogonal, quasi-single-
field, and the folded template (see Sec. 7.2), then the leading correction beyond the squeezed limit is
suppressed by (k`/kS)2 relative to the leading term, which is the scaling we assume here. The reasoning in
the following does not rely on this assumption however. Note that even if, at leading order, only the J = 0
term exists, terms of higher order in J will in general appear at subleading order.

The key point to notice is that the correction beyond the squeezed limit is of the same general form as
the leading term. Thus, specializing to a J = 0 contribution, we merely have to introduce another field ψ̃
in the bias expansion, where ψ̃ is defined as a nonlocal transformation of φ, Eq. (7.23) with α → α + 2.
Adding ψ̃ as counter-term to [δ2] in Eq. (7.28) then removes the cutoff dependence up to order (k/Λ)4 as
desired [558]. At leading order, this leads to a galaxy auto-power spectrum given by

P lo
gg (k)

∣∣∣
J=0

=
[
b1 +

(
a
{0}
0 bψk

α + a
{2}
0 bψ̃k

2+α
)
M−1(k)

]2
PL(k) + P {0}ε . (7.38)

Correspondingly, for the J > 0 contributions in Eq. (7.37) a similar reasoning applies, as described in
Sec. 7.1.3. These become relevant for loop corrections to the two-point function as well as the galaxy three-
and higher-point functions. We will see in Sec. 7.3 that, if we consider halos which approximately follow a
universal mass function, then bψ̃ ∼ R2

∗bψ, where R∗ is the Lagrangian radius of the halos. This can serve as
a rough estimate of the magnitude of the beyond-squeezed-limit contributions.

At this point, it is also worth noting that there are other terms which contribute to the galaxy power
spectrum Eq. (7.38) at a similar order as the beyond-squeezed-limit terms written in Eq. (7.38). First, the
Gaussian higher-derivative terms combine with the leading non-Gaussian term to a contribution

−2bψb∇2δk
2〈ψ(k)δ(k′)〉′.

Second, in the same way as higher-derivative terms, such as b∇2δ∇2δ, appear in the general bias expansion
for Gaussian initial conditions (Sec. 2.6), we expect related terms to be present for the field ψ in the non-
Gaussian case, i.e. b∇2ψ∇2

qψ(q) at leading order. For example, if the abundance of galaxies depends on
the statistics of initial fluctuations within a region of scale R∗, then such a term is obtained after formally
expanding the spatial convolution, with b∇2ψ ∝ R2

∗. All these terms scale as R2
∗k

2 times the leading PNG
contribution and are thus comparable to the beyond-squeezed-limit contribution given in Eq. (7.38). Note
that this is in contrast to the scale dependence induced by the transfer function entering through M−1(k),
which is controlled by k−1

eq � R∗ [see the discussion around Eq. (7.27)].
In Sec. 7.4.2, we will show that if we make the strong assumption that galaxy formation is an exactly

local function of the initial density field smoothed on a single scale R, then both the beyond-squeezed-limit
contributions as well as terms of the type b∇2ψ∇2

qψ(q) are uniquely determined by an integral over the
bispectrum.

7.1.6 Summary

In Sec. 7.1.1–7.1.5, we have derived the contributions to the general galaxy bias expansion that appear
in the presence of PNG, focusing on the leading, quadratic (in the Bardeen potential) PNG parametrized
by the bispectrum of potential perturbations. We now summarize the complete set of bias contributions up
to cubic order in perturbations. This complements the expansion given in Eq. (2.135) for Gaussian initial

172



conditions (Sec. 2.11). We first set τnl = 0, to obtain

δg(x)
∣∣∣
a0, a2, a4

= a0

{
bψψ(q) + bψδψ(q)δ(x) + bψδ2ψ(q)δ2(x) + bψK2ψ(q)(Kij)

2(x)

+ εψ(x)ψ(q) + εψδ(x)ψ(q)δ(x) + b∇2ψ∇2
qψ(q)

}

+ a2

{
bψKψ

ij(q)Kij(x) + bψKδψ
ij(q)Kij(x)δ(x) + bψΠ[2]ψij(q)Π

[2]
ij (x)

+ εψK(x)ψij(q)Kij(x)

}
+ a4bψKKψ

ijkl(q)Kij(x)Kkl(x) , (7.39)

where we restrict the expansion to linear order in the parameters aJ , as discussed at the end of Sec. 7.1.2.
Here, we have emphasized that the fields ψ, ψij , ψijkl are evaluated at the Lagrangian position q corre-
sponding to the Eulerian position (x, τ). Further, these three fields are defined as nonlocal transformations
of the primordial Bardeen potential φ,

ψ(q) ≡
∫

k

kαφ(k)eik·q

ψij(q) ≡
∫

k

3

2

(
kikj
k2
− 1

3
δij

)
kαφ(k)eik·q

ψijkl(q) ≡
∫

k

35

8
Pijkl(k̂)kαφ(k)eik·q , (7.40)

where Pijkl(k̂) denotes the complete trace-free projection operator with respect to k [see Eq. (A.25) for the
explicit expression].

All operators appearing in Eq. (7.39) are understood to be renormalized; for clarity, we have omitted the
square brackets. The first two lines, ∝ a0, contain the contributions for isotropic PNG. The first line contains
the generalization of the deterministic LIMD bias expansion, while the second line gives the stochastic and
higher-derivative contributions. Here, we have made the same approximation as in Eq. (2.135), and included
only the leading, linear higher-derivative term. Note that in the case of PNG, this also includes beyond-
squeezed-limit contributions (Sec. 7.1.5) which in general obey a different scaling than other higher-derivative
contributions.

The third and fourth lines, ∝ a2 and a4, contain the deterministic and stochastic contributions for
anisotropic PNG (J = 2 and 4). Due to symmetry, these terms start at second and third order in pertur-
bations, respectively. Correspondingly, we have not included a higher-derivative contribution, although the
same caveats regarding beyond-squeezed-limit terms mentioned above also apply here.

Finally, we give contributions ∝ τnl, which are present if the initial conditions are a superposition of
several random fields, as discussed in Sec. 7.1.4. Note that, by definition, ψ̂ is not correlated with the other
long-wavelength perturbations ψ, δ, Kij , and, at this order, is completely specified by its power spectrum
Pψ̂(k). We obtain, in precise analogy with the terms ∝ a0 in Eq. (7.39),

δg(x)
∣∣∣
τnl

= τnl

{
bψ̂ψ̂(q) + bψ̂δψ̂(q)δ(x) + bψ̂δ2 ψ̂(q)δ2(x) + bψ̂K2 ψ̂(q)(Kij)

2(x)

+ εψ̂(x)ψ̂(q) + εψ̂δ(x)ψ̂(q)δ(x) + b∇2ψ̂∇2
qψ̂(q)

}
. (7.41)

We can further restrict Eq. (7.39) to the most commonly considered case of local PNG by setting
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a0 → fnl, ψ → φ, and a2 = 0, a4 = 0, τnl = 0. This yields

δg(x)
∣∣∣
fnl

= fnl

{
bφφ(q) + bφδφ(q)δ(x) + bφδ2φ(q)δ2(x) + bφK2φ(q)(Kij)

2(x)

+ εφ(x)φ(q) + εφδ(x)φ(q)δ(x) + b∇2φ∇2
qφ(q)

}
. (7.42)

Ref. [540] was the first to give the complete expressions Eqs. (7.39)–(7.42). Initial studies of bias expansions
in the presence of local-type PNG only considered the first term, bφφ. Ref. [538] extended the expansion
by including all terms of the form φn(q)δm(x). They did not, however, include the tidal term ∝ φ(Kij)

2,
nor the stochastic and higher-derivative terms in the second line of Eq. (7.42). This also applies to [541].
Ref. [559] included the Gaussian tidal term (Kij)

2, but did not write down its non-Gaussian counterpart
φ(Kij)

2 as they restricted to a second-order bias expansion. They also did not consider the stochastic term
εφφ which is however relevant at second order (see below).

After having given the general bias expansion in the presence of quadratic PNG, we now turn to galaxy
statistics, generalizing the results of Sec. 4.1.1. Specifically, we provide a succinct summary of the leading-
order galaxy power spectrum and bispectrum in the rest frame (without RSD and other projection effects).
We further make explicit the time dependence of all quantities.

First, the leading-order cross- and auto-power spectra of galaxies are given by

P lo
gm(k, τ) = [b1(τ) + ∆b1(k, τ)]PL(k, τ)

P lo
gg (k, τ) = [b1(τ) + ∆b1(k, τ)]

2
PL(k, τ) + P {0}ε (τ) + τnl[bψ̂(τ)]2Pψ̂(k) , (7.43)

where
∆b1(k, τ) ≡ a0bψ(τ)kαM−1(k, τ)

local PNG
= fnlbφ(τ)M−1(k, τ) (7.44)

is the scale-dependent bias induced by PNG. This is, of course, merely a rephrasing of the nonlocal bias
bψ(τ)ψ(q). Here, we have let α denote the squeezed-limit scaling index of the J = 0 contribution in
Eq. (7.19). For example, for local and equilateral type PNG [560, 561, 562], we have α = 0, and 2,
respectively. Quasi-single field inflation [563, 564] yields 0 ≤ α ≤ 3/2.

Note that we have not included the beyond-squeezed limit and higher-derivative corrections, which
typically scale as R2

∗k
2∆b1(k)PL(k); see Sec. 7.1.5 for a discussion. Further, while the set of cubic operators

listed above is sufficient to derive the NLO (1-loop) contribution from PNG to the galaxy power spectrum,
these terms are highly suppressed and we thus refrain from writing the full expression here; they involve
three new bias parameters: a0bψδ, a2bψK , a2bψΠ[2] . In order to obtain an order-of-magnitude estimate, one
can replace PL(p) in the standard NLO terms, Eq. (4.22) on p. 82 in Sec. 4.1.4, with pαM−1(p)PL(p). Even
for α = 0, this leads to terms which are suppressed by ∼ 10−4aJ relative to the standard NLO terms, and
would thus only be relevant if aJ & 100.

Next, we give the complete expression for the rest-frame galaxy bispectrum at leading order, including
all relevant terms from Eq. (7.39) [540]. Here, there are considerably more terms, since all quadratic
combinations of ψ and, for J = 2, ψij appear. It is useful to decompose the separable contributions to the

galaxy bispectrum in terms of Legendre polynomials Ll(k̂i · k̂j) of the cosine between two wavevectors:

Blo
ggg(k1, k2, k3, τ) = b31B

(1)(k1, k2, k3, τ) +
∑

l=0,1,2

[
PL(k1, τ)PL(k2, τ)B[l](k1, k2, τ)Ll(k̂1 · k̂2) + 2 perm.

]
.

(7.45)

The first contribution here is simply the leading-order matter bispectrum Eq. (7.4). Note that Eq. (7.45)
is not restricted to the squeezed limit, but valid for all configurations. Hence, all multipoles l including odd
ones appear here. As in Sec. 2.8, we define the large-scale stochastic amplitudes

P {0}εOεO′
(τ) ≡ lim

k→0
〈εO(k, τ)εO′(k

′, τ)〉′ (7.46)
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and B
{0}
ε (τ) [Eq. (2.86)]. While we restrict to Bggg here, the results for Bggm and Bgmm can be obtained

analogously.
The monopole consists of deterministic and stochastic contributions given by

B[0](k1, k2, τ) =
(
b1(τ) + ∆b1(k1, τ)

)(
b1(τ) + ∆b1(k2, τ)

)

×
[

34

21
b1(τ) + b2(τ) +

bψδ(τ)

bψ(τ)

(
∆b1(k1, τ) + ∆b1(k2, τ)

)]

+ τnlb1(τ)bψ̂(τ)bψ̂δ(τ)

(
Pψ̂(k1)

PL(k1, τ)
+

Pψ̂(k2)

PL(k2, τ)

)
+ B[0]

ε (k1, k2, τ)

B[0]
ε (k1, k2, τ) =

B
{0}
ε (τ)

3PL(k1, τ)PL(k2, τ)

+

[
(b1(τ) + ∆b1(k1, τ))

(
P {0}εεδ

(τ) +
P
{0}
εεψ (τ)

bψ(τ)
∆b1(k1, τ)

)
1

PL(k2, τ)
+ {1↔ 2}

]

+ τnlbψ̂(τ)P {0}εεψ̂
(τ)

Pψ̂(k1) + Pψ̂(k2)

PL(k1, τ)PL(k2, τ)
. (7.47)

The dipole term, whose only contributions at this order come from expansions of the Lagrangian position q
around the Eulerian position x [cf. Eq. (7.16)], is given by

B[1](k1, k2, τ) =
(
b1(τ) + ∆b1(k1, τ)

)(
b1(τ) + ∆b1(k2, τ)

) [k1

k2

(
b1(τ) + ∆b1(k1, τ)

)
+
k2

k1

(
b1(τ) + ∆b1(k2, τ)

)]

+ τnlb1(τ)[bψ̂(τ)]2

(
k1

k2

Pψ̂(k1)

PL(k1, τ)
+
k2

k1

Pψ̂(k2)

PL(k2, τ)

)
. (7.48)

That is, B[1] is induced by the fact that the fields ψ, ψ̂ are evaluated at the Lagrangian position. It is
completely determined by the bias parameters b1, bψ, bψ̂ that appear in the galaxy power spectrum, and
can hence serve as a clean, independent cross-check of the scale-dependent bias measured in the power
spectrum [540].

Finally, the quadrupole

B[2](k1, k2, τ) =
4

3

(
b1(τ) + ∆b1(k1, τ)

)(
b1(τ) + ∆b1(k2, τ)

) [
bK2(τ) +

2

7
b1(τ)

]
(7.49)

+ a2bψK(τ)
(
b1(τ) + ∆b1(k1, τ)

)(
b1(τ) + ∆b1(k2, τ)

) [
kα2

1 M−1(k1, τ) + kα2
2 M−1(k2, τ)

]
,

contains contributions from tidal bias [∝ bK2 , see Sec. 4.1.1] and from anisotropic PNG with J = 2 (∝
a2bψK). Note the different prefactor in the second line, which is due to the definition of the field ψij
multiplied by the bias bψK [Eq. (7.40)]. Here, α2 denotes the scaling index of the J = 2 contribution in
Eq. (7.19). The bispectrum quadrupole thus allows for J = 0 and J = 2 contributions to be disentangled.
As we will explain in the next section, this means that galaxy clustering can in principle probe the presence
of additional fields in the early Universe as well as determine their spin.

Finally, while we have restricted to the two- and three-point functions here, higher n-point functions can
also be used to constrain PNG. For example, the estimator constructed in [553] (out of the matter density
field) essentially corresponds to measuring the collapsed trispectrum.

7.2 Probing inflation with galaxy clustering

In the previous section, we have seen that the squeezed-limit bispectrum and collapsed trispectrum of
the initial conditions can lead to a rich array of signatures in the clustering of galaxies on large scales. We
now briefly summarize which aspects of the physics of inflation are probed by these signatures.

175



Single-field inflation: In single-field inflation, one single scalar degree of freedom drives the expansion
during the inflationary quasi-de Sitter phase, and leads to the primordial curvature perturbations that
provide the seeds of large-scale structure. Interestingly, Ref. [565] showed that in single-field inflation and
in the attractor regime, the squeezed-limit bispectrum is universal and corresponds to a local PNG with
fnl ∝ ns − 1, where ns − 1 ≈ 0.04 is the deviation from the scale-invariance of the power spectrum of
primordial curvature perturbations. This prediction, known as consistency relation, would suggest that
there is a definite nonzero value of local fnl predicted in single-field inflation that LSS surveys could target.
On the other hand, multi-field inflationary models, which we discuss below, generically produce larger values
of local fnl. While ns − 1 is small for the simplest single-field models, oscillations in the primordial power
spectrum can significantly enhance this effect [566, 567, 568, 569].

However, the calculation of the bispectrum in [565] was done in a particular gauge (comoving gauge),
and evaluated during the epoch of inflation, raising the question of how this effect transfers to late times
and how it manifests in actual observations of galaxy clustering. Several recent papers [570, 95, 571, 145,
185, 572] have shown that the single-field consistency relation is equivalent to the statement that there is
no physical coupling of long-wavelength potential perturbations φ` to small-scale perturbations. That is, in
single-field inflation, there is no scale-dependent bias in the rest frame of galaxies; the leading effect of a
large-scale perturbation enters as ∂i∂jφ`, precisely as argued in Sec. 2.9. The apparent contradiction with
Refs. [573, 574], who argue that terms in second-order relativistic perturbation theory (see [575] for a recent
review) actually lead to an effective fnl of order 1, is most likely resolved by including the mapping to local
observables defined in terms of proper length and time units. Unlike the squeezed-limit bispectrum and
hence value of fnl, which depend on the coordinate system in which they are calculated, the absence of
long-/short-mode coupling in the rest frame of comoving observers is a physical, gauge-invariant statement.

It is important to stress however that variants of single-field inflation that are not in the attractor regime,
due for example to a non-Bunch-Davies state [576, 577, 578] or an initial kick of the inflaton [579], do lead to
a local-type bispectrum over a finite range of values of k`/kS . That is, while they lead to a physical scaling
of (k`/kS)2, as discussed above, for sufficiently small values of k`/kS (that is, in comoving coordinates the
bispectrum obeys the consistency relation), there can be an intermediate regime where k`/kS is small and
yet the bispectrum shows a scaling with α < 2 (see [524] for a discussion). This also applies to resonant
non-Gaussianity [566, 567]. Thus, the simple separable ansatz Eq. (7.19) is not sufficient for such models.
A full derivation of the observable scale-dependent bias due to PNG in these models has been performed
recently in [569], who showed that for models that satisfy CMB bounds as well as theoretical consistency, the
scale-dependent bias is unlikely to be observable. Previously, Ref. [568] had reached different conclusions,
as they included the unphysical contribution from the consistency relation.

Note that the mapping from the galaxy rest frame to the observer’s frame on Earth by way of tracing
photon geodesics through the perturbed spacetime, which includes gravitational redshift, Doppler effect, and
lensing, does lead to an apparent scale-dependent bias in the observed galaxy clustering. We review these
contributions in Sec. 9. However, these effects are present even for perfectly Gaussian initial conditions, and
unrelated to inflationary physics. They can easily be calculated given a fiducial cosmological model and the
luminosity function of the sampled galaxy population. Thus, the observation of any residual scale-dependent
bias ∝ k−2 in galaxy clustering—after all light-propagation effects have been taken into account—would rule
out single-field inflation in the attractor regime. Moreover, the projected constraints on fnl from planned
future galaxy surveys are at the level of σ(fnl) ∼ 1 (Sec. 7.6) and thus expected to improve upon current
CMB constraints (|fnl| . 5 [580]) significantly.

By definition, in single-field inflation there is only a single source of random phases which precludes any
large-scale stochasticity between galaxies and matter of the type described in Sec. 7.1.4. A detection of the
latter would thus similarly rule out single-field inflation. Detecting this signature requires observations of
both the matter-galaxy cross-power spectrum, for example from weak gravitational lensing, and the galaxy
power spectrum over the same volume. No detailed study of the detectability of such a signature has been
published yet.

Finally, single-field inflation does generally produce nonlocal non-Gaussianities with α = 2 [565, 576, 581].
In particular, the precise shapes are of the equilateral and orthogonal types [582]. While canonical single-field
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slow-roll inflation leads to (physical) amplitudes of f eql
nl ∼ 0.01 [583], these non-Gaussianities are enhanced

in more general single-field models where the inflaton has a small sound speed cs. In this case, one has
f eql
nl ' 1/c2s [581]. Note that, since these types of PNG have α = 2 in the squeezed limit [Eq. (7.26)], they

do not lead to a large-scale scale-dependent bias. In fact, improving upon CMB constraints on f eql
nl with

large-scale structure will be quite challenging [263].
Multifield inflation: By definition, these models involve additional light degrees of freedom beyond

a single scalar, and generically produce local PNG with fnl of order 1 or larger (see [584] for a review).
Moreover, if some of the fields have a mass that is comparable to the Hubble rate during inflation, then a
scale-dependent bias [Eq. (7.26)] ∝ kα−2 with 0 ≤ α ≤ 3/2 is induced, and a measurement of α allows for
a measurement of the mass m of the field, provided m < 3H/2 [563, 564, 585, 586]. For higher-mass fields,
oscillatory features are present in the bispectrum [587, 588, 589]. Further, the large-scale stochasticity in
the relation between galaxies and mass described in Sec. 7.1.4 is a unique feature of multifield models (see
[543, 556] for concrete examples).

Higher-spin fields: An anisotropic squeezed-limit bispectrum [J = 2, 4, · · · in Eq. (7.19)] leads to
further unique signatures in galaxy clustering, as we have seen in Sec. 7.1.3. This type of PNG can signal
the presence of higher-spin fields during inflation [588, 590, 591]; “solid inflation” [592, 593] and “Chromo-
natural inflation” [594] are models of a different type which also lead to anisotropic PNG. In addition,
inflationary models with anisotropic non-Bunch-Davies (i.e. non-vacuum) state [595, 596] as well as those
with large primordial magnetic fields [597, 598] in general also produce anisotropic squeezed-limit bispectra.

In summary, we see that large-scale galaxy statistics provide numerous possibilities for probing the
statistics of the initial conditions and putting constraints on inflationary models. However, in order to derive
constraints on fnl, aJ , τnl, · · · , we need predictions for the corresponding bias parameters bψ, bKψ, bψ̂, · · · .
The peak-background split provides a possibility for deriving such predictions from semi-analytical methods
and simulations.

7.3 Non-Gaussian bias parameters from the peak-background split

In Sec. 3.1, we were able to derive the renormalized LIMD bias parameters bN ≡ N ! bδN as a response of
the abundance of halos to a change in the background density via the PBS argument. We now present similar
identifications for the scale-dependent bias from PNG, specifically the parameters bφδN , bψδN (N ≥ 0) which
appear in the expansions Eq. (7.17) and Eq. (7.24) for local and nonlocal PNG, respectively (we restrict to
isotropic PNG with J = 0 throughout). Similar to Sec. 3, we begin with the general case which applies to
galaxies and other tracers, and then specialize to the case of halos following a universal mass function.

In order to derive bφδN , bψδN , we need to consider the response of the galaxy number density to a
change in the amplitude of initial density fluctuations, which is where the scale-dependent bias physically
originates, through Eq. (7.15) and Eq. (7.25). The simplest way to parametrize such a dependence is to
rescale initial perturbations by a factor of 1 + 2εk−α from their fiducial value, where ε is an infinitesimal
parameter [corresponding to a0ψ, Eq. (7.25)]. For example, for a given realization of initial conditions of an
N-body simulation, one can obtain a realization with a different power spectrum normalization and shape
by rescaling the initial density perturbations by (1 + 2εk−α). We then define the Lagrangian non-Gaussian
PBS bias bLψδN by generalizing the expression Eq. (3.4) to

bLψδN ≡
1

N !

1

ng(0)

∂N+1ng(∆, ε)

∂∆N∂ε

∣∣∣∣
∆=0,ε=0

. (7.50)

This includes bψ as a special case for N = 0, and bφ for N = 0, α = 0. Note that the distinction between
Lagrangian and Eulerian bias parameters matters only for N ≥ 1, as the ε-derivative is always defined with
respect to the initial fluctuations. For N ≥ 1, the mapping between Lagrangian bLψδN and Eulerian bEψδN can

be derived in analogy to the Gaussian case of Sec. 2.1; specifically, bEψδN is given by bLψδN plus corrections

involving the bEψδm with 0 ≤ m < N .
The bias parameters defined in Eq. (7.50) can be understood as follows. The mean comoving galaxy

number density is a function of the mean comoving matter density ρm and the initial power spectrum of
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density fluctuations (and higher n-point functions for PNG). bLψδN then denotes a specific derivative of this
function with respect to ρm and ε at fiducial values of ρm and the primordial power spectrum normalization.
Thus, through a simple generalization, the PBS argument can be used to derive the leading bias parameters
in the non-Gaussian case as well. Specifically, the leading effect of local PNG (α = 0), quantified by bφ,
is controlled by the response of the mean number density of galaxies to a rescaling of the amplitude As of
initial fluctuations,20

bφ = 4
1

ng

∂ng
∂ lnAs

= 2
1

ng

∂ng
∂ lnσ8

. (7.51)

Here, we have used that a scale-independent rescaling of the initial conditions can be equally parametrized
through As or σ8. This relation, and more generally Eq. (7.50), can be evaluated for any given prescription
that predicts the mean abundance of galaxies or halos. We discuss the application of Eq. (7.51) to halos
identified in N-body simulations, as performed in [315, 599], in Sec. 7.5. For now, we begin with some
general considerations.

Let us assume that the number density of the given galaxy sample depends on the amplitude of initial
fluctuations chiefly on a particular scale R. Then, we can conclude that:

• For local PNG, the particular scale R is irrelevant for bφδN , as all perturbations δ(k) are rescaled
uniformly by a long-wavelength potential perturbation.

• For nonlocal separable bispectra with index α as in Eq. (7.19), the scale of the small-scale perturbations
that govern the abundance of galaxies does matter for the bias parameters. Note that [bψδN ] = (Mpc)α.
By dimensional analysis, we thus expect that bψδN ∝ Rα. If the galaxy number density depends on
the amplitude of initial perturbations on several different scales, then bψ becomes a linear combination
of these different dependencies with relative weights controlled by α, i.e. the shape of the primordial
bispectrum.

• Non-separable bispectra first need to be approximated by a linear combination of separable shapes
(see e.g. [549]). In that case, the galaxy statistics in general involve several different bψi with different
αi.

Thus, a given galaxy population responds differently to different shapes of primordial non-Gaussianity, i.e.
bψ and bψO depend on the galaxy sample as well as the shape of the primordial bispectrum.

We now turn to the special case of dark matter halos. Specifically, we consider a slight generalization of
the universal mass function discussed in Sec. 3.3. We write the mean abundance of halos as

nh = nh (ρm, σ) J , where σ ≡ σ(R[M ]) , J ≡
∣∣∣∣
d lnσ

d lnM

∣∣∣∣ . (7.52)

That is, nh is given as a function of the mean density of the Universe and the variance of the density field
smoothed on the scale R(M), as well as its derivative with respect to scale. The Jacobian J transforms from
an interval in lnσ to an interval in lnM , and we thus assume that nh is linearly proportional to it (as is the
case for the universal mass function introduced in Sec. 3.3). Under the rescaling δ(k) → [1 + 2εk−α]δ(k),
the small-scale root-mean-square density fluctuation σ transforms to lowest order as

σ →
[

1 + 2ε
σ2
−α/2

σ2

]
σ , (7.53)

where σ−α/2 ≡ σ−α/2(R). The Jacobian transforms as

J →
[

1 + 4ε
σ2
−α/2

σ2

(
d lnσ2

−α/2

d lnσ2
− 1

)]
J , (7.54)

20Note that under the rescaling with α = 0, As and σ8 change by a factor (1 + 4ε) and (1 + 2ε), respectively.
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where we have used d/d lnM = 2J d/d lnσ2. Note that for local quadratic PNG, where α = 0, the local
Jacobian is not affected by long-wavelength modes, as expected. Using Eqs. (7.51)–(7.52), we can then
derive the leading non-Gaussian bias through Eq. (7.50) [98, 100]:

bψ =

[
bφ + 4

(
d lnσ2

−α/2

d lnσ2
− 1

)]
σ2
−α/2

σ2
. (7.55)

Note that we use a convention different than [98] for bψ, whence our factor of 4. Here, bφ = bψ(α = 0)
is the PBS bias parameter quantifying the effect of local PNG for halos following Eq. (7.52). Thus, for
halos following a universal mass function, the bias parameters quantifying the response to general nonlocal
PNG are directly related to those for local PNG. Refs. [98, 600] first pointed out the contribution by the
Jacobian J , which is numerically important for the match to the scale-dependent bias measured from N-body
simulations of nonlocal PNG, as well as cubic local-type (gnlφ

3) PNG [600, 546]. We will not discuss gnl in
detail, as its signature is strongly degenerate with that of fnl (see, e.g., [601]), but note that the different
mass-dependence could be exploited with multi-tracer techniques (as discussed in Sec. 7.6.2) in order to
isolate gnl from fnl.

Note that the bias parameters associated with the additional subleading contributions from the squeezed-
limit expansion of the bispectrum (Sec. 7.1.5) can be calculated in the same manner. Specifically, the bias
parameter bψ̃ appearing in Eq. (7.38) is defined as the response of the mean abundance nh to a change in
the amplitude of initial density perturbations

δ(1)(k)→
[
1 + 2εk−α−2f

{2}
0 (k)

]
δ(1)(k) . (7.56)

Thus, for a mass function of the form Eq. (7.52), the subleading contribution is directly related to the leading

scale-dependent bias bψ via spectral moments involving k−α−2f
{2}
0 (k).

We now specialize Eq. (7.52) to the well-known universal form [Eq. (3.21)],

nh =
ρm
M

νcf(νc) J , νc ≡
δcr

σ
, (7.57)

where f(νc) is in general an arbitrary function of νc. In addition to the relation between bψ and bφ [Eq. (7.55)],
the specific form Eq. (7.57) further allows us to connect bφ to the linear Lagrangian bias bL1 derived from
the PBS:

bL1 = b1 − 1 =
1

nh

∂nh
∂ ln ρm

= − 1

σ

1

νcf(νc)

d[νcf(νc)]

dνc

bφ =
1

nh

∂nh
∂ε

= 2
1

nh

∂nh
∂ lnσ

= −2
δcr

σ

1

νcf(νc)

d[νcf(νc)]

dνc
= 2δcrb

L
1 . (7.58)

This is the original relation between the density bias parameter and the response to primordial non-
Gaussianity derived in [68, 539, 538], resulting in a scale-dependent bias for local PNG of

∆b1(k, τ) = fnlbφM−1(k, τ) =
3fnlδcrb

L
1 Ωm0H

2
0

k2T (k)Dmd(τ)
. (7.59)

We will discuss the accuracy of this result for actual halos in Sec. 7.5 (see Figs. 32–33). The relation
between non-Gaussian and Gaussian PBS bias parameters can be continued to higher order via Eq. (7.50).
For example, one easily obtains [538]

bLφδ = −bL1 + δcrb
L
2 , and bEφδ = bLφδ + bφ . (7.60)

The second relation follows immediately from the relation between Lagrangian and Eulerian halo densities
(Tab. 5 in Sec. 2.2).

As in the Gaussian case, the non-Gaussian PBS biases bψδN are the physical, renormalized bias param-
eters in the large-scale limit, which enter the n-point functions of galaxies and halos (Sec. 7.1.6) as well as
other halo statistics, such as moments, as described in Sec. 4.
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7.4 Non-Gaussian bias from Lagrangian bias models

In the previous sections, we have seen how the effect of primordial non-Gaussianity, which couples long-
and short-wavelength modes, can be included in a model-independent way through an expansion of the
bispectrum in the squeezed limit. We now discuss the non-Gaussian bias in the context of Lagrangian bias
models. The essential difference between this approach and the general bias expansion Eq. (7.39) is that the
“microscopic” perturbative bias expansion in the Lagrangian models remains the same as in the Gaussian
case. That is, no new terms are introduced in the local description of the tracer abundance. Throughout,
we will neglect gravitational evolution and perform the computation in Lagrangian space. This is justified
as long as we consider sufficiently large scales where linear theory describes the evolution of the cosmic
density field well. As we will see below, all the Lagrangian bias models predict the correct low-k scaling
(for example, ∆b1(k) ∝ k−2 for local PNG), but they differ in their prediction for the amplitude of the
non-Gaussian scale-dependent bias. Note that, in all these Lagrangian approaches, the scale R is a physical
scale associated with the scale of galaxy formation, unlike the cutoff Λ−1 employed in Sec. 7.1.2.

7.4.1 Thresholding

We begin with a simple but illuminating example, the simple Lagrangian LIMD ansatz discussed in
Sec. 2.1, in which the comoving Lagrangian halo number density is given by

nh(q) = nthr(q) ∝ ΘH [δR(q)− δcr] , (7.61)

where ΘH is the Heaviside function and δR is the density field smoothed on the physical scale R. The
normalization constant, which we omitted to write here, cancels in the computation of correlation functions.
The threshold δcr can be identified with the spherical collapse threshold (Sec. 5.2.1), so that the expectation
value of Eq. (7.61), after taking a derivative with respect to M , corresponds to the Press-Schechter mass
function (Sec. 5.2.2). The two-point correlation function of thresholded regions in case of Gaussian initial
conditions was derived in Sec. 2.1 [Eq. (2.7)]. In the high-peak limit νc � 1, Eq. (2.7) simplifies to [12, 602,
603]

ξLh (r)
νc�1

= exp

(
ν2
c

σ2(R)
ξL,R(r)

)
− 1 ≈

(
νc
σ(R)

)2

ξL,R(r) ≡ (bL1 )2ξL,R(r) , (7.62)

where the linear Lagrangian bias in the high-peak limit is bL1 ≈ νc/σ(R). In order to calculate the non-
Gaussian bias in the same high-peak regime, Ref. [536] considered the extension of Eq. (7.62) to non-Gaussian
initial conditions derived in [525, 526],

ξLh (r)
νc�1

= −1 + exp

{ ∞∑

N=2

N−1∑

j=1

νNc σ
−N (R)

j!(N − j)! ξ
(N)
L,R [q1, · · · , q1, q2, · · · , q2]

}
. (7.63)

Here,

ξ
(N)
L,R(q1, · · · qN ) ≡ 〈δ(1)

R (q1) · · · δ(1)
R (qN )〉c (7.64)

are the connected N -point functions of the initial, linearly extrapolated density field smoothed on the scale
R. Assuming that the primordial three-point function dominates all other (N > 3)-point functions in
Eq. (7.63), the non-Gaussian correction to the two-point correlation function of thresholded regions reads,

at linear order in ξ
(3)
L,R,

∆ξLh (r) =
ν3
c

2σ3(R)

[
ξ

(3)
L,R(q1, q1, q2) + ξ

(3)
L,R(q1, q2, q2)

]
. (7.65)

In Fourier space, this relation can be written as follows:

PLh (k) = [b1 + 2b1∆b1(k)]PL(k) , (7.66)
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where the scale-dependent bias is related to the primordial three-point function through [536]

∆b1(k) = 2ν2
cF (3)

R (k)M−1
R (k)

where F (3)
R (k) ≡ 1

4σ2(R)Pφ(k)

∫

k1

MR(k1)MR(p)Bφ(k1, |k − k1|, k) . (7.67)

Before discussing this result which, again, is only valid in the high-peak limit, let us illustrate how the
non-Gaussian bias can be derived from the perturbative bias expansion corresponding to thresholding. The
latter takes the familiar LIMD form

δLthr(q) = bL1
[
δR
]
(q) +

1

2
bL2
[
δ2
R

]
(q) + . . . , (7.68)

where, for Gaussian initial conditions, the renormalized bias parameters bLN and operators [δNR (q)
]

are related
to orthogonal polynomials as discussed in Sec. 6. For the simple thresholding models, these are Hermite
polynomials as in Eq. (2.102) [99], and the bLN are given by [see Eq. (2.8)]

bLN =

√
2

π

[
erfc

(
νc√

2

)]−1
e−ν

2
c/2

σN (R)
HN−1(νc)

νc�1
=

νNc
σN (R)

. (7.69)

The leading-order contribution induced by a primordial three-point function is

∆ξLh (r) = bL1 b
L
2

〈[
δR
]
(q1)

[
δ2
R

]
(q2)

〉
= bL1 b

L
2

〈
δR(q1)δ2

R(q2)
〉
. (7.70)

Transforming to Fourier space and taking the high-peak limit, we recover Eq. (7.67). Let us now briefly
discuss this result:

• One could identify ν2
c in Eq. (7.67) with bL1 δcr and, thus, recover the prediction for a universal mass

function, Eq. (7.58). However, Eq. (7.70) shows that the actual prediction of thresholding is bφ ∝ bL2 ,
which is clearly at odds with measurements from simulations. In fact, any Lagrangian LIMD bias
expansion yields bφ ∝ bL2 . This point was first made by [604, 605, 243]. Note that, here, this contri-
bution is not absorbed by a counter-term bφφ because the bias parameters are defined as coefficients
of powers of the density smoothed on a physical scale R, rather than the artificial cutoff Λ used in
Sec. 7.1.2. This is a consequence of using a microscopic Lagrangian ansatz such as Eq. (7.61), rather
than an effective large-scale expansion as in Sec. 7.1.

• Eq. (7.67) generically applies to any primordial three-point function, i.e. it is not restricted to the case
of local PNG. However, as will be shown shortly, for nonlocal PNG it misses an important contribution
to the scale-dependent bias.

• This derivation does not rely on expanding the primordial bispectrum in the squeezed limit. This is
a consequence of the precise LIMD ansatz Eq. (7.61), which does not restrict us to scales k � 1/R.
One can think of this as resumming the beyond-squeezed-limit contributions discussed in Sec. 7.1.5,
by making an assumption about how precisely the Lagrangian halo number density depends on the
statistics of the small-scale modes. The accuracy of this approach depends on whether this dependence
is well approximated by Eq. (7.61). Indeed, we will see below that the prediction Eq. (7.67) changes if
the Lagrangian bias model includes higher-derivative operators (Sec. 7.4.3). Nevertheless, Eq. (7.67)
does match the results of Sec. 7.1.5 at next-to-leading order in the squeezed-limit expansion when
evaluated for halos following a universal mass function.

7.4.2 Excursion-set approach

Clearly, a thresholding ansatz of the type Eq. (7.61) is not sufficient for a realistic description of halo bias
(see Sec. 5). One should instead also include the first-crossing constraint, which leads to a correction to the
scale-dependent bias. The correction is significant for all types of PNG beyond local quadratic PNG [98, 600].
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This correction term comes about because the scale-dependent coupling between long- and short-wavelength
modes in the case of general PNG modifies the conversion from an interval in ln νc to an interval in lnM ,
as shown by Eq. (7.54). A general relation for the scale-dependent non-Gaussian bias can be obtained by
considering the conditional mass function nh(M |δ`), where the long mode δ` correlates with the small-scale
density fluctuations owing to PNG [see Eq. (7.15) and Eq. (7.25)] [98, 600].

Namely, in the standard excursion-set approach, the halo mass function conditioned on a long mode δ`
on scale R` reads

nh(M |δ`) = −2ρm
∂

∂M

∫ ∞

δcr

dδ p
(
δ;R

∣∣δ`;R`
)
, (7.71)

where now the conditional probability p
(
δ;R

∣∣δ`;R`
)

for having a small-scale overdensity δ on scale R given

a large scale overdensity δ` on scale R` � R is no longer Gaussian. Expanding p
(
δ;R

∣∣δ`;R`
)

in a series of
reduced cumulants, computing

δh(δ`) =
nh(M |δ`)
nh(M)

− 1 (7.72)

as in Sec. 5 and identifying the coefficients of the cumulant series with the Gaussian bias parameters, we
can eventually read off the scale-dependent bias ∆b1(k) as [98]

∆b1(k) =

∞∑

N=3

4

(N − 1)!

{
bLN−2 δcr + bLN−3

[
N − 3 +

∂ lnF (N)
R (k)

∂ lnσ(R)

]}
F (N)
R (k)M−1

R (k) , (7.73)

where bLN are the Lagrangian halo bias parameters, with bL0 ≡ 1. No assumption about the shape of
the smoothing filter has been made to derive this result. Furthermore, contributions from all connected
primordial N -point functions can be included by defining the general shape factor

F (N)
R (k) ≡ 1

4σ2(R)Pφ(k)

{
N−1∏

i=1

∫

ki

MR(ki)

}
〈φ(k1) · · ·φ(kN−1)φ(k)〉c . (7.74)

In the squeezed limit, F (N)
R corresponds to taking one of the N momenta of the N -point function on the

right-hand side to zero and integrating over the remaining N − 1 momenta (with the total momentum
constraint enforced). In the case of a primordial bispectrum (N = 3), we obtain the modified variance given
in Eq. (7.67). Let us emphasize two points here:

• In general, a primordial n-point function will contribute a modified (n−1)-cumulant [243]. Therefore,
when including higher-order (n > 3) primordial n-point functions, it is important to include all terms
that are of similar order as predicted by a given inflationary model. For example, when including
terms of order gnl (N = 4) in higher-order local PNG, one should also include terms of order f2

nl

which are generally comparable. Note that Eq. (7.70) does not include the stochastic contributions
that are induced by an enhanced collapsed limit of the primordial trispectrum (Sec. 7.1.4).

• As Eq. (7.70), Eq. (7.73) exactly recovers the results of [536, 606, 542, 607] in the high-peak limit
νc � 1 where bN−2 ≈ (νc/σ(R))N−2. The key new term in Eq. (7.73) is the contribution from

∂ lnF (N)
R (k)/∂ lnσ(R), which arises due to the mass (R-)dependence of the reduced cumulants. We

have already obtained this contribution in the PBS approach of Sec. 7.3, where it corresponds to the
change in the Jacobian J under a scale-dependent rescaling of the initial conditions [Eq. (7.54)]. In
fact, evaluating Eq. (7.73) for N = 3 in the large-scale limit, corresponding to the bispectrum in the
squeezed limit, one exactly recovers the result Eq. (7.55) presented in Sec. 7.3 [100].

Finally, for quadratic local PNG, the first term in the curly bracket of Eq. (7.73) (including the multiplicative
factor of 2 in front) recovers bφ = 2δcrb

L
1 , in agreement with the prediction Eq. (7.58) for a universal mass

function (which is the case of Press-Schechter, see Sec. 5.2.2). Therefore, it appears that we have fixed the
problem of Eq. (7.70), which predicts a non-Gaussian bias amplitude ∝ bL2 .
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To understand this better, let us now derive Eq. (7.73) from the perturbative bias expansion correspond-
ing to the thresholding ansatz with first-crossing. The corresponding number density is [e.g., 495]

nPS(q) = −2ρm
∂

∂M
ΘH [δR(q)− δcr] = 2ρmµR(q)δD

[
δR(q)− δcr

] dR
dM

, (7.75)

where, following [430], we have performed the derivative with respect to M in the second equality and
introduced the variable µR ≡ −dδR/dR as in Sec. 6.8. Therefore, the density contrast δPS(q) is described by
a bivariate perturbative expansion, whose renormalized operators [δiµjR](q) are, in case of Gaussian initial
conditions, bivariate Hermite polynomials. Namely,

δLPS(q) = bL10H10(δR, µR) + bL01H01(δR, µR) (7.76)

+
1

2
bL20H20(δR, µR) + bL11H11(δR, µR) +

1

2
bL02H02(δR, µR) + · · · .

The corresponding bias parameters bLij are ensemble averages of bivariate Hermite polynomials as in Sec. 6.6.1.
For instance, we have [430]

bL10 =
1

σ(R)

(
νc −

1

νc

)
, bL01 = − 1

νc

(
dσ(R)

dR

)−1

(7.77)

bL20 =
ν2
c − 3

σ2(R)
, bL11 = − 1

σ(R)

(
dσ(R)

dR

)−1

, bL02 = 0 . (7.78)

Consequently, the leading-order non-Gaussian contribution to the 2-point correlation function of the tracers
is, for a primordial bispectrum,

∆ξLh (r) = bL10

[
bL20

〈
δR(q1)δ2

R(q2)
〉

+ 2bL11

〈
δR(q1)δR(q2)µR(q2)

〉
+ bL02

〈
δR(q1)µ2

R(q2)
〉]

, (7.79)

in the large-scale limit r → ∞, so that we can ignore bL01, which amounts to a higher-derivative term ∝ k2

as discussed in Sec. 5.7. Taking the Fourier transform of Eq. (7.79), we eventually find that, in the limit
k → 0, the non-Gaussian bias amplitude induced by local quadratic PNG is given by [495, 430]

bφ = 2

∫

k

cL2 (k,−k)PL(k) , (7.80)

where

cL2 (k1,k2) = bL20WR(k1)WR(k2) +
1

σ2(R)

∂

∂ lnσ(R)

(
WR(k1)WR(k2)

)
(7.81)

for the particular model Eq. (7.75) considered here. However, Eq. (7.80) is valid for any microscopic
Lagrangian bias model. The term proportional to ∂/∂ lnσ(R) in Eq. (7.81) generates the new contribution,

∝ ∂ lnF (N)
R (k)/∂ lnσ(R) in Eq. (7.73), for a generic primordial bispectrum. Substituting Eq. (7.81) into

Eq. (7.80), we obtain

bφ = 2

(
bL20σ

2(R) + 2

)
= 2δcrb

L
10 , (7.82)

the prediction Eq. (7.58) for a universal mass function, which is expected since the Press-Schechter mass
function is universal.

Finally, one can show [558] via the approach described in Sec. 7.1.5 that the agreement between the
excursion-set result Eq. (7.73) and the general bias expansion even holds at subleading order in the squeezed
limit when adopting a universal mass function ∝ f(νc), consistent with Eq. (7.61). Fundamentally, this is a
consequence of the fact that in the thresholding approach, as in general for universal mass functions, there
is only a single scale R that enters all predictions of halo statistics.
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7.4.3 Lagrangian density peaks

We now turn to the peak approach, which is an example of a multivariate Lagrangian bias model. We will
focus on BBKS [13] peaks, rather than the excursion-set peaks (ESP) here for simplicity. BBKS peaks are
described in detail in Sec. 6.2–6.6, and we will adopt the same notation here. Like in the simple excursion-set
approach considered in the previous section, the effective peak perturbative bias expansion, Eq. (6.50) in
Sec. 6.6.2, in terms of the variables ν ∝ δ, J1 ∝ ∇2δ, η2 ∝ (∂iδ)

2, and J2, J3 which are invariants constructed
from ∂i∂jδ, holds regardless of the statistical properties of the linear density field. In complete analogy with
Sec. 7.4.1–7.4.2, the leading-order contribution to the non-Gaussian 2-point correlation of BBKS peaks
induced by a primordial bispectrum reads

∆ξLpk(r) = 2σ3
0b
L
10b

L
20〈ν2(q1)ν(q2)〉+ 4σ2

0σ2b
L
10b

L
11〈ν(q1)J1(q1)ν(q2)〉+ 2σ0σ

2
2b
L
10b

L
02〈J2

1 (q1)ν(q2)〉
+ 4σ0σ

2
1χ

L
1 b
L
10〈η2(q1)ν(q2)〉+ 4σ0σ

2
2ω

L
10b

L
10〈J2(q1)ν(q2)〉

+
(
σ0, b

L
10, ν(q2)

)
→
(
σ2, b

L
01, J1(q2)

)
, (7.83)

where the symbols are defined in Tab. 10 on p. 137, and, as in Eq. (6.50), all moments are evaluated on the
scale R. The various Lagrangian, second-order peak bias parameters are given in Sec. 6.6.1 (see also Fig. 29).
The 5 additional terms in the last line are obtained upon replacing each occurrence of (σ0, b

L
10, ν(q2)) by

(σ2, b
L
01, J1(q2)). Restricting to local PNG, the leading-order non-Gaussian contribution to the Lagrangian

peak power spectrum in the low-k limit reads [430]

∆PLpk(k) = 2fnlM−1
R (k)bφ

(
bL10 + bL01k

2
)
W 2
R(k)PL(k) , (7.84)

where

bφ = 2

(
σ2

0b
L
20 + 2σ2

1b
L
11 + σ2

2b
L
02 + 2σ2

1χ
L
1 + 2σ2

2ω
L
10

)
. (7.85)

Note that, with cL2 (k1,k2) given by Eq. (6.56) in Sec. 6.6.2 for BBKS peaks, bφ can also be computed from
Eq. (7.80). Density peaks follow a universal mass function, albeit of a generalized form, since their abundance
depends on several spectral moments σi(R). Thus, we would not expect them to obey Eq. (7.58). However,
the general PBS prediction Eq. (7.51) should apply. For BBKS peaks, the halo mass function npk(M) is
given by Eq. (6.67), with fpk being a function of both νc and the root-mean-square values σi. One can show
that

bφ =
∂ lnnpk

∂ ln ε
= 2

2∑

i=0

∂ lnnpk

∂ lnσi
(7.86)

indeed yields Eq. (7.85) [430]. The physical interpretation is the same as in Sec. 7.3: in the presence of
local quadratic PNG, a long-wavelength background perturbation of wavenumber k` rescales the amplitude
of the power spectrum PL(kS) of the linear density field in a scale-independent manner,

PL(kS) → (1 + 4ε)PL(kS) . (7.87)

Thus, for local quadratic PNG, all the spectral moments are rescaled proportionally, σi → (1 + 2ε)σi,
so that the parameters γ1 and R? remain unchanged. On setting ε ≡ fnlM−1(k), we recover the full
non-Gaussian k-dependent correction to the linear halo bias. For a generic PNG, ε should be replaced by
a0(k`/kS)αM−1(k), where α is the scaling of the leading contribution to the primordial bispectrum in the
squeezed limit [see Eq. (7.37) and Eq. (7.25)]. In this case, the different moments that npk depends on scale
differently in Eq. (7.86), and the amplitude of the non-Gaussian bias of peaks differs from that obtained for
a universal mass function, Eq. (7.55).

Note that the equivalence of bφ computed from Eq. (7.86) on the one hand, and Eq. (7.85) on the other,
only holds for a deterministic barrier [430]. For a fuzzy moving barrier with a phenomenological description
of the scatter (cf. Sec. 5.9) as in current excursion-set peak implementations (cf. Sec. 6.8), bφ does not
consistently recover ∂ lnn/∂ ln ε [608]. As shown in Sec. 7.5, this is at odds with measurements from N-body
simulations.
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This problem can be solved with a “microscopic” model of the scatter in the collapse barrier B (see
Sec. 5.9), such as the one proposed in [326] for instance. In this case, the renormalized Lagrangian bias
functions cLn , Eq. (6.57), acquire an explicit dependence on the shear Kij . It can then be shown that, since
the collapse barrier B now is independent of σ8, the non-Gaussian bias amplitude bφ, Eq. (7.85), recovers
the peak-background split expectation ∂ lnn/∂ ln ε [513]. In practice, if all the scatter in the barrier B arises
from the tidal shear, then bφ includes two additional contributions proportional to bLK2

and bLQ2
, where K2 is

defined in Eq. (5.101), and Q2 ∝ tr
(
Kijζij

)
. Therefore, the consistency relation Eq. (7.51) can be satisfied

without violating the constraints on bLK2
(see Sec. 4.5), provided that bLQ2

is non-zero.

To summarize the results of Sec. 7.4.1–7.4.3, in the “microscopic” Lagrangian bias framework, the fun-
damental reason why the standard Lagrangian LIMD model δh(x) = bL1 [δ](q) + bL2 [δ2](q)/2 + · · · fails at
reproducing the correct amplitude of the scale-dependent bias induced by PNG is the fact that, unlike the
discrete density peaks and the thresholded regions considered here, it does not include variables other than
the density, especially the filter derivative µ = −dδR/dR which ensures the first-crossing condition. In
contrast to the approach described in Sec. 7.1, the perturbative Lagrangian bias expansions considered here
remain identical regardless of the statistical properties of the initial conditions, since the proto-halo number
density is constructed directly from the Lagrangian matter density field using a model that is assumed valid
on all scales. The coefficient bφ of the scale-dependent contribution from PNG is given by a sum of gener-
alized second-order bias parameters, which must ensure that the PBS scaling Eq. (7.51) is recovered. This
condition is not trivially enforced for a microscopic Lagrangian bias model such as ESP where the scatter in
collapse threshold is only modeled in a phenomenological way, so that the model does not provide a complete
description of the local relation between proto-halo density and the linear density field. As an alternative
to ESP peaks in which the halo mass function is predicted from first principles, one could generalize the
Press-Schechter number density Eq. (7.75) to [495]

nΣPS(q) = −2ρm
∂

∂M
Σ
[
δR(q)− δcr

]
. (7.88)

The free function Σ can be chosen such that the predicted halo mass function reproduces the simulated one
[494]. Here again, one obtains a bivariate bias expansion bLij , reflecting the dependence on both δR and µR.

In this model, the quantity (∂iδ)
2 does not appear in the bias expansion, due to the absence of the peak

constraint. For this reason, the renormalized bias functions cLn(k1, . . . ,kn) predicted by this model depend
only on the wavenumbers ki = |ki|. Therefore, a measurement of the scale- and configuration-dependence
of the halo bispectrum would help distinguish between the predictions of different Lagrangian bias schemes.

7.5 Non-Gaussian halo bias in simulations

A number of studies have tested the theoretical prediction for the scale-dependent bias induced by local
quadratic PNG against the result of large N-body simulations, including [68, 609, 610, 611, 538, 612, 546, 315]
(see Fig. 32). For the purpose of an accurate comparison between the prediction Eqs. (7.43)–(7.44) and
simulations, one should also include two subtle corrections [609, 538]. They arise because both the mean
halo number density nh(M, τ) and the matter power spectrum PL(k, τ) are modified by PNG. Firstly, the
change in the mean number density (mass function) of halos in the presence of PNG induces a (scale-
independent) shift b1 → b1(fnl) of the linear bias, which is negative for massive halos if fnl > 0, as massive
halos become more common for fnl > 0 compared to the fnl = 0 case, and hence less biased. Secondly, one
should also take into account the loop contribution ∝ fnl to the matter power spectrum [613] if measurements
extend into the mildly nonlinear regime.

The most recent results are from [599], who measured the scale-dependent bias ∆b1(k) = fnlbφM−1(k)
for local PNG with fnl = 250 for different halo finders, taking into account the corrections discussed above.
Fig. 32 shows their measurement for SO and FoF halos (see Appendix D). The solid lines are the prediction of
the general PBS from Eq. (7.51), which was implemented as in [315] by performing simulations with different
initial power spectrum amplitudes As, and taking the derivative of the measured halo mass function with
respect to lnAs. The result is in excellent agreement with the data for all mass bins and halo finders.
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Figure 32: Scale-dependent bias ∆b1(k) ' Phm(k)/Pmm(k) − b1 measured for dark matter halos in N-body simulations with
local-type PNG with fnl = ±250 (points). The left panel shows the result for halos identified using the spherical overdensity
method (∆SO = 200), while the right panel presents measurements for friends-of-friends halos identified with a linking length
λ = 0.2. The solid lines show the general peak-background split prediction Eq. (7.51), while the dotted lines represent the PBS
evaluated for universal mass functions, Eq. (7.58), using the linear bias b1 measured for the same mass bins in simulations with
fnl = 0. The mass bins, in units of 1013 h−1 M�, are given by Bin 1: [0.9, 1.4]; Bin 2: [1.4, 2.7]; Bin 3: [2.7,∞). From [599].

By contrast, the dotted curves, which assume bφ = 2δcrb
L
1 , with δcr = 1.687, as obtained for a universal

mass function [Eq. (7.58)], are not in good agreement with the simulation results. This is more apparent
in Fig. 33, which displays the relative deviation of bφ, measured using Eq. (7.51), from the universal mass
function prediction. Clearly, the universal mass function result overpredicts bφ for rare halos with bL1 & 1 for
both halo finders. For SO halos, 2δcrb

L
1 leads to an underestimate at lower masses, in the range 0 . bL1 . 0.5.

These results confirm the previous findings of [609, 614] who studied SO halos, and [611, 610, 546, 315] who
used FoF halos. Ref. [546] express the derivative of nh with respect to σ8 as a derivative of the mass function
with respect to halo mass. While this is motivated by the excursion-set formalism, the exact PBS prediction
for bφ strictly corresponds to a derivative with respect to the primordial amplitude of fluctuations, as we
have seen.

At high mass, the discrepancy can be interpreted as due to the particular choice of δcr = 1.687, a
value motivated by the spherical collapse approximation (see Sec. 5.2.1). For instance, there is some line of
evidence that FoF halos with a linking length λ = 0.2 correspond to smoothed Lagrangian overdensities of
less than 1.687 [e.g., 615], which would explain why 2δcrb

L
1 with δcr = 1.687 overestimates bφ at high mass.

After all, as explained in Sec. 5.2.1, there is some freedom in the choice of δcr because actual dark matter
halos never precisely correspond to the collapse of an isolated spherical perturbation. Therefore, in order to
account for the dependence on the halo finding algorithm, it is sensible to make the replacement

δcr →
√
qδcr , (7.89)

where the parameter q encodes information about the departure between the halos considered and the
spherical collapse approximation. Refs. [609, 610, 611, 616] have used different halo finding prescriptions
and, therefore, found different values of q, as reviewed in [545]. Fig. 33 shows that, for FoF halos with
linking length λ = 0.2,

√
q ≡ rFoF ≈ 0.85 whereas, for the SO halos,

√
q ≡ rSO ≈ 0.9.

There are two further important points to take away from Figs. 32–33 :

• The departure from 2δcrb
L
1 observed for SO halos at low mass cannot be absorbed by a change in

186



Figure 33: Measured amplitude of the scale-dependent bias of halos bNG ≡ bφ/2 [through Eq. (7.51)], divided by the universal

mass function prediction bL1 δcr [Eq. (7.58)], shown as function of bL1 . The results are from different output redshifts and different
simulation box sizes, as labeled. The left panel displays the measurements for halos identified using the spherical overdensity
method (∆SO = 200), while the right panel shows results for friends-of-friends halos with linking length λ = 0.2. From [599].

the overdensity criterion used in the definition of SO halo masses (here, ∆SO = 200 with respect to
matter). This is because such a change would affect the results even more strongly at high mass, where
the mass function is steep. Therefore, the departure from universality observed here is unrelated to
the effect discussed in [313], which is induced by their particular choice of δcr(z) as pointed out by
[617, 618]. Another possible explanation is the failure of the spherical collapse approximation at low
mass, which we have assumed to compute 2δcrb

L
1 . In this case, one would replace the critical threshold

δcr for spherical collapse via Eq. (7.89) by, for example, the corresponding value in the ellipsoidal
collapse [619]. Clearly, this can only explain part of the deviation, since we see significant evidence
that bφ changes sign at a different mass than that corresponding to bL1 = 0, which cannot be explained
by a change of δcr.

• The non-Gaussian bias prediction of current excursion-set peak (ESP) implementations is inconsistent
with the simulation data. In this approach (see Sec. 6.8 and Sec. 7.4.3 for details), the amplitude of
the non-Gaussian bias is a weighted sum of all the second-order bias parameters [430]. This generally
holds for any “microscopic” Lagrangian bias models [495], in contrast to models which perform a
large-scale bias expansion (Sec. 7.1; [100]). However, while, when adopting a deterministic barrier, the
ESP approach predicts a value of bφ that matches the PBS prediction Eq. (7.51) [430], in agreement
with the data, the stochastic barrier of [396] yields a value of bφ that is greater than that obtained
from Eq. (7.51) [608], which is clearly ruled out by the measurements in Fig. 33. To remedy this issue,
the scatter around the mean barrier must be described at a “microscopic” level [513], through the tidal
shear Kij for instance, rather than through a white noise term as done in [303, 608].

Finally, Eq. (7.58) assumes that the clustering of halos is entirely specified by the halo mass M . This may,
however, not be true for some observed tracers such as quasars whose activity may be triggered by mergers
of halos. Ref. [539] used the excursion-set formalism described in Sec. 5 to estimate the bias correction
∆bmerger induced by mergers, and obtained

∆bmerger = δ−1
cr . (7.90)
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Therefore, for a universal mass function, δcrb
L
1 should be replaced by δcrb

L
1 −1. The validity of this prediction

was assessed by [620] using N-body simulations. On splitting the halos by the formation time identified using
merger trees, they found a significant dependence of bφ on the formation time in agreement with Eq. (7.90).
Such a shift (albeit of smaller magnitude) would explain the different zero-crossing of bφ and bL1 found for
SO halos (right panel of Fig. 33).

Other numerical studies have considered the effect of PNG beyond local PNG, in particular the cubic
coupling gnlφ

3 [606, 621]; the orthogonal and equilateral bispectrum templates [616, 546], and multi-field
inflation [543, 622]. These analyses suggest that the non-Gaussian bias of dark matter halos is consistent
with the PBS prediction for universal mass functions, Eq. (7.55) with Eq. (7.58), or equivalently Eq. (7.73).
For these shapes however, it is crucial to take into account the second term on the right-hand side of
Eq. (7.55) and Eq. (7.73). Here, the same caveat regarding bφ = δcrb

L
1 discussed above applies to the first

term in Eq. (7.73).
Overall, these efforts to calibrate bφ and bψ are important ingredients for the goal of constraining pri-

mordial non-Gaussianity using the scale-dependent bias of galaxies, since any systematic uncertainty on bφ
(e.g., of order 10–20%, Fig. 33) translates into a similar uncertainty in the constraint on fnl.

7.6 Observational prospects

Although the cosmic microwave background (CMB) constraints from the Planck satellite already have
put stringent constraints on various PNG shapes, in particular fnl = 0.8± 5 for local quadratic PNG [580],
there is still room left for interesting phenomenology at the level of |fnl| ' 1 that is unconstrained by current
CMB limits. By making use of the scale-dependent features induced by PNG in the galaxy power spectrum
and bispectrum (Sec. 7.1.6), future surveys of the large-scale structure (LSS) of the Universe, such as DESI,
Euclid, LSST, and others, are one of our best hopes for improving the current CMB limits on PNG. Most
of the signal-to-noise from the scale-dependent bias in the power spectrum comes from the largest scales
accessible to a given survey. While the theoretical model for galaxy clustering on those scales is very robust,
as linear theory is sufficient (although including projection effects is important, as described in Sec. 9.3.1),
observational systematics can provide difficult obstacles. This is because the intrinsic signal is small on
those scales, while the apparent galaxy clustering induced by systematic effects (for example, fluctuations of
the survey depth across the sky, stellar contamination, and photometric calibration uncertainties) is largest
on large scales. These effects can mimic the signature of a non-zero fnl and must be carefully controlled for
[623, 624, 625]. On the other hand, the signatures of PNG in the galaxy three-point function (bispectrum)
are present on smaller scales, and the latter can thus provide important cross-checks.

Current limits on fnl from LSS surveys, which are all based on power spectrum measurements only, are
at the level of CMB pre-Planck constraints. For instance, we have (at 68% C.L.)

− 16 < fnl < +26 , from galaxies [626], and (7.91)

− 39 < fnl < +23 , from quasars [627] . (7.92)

Forecasts indicate that the statistical errors on fnl should decrease by 1 − 2 orders of magnitude with the
next generation of large redshift surveys [628, 629, 630, 631, 632, 633, 634, 635]. We will discuss quantitative
forecasts for constraints on local fnl achievable with future surveys in the remainder of this section, focusing
on the combination of power spectrum and bispectrum for a single tracer, and multi-tracer techniques. We
will adopt an idealized setting as in Sec. 4.1.3, neglecting redshift-space distortions and assuming a trivial
survey window function.

7.6.1 Galaxy power spectrum and bispectrum for a single tracer

In this section, we forecast constraints on local fnl from future surveys using the galaxy power spectrum
and bispectrum. For this, we use the Fisher information matrix as described in detail in Sec. 4.1.3 [see
Eqs. (4.13)–(4.15)]. We use the same assumptions and survey parameters as in Sec. 4.1.3, and calculate the
projected uncertainties under the null hypothesis fnl = 0; hence, the uncertainties of power spectrum and
bispectrum measurements are still given by Eq. (4.17) and Eq. (4.19), respectively. We then expand the
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parameter vector considered in Sec. 4.1.3 to include fnl,

~θ =
{
b1, b2, bK2 , lnA, P {0}ε , P {0}εεδ

, B{0}ε , fnl

}
, (7.93)

using the same fiducial values as given in Tab. 6. We include the effects of fnl at second order in the general
bias expansion, as summarized in the relations of Sec. 7.1.6, restricting to terms that are linear in fnl. This
is sufficient for a fiducial value of fnl = 0, since the Fisher matrix only involves first derivatives with respect
to parameters, and the contribution of any higher-order term to ∂Pgg/∂fnl and ∂Bggg/∂fnl vanishes upon
evaluation at fnl = 0. Then, the power spectrum is given by

Pgg(k) = P (G)
gg (k) + 2b1∆b1(k)PL(k) , (7.94)

where P
(G)
gg (k) is the leading galaxy power spectrum with Gaussian initial conditions [Eq. (4.2)]. Further,

using the notation of Sec. 4.1.1, the galaxy bispectrum is given by

Bggg(k1, k2, k3) = B(G)
ggg (k1, k2, k3)

+ 2b31fnlM(k1)M(k2)M(k3) [Pφ(k1)Pφ(k2) + 2 perm.]

+

{
b21PL(k1)PL(k2)

×
[

(2δcr − 1)(b1 − 1) + δcrb
L
2

2δcr(b1 − 1)
(∆b1(k1) + ∆b1(k2)) + µ12

{
k1

k2
∆b1(k1) +

k2

k1
∆b1(k2)

}]

+ b1 [∆b1(k1) + ∆b1(k2)]PL(k1)PL(k2)

[
2F2(k1,k2)b1 + b2 + 2bK2

(
µ2

12 −
1

3

)]

+ 2P {0}εεδ
[∆b1(k1)PL(k1) + ∆b1(k2)PL(k2)]

+ 2 perm.

}
, (7.95)

where B
(G)
ggg (k1, k2, k3) is the galaxy bispectrum with Gaussian initial conditions [Eq. (4.4)]. In both expres-

sions, we take ∆b1 from Eq. (7.59),

∆b1(k) = 2fnlδcr(b1 − 1)M−1(k) . (7.96)

We have further inserted the universal mass function prediction for bEφδ [Eq. (7.60)], using the second-order

Lagrangian bias given by Eq. (2.34), bL2 = b2 − 8/21(b1 − 1), and set P
{0}
εεφ ≈ (bφ/b1)P

{0}
εεδ as predicted

when stochasticity is described by Poisson shot noise. For the purposes of these idealized forecasts, these
approximations are sufficient.

The galaxy bispectrum in the presence of local-type PNG has been considered in several previous refer-
ences [243, 612, 538, 541, 547, 559]. Unlike the majority of these, we have restricted to linear order in fnl,
which, as explained above, is sufficient for a Fisher forecast with fiducial value fnl = 0. Further, given the
constraints set by the Planck satellite, higher-order terms in fnl are unlikely to be relevant in the future. We
have also neglected the effect of PNG on the statistics of the matter density field beyond the leading-order
bispectrum. This is consistent at the order of perturbations we are working in; the one-loop correction
to the matter power spectrum from PNG is negligible for the wavenumbers and values of fnl considered,
while that to the bispectrum begins to be relevant at kmax ∼ 0.2hMpc−1 [613]. On the other hand, the
above-mentioned references did not include the complete set of bias parameters and stochastic amplitudes
that appear in the general perturbative bias expansion. Ref. [550] forecast the constraints obtained on
fnl of the equilateral (α = 2) and quasi-single-field (0 ≤ α ≤ 3/2) types from the power spectrum alone,
including the NLO correction as well as the relevant higher-derivative terms. Further, Ref. [636] forecast
the detectability of higher-spin fields in the galaxy power spectrum through the anisotropic squeezed-limit
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Figure 34: Shape dependence of the contribution from local-type PNG to the galaxy bispectrum, i.e. all terms except for

B
(G)
ggg in Eq. (7.95). We calculate the shape dependence at z = 2 with fnl = 5 as fiducial value. The remaining parameters

are as listed in Tab. 12. In order to highlight the shape dependence, we have divided the bispectrum by the maximum value
attained in each panel. The contribution from local-type PNG is sharply peaked in the squeezed limit; this is very different
from the shape dependence of the contributions present for Gaussian initial conditions which are shown in Fig. 10.

primordial bispectrum. The latter can also be constrained using galaxy shape correlations, as forecasted in
[552, 554].

Fig. 34 shows the configuration dependence of the contributions to the galaxy bispectrum from PNG,
in the same form as Fig. 10 in Sec. 4.1. These contributions peak for squeezed triangle configurations,
showing a distinct difference to the Gaussian contributions shown in Fig. 10. For this reason, we expect the
bispectrum to help significantly in improving constraints on fnl from galaxy clustering.

The result of the Fisher matrix calculation is summarized in Tab. 12 for the seven galaxy surveys that
we consider here: HETDEX [50], eBOSS [49], DESI [53], PFS [57], Euclid [54] and WFIRST [58]. We
use the same fiducial values for the bias and stochastic parameters as in Tab. 6, and show results for
kmax = 0.1hMpc−1 and kmax = 0.2hMpc−1. For all surveys, combining the galaxy power spectrum and
bispectrum gives a factor of several better constraints on fnl than the power spectrum alone. Moreover,
when using the galaxy bispectrum, future galaxy surveys are expected to improve on the CMB constraints
on fnl. Comparing the different choices for kmax, we see that, while the power-spectrum-only constraints
show only incremental changes, the combined constraints improve by about a factor of two for the higher
value of kmax. This is because the signatures of PNG in the galaxy power spectrum are only prominent
on large scales (see Fig. 32), while those in the galaxy bispectrum are present for triangles in the squeezed
configuration on all scales (Fig. 34). Further, the forecasted error on fnl depends sensitively on the fiducial
values of the bias parameters. This is because both the signal from PNG (∆b1 ∝ (b1−1)) and the signal-to-
noise ratio per k-mode (n̄Pg(k) ∝ b21) change favorably for highly biased tracers (when the number density
is fixed). For example, we find that the projected uncertainties shown in Tab. 12 are improved by a factor
of 2 to 3 when assuming b1 = 2 instead of b1 = 1.5. In this case, both DESI and Euclid reach σfnl < 1 for
kmax = 0.2 h/Mpc. Note that previous forecasts in the literature [637, 638, 639, 640, 559] fixed the stochastic
parameters, if included at all, as well as the primordial power spectrum amplitude to their respective fiducial
values, leading to more optimistic forecasts than those shown in Tab. 12.

7.6.2 Multi-tracer methods

In the previous section, we have derived the optimal constraints from the galaxy power spectrum and
bispectrum assuming a single tracer. Interestingly, a significant reduction of the statistical error on the
scale-dependent bias, and thus the constraint on fnl, from the galaxy power spectrum alone can in principle
be achieved with multi-tracer techniques and optimal weights [641, 642, 643, 345, 644, 342]. These make use
of the fact that the scale-dependent signature in the relative clustering of different tracers does not suffer
from cosmic variance. Recently, Ref. [554] applied the same technique to galaxy shape correlations, which
constrain anisotropic PNG as discussed in Sec. 7.1.3. Moreover, the variance due to shot noise of tracers
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Table 12: Projected constraints on the amplitude of local-type PNG, fnl, from the power spectrum and bispectrum of a single

galaxy sample. The power-spectrum-only constraints are obtained after marginalizing over b1 and P
{0}
ε , while the combined

constraints are obtained after marginalizing over 7 parameters: { b1, b2, bK2 , P
{0}
ε , P

{0}
εεδ , B

{0}
ε , lnA }. For all cases, we use

the following fiducial values: fnl = 0; b1 = 1.5; b2(b1) from the fitting formula in Tab. 7 (b2 ' −0.69); and bK2 (b1) by assuming

Lagrangian LIMD bias (bK2 = −2/7(b1−1) ' −0.14). Further, we adopt P
{0}
εεδ = b1/(2ng) and bL2 = b2−8/21(b1−1) ' −0.88

as fiducial values. Note that σfnl depends sensitively on the fiducial value of b1 (see text).

survey
redshift

z̄

Volume[
h−3Gpc3

] 104 ng[
h−3Mpc3

] σfnl , kmax = 0.1h/Mpc σfnl , kmax = 0.2h/Mpc

P (k) P (k) + B(k1, k2, k3) P (k) P (k) + B(k1, k2, k3)

eBOSS (LRG) 0.8 6.1 4.4 19 15 18 7.5

eBOSS (QSO) 1.4 39 1.5 7.6 6.5 7.2 3.9

HETDEX 2.7 2.7 3.6 24 22 22 14

PFS 1.5 8.7 4.6 13 11 12 6.4

DESI 1.1 40 3.3 6.1 5.1 5.7 2.9

WFIRST 1.9 13 12 7.8 6.9 7.3 4.2

Euclid 1.4 63 5.2 4.0 3.4 3.8 2.0

can be reduced by applying suitable weights.
The core of this method works as follows. First, the observed galaxy distribution is split into a number

of subsamples with different bias properties. These subsamples, then, can be weighted differently to take
advantage of the shot-noise suppression for massive halos, which is seen in the halo clustering measured
from N-body simulations (see Sec. 4.5.3). In the limit of infinitely fine binning, and vanishing minimum halo
mass, a weight ω(M) = M proportional to the host halo mass minimizes the stochasticity of halos relative
to the dark matter distribution and, thus, reduces the shot noise contribution [177]. Note that it is essential,
though not always sufficient, that both the shot noise and cosmic variance suppression be considered at the
same time, otherwise the net improvements on σfnl , the 68% confidence level uncertainty on fnl, are small
[342]. Given predictions for bφ, taken from the PBS applied to universal mass functions [Eq. (7.58)] and the
covariance matrix of the shot noise among the different subsamples [estimated through Eq. (4.52)], one can
construct the optimal weighting function as well as estimate the projected uncertainty on fnl [614], again
assuming a Gaussian halo density field which is accurate on the large scales relevant for fnl constraints.

Results are shown in Fig. 35 for halos at redshift z = 1. When the dark matter density field is available
(red lines and filled symbols), weighting the halos by their mass (red dashed lines and filled circles) is always
superior to the conventional uniform-weighting case (red solid lines and filled squares), especially when
considering lower-mass halos. In particular, the uncertainty σfnl substantially decreases with decreasing
Mmin in the weighted case, while for uniform weighting it exhibits a spike at Mmin ' 5× 1010 h−1M�. This
is because the effective linear bias b1 of the weighted halo sample is always greater than 1 for mass-weighting,
but reaches 1 at the above mentioned value of Mmin for uniform weighting. Since this implies bφ ∝ b1−1 = 0
assuming the PBS prediction, σfnl becomes infinite. Simulation results are over-plotted as symbols for a few
values of Mmin. The simulations match well with the analytical predictions based on a parametrization of
the halo stochasticity covariance (see Sec. 4.5.3). The simulations yield a minimum error of σfnl ' 0.8 at
Mmin ' 1012 h−1M� in the optimally weighted case with the dark matter available.

The results without the dark matter are shown as blue lines and open symbols. Let us focus on a single
bin first. σfnl exhibits a minimum at Mmin ∼ 1013 h−1M� with σfnl ∼ 5 for both uniform and weighted
halos. Thus, in the single-tracer case, it is optimal for fnl constraints to only consider the highest-mass
halos. However, if the halo sample is divided into multiple bins, σfnl does continue to improve when including
lower-mass halos.

Comparing to the results for Euclid in Tab. 12, which has a similar volume and mean redshift to what
is assumed in Fig. 35, and taking into account that the latter shows the theoretical optimum without
marginalizing over other parameters, we see that the combination of power spectrum and bispectrum is
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Figure 35: 68% confidence-level uncertainty on fnl for a survey centered at z = 1 as a function of the minimum halo mass
resolved by the survey. An effective survey volume Veff ' 50h−3Gpc3 (roughly comparable to Euclid) is assumed, taking into
account all modes from kmin = 0.0039 to kmax = 0.032hMpc−1. Note that the value of kmax is not important numerically.
Solid and dashed lines show results from uniform- and mass-weighted halos of a single mass bin. The N-body measurements
are overlaid as squares and circles for different minimum-mass cuts. Forecasts which assume knowledge of both halos and
dark matter are plotted in red (filled symbols), whereas those based on the halo distribution only are displayed in blue (open
symbols). The dotted lines (triangles) show the result of splitting the halo catalog into multiple mass bins. For the single mass
bin, the high-sampling limit (nh → ∞) is over-plotted for the uniform- (thin solid line) and the weighted case (thin dashed
line). The arrows represent the effect of adding a log-normal scatter of σlnM = 0.5 to all halo masses. They are omitted in all
cases where the scatter has negligible impact. From [614].

expected to outperform the power spectrum with the multi-tracer method (assuming the matter density is
not available, as assumed for Tab. 12). However, multi-tracer methods can also be applied to the bispectrum,
combining the advantages of both methods and potentially leading to a further improvement in constraints
on PNG.
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8 Beyond cold dark matter, cosmological constant, and General Relativity
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So far in this review, we have focused on a Universe filled with pressureless cold matter, and with a
cosmological constant. However, the real Universe also contains a background of free-streaming neutrinos,
which we now know to have nonzero masses. Further, baryons are subject to non-gravitational forces. The
impact of these stress-energy components on the galaxy bias expansion is reviewed in Sec. 8.1 and Sec. 8.2,
respectively. In addition, the cosmological constant could in fact be dynamical, for example caused by a
slowly rolling scalar field (quintessence), or caused by modifications to General Relativity. We consider the
impact of these classes of new physics in Sec. 8.3.

8.1 Massive neutrinos

Direct measurements of neutrino oscillations based on solar, atmospheric and reactor neutrinos [645]
have shown that the masses of at least two of the three mass eigenstates (mν1 , mν2 , mν3) of neutrinos
must be non-zero. The experimentally constrained mass gaps are ∆m2

21 = m2
ν2
−m2

ν1
' (8.58 meV)2 and

|∆m2
32| = |m2

ν3
−m2

ν2
| ' (49.6 meV)2 [645]. Neutrinos constitute a small but non-negligible fraction of the

cosmological energy budget, and their mass plays an important role in the growth of large-scale structure.
The cosmic neutrino background, thermally produced during Big Bang nucleosynthesis, has a temperature
of approximately Tν(z) ' 1.95(1 + z) K ' 0.168(1 + z) meV. Thus, at high redshifts, when Tν(z) � mi,
neutrinos are fully relativistic and do not contribute to the growth of structure in the CDM and baryon
components. Once neutrinos transition to a non-relativistic form of matter at a redshift znr,i of roughly

1 + znr,i ≈ 1890
(mνi

1 eV

)
, (8.1)

perturbations in the neutrino density begin to grow appreciably on scales larger than their free-streaming
scale, effectively forming another (though not cold) dark-matter component. The neutrino free-streaming
scale, the analog of a Jeans scale for collisionless matter, is of order the distance traveled by neutrinos per
Hubble time, and correspondingly shrinks as the neutrinos become non-relativistic. More precisely, it is
given by [646]

kfs(mν , z) = λ−1
fs (mν , z) =

0.068

(1 + z)2

( mν

0.1 eV

) [
Ωm0(1 + z)3 + ΩΛ0

]1/2
hMpc−1 . (8.2)

Within the free-streaming scale λfs, neutrino density fluctuations are damped due to their large velocity
dispersion. On the other hand, on scales larger than λfs, neutrinos effectively behave as a pressureless fluid
coupled gravitationally to CDM and baryons. Depending on their wavelength, modes can initially be inside
the free-streaming scale and exit this scale later as λfs shrinks.

At redshifts z � mini{znr,i}, the fraction of the total, non-relativistic matter energy density in the form
of neutrinos is

fν ≡
Ων0

Ωc+b,0 + Ων0
'

∑
imν.i

93.1Ωm0h2 eV
. (8.3)

where the subscripts m and c + b correspond to the total matter and the sum of CDM and baryons,
respectively. We can conveniently express perturbations to the total matter density as a weighted sum of
CDM+baryon and neutrino fluctuations,

δm = (1− fν)δc+b + fνδν , (8.4)

where we have assumed that CDM and baryons perfectly trace each other. This is appropriate since we
are interested in large scales (but see Sec. 8.2 for the effect of relative density and velocity perturbations
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between CDM and baryons). In the following, we assume that the masses of all three active neutrino
species are comparable. This can easily be generalized. On scales larger than the free-streaming scale
of the neutrino species, k � kfs(mν), neutrino density perturbations δν follow the adiabatic prediction
and are proportional to δc+b, with a redshift-dependent factor (assuming there are no primordial neutrino
isocurvature perturbations). On scales much smaller than the free-streaming scale, k � kfs(mν), neutrino
perturbations are erased, δν ≈ 0 so that δm ≈ (1− fν)δc+b. In addition, the power spectrum Pc+b(k) of the
CDM+baryon component itself is also modified by massive neutrinos due to their contribution to the Poisson
equation and the change in the expansion rate. As a result, the growth of CDM+baryon perturbations in
matter domination is slowed down according to δc+b ∝ a1− 3

5 fν (see [647] for a detailed review of the effect
of massive neutrinos in cosmology). The following approximation [648, 649],

PL(k)
k�kfs−→ (1− 8fν)P

(mν=0)
L (k) , (8.5)

is a good fit to the numerical data. Numerical simulations indicate that, at redshift z = 0, nonlinear effects
enhance the suppression, to ∆Pm(k)/Pm(k) ' −10fν at k ∼ 1hMpc−1, before it diminishes at smaller scales
[650, 651, 652]. Thus, neutrinos leave a characteristic, scale-dependent feature in the power spectrum of
total matter as well as the non-relativistic part (c+b) [653, 654, 655]. Current CMB- and expansion-history-
based constraints on the sum of neutrino masses are

∑
mν . 0.6 eV [97], which lead to a neutrino fraction

fν . 0.05, while the minimum value allowed by neutrino oscillation measurements is
∑
mν ≥ 0.06 eV [645],

corresponding to fν & 0.005. For a
∑
mν in this range, the neutrino free-streaming scale is sufficiently large

that the neutrino perturbations remain in the linear regime down to redshift z . 10, as has been shown
numerically [656, 657, 658].

The effect of massive neutrinos on the clustering of halos has been studied both using semi-analytic
methods (e.g. [659, 654, 655, 660, 661]) and full N-body simulations (e.g. [662, 663, 664, 665, 656, 657, 666,
667, 668, 669]). Like in the pure CDM case, analytic approaches provide useful insights into the effect of
massive neutrinos on large-scale structure. Still, detailed N-body simulations are needed to fully capture
their impact in the nonlinear regime.

A good first ansatz for semi-analytic predictions is to assume that halos form out of the CDM and
baryon components only. That is, when the peak height is defined as νc ≡ δcr/σc+b, where σc+b is the
variance of CDM+baryon fluctuations computed with the appropriate scale-dependent linear growth factor,
then the halo mass function in this approximation is close to universal as in the standard ΛCDM case [657].
Correspondingly, we can perform the bias expansion of the halo density field in terms of δc+b, such that the
halo power spectrum reads

P lo
hh(k) = [bc+b1 (νc)]

2Pc+b,L(k) + P {0}ε , (8.6)

where we have emphasized that the linear bias bc+b1 is the bias with respect to the baryon+CDM components.
Eq. (8.6) is fairly accurate on linear scales and, moreover, bc+b1 (νc) is a nearly universal function of the peak
significance δcr/σc+b [655, 657].

However, Eq. (8.6) is not completely correct, since a scale-dependent growth generically leads to a scale-
dependent bias [670, 671] (see also Sec. 8.3). In particular, if halo positions are defined in Lagrangian space
and follow the density locally there, as is the case in the peak and excursion-set pictures, then their relation
to the Eulerian matter density field will be scale dependent. This effect was studied in detail for the massive
neutrino case in [660], who showed that bc+b1 in Eq. (8.6) in fact becomes

bc+b1 (νc; k) = 1 +
1

nh

∂nh
∂δcr

∂δcr

∂δc+b,`(k)
, (8.7)

where δc+b,`(k) is a long-wavelength single Fourier mode perturbation in the c+ b fluid. ∂δcr/∂δc+b,`(k) can
be calculated by following a multi-fluid spherical collapse calculation [661], where neutrino perturbations
are treated linearly while a spherical tophat shell of the c + b fluid is followed to collapse. Far inside the
free-streaming scale k � kfs, ∂δcr/∂δc+b,`(k) = −1 as derived for the pure cold matter case in Sec. 3, while
it is modified on larger scales. This leads to a scale-dependent feature in the halo bias Eq. (8.7) at the few
percent level, which contributes to the scale-dependent effects of neutrinos in galaxy clustering. Specifically,
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the scale dependence in P lo
hh is predicted to be reduced by 20–40% compared to that in Pc+b,L(k) [660].

The scale-dependent effects induced by neutrinos are controlled by a different scale, the free-streaming scale
λfs = 1/kfs [cf. Eq. (8.2)], than the higher-derivative bias contributions, which involve the scale R∗. The
two sources of scale dependence can therefore be isolated provided that the range of wavenumbers probed is
sufficiently large [138]. While the scale dependence in galaxy bias induced by neutrinos can also be formally
captured by the higher-derivative terms described in Sec. 2.6, this expansion is only valid on scales k � kfs,
and is thus very limiting given the large value of 1/kfs. More explicit ways to include the effects of massive
neutrinos in the general perturbative bias expansion should thus be developed (e.g., along the lines of [672]).
Observationally, the scale dependence arising from massive neutrinos could be extracted with the multi-
tracer techniques described in Sec. 7.6.2 [673]. For this, at least two tracers with different amplitudes of
scale-dependent bias are necessary. It is important to stress that, if present, similar scale-dependent effects
are expected for the higher-order biases, e.g. bc+b2 , as well.

The presence of a scale-dependent bias with respect to δc+b is difficult to confirm unequivocally in N-
body simulations including massive neutrinos due to its small amplitude and the degeneracy with the scale
dependence of halo clustering induced by nonlinear and higher-derivative contributions. Refs. [657, 666, 668]
reported no clear evidence for a scale dependence of Ph(c+b)(k)/Pc+b(k) beyond what is expected from
nonlinear contributions in the CDM+baryon sector. On the other hand, Ref. [669] used a generalization of
the separate-universe technique described in Sec. 3.2 and Sec. 4.4 to isolate the scale-dependent bias. They
found a scale dependence consistent with Eq. (8.7), with an overall amplitude of roughly 6fν acting in the
opposite direction as the matter power suppression due to neutrinos. Very recently, Ref. [674] reported a
detection from halo clustering measured in a large suite of N-body simulations with neutrinos. In order
to increase the signal while keeping the free-streaming scale in the linear regime, the number of neutrino
species was multiplied by a factor ∼ 10 in the simulations. The amplitude was found to be largely consistent
with the separate-universe results of [669].

8.2 Imprints of primordial baryon acoustic oscillations

Above we have seen that neutrinos leave a scale-dependent imprint on structure formation below the
free-streaming scale, despite the fact that they constitute at most a few percent of the cosmic energy budget
today. We now turn to the two most important matter components: cold dark matter (CDM, c) and baryons
(b, i.e. all standard model particles that have been non-relativistic since the end of radiation domination;
this excludes standard model neutrinos within the allowed mass range). So far, we have assumed that on
large scales, where non-gravitational forces can be neglected, baryons and CDM comove and, therefore,
can be treated as a single fluid. The density and velocity differences due to pressure forces and feedback
are, in the general bias expansion, taken into account through the higher-derivative biases such as b∇2δ∇2δ
(Sec. 2.6). This assumption is true for the adiabatic, growing-mode density perturbations which dominate
structure formation at low redshifts. However, before the epoch of recombination, where protons and
electrons first combined to form neutral hydrogen, baryons were tightly coupled to photons in a plasma and
thus behaved very differently from CDM. When setting the initial conditions around recombination (strictly
speaking, baryon-photon decoupling), this introduces decaying modes which can have a lasting imprint on
galaxy statistics. Note that in most cases, these effects are not taken into account when setting up the
initial conditions for N-body+hydro simulations. That is, typically the initial conditions only include the
adiabatic growing mode for both baryons and CDM. Studies considering baryons and CDM separately in
perturbation theory and simulations can be found in [675, 132, 676, 677]. We now study these decaying
modes, focusing on their contributions to the general galaxy bias expansion.

Consider the coupled evolution of the baryon and CDM fluids under gravity, i.e. after baryon-photon
decoupling. At linear order, we have the following set of evolution equations:

∂

∂τ
δs = − θs , s ∈ {b, c}

∂

∂τ
θs +Hθs = − 3

2
Ωm(a)H2δm , (8.8)
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where δs ≡ δρs/ρs, θs = ∂jv
j
s, while δm ≡ δc+b = fbδb + (1− fb)δc is the total matter density perturbation

and fb = Ωb/Ωm is the baryon fraction (we neglect the small contribution from massive neutrinos throughout
this section). Note that the CDM density perturbation δc used in this section is not to be confused with the
critical density for collapse δcr.

It is useful to combine these equations and to rewrite them in terms of δm, and the relative density
perturbation δr ≡ δb − δc and relative velocity divergence θr ≡∇ · vr ≡∇ · (vb − vc) [678, 679, 680]:

∂2

∂τ2
δm +H ∂

∂τ
δm −

3

2
Ωm(a)H2δm = 0

∂2

∂τ2
δr +H ∂

∂τ
δr = 0

∂

∂τ
θr +Hθr = 0 . (8.9)

We can now immediately obtain the general solution of these three ODE as

δm(x, τ) =A+(q)D(τ) +A−(q)H(τ)

δr(x, τ) =R+(q)−R−(q)Dr(τ) (linear)

θr(x, τ) =
H0

a(τ)
R−(q) , (8.10)

where A±(q), R±(q) are the initial conditions (hence evaluated at the Lagrangian position q, with x = q
at the order considered here), and

Dr(τ) ≡ H0

∫ τ

0

dτ ′

a(τ ′)
(8.11)

is the growth factor of the R− mode.21 The total matter density contrast δm contains the growing and
decaying modes ∝ A± of adiabatic perturbations. We have employed the former extensively throughout all
of Secs. 2–7. A third mode, R+(q) ≡ δbc(q), is a constant compensated density perturbation δρc = −δρb,
corresponding to δm = 0 while δr 6= 0 [681, 682, 683]. This mode can be seen as modulating the local
baryon-CDM ratio (see below). The fourth mode ∝ R− corresponds to an initial relative velocity between
the two fluids, which scales as a−1(τ) (just as expected for an unsourced peculiar velocity) and is commonly
denoted as vbc in the literature. In particular, we can relate the latter to R− through

vbc(q, τ0) ≡ H0R−(q) ≡ H0
∇q

∇2
q

R−(q) . (8.12)

Correspondingly, we denote θbc ≡ ∇ · vbc, with θbc(q, τ0) = H0R−(q). While the notation δbc,vbc is more
common in the literature, the mode amplitudes R+, R− (or R−) are more convenient for deriving the
contributions to the bias expansion. However, both notations are entirely equivalent. We refer to these two
modes as baryon-CDM perturbations in the following.

Note the distinction in notation between the (in general) nonlinearly evolved relative density and velocity
perturbations δr, vr, and the linearly extrapolated initial amplitudes of the independent modes of the system,
R+, R−, or, equivalently, δbc, vbc. This is analogous to the distinction between δ(1) and δ ≡ δm in the
adiabatic case. During nonlinear gravitational evolution, the decaying modes couple with the growing
mode, leading to nonlinear evolution of the baryon-CDM perturbations (in particular the relative velocity),
and making this distinction important. Moreover, δr receives contributions from both modes R+ and R−
[Eq. (8.10)]. As we will see however, the contributions to the bias expansion can be written completely in
terms of the initial amplitudes of the independent modes R+, R−, so that we do not need to consider δr, vr
explicitly. Tab. 13 provides a summary of the notation used in this section.

21Note this was defined with a different sign in [678].
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δs Density perturbation of species s ∈ b, c
δm = fbδb + (1− fb)δc Total matter density perturbation

δr = δb − δc [Eq. (8.10)] Relative density perturbation

vr = vb − vc Relative velocity

R+(x) ≡ δbc(x) Initial amplitude of constant relative density perturbation

R−(x) ≡ H−1
0 ∂iv

i
bc(x, τ0) Initial amplitude of decaying relative velocity, extrapolated to τ0

Table 13: Notation for baryon-CDM perturbations used in this section. Actual relative density and velocity perturbations are
denoted with a subscript r, while their initial amplitudes (extrapolated to z = 0 using linear theory), which appear in the
bias expansion, are denoted with a subscript bc, or equivalently as R±. Note that the CDM density perturbation δc is to be
distinguished from the spherical collapse threshold δcr.

Before deriving the contributions to the bias expansion, let us discuss the significance of the modes
R+, R−. Ref. [684] pointed out that pre-recombination plasma waves, the baryon acoustic oscillations,
source R− and so lead to a supersonic streaming velocity at the epoch of baryon-photon decoupling τdec.
This can leave an imprint in low-redshift structures which assembled out of low-mass halos at high redshifts
[685, 686, 687, 688, 680]; note that in many of these references, the initial amplitude of the relative velocity
is normalized to its variance, vbc → vbc/

√
〈|v2

bc|〉, which we do not do here. Similarly, the R+-mode is
also sourced during recombination [681]. Both R− and R+ have significant large-scale correlations and in
particular retain large BAO features. However, they are small numerically: the root-mean-square relative

density perturbation is
√
〈R2

+〉 . 0.03, depending on smoothing scale, while the root-mean-square relative

velocity perturbation is approximately 0.03 km/s at the present epoch; their fractional impact on the large-
scale galaxy power spectrum is expected to be at the sub-percent level (Fig. 36).

Since galaxy formation depends sensitively on both baryons and CDM, it is crucial to include the addi-
tional modes R+, R− when making predictions for galaxy clustering. We now briefly derive which operators
these modes add to the bias expansion in the general case, under the same assumptions that were made in
Sec. 2.5. We will ignore the adiabatic decaying mode (A−) throughout, as it is numerically much smaller
[159]. At linear order, the result is then already clear from Eq. (8.10), as we have to allow for the remaining
three modes of the baryon-CDM system to appear in the galaxy overdensity δg:

δ(1)
g (x, τ) = b1δ

(1)
m (x, τ) + bR+(τ)R+(q[x, τ ], τ) + bR−(τ)R−(q[x, τ ], τ)

= b1δ
(1)
m (x, τ) + bbcδ δbc(q) + bbcθ θbc(q, τ) , (8.13)

where in the second line we have used Eq. (8.12). Note that R+, R− (or θbc, δbc) have to be evaluated at
the Lagrangian position q[x, τ ] corresponding to (x, τ) [680]. This is analogous to the case of primordial
non-Gaussianity, where the additional operators are also evaluated at the Lagrangian position (Sec. 7.1.2);
in both cases, additional modes are present in the initial conditions. Strictly speaking, in case of the relative
baryon-CDM perturbations, we should use the position of the fluid trajectory at the time of recombination.
However, the distinction between these two is very small, and of similar order as other nonlinear contributions
at recombination that are neglected throughout.

At second order, we expect all combinations of R+, R− (δbc, θbc) with themselves as well as δm to appear.
However, there is a further contribution with a different structure, given by

δ(2)
g (x, τ) ⊃ bR2

−
(τ)
[
|R−|2(q, τ)− 〈|R−|2〉

]
= bbcv2(τ)

[
|vbc|2(q, τ)− 〈|vbc|2〉

]
. (8.14)

This is the leading contribution to the galaxy density of a uniform relative velocity between baryons and
CDM; since the velocity is a vector, it cannot contribute to the scalar galaxy density at linear order.

In order to derive all further nonlinear baryon-CDM contributions to galaxy clustering, consider the full
nonlinear evolution equations of the two-fluid system. Generalizing the results of Sec. 2.4 to two fluids, this
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can be written as [678]

D

Dτ
δs + θs = − δsθs − gsvir∂iδs (8.15)

(
D

Dτ
+H

)
θs +

3

2
ΩmH2δm = − (∂ivks )2 − gsvir∂iθs ,

where s ∈ b, c and
D

Dτ
≡ ∂

∂τ
+ vim

∂

∂xi
(8.16)

is the convective time derivative with respect to the total fluid velocity vm = fbvb + (1 − fb)vc, and we
have introduced the constants gb = 1 − fb and gc = −fb. Note that the relative velocity perturbation is
not sourced even at nonlinear order; that is, subtracting the Euler equation for θc from that for θb only
yields source terms that are proportional to vr (see also Sec. 2.7). Moreover, the typical linear displacement
between the baryon and CDM fluids induced by vr is very small:22 sr =

∫
dτ vr . 0.04h−1 Mpc. This is

much smaller than the nonlinear scale at redshifts where we observe galaxies, as well as the characteristic
scale R∗ expected for realistic galaxies. We can then effectively assume that baryons and CDM still travel
on the same fluid trajectories xfl(τ), since the leading effects of the different fluid trajectories are given by
higher-derivative terms of order sr ·∇δs which are negligibly small compared to the higher-derivative terms
which are present for realistic galaxies, as well as the effective fluid contributions for matter.

One can then easily verify that it is sufficient to include [267, 678] R+(q) and R− defined in Eq. (8.12)
in the bias expansion, as well as higher spatial derivatives of these quantities and their combination with
the observables derived for the adiabatic single-fluid case (Sec. 2.5). Note that, unlike the contributions
from the growing mode derived in detail in Sec. 2, we do not have to include time derivatives of R+, R−,
since these are fixed amplitudes defined in the initial conditions. This is analogous to the additional fields
φ, ψ appearing in the case of PNG (Sec. 7.1). Another way of seeing this is to allow for a dependence of
the galaxy density on δr = δb − δc, vr = vb − vc along the fluid trajectory. Up to any order in perturbation
theory, and neglecting the displacements between the two fluids as described above, this relative density
and velocity along the fluid trajectory can be written, using the equations of motion Eq. (8.15), as a local

function along the fluid trajectory of R+, R− and the Π
[n]
ij (n ≥ 1) appearing in the galaxy bias expansion of

Sec. 2.5.3. Thus, by allowing for R+, R− to appear in all combinations with the Π[n], we allow for a general
dependence of the galaxy density on the baryon-CDM relative density and velocity perturbations. Eq. (8.12)
also shows how spatial derivatives of R+,R− should be counted. Specifically, ∂jRi− is of the same order as
R+. Indeed, both relative density perturbations (R+) as well as relative velocity (R−) and relative velocity
shear (∂iRj−) between different fluids are leading local observables. On the other hand, operators involving
two or more derivatives of R−, as well as those with at least one derivative on R+, will be suppressed by
the spatial scale R∗ associated with the formation of the galaxies considered (e.g., the Lagrangian radius of
the host halos). Again, this holds because this scale is much larger than the absolute displacement sr due
to the decaying relative velocity.

Explicitly, we make use of the single-fluid basis of operators presented in Sec. 2.5.3. The contributions
of baryon-CDM perturbations can then be succinctly summarized in matrix notation by defining

(∇R−)ij(q) ≡ ∂iqRj−(q) =
∂iq∂

j
q

∇2
q

R−(q) . (8.17)

Up to third order in perturbation theory, the relative density and velocity contributions to the general

22The value given here is at z = 0, and hence the maximal value. The bulk of the displacement occurs at high redshifts z & 30.
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Eulerian bias expansion then are [678]:

1st R+(q) , tr[(∇R−)](q) (8.18)

2nd R+tr[Π[1]] , R2
− , tr[(∇R−)Π[1]] , tr[(∇R−)] tr[Π[1]]

3rd R+ tr[Π[1]Π[1]] , R+(tr[Π[1]])2 , R2
−tr[Π[1]] ,

R−Π[1]R− , tr[(∇R−)Π[1]Π[1]] , tr[(∇R−)Π[1]] tr[Π[1]] ,

tr[(∇R−)] tr[Π[1]Π[1]] , tr[(∇R−)](tr[Π[1]])2 , tr[(∇R−)Π[2]] ,

where R+, R− are all evaluated at the Lagrangian position q[x, τ ] while Π
[n]
ij are evaluated at (x, τ). The

first-order terms are precisely those included in Eq. (8.13), while the second line includes Eq. (8.14), among
several others. Here, we have only included terms linear in R+, ∇R−, while we have included terms up
to second order in R−. This is justified because the contributions to galaxy statistics are percent-level
corrections to the standard adiabatic contributions, so that higher-order terms are highly suppressed. When
extending Eq. (8.18) to include higher-derivative operators, one should correspondingly also include terms
of the type (R− ·∇) tr[Π[1]], i.e. vibc∂iδ (see [677], who perform a resummation of this type of term). While
we have defined derivatives on Ri− to be with respect to q, this distinction is in fact not important, since the
terms obtained when transforming ∂/∂qi to a derivative with respect to Eulerian coordinate x are already
included in the list Eq. (8.18). Eq. (8.18) is sufficient to derive all contributions to the leading-order galaxy
bispectrum and the one-loop galaxy power spectrum; the latter is derived in detail in [678].

In addition, as noted by [680], the fact that R+, R− are evaluated at the Lagrangian position introduces
further terms. This is again analogous to the case for primordial non-Gaussianity, Sec. 7.1.2. Expanding the
Lagrangian position q around the Eulerian position x = q+s induces displacement terms for each operator
involving R+, R−. However, they are multiplied by the bias parameter of the corresponding operator in
Eq. (8.18), and thus do not introduce additional free parameters. Finally, in addition to the deterministic
operators listed in Eq. (8.18), there are also stochastic contributions of the same type as discussed in Sec. 2.8.
That is, for each operator O in the list Eq. (8.18), one introduces a stochastic field εO with zero mean that
is, at lowest order in derivatives, fully characterized by its one-point moments.

The baryon-CDM perturbations also affect the velocities of galaxies. Specifically, at linear order one has

vg(x, τ) = vm(x, τ) + βbcv (τ)vbc(q) , (8.19)

where βbcv is a velocity bias parameter. This contribution captures the fact that galaxy velocities could either
follow the baryons (βbcv = 1 − fb) or CDM (βbcv = −fb), or some linear combination of the two. Thus, one
expects that βbcv is at most of order one. The contribution Eq. (8.19) is relevant for galaxy surveys through
the effect of redshift-space distortions (Sec. 9.3.2), where, in case of the leading galaxy two-point function,
it leads to a term comparable in magnitude to the linear-order terms in Eq. (8.13) [678].

This completes the incorporation of baryon-CDM perturbations in the general perturbative bias expan-
sion. However, in order to assess the quantitative impact of these contributions, we need estimates for the
bias parameters associated with each operator in Eq. (8.18). For this, we divide the terms into three distinct
classes, corresponding to different physical mechanisms:

(i) operators involving R+ = δbc: the R+ mode essentially modulates the local baryon-CDM ratio
through (Ωb/Ωc)x = (Ωb/Ωc)[1 + R+(q)]. That is, it can be described by a generalization of the separate-
universe picture of Sec. 3, where instead of varying Ωm0, ΩK0 we keep them fixed and vary Ωb0, Ωc0 instead.
Thus, in the presence of a long-wavelength R+ perturbation, galaxies form in an environment with slightly
different composition. Refs. [681, 678] argue that the bias with respect to this mode is expected to be of
order unity, since a modulation of Ωb/Ωc corresponds to a modulation of the baryonic mass available to
form stars. Moreover, it is not unreasonable to expect an enhancement for rare massive galaxies, like in the
case of the bias parameters b1, b2, · · · for halos, due to the similar exponential cutoff of the galaxy stellar
mass function at high masses. Recently, Ref. [689] constrained |bR+

| = |bbcδ | . 6 (95% confidence level) from
the BOSS CMASS sample.
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Figure 36: Leading baryon-CDM relative density and velocity contributions to the galaxy power spectrum (at z = 1.2), relative
to the linear matter power spectrum (solid: θbc; long-dashed: δbc). Here, bbcδ = 1 and bbcθ = 6.8/[(1 + z)H0] [Eq. (8.21), setting

b1 = 2] was assumed. Also shown is the largest of the NLO contributions from the term |vbc|2 [Eq. (8.14)], bbc
v2I[δ(2),v2

bc](k)

[Eq. (8.22)] as short-dashed line, assuming bbc
v2 = 0.01〈|vbc|2〉−1, close to the maximum value allowed by current constraints.

From [678].

(ii) operators involving Ri−R
j
− ∝ vibcv

j
bc: the second-order effect of a uniform relative velocity, first

introduced by [684], has been investigated extensively in the recent literature [685, 686, 687, 688, 680].
Ref. [685] argued that vbc increases the effective sound speed cs of the neutral gas, so that the Jeans mass
MJ increases by a factor [1+v2

bc/c
2
s]

3/2. This leads to large effects on low-mass halos prior to reionization, as
investigated using small-box simulations in [690, 691, 692]. These could be transferred to galaxies of much
larger mass observed at low redshifts by modulations of the metal enrichment and hence star formation
efficiency, for example. To what extent this occurs quantitatively is still unclear. bbcv2 could be as small as
∼ 10−5〈|vbc|2〉−1 [680, 690]. The fiducial value adopted in previous studies for redshifts z . 2 is [685, 686,
687, 680],

bbcv2 ∼ 0.01 〈|vbc|2〉−1 ≈ 9× 1011 (1 + z)−2 , (8.20)

where we work in units where the speed of light is c = 1. Note that, given the non-detection in current data,
bbcv2 cannot be much larger than this [687, 693]; in particular, [693] find an upper limit of bbcv2 < 0.01 from
the three-point function of the SDSS BOSS DR12 CMASS sample [30].

(iii) operators involving ∂iRj− ∝ ∂ivjbc: these include the linear operator θbc. Physically, this corresponds
to a uniform initial relative velocity divergence between baryons and CDM. A very simple estimate for the
associated bias parameter can be obtained by noting that from Eq. (8.10), this induces an associated relative
density perturbation of order δr ' a1/2θbc/H0. Assuming that the response of the galaxy density to this
relative density perturbation is of order unity, as for the constant compensated mode δbc, one obtains
bbcθ (τ) ∼ a1/2(τ)H−1

0 . However, the physics of this mode, an initial relative velocity divergence, is quite
different from that of δbc, which corresponds to a changed composition. A potentially more accurate estimate
was presented in [678] using a spherical collapse calculation. By following baryon and CDM shells separately,
one can approximately take into account the initial relative velocity divergence in the collapse. This in turn
can be used to derive the effect on the collapse threshold δcr, which can be used to estimate the bias through
the excursion-set argument (Sec. 5.6.2). Ref. [678] obtained

bbcθ (z) = [(1 + z)H0]−1 ∂δcr(z)

∂(θbc,0/H0)
(1− b1) ≈ 6.8[(1 + z)H0]−1(b1 − 1) . (8.21)
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Thus, we expect the bias parameters associated with the operators in this class to be of order several
times H−1

0 . The streaming velocity effects on very low-mass halos discussed above can induce an additional
contribution to bbcθ that is proportional to bbcv2 . Depending on the value of the latter bias parameter, this
could be as large as the estimate Eq. (8.21), but is likely to be smaller [678].23

Fig. 36 shows the leading contributions to the galaxy power spectrum from each of these three classes of
terms. We see that the R+ = δbc contribution dominates, while the θbc = ∂iR

i
− contribution is the smallest.

The contribution from v2
bc shown here is only one of several terms at NLO [680, 678], namely

I [δ(2),v2
bc](k) = −2

∫

p

F2(p,k − p)
p · (k − p)

p2|k − p|2 Pδθbc(p)Pδθbc(|k − p|) . (8.22)

Note however that the bias parameter bbcv2 is highly uncertain, and the value adopted for Fig. 36 is near
the maximum currently allowed value. While Fig. 36 clearly shows that the baryon-CDM contributions are
very small at low redshifts, their prominent BAO features, which are not exactly in phase with those in
the adiabatic growing mode of matter, make them relevant for the BAO feature as standard ruler in galaxy
correlations (see the recent discussion in [30]).

Finally, Ref. [159] recently pointed out another physical effect which enters the large-scale galaxy bias
expansion. After reionization, the free electrons in the Universe are weakly coupled to the free-streaming
CMB photons via Thomson scattering. The electrons in turn are bound to the nuclei via Coulomb forces.
If the baryons are at rest in the CMB frame, this scattering has no dynamical effect. On the other hand, if
the gas is moving relative to the CMB, it sees a dipole in its rest frame, which leads to a drag force which
is proportional to the velocity. In fact, this is the same drag that baryons experience before recombination.
This drag force supplies a source term to the baryon-CDM relative velocity given by [159]

v′r +Hvr = − xeαH vb , (8.23)

where xe(τ) is the electron ionization fraction, vb is the baryon fluid velocity relative to the CMB frame,
and the dimensionless coefficient α(τ) is given by

α(τ) = a(τ)
σTuγ(τ)

YempcH(τ)
∝ (1 + z)4H−1(z) . (8.24)

Here, σT is the Thomson cross section, uγ(T ) is the energy density of blackbody radiation of temperature
T , Ye ≈ 1.08 is the electron molecular weight and mp is the proton mass (α is of order 10−6 today). The
drag contribution leads to a relative velocity which, at redshifts z . 10, is of the same order of magnitude
as the primordial contribution vbc discussed above. However, the scale dependence is very different, as vbc
carries an imprint of the baryon acoustic oscillations, while the Compton drag is controlled by vb ≈ v, which
is dominated by dark matter, and its transfer function is proportional to T (k)/k, where T (k) is the transfer
function of the adiabatic growing mode (Sec. 7.1.1). This means that we have to separately account for the
Compton drag contribution to the baryon-CDM relative velocity in the bias expansion. As shown in [159],
the leading contributions are second order, and given by

δ(2)
g

∣∣∣
drag

= bdragv
2 + bdrag.bcv · vbc , (8.25)

where the first term is induced by Compton drag alone, while the second term corresponds to the coupling
between Compton drag and primordial relative velocity. Note that, when considering gravity alone, the
equivalence principle forbids the velocity itself from appearing in the bias expansion (Sec. 2.9). However,
the CMB radiation provides a preferred frame, so that the local velocity with respect to the CMB is an
observable; the coupling to the gas induced by Thomson scattering after reionization provides the physical
process by which this observable affects galaxy formation and thus enters the bias expansion.

23Ref. [680] adopt an effective bbcθ obtained from a loop integral that is approximately 20 times larger than Eq. (8.21) for

the assumed value of bbc
v2 . Here, we have absorbed this loop integral into a renormalized bias parameter bbcθ whose value needs

to be determined from the data, following renormalized perturbation theory (Sec. 2.10). Note that both parametrizations are
equivalent as long as one allows for both bbc

v2 and bbcθ to be free parameters in the fit to galaxy statistics.
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8.3 Galaxy bias with dark energy and modified gravity

Throughout this review, we have assumed a cosmological constant Λ as explanation of the current
accelerated expansion of the Universe. While all current cosmological observations appear consistent with
this scenario, it is worth exploring other physical paradigms. The most popular alternative to Λ, dark energy,
is usually described as a light scalar field whose potential energy provides the source of the accelerated
expansion (see [694, 695] for reviews).

Most models of galaxy clustering incorporate dark energy approximately by including the effects of the
modified expansion history in the linear growth factor D(τ). This approximation neglects perturbations in
the dark energy density, which scale as 1 + w, where w is the equation of state which is observationally
constrained to be close to -1. For this reason, perturbations in the dark energy typically have a very small
effect on the growth of structure. More precisely, this case parallels closely that of neutrinos (Sec. 8.1), with
the free-streaming scale being replaced by the sound horizon, or Jeans scale, k−1

J = cs/H of the dark energy,
where cs is the sound speed. For a canonical scalar field, often referred to as quintessence, cs = 1 so that
the sound horizon is given by the comoving horizon H−1. Hence, structure formation happens on scales far
inside the sound horizon of the dark energy, where dark energy perturbations are negligible. In that case,
the above-mentioned approximation is accurate.

In the opposite limit, cs = 0, realized for example by k-essence models, dark energy can be accurately
modeled as a collisionless fluid [696]. In principle, the bias expansion should now contain the dark energy and
matter density separately, including the relative velocity between the two [697]. However, in the absence of
initial isocurvature perturbations between dark matter and dark energy, the relative velocity vanishes, and
both matter and dark energy follow the same fluid trajectories. This implies that the density perturbations
in dark energy and matter are proportional to each other. In that case, no new terms are added to the bias
expansion even in the presence of clustering dark energy.

If the sound horizon of the dark energy is on intermediate, observable scales, then one expects the bias
parameters to become scale dependent analogously to the case of massive neutrinos. The scale dependence
of the linear bias was studied numerically in [698], by considering the two limiting cases of scales that are
far inside and far outside the dark energy sound horizon. This study was based on a generalization of the
separate-universe approach (Sec. 3.2) to include pressure perturbations [216]. The fractional difference in
the Lagrangian bias bL1 of dark matter halos between the sub-Jeans and super-Jeans limits was found to be
at the few-percent level, for a dark energy with equation of state w = −0.5, and independent of halo mass
(Fig. 11 in [698]; note that such a strong departure from w = −1 is already ruled out by observations). This
implies that in the presence of dark energy, halos show a scale-dependent bias around the scale k ∼ kJ with
an amplitude very roughly given by ∆b1 ∼ 0.1(1 + w) bL1 .

A fundamental alternative to dark energy is to modify General Relativity (GR) on large scales in order to
yield an accelerating Universe without an exotic stress-energy component. We now discuss the implications
of such modifications to GR (modified gravity), where we restrict to modified gravity models that obey
the weak equivalence principle at the level of the particle action. This means that there is a well-defined
spacetime whose geodesics govern the motion of test particles in the absence of non-gravitational forces
(universality of free fall). Typically, modified gravity theories introduce an additional scalar degree of
freedom, so that searching for this degree of freedom is a promising avenue to test gravity. We refer to
[699, 700] for comprehensive and [701] for a concise review of modified gravity in the context of cosmology.

As discussed in Sec. 2.9, the local gravitational observables corresponding to long-wavelength perturba-
tions (i.e., at lowest order in derivatives) consist of the local Hubble rate, tidal field, and spatial curvature
on constant-proper-time slices (KF in Sec. 2.9). These are supplemented by the matter density δ and the
velocity divergence θ and shear tensor ∂ivj . The derivation of this fact is purely geometrical, i.e. it does
not rely on the validity of the Einstein equations. Thus, all of this still holds in modified gravity. Moreover,
δ and θ are related by the continuity equation, and θ, ∂ivj are related to the tidal field through the Euler
equation, both of which are unmodified. On the other hand, for non-relativistic tracers, the local effect of
the spatial curvature is suppressed by (v/c)2. Thus, even though the relations between δ, θ, and KF are
modified from those in GR, the reasoning in Sec. 2.5.1 still holds, and it is sufficient to include the matter
density, tidal field, and convective time derivatives thereof in the bias expansion. However, the reduction of
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these terms to only a handful of terms at each order in perturbation theory, which holds in GR as described
in Sec. 2.5.2–2.5.3, is no longer possible in general for modified gravity.

To illustrate this, we adopt a scalar-tensor theory of Brans-Dicke type [702] as toy example of modified
gravity. The well-studied f(R) [703, 704] gravity model falls into this class [705]. This theory introduces
a scalar degree of freedom φ with potential V (φ) and a specific coupling strength to matter. The linear
growth factor equation, Eq. (B.9) in GR, is then modified to

d2

dτ2
D(k, τ) +H d

dτ
D(k, τ)− 3

2
Ωm(a)H2

[
1 + α(τ)

k2

k2 + a2m2(τ)

]
D(k, τ) = 0 , (8.26)

where α(τ) > 0 is a coupling constant, while m2(τ) = d2V (φ)/dφ2|φ̄(τ) is the mass of the scalar field at

its cosmological background value φ̄(τ) = 〈φ(x, τ)〉. Eq. (8.26) is derived by solving the usual linearized
Euler-Poisson system augmented by the Klein-Gordon equation for φ, where time derivatives of the latter are
neglected (the so-called quasi-static approximation appropriate on subhorizon scales). Clearly, the growth
factor becomes scale-dependent unless m = 0. For k � am, corresponding to scales larger than the Compton
length of the field, gravity reduces to GR, while on scales within the Compton length (k � am) gravity is
enhanced by a factor 1 + α.

Now consider the evolution of a linear LIMD bias relation. At time τ = τ∗, we write δ∗g = b∗1δ
∗. Then,

linear evolution via Eq. (2.24) immediately yields [670, 671]

δg(k, τ) = bE1 (k, τ)δ(k, τ) , bE1 (k, τ) = 1 + (b∗1 − 1)
D(k, τ∗)

D(k, τ)
. (8.27)

Thus, a LIMD (scale-independent) initial bias becomes nonlocal (scale-dependent) at a later time, unless
D(k, τ) is separable in k and τ . This holds in the same way for the scale-dependent growth induced by
free-streaming massive neutrinos (Sec. 8.1). From Eq. (8.26) we infer that, in the scalar-tensor example,
the scale dependence will appear at k ∼ am(τ). Since a general bias expansion should be able to describe
the special case of a conserved, initially locally biased tracer, we clearly see that, in the case of a modified
gravity scenario with scale-dependent growth, additional terms need to be included in the bias expansion
already at linear order.

In full generality, a scale-dependent growth factor D(k, τ) that is not separable in k and τ precludes
us from constructing a rigorous bias expansion in terms of a finite set of bias parameters. Recall that this
construction relied on modes evolving at the same rate on large scales, so that time derivatives could be
reordered to be successively higher order in perturbation theory. This no longer holds for a general D(k, τ).
However, as shown by Eq. (8.26), on scales much larger than the Compton length of the additional degree
of freedom, we can perform a perturbative expansion in k2/(am)2. Effectively, higher-derivative biases then
absorb the effects of the fifth force consistently.

Viable modified gravity models typically include screening mechanisms which suppress the additional
degrees of freedom in dense regions to satisfy Solar System constraints on gravity (see [700] for a general
discussion). These are nonlinear mechanisms and hence need to be taken into account for nonlinear bias.
Screening mechanisms provide motivation to use low-mass or low-density tracers such as dwarf galaxies or
voids to probe gravity. For screening of the chameleon or symmetron types, we have to include φ itself in
the bias expansion, since the screening threshold depends on the ambient field value. Note that for k � am,
φ(k) ∼ k2/(am)2Φ(k) is proportional to the density, rather than the potential. Models that invoke screening
of this type have a Compton wavelength that is constrained to be less than ∼ 10h−1 Mpc in order to satisfy
Solar System tests [706]. Thus, this dependence on φ can be taken into account via the higher derivative
terms mentioned above. For screening of the MOND or k-essence type, the relevant variable is ∂iφ/a0, where
a0 ∼ H0 is the MOND acceleration scale. Thus, the lowest-order contribution from MOND-type screening
to the galaxy density is (∂iφ)2/a2

0, which is of order (v/c)2 . 10−4 and thus expected to have a very small
impact numerically. Finally, for models with screening of the Vainshtein type, the screening depends on
∂i∂jφ. This does not lead to new terms in the bias expansion, since ∂i∂jφ is already captured by including
∂i∂jΦ and ∂ivj (as well as their time derivatives) separately.
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9 Connection to observations

9.1 The connection between galaxies and halos . . . . . . . . . . . . . . . . . . . . . . . . . . 204

9.2 Astrophysical selection effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.3 Projection effects: from proper to observed galaxy density . . . . . . . . . . . . . . . . 208

9.3.1 Observed galaxy density contrast at linear order . . . . . . . . . . . . . . . . . . . . . . . . 211

9.3.2 Nonlinear galaxy density contrast in redshift space . . . . . . . . . . . . . . . . . . . . . . . 215

9.4 Galaxy statistics on the sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

So far, we have described the clustering of galaxies and halos in their rest frame. This was appropriate,
since the focus of this review are physical bias expansions, which naturally describe the rest-frame galaxy
density. We now turn to the connection of these rest-frame statistics to observations. The purpose of this
section is to describe briefly all effects that enter the theoretical prediction for the observed statistics of
galaxies, starting from the general bias expansion in the rest-frame of galaxies. We begin with the local
(statistical) connection between galaxies and halos in Sec. 9.1, commonly described via halo occupation or
abundance matching approaches. Although, in the context of the general bias expansion, there is no need
to describe galaxies in terms of their relation to halos, as the bias expansion effectively takes into account
the small-scale physics of galaxy formation, the relation between galaxies and halos provides useful physical
insights, and can be used to extend the models of halo statistics described in Sec. 5–6 to galaxies.

We then review astrophysical selection effects in Sec. 9.2. We show that the general bias expansion is
able to describe a diverse population of galaxies with a single set of effective bias parameters. However,
certain selection effects can lead to additional terms in the bias expansion, which we describe there.

Sec. 9.3 then derives how the galaxy density is mapped to observed redshifts and positions on the sky
(projection effects); this includes the important complication of redshift-space distortions, as well as so-
called relativistic effects. Finally, Sec. 9.4 deals with the issue that galaxy surveys do not map out the
galaxy distribution on a fixed time slice and a flat sky, but rather on the past light cone, which is especially
relevant for large-scale perturbations on scales comparable to the typical radial distance to the observed
galaxies in the survey.

9.1 The connection between galaxies and halos

Galaxy formation is a complex process involving the inflow and cooling of gas, and self-regulation via
feedback effects (see [92] for an overview). Clearly, these processes go beyond the collapse of pressureless
matter which governs the formation of dark matter halos in N-body simulations and which forms the starting
assumption of both excursion-set and peak approaches. On the other hand, realistic numerical simulations
of the large-scale distribution of galaxies remain computationally extremely challenging. Since the fact that
galaxies are hosted by dark matter halos has been verified by both simulations and observations, analytic
approaches which rely on the halo model [707, 296, 708, 709, 710, 711] (see [343] for a review) have been
developed to describe the clustering of galaxies. In standard halo occupation distribution (HOD) models
[712, 713, 714], galaxies are assumed to follow the matter distribution within their host dark matter halo,
implemented for example by sampling the positions of dark matter particles or by using the universal mean
mass profile of the NFW form [366]. Furthermore, the host halo mass M is usually the sole property
determining the number of galaxies [715]. We will also assume steady emission from galaxies; the relation
between abundance and clustering is modified for intermittent sources such as quasars, which can be used
to constrain their lifetime [716].

Adopting the halo model ansatz, contributions to the clustering of galaxies can be split into those terms
arising from distinct host halos (“two-halo term”, in case of the galaxy two-point function), and those
involving the same host halo (“one-halo term”). In keeping with the focus of this review, we here derive the
large-scale clustering properties of galaxies predicted in this approach.

In most implementations of HOD approaches, galaxies are divided into “central” and “satellite” galaxies.
Every halo hosting one or more galaxies has exactly one central galaxy which resides at or close to the

204



center-of-mass of the halo. All other galaxies within the same halo are then denoted as satellite galaxies.
Let Nc ∈ {0, 1} and Ns ∈ {0, 1, 2, · · · } be the number of central and satellite galaxies in a given halo of mass
M , which we consider to be random variables. Since the existence of satellite galaxies is conditioned on the
presence of a central galaxy, it is convenient to define Ns through Ns = NcNs. Assuming that Nc and Ns
are independent random variables, the average number density of galaxies reads

ng =

∫
d lnM nh(M)

〈
Nc
〉
M

[
1 +

〈
Ns
〉
M

]
, (9.1)

where
〈
Nc
〉
M

and
〈
Ns
〉
M

are the expectation values of central and satellite galaxy numbers in halos of
mass M , respectively. By definition, 〈Nc〉M ≤ 1. The linear bias parameter b1,g is usually written as a
number-weighted integral over the halo bias b1(M) [717],

b1,g = ng
−1

∫
d lnM nh(M)

〈
Nc
〉
M

[
1 +

〈
Ns
〉
M

]
b1(M) . (9.2)

According to the general peak-background split argument, which is exact (Sec. 3), b1,g is the linear response
of the mean galaxy density to a change in the mean density of the Universe. We then see that Eq. (9.2) is
derived using the assumption that 〈Nc〉M and 〈Ns〉M are independent of the background cosmology. That
is, while the halo number density changes due to a long-wavelength density perturbation via b1(M), the
occupation statistics at a given fixed halo mass are assumed to be unchanged. This might be a good first-
order assumption in practice, although it is important to keep in mind that it is an approximation. The
PBS argument can similarly be applied (with the same assumptions) to derive the higher-order LIMD bias
parameters bN,g.

One can also calculate the large-scale stochasticity of galaxies, assuming that the stochasticity of halos
of mass M is given by Poisson shot noise 1/nh(M). Then, one obtains (e.g., [718])

P {0}ε,g =
1

n 2
g

∫
d lnM nh(M)

〈
Nc
〉
M

[
1 + 2

〈
Ns
〉
M

+
〈
N 2
s

〉
M

]
(9.3)

=
1

ng
+

1

n 2
g

∫
d lnM nh(M)

〈
Nc
〉
M

[
2
〈
Ns
〉
M

+
(〈
Ns
〉
M

)2]
, (9.4)

where the second line further assumes a Poisson distribution for Ns. The stochastic contribution to the
galaxy power spectrum thus also depends on the second moment of the distribution of satellite numbers at
fixed halo mass.

Various parametrizations of 〈Nc〉M and 〈Ns〉M exist in the literature. 〈Nc〉M typically follows a step-like
function, in agreement with what is found for the distribution of subhalos (bound substructures of halos)
in N-body simulations [713], whereas 〈Ns〉M can be parametrized by a power-law with logarithmic slope
α ≈ 1. In the model of [719] for instance, it is assumed that halos hosting satellite galaxies in a given
luminosity-limited sample also host a central galaxy from the same sample,

〈
Nc
〉
M

=
1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
(9.5)

〈
Ns
〉
M

=





(
M−M0

M ′1

)α
, M > M0

0 , M ≤M0 .
(9.6)

Here, Mmin represents the halo mass cutoff of central galaxies and σlogM takes into account the scatter
between galaxy luminosity and halo mass. For the satellite galaxies, M0 is the halo mass cutoff, M ′1 is the
characteristic mass of halos harboring one satellite, and α ≈ 1 is the power-law slope. Ns is usually assumed
to follow a Poisson distribution. All these model parameters depend on the galaxy sample considered, for
example the galaxy luminosity.

For illustration, the left panel of Fig. 37 shows the projected two-point correlation function of galaxies
with different luminosity threshold along with the best-fit HOD models. In order to use an N-body simulation
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Figure 37: Left panel: 2-point projected galaxy correlation function wp(rp) measured from the SDSS DR7 main sample with
different luminosity thresholds as indicated in the figure. The solid curves represent the best-fit HOD models. Only the data at
projected separation rp > 0.1h−1 Mpc was included in the fit. Right panel: Mean halo occupation function 〈N(M)〉 [Eq. (9.7)]
of the best-fitting models. A value σlogM = 0 was assumed for the faint galaxy samples, for which the cutoff mass scale is not
well constrained, which is visible as a sharp cut at low masses in the right panel. From [720].

to fit the HOD parametrization Eq. (9.6) to a given galaxy sample, centrals are assigned, for each halo in
the simulation, with a probability 〈Nc〉M to the center-of-mass position and velocity of halos. Further, Ns
is sampled from a Poisson distribution with mean 〈Ns〉M , and satellite galaxies are assigned the position
and velocity of random dark matter particles within the halo. Then, the mean number density and the
projected correlation function of this HOD sample is measured and compared to the data (see [720] for
details). Overall, the N-body-based HOD approach describes the shape of the galaxy correlation function
at different luminosity thresholds quite well over a wide range of scales. More luminous galaxies reside on
average in more massive halos and, therefore, are more biased. In the right panel, the mean halo occupation
function 〈

N(M)
〉
≡ 〈Nc

〉
M

[
1 + 〈Ns

〉
M

]
(9.7)

of the best-fit models is shown as a function of halo mass. The characteristic halo mass cutoff Mmin and
M1 increase with the luminosity threshold. Note however, that σlogM is weakly constrained for the faint
galaxy samples, which leads to the value σlogM ≈ 0 adopted here. Fitting the small-scale clustering of
galaxies via the HOD approach makes a prediction for the large-scale bias via Eq. (9.2). Ref. [721] pointed
out that simple HOD models tend to overestimate the actual large-scale galaxy bias b1 measured on scales
& 60h−1 Mpc. Note that the possible dependence of 〈Nc〉M and 〈Ns〉M on large-scale density perturbations
discussed after Eq. (9.2), which is usually neglected, leads to a correction to the linear bias which could help
explain this discrepancy.

Abundance matching techniques are an alternative to HOD approaches, and are based on the assumption
that there is a monotonic relation between some galaxy property and the host halo (or subhalo) mass. In
particular, this has been applied to the case of the stellar mass for central galaxies [713], or the stellar mass in
connection with the subhalo mass for satellite galaxies [722, 723]. In both cases, the underlying assumption
is that there is exactly one galaxy per dark matter halo, with the most massive galaxies residing in the most
massive (sub)halos. These non-parametric methods, which by construction rely heavily on simulations,
predict very well the clustering of observed galaxies (e.g. [724]). Based on this technique, Refs. [725, 726]
present an empirical mapping between stellar mass and halo mass at redshifts z = 0 − 1, and z = 0 − 8,
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respectively. These results offer interesting insights into the efficiency of galaxy formation at different mass
scales.

HOD and abundance matching approaches provide simple, physically motivated procedures to generate
mock galaxy catalogs from N-body simulations [see 727, for a recent review]. However, they clearly rely on
oversimplified parametrizations of galaxy formation. Much progress on the understanding of the physics of
galaxy formation has been made recently through detailed hydrodynamical simulations of galaxy formation.
Recent suites of simulations [728, 729, 730, 731] reproduce fairly well the evolution of early- and late-type
galaxies, quasars and their distribution in the cosmic web. They suggest that feedback from supernovae
and active galactic nuclei has a significant impact on the local galaxy abundance, and even on halo masses.
These effects can influence the clustering of galaxies and thus need to be accounted for in order to achieve
the accuracy required by the analysis of forthcoming galaxy surveys. This highlights the crucial difference
between the perturbative bias expansion on the one hand, and HOD and abundance matching approaches
on the other. The former is agnostic regarding the small-scale processes that shape galaxy formation, while
the latter necessarily relies on a specific (simplified) model.

9.2 Astrophysical selection effects

In practice, all galaxy samples collected in sky surveys are selected on some observable property such as
luminosity and color. The previous section described how these complications can be modeled through an
HOD approach. However, employing an HOD model or other empirical method for connecting galaxies and
halos is not necessary for the general bias expansion of Sec. 2 to be valid, as we now show. This is the case
as long as all deterministic and stochastic terms are included at the relevant order, with in general free bias
parameters (see Sec. 2.11 for the result up to third order). We continue to work with the galaxy density in
the galaxy rest frame, and defer redshift-space distortions and other projection effects to the next section.

Let α denote a set of physical observables (e.g., type, luminosity, color, half-light radius, shape etc.)
that is used to select galaxies. Again, we ignore any projection effects on these observables, and assume that
they are true intrinsic properties in the galaxy rest frame. Given a selection function S(α), the observed
galaxy density at the spacetime coordinate (x, τ) is

nsel
g (x, τ) =

∫
dαS(α)ng(x, τ ;α) =

∫
dαS(α)ng(τ ;α) [1 + δg(x, τ ;α)] , (9.8)

where we allow for both the mean galaxy density ng and density contrast δg to depend on the set of galaxy
properties α. Let us apply the bias expansion to this “conditional” density contrast δg(x, τ ;α):

δg(x, τ ;α) =
∑

O

[bO(τ,α) + εO(x, τ ;α)]O(x, τ) + ε(x, τ ;α) . (9.9)

Here operators and bias parameters are understood to be renormalized. Note that this expansion consis-
tently takes into account that the distribution of the observables α at each point (x, τ) can depend on the
environment via {O} as well (for example, a higher fraction of red galaxies in dense regions), in addition to
having a stochastic component. Thus, inserting Eq. (9.9) into Eq. (9.8), we obtain

nsel
g (x, τ) = ng(τ)

[
1 +

∑

O

[
bSO(τ) + εSO(x, τ)

]
O(x, τ) + εS(x, τ)

]
, (9.10)

where

ng(τ) =

∫
dαS(α)ng(τ ;α)

bSO(τ) =

∫
dαS(α)bO(τ,α)

εSO(x, τ) =

∫
dαS(α)εO(x, τ ;α) . (9.11)
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Thus, the seemingly complicated and nonlinear sample selection effects are consistently taken into account
by effective mean bias parameters bSO and stochastic fields εSO. While not necessary for the bias expansion
to apply, there are still good reasons to split observed galaxy samples by physical properties (or proxies
thereof) [732, 733, 734, 735, 736, 737]. This allows for insights into galaxy formation and evolution, by
measuring the bias parameters of different galaxy populations (see Fig. 37). Moreover, the relative bias
parameters can be measured without sampling variance, and allow for multi-tracer techniques to be applied
(Sec. 7.6.2). Alternatively, “marked correlation” analyses, in which galaxies are weighted by some property
or “mark,” help in quantifying how the galaxy properties α correlate with their large-scale environment
[738, 359, 739, 740, 741].

There is, however, an additional selection effect which is nontrivial. In the bias expansion discussed
throughout this review, we have written the galaxy density as a 3-scalar, which implies that there are no
preferred directions and all tensor indices in bias terms are contracted with each other, such as KijK

ij .
However, in reality, galaxies are observed through the photons emitted along the line of sight n̂ to the
observer. Thus, there is a preferred direction involved through the observational selection function, i.e.
the probability that a given galaxy is included in the survey sample. Two prominent cases where this can
happen are:

• The selection function depends on the orientation of the galaxy [742, 743, 744]. This is particularly
relevant for disk galaxies, since a disk is typically dimmer when viewed edge-on compared to face-on
due to dust obscuration. Orientations of galaxies in turn tend to correlate with large-scale tidal fields
[745, 746, 747, 748], leading to a dependence of the selection probability on the tidal field projected
along the line of sight.

• Galaxies are identified through emission or absorption lines, whose observed strength depends on the
line of sight due to radiative transfer effects; for example, the escape probability of a resonance line
photon depends on the local velocity gradient of matter [749, 750] (see also [751]), which again is
proportional to the tidal field projected along the line of sight. This applies in particular to the
Lyman-α line.

At linear order, these effects add one additional term, the line-of-sight projection of the tidal field,

bK‖ n̂
in̂jKij . (9.12)

In Fourier space, this term becomes bK‖(µ
2 − 1/3)δ(k), where µ = kin̂

i/k. The significance of this term

is that it is degenerate with the leading RSD contribution fµ2δ, and can thus hamper the use of RSD
to measure the growth rate f . However, this degeneracy can be broken by using the galaxy bispectrum
as discussed in Refs. [743, 752] for the two cases mentioned above. At higher orders in perturbations and
derivatives, the additional terms introduced by the line-of-sight dependence of the selection function multiply
rapidly; see [753] for a complete list up to third order. For this reason, keeping such selection effects small
is an important consideration in the design of large galaxy surveys.

Finally, we consider the bias of density fields constructed through intensity mapping. In this approach,
no target selection is done, and spectra are obtained for many lines of sight across a survey region. Then, the
flux in each pixel of a spectrum is interpreted as a line intensity for a given transition at the corresponding
redshift. This has or will be applied to the 21cm hydrogen hyperfine-structure transition [754], molecular
lines such as CO [755], as well as atomic transitions, in particular Hα 6563, as employed by the proposed
SPHEREx [633] mission. The resulting intensity map can be seen as a biased tracer of large-scale structure
just as galaxies, and obeys an analogous bias expansion. One simply replaces nsel

g (x, τ) in Eq. (9.10) with

the observed intensity Iobs
ν (x, τ). Due to the fact that it measures line fluxes, intensity mapping is often

affected by the radiative transfer effects mentioned above, and thus usually requires the bias Eq. (9.12) to
be included in the model predictions.

9.3 Projection effects: from proper to observed galaxy density

In practice, all tracers of large-scale structure are observed via photon arrival directions (right ascension
and declination) and redshifts, inferred from the shift in frequency of the observed spectral energy distri-
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bution (SED) of the galaxy relative to the rest-frame frequency. That is, we do not have access to the
rest-frame galaxy density (or line intensity) directly. Hence, an essential ingredient in the interpretation
of large-scale structure is the mapping from rest-frame quantities to observations, which is the subject of
this section. We refer to the contributions to the observed galaxy density obtained from transforming the
rest-frame galaxy density to observed coordinates as projection effects. Ref. [756] provide a concise recent
review of the subject.

Using the observed arrival direction, described by the unit vector n̂, and observed redshift z̃ of a given
galaxy, the standard practice is to assign the galaxy a comoving position using the photon geodesics in a
given unperturbed flat FRW spacetime described by fiducial cosmological parameters, which, when using
conformal time τ , are simply parametrized as straight lines:

(x0(τ),x(τ)) = (τ0 − τ, χ̄(τ)n̂) , (9.13)

where τ0 is the conformal time at present (i.e., at the time of observation), and τ̄(z) and χ̄(z) are, respectively,
the conformal-time-redshift relation and the comoving-distance-redshift relation in the adopted fiducial
background cosmology. Thus, a galaxy with given (z̃, n̂) is assigned the comoving position

(τ̃ , x̃) = (τ̄(z̃), χ̄(z̃)n̂) . (9.14)

In general, this position of course only corresponds to the true physical position of the galaxy in the absence of
spacetime perturbations (and if the fiducial cosmology is the true one). On the other hand, in the presence
of perturbations as in Eq. (1.2), this is a convenient coordinate (gauge) choice because the variables are
directly related to large-scale structure observations. Hereafter, quantities denoted with a tilde are directly
related to observables, while barred quantities refer to quantities evaluated for the fiducial background
cosmology. Moreover, throughout we assume that the true background cosmology is used to assign apparent
positions via Eq. (9.14). In practice, we have to allow for the possibility that the true expansion history is
different from the fiducial assumption. These deviations can effectively be taken into account as additional
coordinate rescalings, known as Alcock-Paczyński distortions [757], which themselves contain information
on the expansion history [44, 758, 759].

The calculation is illustrated in Fig. 38. Here, we show two galaxies with inferred positions x̃µ and x̃′µ

based on the observables (z̃, n̂) and (z̃′, n̂′); the true coordinates of these galaxies, in some given global
coordinate system, are xµ ≡ x̃µ + ∆xµ and x′µ = x̃′µ + ∆x′µ, respectively. We define ∆xµ as the spacetime
deviation between the true spacetime coordinate and the inferred coordinate of a galaxy. The deviation ∆xµ

can be calculated by integrating the geodesic equation from the observer’s location to the source, given the
photon momentum at the observer specified by z̃, n̂. General-relativistic effects such as Shapiro time delay,
Sachs-Wolfe effect, Integrated Sachs-Wolfe effect, lensing magnification as well as redshift-space distortions
contribute to ∆xµ. Explicit expressions for ∆xµ can be found in, for example, [761, 762, 756] and [763],
at linear and second order in perturbations, respectively. Here, we present the linear-order results in terms
of the general perturbed FRW metric, i.e. without restricting the gauge degrees of freedom (also known as
gauge-ready form)

ds2 = a2(τ)
[
−(1 + 2A[x, τ ])dτ2 − 2Bi[x, τ ]dτdxi + (δij + hij [x, τ ]) dxidxj

]
. (9.15)

First, we evaluate the proper time tF at which a given observed photon was emitted, for an observer
comoving with the source. In case of an unperturbed Universe, this is simply given by tF = t̄(ã), where
ã = 1/(1 + z̃) and t̄(a) is the time-scale factor relation in the fiducial background. For convenience, instead
of using the proper time tF , we transform to ln a(tF ) using the scale factor a(t) in the fiducial background.
Moreover, we phrase the departure of the actual “log-scale factor of emission” from the prediction in the
unperturbed background, ln ã ≡ − ln(1 + z̃), through

T (x̃, τ̃) ≡ ln

(
a(tF [x̃, τ̃ ])

ã

)
= ∆ ln a(x̃, τ̃) + H̃

∫ τ̃

0

A[x, τ ′]a(τ ′)dτ ′ , (9.16)
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Figure 38: Illustration of the projection effects, i.e. the mapping from observed photon directions and redshifts to the galaxy
rest frame. The actual geodesics of photons emitted from two galaxies at xµ and x′µ are depicted as solid lines. The observer
at the bottom of the plot infers radial distances and angular positions of the galaxies based on the observed redshift and arrival
direction of photons, assigning them the spacetime positions x̃µ and x̃′µ respectively. The deviation four-vectors ∆xµ and
∆x′µ can be calculated by following the photon geodesics, taking into account the velocity four-vectors of each galaxy and the
observer. Note that the deflection of the photon geodesics is greatly exaggerated here for illustration purposes. From [760].

where H̃ ≡ H(ã), and

∆ ln a ≡Ao −A+ v‖ − v‖o −
∫ χ̃

0

dχ
∂

∂τ

[
A−B‖ −

1

2
h‖

]

χn̂, τ0−χ
−H0

∫ τo

0

A(0, τ ′)a(τ ′)dτ ′ , (9.17)

where all quantities without arguments are evaluated at (x̃, τ̃), while a subscript o indicates a quantity
evaluated at the observer: v‖o ≡ v‖(0, τ0). The subscript ‖ denotes quantities projected onto the line of
sight; for example, B‖ ≡ Bin̂i, h‖ ≡ hij n̂in̂j . Thus, T is the time shift, phrased in terms of ln a, between a
constant-observed-redshift surface (defined for a fixed central observer) and a constant-proper-time surface.
In Eq. (9.16), ∆ ln a gives the difference Hδτ in coordinate time, while the second term maps coordinate
time to proper time. Note that T is an observable and gauge-invariant: if the observed source is a clock, i.e.
communicates its proper time since the Big Bang to the distant observer, then T can be measured directly.
Indeed, the observed CMB temperature fluctuation on large scales, outside of the sound horizon, is exactly
given by T [764]. ∆ ln a on the other hand is a coordinate-dependent and unobservable quantity. Only if a
gauge choice is made such that A = 0 in Eq. (9.15) does ∆ ln a = T become an observable.

In addition, the spatial displacement, decomposed into components parallel (∆x‖ = n̂i∆xi) and perpen-
dicular to the line of sight (∆xi⊥ = Pij∆xj , where Pij ≡ δij − n̂in̂j is the projection operator on the sky)
can be written as

∆x‖ = −
∫ τo

0

A(0, τ ′)a(τ ′)dτ ′ +

∫ χ̃

0

dχ

[
A−B‖ −

1

2
h‖

]

χn̂, τ0−χ
− 1 + z̃

H(z̃)
∆ ln a . (9.18)

∆xi⊥ =

[
1

2
Pij(hjk)o n̂

k +Bi⊥o − vi⊥o
]
χ̃

−
∫ χ̃

0

dχ

[
χ̃

χ

(
Bi⊥ + Pijhjkn̂k

)
+ (χ̃− χ)∂i⊥

(
A−B‖ −

1

2
h‖

)]

χn̂, τ0−χ
. (9.19)

Here, the spacetime arguments follow those in Eq. (9.17). We see that ∆ ln a appears in the line-of-sight
displacement. Further, the combination of metric perturbations A− B‖ − h‖/2 is the gravitational lensing
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potential in a general gauge, which reduces to Φ + Ψ in conformal-Newtonian gauge [Eq. (1.2)]. The
dominant terms in the displacements on small scales are those which involve spatial derivatives of the metric
potentials. This is (v‖ − v‖o), which appears in ∆ ln a and is responsible for redshift-space distortions, and
∂i⊥(A−B‖ − h‖/2) in ∆xi⊥ which is responsible for lensing magnification effects.

The displacement x̃µ → xµ = x̃µ + ∆xµ defines a coordinate transformation from observed to true
positions. We can now derive how the galaxy density transforms under this coordinate transformation.
Specifically, the physical (rather than comoving) rest-frame galaxy density ng is the 0-component of the
galaxy four-momentum ngu

µ
g = ngu

µ (since we restrict to large scales here, we neglect velocity bias, see
Sec. 2.7). The number of galaxies within a volume V on the past light-cone of the observer, defined in terms
of observed Cartesian coordinates x̃, is then given by an integral of the three-form that is dual to ngu

µ. In
components, this becomes

N(V ) =

∫

V

d3x̃
√
−g(x) ng(x)εµνρσu

µ(x)
∂xν

∂x̃1

∂xρ

∂x̃2

∂xσ

∂x̃3
, (9.20)

where
√
−g(x) is the determinant of the metric, ng(x) is the physical number density of galaxies at spacetime

position x, uµ = dxµ/dtF = a−1(1 − A, vi) the galaxy velocity four-vector, and εµνρσ the Levi-Civita
symbol. Eq. (9.20) is fully nonlinear, and we will evaluate it in two limits: first, restricting to linear order
in perturbations but including all relativistic terms; second, working to nonlinear order in perturbations
but restricting the projection effects to those relevant on small scales, i.e. those terms that involve two
spatial derivatives on metric perturbations. As discussed in Sec. 2.9, these two limits essentially cover the
parameter space where projection effects are numerically important.

9.3.1 Observed galaxy density contrast at linear order

Combining the expression Eq. (9.20) with Eqs. (9.16)–(9.19), we can now obtain the fully relativistic
expression for the observed galaxy density contrast at linear order in perturbations. For this, we need an
expression for the galaxy density ng(x), which is, of course, dependent on the coordinate system used to
evaluate Eq. (9.20). Rather than expressing ng in terms of the galaxy density perturbation δg in some
arbitrary gauge, which is of course absolutely legitimate, we choose to fix coordinates to the constant-
observed-redshift (“or”) gauge. The reason is that the mean density of galaxies ng is measured at fixed
observed redshift. For this reason, observations of the galaxy overdensity are naturally in the “or” gauge,
simplifying the calculation both practically and conceptually.

We thus write ng in terms of the mean comoving number density a3ng and the perturbation δor
g to the

comoving number density, in the constant-observed-redshift gauge, as

a3ng(x) = ã3ng(z̃)
[
1 + δor

g (x, z̃)
]
, (9.21)

where z̃ is the observed redshift corresponding to the spacetime location x, and ã = 1/(1 + z̃). Eq. (9.21)
can be understood as the definition of δor

g . At linear order in perturbations, we can neglect the distinction
between x(x̃) and x̃ in the argument of δor

g , since the latter is already first order. Then, the right-hand side
of Eq. (9.20) becomes

N(V ) =

∫

V

d3x̃

(
1 +A+

h

2

)
ã3ng(z̃)

[
1 + δor

g (x̃, z̃)
](

(1−A)

∣∣∣∣
∂xi

∂x̃j

∣∣∣∣+ v‖

)
. (9.22)

The observationally inferred galaxy number density ñg is defined by evaluating Eq. (9.20) on the unperturbed
(fiducial) background, yielding

N(V ) =

∫

V

d3x̃ ã3ñg(x̃, z̃) . (9.23)

By equating Eq. (9.22) and Eq. (9.23), we find the observed galaxy density contrast as

δ̃g(x̃, z̃) ≡
ñg(x̃, z̃)

ng(z̃)
− 1 = δor

g (x̃, z̃) +
h

2
+ ∂‖∆x‖ +

2∆x‖

χ̃
− 2κ̂+ v‖ . (9.24)
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Here, h ≡ δijhij , and we have expanded the Jacobian through
∣∣∣∣
∂xi

∂x̃j

∣∣∣∣ = 1 +
∂∆xi

∂x̃i
= 1 + ∂‖∆x‖ +

2∆x‖

χ̃
− 2κ̂ , (9.25)

where the coordinate (i.e. gauge-dependent) lensing convergence κ̂ is defined as the divergence on the sky
of the perpendicular displacement,

κ̂ = −1

2
Pij∂i∆x⊥j . (9.26)

All contributions in Eq. (9.24) apart from δor
g are the induced, apparent modulation of the galaxy abundance

due to volume distortion effects.
Next, we have to relate δor

g in Eq. (9.24) to the matter density through a bias relation. The galaxy
density contrast δor

g in Eq. (9.24) is defined in the constant-observed-redshift slicing. On the other hand, as
discussed in detail in Sec. 2.9, the linear bias relation between galaxy density contrast and matter density
contrast is valid on constant-proper-time (“pt”) slices: δpt

g = b1δ
pt. This is because in the large-scale limit,

galaxies only know about the local age of the Universe and the local matter density.24 At linear order,
the transformation of the galaxy density between the two gauges is completely determined by the time
shift between them. This shift is precisely the observable T that we have derived in Eq. (9.16). Then, the
relation between δor

g (x̃, z̃) and the galaxy density perturbation δpt
g = b1δ

pt in the constant-proper-time (or
synchronous) gauge is given by a standard, linear gauge transformation,

δor
g (x̃, z̃) = b1 δ

pt(x̃, z̃) + beT (x̃, z̃) , be ≡
d ln(a3ng)

d ln a
, (9.27)

where we have introduced the dimensionless parameter be quantifying the evolution of the mean comoving
number density of galaxies. Note that this relation only involves observable quantities, so that both b1 and
be are well defined and gauge-invariant. It also serves as the unambiguous starting point for extending the
bias relation to higher order in perturbations, for example by adding a term (b2/2)(δpt)2 to the right-hand
side. For halos following a universal mass function, Ref. [96] derived be = δcrf(b1 − 1).

Finally, δpt is related to the matter density perturbation δ in the chosen gauge through

δpt = δ + 3H̃

∫ τ̃

0

A(x, τ)a(τ)dτ . (9.28)

Combining the last two equations, we find the galaxy density contrast on the constant-observed-redshift
slice in terms of the density contrast in an arbitrary gauge as

δor
g (x̃, z̃) = b1

[
δ + 3H̃

∫ τ̃

0

A(x̃, τ)a(τ)dτ

]
+ beT . (9.29)

This yields our final expression:

δ̃g(x̃, z̃) = b1

[
δ + 3H̃

∫ τ̃

0

A(x̃, τ)a(τ)dτ

]
+ be T +

1

2
h+ ∂χ̃∆x‖ +

2∆x‖

χ̃
− 2κ̂+ v‖ . (9.30)

Here, the line-of-sight derivative of the longitudinal displacement is given by

∂χ̃∆x‖ =A−B‖ −
1

2
h‖ −H(z̃)

(
∂

∂z̃

1 + z̃

H(z̃)

)
∆ ln a

− 1 + z̃

H(z̃)

(
−∂‖A+ ∂‖v‖ −

∂

∂τ
v‖ +

1

2

∂

∂τ
h‖ +

∂

∂τ
B‖

)
. (9.31)

24This assumes Gaussian initial conditions, and that there are no additional degrees of freedom relevant on large scales,
such as dark energy perturbations, or modified gravitational forces. The generalizations are discussed in Sec. 7 and Sec. 8,
respectively, and can easily be included here.
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One subtlety we have neglected so far is that observational selection effects can modify the observed
galaxy density, Eq. (9.30). Usually, surveys observe galaxies above a certain apparent flux, or magnitude
threshold. Weak lensing magnifies/de-magnifies the flux of the source galaxies and therefore induces another
contribution to the observed galaxy density (magnification bias [765]). For a population of galaxies at fixed
redshift z̃ with cumulative luminosity function ng(> Lmin), we define

Q ≡ −d ln ng(> Lmin)

d lnLmin
. (9.32)

More generally, other selection effects, such as galaxy size, can contribute to Q [766]. In that case, the
coefficient should be defined as Q = d ln ng/dM, where M is the gauge-invariant magnification. Then,

magnification bias adds a contribution QM to δ̃g, where

M = −2∆ ln a− 1

2
(h− h‖)−

2

χ̃
∆x‖ + 2κ̂ . (9.33)

Note that we neglect the effect from the evolution of intrinsic luminosity of the galaxies which can in principle
contribute to the magnification (see [760] for the complete expression); this contribution is typically much
smaller than M itself. We finally obtain the observed density contrast including magnification bias as

δ̃g(x̃, z̃) = b1

[
δ + 3H̃

∫ τ̃

0

A(x̃, τ)a(τ)dτ

]
+ beT + 2QH̃

∫ τ̃

0

A(x̃, τ)a(τ)dτ +
1

2
(1−Q)h+

Q
2
h‖

+ ∂χ̃∆x‖ + (1−Q)
2

χ̃
∆x‖ + 2(Q− 1)κ̂+ v‖ . (9.34)

Eq. (9.34) provides the complete result for the observed overdensity of a tracer at linear order in a general
gauge. When restricted to conformal-Newtonian gauge, this agrees with [190, 95] (note the discussion around
Eq. (31) of the former reference); restricting to synchronous-comoving gauge yields the results derived in [96].
Here, we have assumed a sharp source redshift, but the projection over a finite redshift bin is straightforward.

Assuming that the coefficients b, be, Q are all of order unity, the various terms in Eq. (9.34) can be
ranked in terms of relative importance according to their scaling, relative to δ, with H/k in Fourier space.
The largest terms, “order 1”, are in conformal-Newtonian gauge given by

δ̃O(1)
g = b1 δ +

1 + z̃

H̃
∂‖v‖ + 2(Q− 1)κ̂ . (9.35)

Note that in conformal-Newtonian gauge, δ = δpt +O(H2/k2). Eq. (9.35) is the standard small-scale result
for the apparent galaxy overdensity, including the leading redshift-space distortion [47] and magnification
bias. The subleading corrections in Eq. (9.34) scale as iH/k (“velocity-type”) and (H/k)2 (“potential-
type”). Fig. 39 shows the angle-averaged auto-power spectrum of the galaxy density including relativistic
projection effects [Eq. (9.34), solid line], and in the small-scale approximation [Eq. (9.35), using δpt, dotted
line]. We have dropped terms that are integrated along the line of sight. These cannot be represented by
a three-dimensional power spectrum. Moreover, on such large scales, employing the flat-sky approximation
is not sufficient (we will generalize this in Sec. 9.4). Thus, Fig. 39 is only meant as an order-of-magnitude
illustration of the relativistic projection effects, which clearly become numerically relevant only for k/kH ≡
k/H . 10.

The power spectrum of the relativistic linear galaxy density perturbation Eq. (9.34), again neglecting
all contributions that involve integrals along the line of sight, contains three types of contributions beyond
the small-scale limit Eq. (9.35): the auto-correlation of velocity-type terms, which scales as (H/k)2PL(k),
compared to the leading contribution ∝ PL(k); the cross-correlation of potential-type terms with leading
terms, which obeys the same scaling; and the auto-correlation of potential-type terms, which scales as
(H/k)4PL(k). Note that the cross-correlation of velocity-type terms with either potential- or density-type
terms vanishes by symmetry when considering the auto-correlation of any tracer. The first two contributions
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Figure 39: Linear galaxy power spectrum including relativistic projection effects following Eq. (9.34) (solid lines), and
corresponding prediction keeping only terms relevant on small scales, Eq. (9.35) (dotted). The four panels show different values
of linear bias parameters (with b ≡ b1) and redshift. be is calculated by using the prediction for the universal mass function,

be = δcrf(b1 − 1) [96]. In each case, we perform an angle-average over k̂ (power spectrum monopole), and drop contributions
that are integrated along the line of sight (see discussion in the text). Vertical lines show the comoving horizon wavenumber
(kH = H) at each redshift. For comparison, we also show the galaxy power spectrum in the small-scale approximation but
including the scale-dependent bias induced by local-type PNG via Eq. (7.94), with a value of fnl adjusted in each case to match
the amplitude of the relativistic projection effects (dashed lines). Depending on bias and redshift, the relativistic projection
effects are of the same order as the scale-dependent bias for PNG with fnl . 1. From [96].

have the same k-dependence on large scales as the leading contribution to Pgg(k) from the scale-dependent
bias ∆b(k) induced by local-type PNG [68], Eq. (7.94). We can thus find the effective fnl that would lead to
a scale-dependent term of similar magnitude. These results are also shown in Fig. 39. We see that relativistic
projection effects amount to the effect of local primordial non-Gaussianity with fnl . 1 [96, 767] for typical
expected values of b1, be,Q. Given our forecasts in Sec. 7.6.1, the projection effects of potential-type are
thus expected to be marginally detectable in future galaxy surveys. The velocity-type contributions ∝ H/k,
which come from terms involving v‖ and ∂‖Ψ in case of conformal-Newtonian gauge, are larger and more
easily detectable [614, 768, 769]. As mentioned above however, they cancel out in the auto-correlation of
tracers, and necessitate the use of two different tracers to measure the dipole of their cross-power spectrum.
Note that projection effects will also amount to a non-zero fnl . 1 in the galaxy bispectrum, although the
exact amplitude of this effect is still being debated in the literature [763, 770, 771, 772, 773].

Ref. [774] derived the contribution of tensor modes to the observed galaxy clustering statistics, which,
at linear order, only enter through projection effects. Unfortunately, for currently allowed amplitudes of
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primordial gravitational waves, these contributions are much smaller than even the relativistic projection
effects from scalar perturbations shown in Fig. 39.

9.3.2 Nonlinear galaxy density contrast in redshift space

We now turn to the projection effects on small scales, where the “potential-type” terms discussed at
the end of the Sec. 9.3.1 can be neglected. The dominant projection contributions to the galaxy density
then come from the line-of-sight velocity v‖ and its derivatives, and from the lensing convergence κ̂. In the
following, we will neglect the contribution from κ̂, which, while of the same order in derivatives as the other
leading terms, is suppressed by the integration over the line of sight. However, this effect can be taken into
account in a straightforward manner [775, 776, 777].

On the other hand, on small scales linear perturbation theory no longer applies. Hence, we now evaluate
Eq. (9.20) without expanding at linear order in perturbations, but instead making the approximations

T → 0, ∆x‖ → −
1 + z̃

H(z̃)
v‖, ∆x⊥ → 0 . (9.36)

Here, we have also dropped the observer’s velocity v‖o, since it only contributes to the dipole of the galaxy
density and can thus also be neglected when focusing on small scales. Further, we will continue to denote
the galaxy velocity as v for clarity, although this can now differ from the matter velocity due to velocity
bias; the matter velocity will never appear explicitly in the following, however. With these assumptions,
Eq. (9.20) becomes

N(V ) =

∫

V

d3x̃ a3ng(z)(1 + δg(x[x̃]))

∣∣∣∣
∂xi

∂x̃j

∣∣∣∣ ≡
∫

V

d3x̃ ã3ng(z̃)(1 + δ̃g(x̃, z̃)) , (9.37)

where, from Eq. (9.36)
x̃i = xi + u‖(x)n̂i (9.38)

is the (purely spatial) coordinate shift between real space (xi) and redshift space (x̃i) coordinates, using
the scaled galaxy velocity u(x) ≡ v(x)/H, and u‖(x) ≡ n̂ · u(x). In general, the inverse function x(x̃) of
Eq. (9.38) is multi-valued. Therefore, a simply connected volume V in observed coordinates does not in
general correspond to a simply connected region in real space. This multi-to-one mapping of the redshift-
space distortion can happen for galaxies residing in massive halos which exhibit large peculiar (virial)
velocities. In the following, we will ignore this non-perturbative effect, since our focus is on the perturbative
description of galaxy clustering. Then, we can invert Eq. (9.38) and write the observed galaxy density
perturbation as

1 + δ̃g(x̃) = [1 + δg(x)]

∣∣∣∣
∂xi

∂x̃j

∣∣∣∣ = [1 + δg(x)]

∣∣∣∣δ
j
i + n̂j

∂

∂xi
u‖(x)

∣∣∣∣
−1

. (9.39)

Here and in the following, the galaxy density and velocity will always be evaluated at the observed redshift
z̃, i.e. at coordinate time τ̄(z̃). Hence, we drop the time argument in what follows for clarity. Sylvester’s
theorem allows us to evaluate the determinant via

∣∣∣∣δ
j
i + n̂j

∂

∂xi
u‖(x)

∣∣∣∣ = 1 + n̂j∂ju‖(x) = 1 + ∂‖u‖(x) , (9.40)

and we obtain

δ̃g(x̃) =
1 + δg(x)

1 + ∂‖u‖(x)
− 1 . (9.41)

This result is the fully nonlinear expression of the redshift-space galaxy density contrast in configuration
space, as long as Eq. (9.38) describes a one-to-one mapping from real to redshift space. Finally, we evaluate
the right-hand side of the above equation using the quantities at the observed (redshift-space) coordinate.
For some scalar function f(x) (e.g., δg(x)), expanding x around x̃ via Eq. (9.38) yields

f(x) = f(x̃)−
[
1− ∂‖u‖

]
u‖∂‖f(x̃) +

1

2
u2
‖∂

2
‖f(x̃) +O(u3

‖) , (9.42)
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where all fields on the right-hand side are evaluated at x̃, and the 1 − ∂‖u‖ factor comes from expanding
the argument of u‖(x). Note that, even though the velocity appears without a spatial derivative here,25

it always enters in combination with a spatial derivative acting on another perturbative quantity. Hence,
terms of order u‖∂‖ in the expansion Eq. (9.42) are of the same order in derivatives as ∂‖u‖.

We can now expand the right-hand side of Eq. (9.41) to obtain the perturbative expression for the
observed galaxy density in redshift space, i.e. including the leading projection effects on small scales. Up to
third order in perturbations, counting each power of δ as well as u‖, Eq. (9.41) becomes

δ̃g(x̃) = δg(x) + [1 + δg(x)]
{
−∂‖u‖(x) +

[
∂‖u‖(x)

]2}−
[
∂‖u‖(x)

]3
+O(δ4) . (9.43)

Applying the coordinate transformation relation in Eq. (9.42), we obtain the third-order galaxy density
perturbation in redshift space as

δ̃g = δg − ∂‖
[
u‖ (1 + δg)

]
+

1

2
∂2
‖

[
u2
‖ (1 + δg)

]
− 1

6
∂3
‖

(
u3
‖

)
+O(δ4) , (9.44)

where all quantities are evaluated at the redshift-space coordinate, x̃. This expression agrees with the
Fourier-space expression derived in [778, 250],

δ̃g(k) = δg(k) +

∫
d3x e−ik·x

(
e−ik‖u‖(x) − 1

)
[1 + δg(x)] . (9.45)

This in turn is formally equivalent in configuration space to a series expansion valid at all orders,

δ̃g = δg +

∞∑

n=1

(−1)n

n!
∂n‖

[
un‖ (1 + δg)

]
. (9.46)

The contributions in Eq. (9.44) that involve u‖ are known as redshift-space distortions (RSD). We now
derive the effect of RSD on observed galaxy statistics, in particular the leading-order power spectrum. This
calculation simplifies considerably in the flat-sky limit, i.e. when the line of sight n̂ is taken to be a constant
unit vector. We will describe approaches to galaxy clustering on the full sky in the next section. First, at
linear order in perturbation theory, we have

u‖(k, τ) = i
k · n̂
k2

f δ(1)(k, τ) , (9.47)

where f = d lnD/d ln a is the linear growth rate. The leading-order prediction for the galaxy power spectrum
in redshift space in this limit (“Kaiser formula”) is given by

P lo
g,s(k, µ) = (b1 + fµ2)2PL(k) + P {0}ε , (9.48)

where µ ≡ k̂ · n̂ is the cosine of the wavevector with the line of sight. This expression was first derived
by [47]; the corresponding derivation in configuration space can be found in [779]. Note that we use the
term “configuration space” for the complement to Fourier space, to distinguish from “real space,” which
is commonly used to denote the rest-frame galaxy density. These results correspond to the auto-power
spectrum and correlation function, respectively, of Eq. (9.35) in the flat-sky limit and when neglecting
magnification bias. Note that at this order, RSD do not add any free parameters to the galaxy power
spectrum. Instead, the anisotropy (µ-dependence) of the observed galaxy power spectrum can be used to
constrain the growth rate f . Thus, a measurement of RSD on large scales yields constraints on the growth
of structure without the complications of bias [780, 781].

25Strictly speaking, u‖ denotes the relative velocity between source and observer [cf. Eq. (9.17)], which is boost-invariant
and observable.
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The idea of using the observed anisotropic distribution of galaxies in redshift space as an indicator
of velocity structure was first proposed by [45] and further extended by [46], who showed that the mean
anisotropy of the galaxy two-point function is a probe of the matter density parameter Ωm, via the growth
rate f . This technique has been applied to real data, providing constraints on modified gravity and non-
canonical dark energy [782, 783, 784, 785, 786, 787]. The multi-tracer method discussed in Sec. 7.6.2 can

also be applied to RSD, improving constraints on the growth rate, provided that the stochasticity P
{0}
ε of

the galaxy samples is well understood [643, 342, 788, 614, 789]. This has recently been applied to the GAMA
survey sample [790]. Ref. [791] provides a pedagogical review on redshift-space distortions at linear order.

It is important to stress that Eq. (9.48) can only be considered a clean probe of velocities if the real-space
galaxy density δg itself does not depend on ∂‖u‖. However, since, at linear order, ∂‖u‖ ∝ ∂2

‖Φ ∝ Kij n̂
in̂j ,

this is only true if the galaxy density does not depend on the tidal field projected along the line of sight. As
we have seen in Sec. 9.2, such a dependence can be induced by selection or radiative-transfer effects. If those
are present, leading-order RSD no longer provide a direct probe of velocities. In case of the Lyman-α forest,
for example, such radiative-transfer effects are important [see, e.g., 792, 793, 794, 795, 796, 797, 798, 799,
800, 801, 802], as the optical depth of Lyman-α photons depends strongly on the velocity gradient along the
line of sight.

Going beyond linear order, other references considered the galaxy three-point function [803] and bispec-
trum [804, 805] in redshift space. Ref. [806] presented the calculation of RSD in the two-point function using
the Zel’dovich approximation. The formulation of RSD in Lagrangian perturbation theory can be found in
[807, 808]. For the galaxy power spectrum, the expressions derived in either [778] (“Scoccimarro” model) or
[809] (“TNS” model) are widely applied for the interpretation of galaxy survey data beyond linear order. It
is worth noting that the coupling between nonlinear bias and nonlinear RSD, as well as higher-derivative,
velocity-bias and stochastic-bias contributions, are not completely accounted for in the expressions given in
these references. Recently, Ref. [180] (see also [810, 753]) presented complete expressions for the NLO galaxy
power spectrum in redshift space (that is, the generalization of the results presented in Sec. 4.1.4 to redshift
space) including the velocity bias contributions which become relevant at this order. In the context of the
general bias expansion, the NLO redshift-space contributions to the galaxy power spectrum add three addi-
tional parameters, which are all related to velocity bias. Two parameters describe deterministic velocity bias
(see Sec. 2.7), while the third describes the amplitude of random, small-scale galaxy velocities (see Sec. 2.8).
It is worth emphasizing that displacement-type terms such as u‖∂‖δg, which become relevant beyond the
leading-order galaxy two-point function, are protected from selection and radiative-transfer effects as well
as velocity bias (on large scales) through the equivalence principle. Thus, even in the presence of all these
observational complications, they in principle allow for robust constraints on the growth of structure from
observed galaxy statistics.

While the rigorous perturbative approach (EFT of matter coupled with the general bias expansion) is
an approach whose advantages have been explained in detail in Sec. 2 and Sec. 4, it is worth pointing out
that alternative approaches to the modeling of small-scale RSD have been developed [811, 812, 813] in the
context of the halo occupation distributions (HOD, see Sec. 9.1).

Finally, redshift-space distortions also complicate significantly the interpretation of nonlinear transfor-
mations of the galaxy density field, such as void catalogs [814, 815, 816, 817, 818] and “clipped” [819, 820]
or log-transformed galaxy density fields [821, 822, 823, 824, 825, 826].

9.4 Galaxy statistics on the sky

After having described how the rest-frame galaxy density is transformed to observed coordinates (z̃, n̂),
we are now in a position to describe the statistics of galaxies in these observed coordinates beyond the
flat-sky limit adopted in the previous section. We now consider the fully general case, allowing for wide
angles [see [827, 828, 829, 830, 831, 832] who use Eq. (9.35), and [833, 834] for treatments including the
full expression Eq. (9.34)], and for deep surveys. This is of particular importance when one is interested in
measuring long-wavelength fluctuations which extend across a significant redshift range and/or portion of
the sky, for example to probe the signature of primordial non-Gaussianity. Here, we focus on the galaxy
two-point function (see [530, 835, 771] for extensions to the three-point function allowing for wide angles),
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and neglect subtleties involved in its optimal estimation (such as discussed in [836]). Moreover, we will not
consider the effect of the survey window, which further complicates the treatment. Since we will always deal
with observed, redshift-space coordinates in this section, we will drop the tilde, i.e. x̃→ x.

The standard approach of analyzing galaxy statistics on the sky is to decompose the observed galaxy over-
density in terms of spherical harmonics Ylm, and radial window functions Wl(p, χ), labeled by a parameter
p:

δ̃g(p; n̂) =
∑

lm

δlm(p)Ylm(n̂), where δlm(p) =

∫ ∞

0

χ2dχ

∫
d2n̂ Y ∗lm(n̂)Wl(p, χ)δg(x, τ [χ]) , (9.49)

and χ is the comoving radial coordinate, Wl(p, χ) is an l-dependent window function parametrized by a
parameter p (specified below), and

δ̃g(x, τ) =
nobs
g (x, τ)

nobs
g (τ)

− 1 (9.50)

is the observed fractional galaxy overdensity. Throughout, we let χ = χ̄(z̃) be a proxy for the observed
redshift z̃, and similarly τ ≡ τ̄(z̃) (see Sec. 9.3). Correspondingly, x ≡ χn̂ parametrizes the observationally
inferred (redshift-space) spatial location. Similarly, nobs

g is defined on a constant-observed-redshift slice.
The parameter p of the window function Wl(p, χ) parametrizes the radial selection function. One option is

to choose Wl(p, χ) = χ−2δD(χ− χ̄[p]), which yields, at the two-point level, the angular two-point correlation
function in narrow redshift bins Cl(z, z

′) [123, 190, 837, 774]. Alternatively, choosing Wl(p, χ) = jl(pχ),
we recover the spherical Fourier-Bessel approach developed by [838, 839, 840]. The spherical Fourier-Bessel
basis has been applied to the analysis of the IRAS Redshift Survey [841], and to the reconstruction of the
velocity and the gravitational potential fields [839]. More recently, Ref. [842] computed the spherical power
spectrum of matter density fluctuations on the BAO scale, Ref. [843] cross-correlated their spherical Fourier-
Bessel analysis of RSD with the CMB temperature anisotropies, while Ref. [833] computed the spherical
power spectrum including all terms in Eq. (9.34). The advantages and disadvantages of the spherical Fourier-
Bessel decomposition with respect to angular correlations in redshift bins Cl(zi, zj) are reviewed in [844].
Ref. [845] applied this method to the latest data release of the BOSS CMASS sample from the Sloan Digital
Sky Survey. Finally, Ref. [846] proposed the so-called logarithmic spherical waves eiω ln r which can be used
to express “Pseudo-Karhunen-Loève” (signal-to-noise) eigenmodes.

Let us then write the redshift-space galaxy density as

δ̃g(x, τ) =
∑

O

bO(τ)Os(x, τ) , (9.51)

where the Os are renormalized redshift-space operators. For now, we neglect stochasticity, but return to
this below. Since the effect of tensor perturbations on the galaxy density contrast is negligibly small [774],
we can restrict to scalar perturbations here. Then, any linear redshift-space operator Os can be derived
from a real-space scalar Or [cf. Eq. (9.35) and Eq. (9.46)] as,

Os(x, τ) = n̂i1 · · · n̂in∂i1 · · · ∂inOr(x, τ) , (9.52)

where n can be any number, although the leading terms only involve n = 1 and n = 2. Equivalently, in
Fourier space

Os(k, τ) = (in̂ · k)nOr(k, τ) . (9.53)

More generally, this applies to all leading-order contributions to redshift-space N -point functions. At loop
level, n̂ can also be contracted with the loop momentum, which makes the derivations in the following more
complicated. However, loop terms only become important on small scales, where the flat-sky limit applies
and the treatment becomes much simpler. We will thus restrict to leading-order correlations, and consider
in particular the two-point function. Then, the operators Os are linear order in perturbation.

Using homogeneity and isotropy of the two-point function of the real-space scalar Or, the galaxy two-
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point function in redshift-space can be written as

〈δ̃g(x, τ)δ̃g(x
′, τ ′)〉 =

∑

Os,O′s

bOs(τ)bO′s(τ
′)

∫

k

(ik · n̂)n(−ik · n̂′)n′POrO′r (k; τ, τ ′) exp [ik · (x− x′)]

=
∑

Os,O′s

bOs(τ)bO′s(τ
′)

∫

k

(
∂

∂χ

)n
eikχ(k̂·n̂)

(
∂

∂χ′

)n′
e−ikχ

′(k̂·n̂′)POrO′r (k; τ, τ ′)

=
∑

Os,O′s

bOs(τ)bO′s(τ
′)

2

π

∑

l,m

Ylm(n̂)Y ∗lm(n̂′)

×
∫
k2dk kn+n′

(
∂

∂x

)n
jl(x)

(
∂

∂x′

)n′
jl′(x

′)POrO′r (k; τ, τ ′) , (9.54)

where x = kχ, x′ = kχ′. Inserting this into Eq. (9.49), we obtain the two-point correlation of the {l,m, p}-
decomposition of the galaxy overdensity as

〈δlm(p)δ∗l′m′(p
′)〉 = δll′δmm′

∑

Os,O′s

2

π

∫
k2dk F lOs(k; p)F lO′s(k; p′)POrO′r (k) , (9.55)

where

F lOs(k; p) ≡ knO
∫
χ2dχWl(p, χ)

[(
∂

∂x

)nO
jl(x)

]

x=kχ

bOs(τ [χ])DOr (τ [χ]) and

POrO′r (k; τ, τ ′) =DOr (τ)DO′r
(τ ′)POrO′r (k) . (9.56)

Let us consider the three operators that appear at linear order in δ̃g. In order to simplify notation, we relate
them directly to the density field δ [i.e., POrO′r → PL in Eq. (9.55)]. We obtain:

(i) Os = δ : F lδ(k; p) =

∫
χ2dχWl(p, χ)jl(kχ)b1(τ [χ])D(τ [χ])

(ii) Os = v‖ = n̂ivi : F lv‖(k; p) = −k−1

∫
χ2dχWl(p, χ)j′l(kχ)(HfD)(τ [χ])

(iii) Os = ∂‖v‖ = n̂jn̂i∂jvi : F l∂‖v‖(k; p) = −
∫
χ2dχWl(p, χ)j′′l (kχ)b∂‖v‖(τ [χ])(HfD)(τ [χ]) . (9.57)

The above relations can easily be generalized to include contributions that are integrated along the line of
sight (e.g., [190, 774]). For terms (i) and (iii), we have allowed for bias parameters, where b∂‖v‖ ∝ bK‖ is only
induced by the specific observational selection effects discussed in Sec. 9.2. On the other hand, the term (ii)
is necessarily a pure projection effect, and hence unbiased, since the galaxy density cannot depend on the
local matter velocity by way of the equivalence principle. Including the leading-order stochastic contribution
is straightforward; it is given by

〈δlm(p)δ∗l′m′(p
′)〉
∣∣∣
stoch

= δll′δmm′

∫
χ2dχWl(p, χ)Wl(p

′, χ)P {0}ε (τ [χ]) . (9.58)

The Poisson shot-noise approximation corresponds to inserting P
{0}
ε (τ) = 1/ng(τ).

Finally, one should note that actual surveys involve a window function describing the survey footprint
on the sky. This complicates the expression Eq. (9.55), since the orthogonality of δlm(p) with respect to lm
no longer holds [847].

Let us now consider a survey with limited footprint on the sky, such that the angle between different
lines of sight within the survey footprint can be approximated as infinitesimal (i.e., wide-angle effects are
negligible). Further, we assume that the extent of the survey in the line-of-sight direction is small; this can of
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course be achieved by dividing the survey into redshift bins. Then, if we define δlm(p) usingWl(p, χ) = jl(pχ),
we can construct the flat-sky version of the angular multipoles (App. C of [848]),

δfs(l, p) ≡
√

4π

2l + 1

l∑

m=−l

i−mδlm(p)eimϕl , (9.59)

where (l,m) is replaced with l = (lx, ly), and ϕl = arctan(ly/lx). The flat-sky multipoles δfs(l, p) in turn
can be mapped onto the three-dimensional Euclidean Fourier transform δg(k) used extensively throughout
this review, via

δg(k) ≡ δfs(χ̄k⊥, k‖) where k‖ ≡ n̂ · k; k⊥ ≡ k − k‖n̂ . (9.60)

Here, χ̄ is the mean comoving distance of the redshift bin. Note that δg(k) has dimension (length)3. In
this flat-sky-shallow-survey limit, the two-point function 〈δg(k)δg(k

′)〉 then directly yields an estimate of
the three-dimensional galaxy power spectrum in redshift space at an effective redshift z̄, convolved with the
three-dimensional window function of the survey. This is the approach commonly adopted in the analysis
of current data sets such as 2dF, SDSS, 6dFGRS, Wigglez, and BOSS [25, 849, 850, 851, 852]. Future
large-scale galaxy surveys such as SPHEREx [633], DESI [53], and Euclid [54], whose footprints exceed
10,000 square degrees, must include the wide-angle effect in order to correctly interpret the measured galaxy
clustering on large scales. This is particularly important for detecting primordial non-Gaussianity (Sec. 7)
and relativistic projection effects (Sec. 9.3).
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10 Summary and outlook

Bias describes the relation between the observed number density of galaxies and the underlying mat-
ter density and spacetime perturbations, and is an indispensable ingredient in our model of the observed
Universe. Key progress has been made on this problem in the past few years.

We now have a general framework for galaxy bias on large scales in the context of perturbation theory
(Sec. 2). These bias parameters have well-defined physical interpretations, which become most clear by
way of the generalized peak-background split argument (PBS, Sec. 3, Sec. 6.6.1, and Sec. 7.3). In fact,
one can rigorously define the PBS argument to yield exact predictions for the bias parameters, provided
one can accurately simulate the formation of the tracers of interest for different cosmologies (with different
curvature in the case of the LIMD bias). This is certainly possible for dark matter halos. However, the
perturbative bias expansion is much more general and applies, with caveats described below, to any tracer
of the large-scale structure, including clusters of galaxies, voids, the Lyman-α forest, and 21cm line emission
from neutral hydrogen.

Assuming that values are given for the relevant bias parameters, the perturbation-theory framework
makes definite predictions for all observables related to galaxy clustering (Sec. 4): n-point functions (power
spectrum, bispectrum), statistics of counts-in-cells, and cross-correlations with the matter and among dif-
ferent tracers. Cross-correlating different tracers can yield precise measurements of relative bias parameters
which cancel cosmic variance at leading order. Crucially, at a given order in perturbation theory, one set
of bias parameters describes all observables involving a given tracer. These predictions are, however, valid
only on sufficiently large scales (see below), and in practice some or all of these bias parameters have to be
determined from the data.

The excursion set (Sec. 5) and the peak approach (Sec. 6) have already furnished many insights into the
scale dependence, nonlinearity and stochasticity of bias, as well as the validity of the peak-background split
and its extension to variables other than the density. Furthermore, they provide quantitative predictions
for the bias parameters, which can be tested against N-body simulations. However, the models considered
so far rely on a number of assumptions, such as the spherical collapse approximation, which we expect to
become increasingly less accurate towards lower halo masses M .M?.

A key application of bias is the incorporation of the effect of non-Gaussian initial conditions, which
encode a rich array of signatures of early Universe physics, and lead to additional scale dependencies that
in many cases cannot be mimicked by nonlinear gravitational evolution and baryonic effects (Sec. 7).

Even though the bulk of this review focuses on structure forming out of collisionless matter in a universe
described by General Relativity, which is an excellent first-order approximation, the perturbative bias ap-
proach can be extended to tracers of a multi-component fluid made of CDM, baryons and massive neutrinos
(Sec. 8), as is the case in the standard ΛCDM cosmology. Further, it can be extended to incorporate the
effects of a dynamical dark energy, or modifications to General Relativity. The perturbative approach also
allows for a consistent mapping from the local rest-frame galaxy density to the observed galaxy redshifts and
positions on the sky, which we refer to as projection effects (Sec. 9). This includes relativistic effects which
become relevant on the large scales targeted by forthcoming surveys. Moreover, a physical bias expansion
of the galaxy velocity field (Sec. 2.7; Sec. 6.9.1) is a crucial ingredient for the prediction of projection effects
beyond linear order.

While theoretically well-defined and rigorous, the inevitable downside of the perturbative bias expansion
is that it breaks down on small scales. In addition to the perturbative description of the matter density
itself, which breaks down at the nonlinear scale Rnl at which the density contrast is of order one, galaxy
bias adds another scale, the nonlocality scale R∗ (Sec. 2.5–2.6). By definition, the formation of galaxies
in a given observed sample depends on the detailed distribution of matter within a region of this scale.
Thus, we cannot hope to describe galaxy clustering perturbatively on scales that are of order R∗ or smaller.
Which of these two scales, R∗ or Rnl, is more limiting, depends on the galaxy sample at hand, as well as its
redshift. While for halos we expect that R∗ is of order the Lagrangian radius R(M), little is known about
this scale for galaxies. The halo occupation distribution approach (Sec. 9.1), in which the 1-halo term is
calibrated with N-body simulations to describe the distribution of galaxies at small scales, could circumvent
this limitation for the two-point function, but only if the transition region between 1- and 2-halo terms can
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be described accurately and robustly.

Beyond the state of the field reviewed here, various important questions remain open, including:

• What is the scale R∗ for galaxies? How much cosmological information can we extract from the galaxy
power spectrum, bispectrum, and possibly higher n-point functions, in the context of the general
perturbative bias expansion?

• Are there hierarchies and/or relations between the bias parameters of dark matter halos? For example,
are the biases in Lagrangian space that involve tidal fields, and time derivatives thereof, systemati-
cally smaller than the Lagrangian LIMD bias parameters bLN? Further, to what level do we need to
understand galaxy formation in order to make use of any such relations for actual galaxy samples?
Does halo assembly bias play a significant role for galaxy bias?

• Lagrangian bias models such as the peaks and excursion-set formalisms can in principle provide a bias
relation in Lagrangian space that is valid on all scales, and not restricted to r � R∗. Is there a way to
derive a connection to Eulerian statistics for these models that does not break down on small scales?

• It would be desirable to extend the validity of these Lagrangian bias models to lower-mass halos,
such as those targeted by current and upcoming galaxy redshift surveys. In particular, how can
we incorporate deviations from spherical collapse and other effects due to the nonlinear evolution of
small-scale density perturbations into these models?

Sophisticated models of galaxy bias will play a major role in the interpretation of upcoming large-scale
structure surveys. We now finally have a rigorous framework of galaxy bias, which allows for the development
of a robust theoretical description of galaxy clustering that matches the level of statistical and systematic
uncertainties expected from these surveys. By advancing our understanding of these open issues, we will
thus be able to makes the most of the data’s potential to further our knowledge on galaxy formation, the
history of the Universe, and fundamental physics.
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Appendix A Statistical field theory

In standard cosmological models, the initial conditions of the large-scale structure of the Universe is
generated from quantum mechanical vacuum fluctuations. Due to its quantum mechanical origin, we cannot
predict, in a deterministic sense, the precise initial conditions of the Universe we observe. Our theoretical
treatment of the large-scale structure is, therefore, based on describing random fields. Throughout the
review we draw on results from basic statistical field theory which we briefly review here. More detailed
introductions to this topic can be found in [72, 482, 92].

Here and throughout the review, we assume that, on a spatial slice of fixed proper time, all the cos-
mological random fields are statistically homogeneous and isotropic, in accordance with the cosmological
principle. The unperturbed FRW metric [Eq. (1.2) with Φ = 0 = Ψ] is a manifestation of this, since spatial
slices (τ = const) are homogeneous and isotropic (maximally symmetric). Furthermore, we shall assume the
fair sample hypothesis, which states that samples extracted from regions of the Universe that are sufficiently
distant from each other are independent realizations of the same physical process. Observationally, the
fair sample hypothesis has been found to be satisfied on scales above ∼ 80h−1 Mpc [853, 854]. Therefore,
ensemble averages can be traded with spatial averages provided that the volume is large enough: this is the
ergodic hypothesis.

A fundamental issue in the analysis of cosmic structures is to find the most appropriate observables to
retrieve information on the distribution of fluctuations (the matter density field, for example), their initial
conditions and subsequent evolution. Here, we shall concentrate on poly-spectra and correlation functions,
which include moments and encompass all observables considered in this review.

Appendix A.1 Random fields in 3D Euclidean space

In accordance with the cosmological principle, we consider random fields defined on a given spatial slice
through spacetime; in practice, one should think of this as defined through a fixed proper time. We choose
Euclidean coordinates x for this slice, as written in Eq. (1.2). Further, we will focus on real scalar fields. This
applies to most examples encountered in large-scale structure (temperature, density, pressure, gravitational
potential and so on). We will briefly consider the generalization to vector and tensor fields at the end of
this section.

A random scalar field in 3D Euclidean space is a set of random variables ρ(x), together with a collection of
distribution functions pn(ρ(x1) . . . , ρ(xn)), with n ≥ 1. In order to provide a complete statistical description
of the random field ρ(x) it is in general necessary (but not sufficient [855]) to specify all of its correlation
functions (i.e. moments).

The n-point correlation function is a specific expectation value given by

〈ρ(x1) . . . ρ(xn)〉 =

∫
dρ1 . . . dρn Pn(ρ1, . . . , ρn)ρ1 . . . ρn , (A.1)

where angle brackets denote ensemble averages and ρi ≡ ρ(xi). In particular, the 1-point correlation is the
mean 〈ρ〉 of the random field. Higher-order correlation functions follow a particular hierarchy, which we
demonstrate in the case of the 2-point function

〈ρ(x1)ρ(x2)〉 . (A.2)

In the event that we move one point (say x1) far away from the other, the value of the field at the points
become independent, so that the expectation value tends towards

〈ρ(x1)ρ(x2)〉 → 〈ρ(x1)〉〈ρ(x2)〉 = 〈ρ〉2 , (A.3)

where we have used the cosmological principle, which implies translation invariance and hence the same
expectation value of ρ(x) at any point on the slice. Therefore, we can write

〈ρ(x1)ρ(x2)〉 = 〈ρ〉2
[
1 + ξ(2)(x1,x2)

]
. (A.4)
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This defines the reduced or connected 2-point correlation function ξ2(x1,x2). The n-point connected corre-
lation function ξ(n) is recursively defined in such a way that 〈ρ(x1) . . . ρ(xn)〉 is a sum of terms, where each
term is associated with a partition of the set of n points x1, . . . ,xn. For the first four orders for instance,
we have

〈ρ(x1)ρ(x2)〉 = 〈ρ〉2
[
1 + ξ(2)(x1,x2)

]

〈ρ(x1)ρ(x2)ρ(x3)〉 = 〈ρ〉3
[
1 + ξ(2)(x1,x2) + 2 perm. + ξ(3)(x1,x2,x3)

]

〈ρ(x1)ρ(x2)ρ(x3)ρ(x4)〉 = 〈ρ〉4
[
1 + ξ(2)(x1,x2) + 5 perm.

+ ξ(3)(x1,x2,x3) + 3 perm. + ξ(2)(x1,x2)ξ(2)(x3,x4) + 2 perm.

+ ξ(4)(x1,x2,x3,x4)
]
. (A.5)

The “n perm.” indicates that the term immediately preceeding is repeated with all possible cyclic permuta-
tions of the indices. In the case of a random field with zero mean, 〈δ(x)〉 = 0 (which in this review denotes
the matter density contrast), the hierarchy of correlation functions reads

〈δ(x1)δ(x2)〉 = ξ(2)(x1,x2)

〈δ(x1)δ(x2)δ(x3)〉 = ξ(3)(x1,x2,x3)

〈δ(x1)δ(x2)δ(x3)δ(x4)〉 = ξ(2)(x1,x2)ξ(2)(x3,x4) + 2 perm. + ξ(4)(x1,x2,x3,x4) . (A.6)

We will also use the notation

〈δ(x1)δ(x2) · · · δ(xn)〉c ≡ ξ(n)(x1,x2, · · · ,xn) . (A.7)

for the connected correlators.
The cosmological principle dictates that all expectation values and hence all correlation functions are

invariant under global translations xi → xi + ∆x on a fixed time slice, which is also known as statistical
homogeneity. For the reduced 2-point correlation, this implies

ξ(2)(x1,x2) ≡ ξ(2)(x1 − x2) , (A.8)

so that it depends only on the separation between the two points. Similarly, in the absence of preferred
directions, expectation values are invariant under a global rotation R of the coordinate system x→ R · x,
which is known as statistical isotropy. This implies that the 2-point correlation function depends only on
the magnitude |x1 − x2| of the separation vector,

ξ(2)(x1,x2) ≡ ξ(2)(|x1 − x2|) . (A.9)

This holds also if one cross-correlates different fields, and for higher n-point correlation functions, which
can only depend on xij ≡ |xi − xj |. Note that projection effects such as redshift-space distortions induce a
dependence on (xi −xj) · n̂ in the observed n-point functions, where n̂ is the line of sight (Sec. 9.3). While
the cosmological principle requires statistical homogeneity, the ergodic hypothesis is valid only if the n-point
correlation functions decay sufficiently rapidly to zero in the limit of large separations. This is indeed the
case in the standard ΛCDM cosmology.

Note that these definitions can be extended to point processes, i.e. for distributions rather than continu-
ous fields (in which case the correlators 〈ρ(x1) . . . ρ(xn)〉 are also called joint intensities), such as the peaks
discussed in Sec. 6, but there are some subtleties (such as shot noise corrections) owing to discreteness.

Finally, we turn to vector and tensor fields. Homogeneity and isotropy imply that two-point scalar-vector
cross- and vector auto-correlation functions can be written as

〈δ(0)vi(r)〉 = r̂iξδv(r)

〈vi(0)vj(r)〉 = δijξv,1(r) +

(
r̂ir̂j − 1

3
δij
)
ξv,2(r) , (A.10)
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where ξδv(r), ξv,1(r), and ξv,2(r) are scalar functions. Note that the scalar-vector correlation ξδv(r) is
generated only for longitudinal vector fields, while the vector two-point auto-correlation functions ξv,1(r)
and ξv,2(r) receive contributions from both longitudinal and transverse vectors. ξv,1(r) and ξv,2(r) are regular
at r = 0. The auto- and cross-correlations of symmetric tensor fields Kij can be similarly constructed out
of δkl and (r̂mr̂n − δmn/3). While these relations in general become lengthy, the auto-correlation function
of a trace-free tensor field at zero lag simplifies to

〈
Kij(x)Klm(x)

〉
=

1

15
σ2

(
δilδjm + δimδjl −

2

3
δijδlm

)
, where σ2 =

3

2
〈KijK

ij〉 . (A.11)

Note that, if we identify Kij with the tidal field [Eq. (2.21) on p. 24], then σ2 corresponds to the variance
of the density field.

Appendix A.2 Fourier representation

In a statistically homogeneous Universe, it is convenient to represent random fields by their Fourier
components. In the following, we assume a field δ with zero mean. Adopting the Fourier convention

δ(k) =

∫
d3x δ(x) e−ik·x , δ(x) =

∫
d3k

(2π)3
δ(k) eik·x ≡

∫

k

δ(k) eik·x , (A.12)

the power spectrum P (k) of the field is the expectation value

〈δ(k)δ∗(k′)〉 ≡ 〈δ(k)δ∗(k′)〉′ (2π)3δD(k − k′) = P (k) (2π)3δD(k − k′) . (A.13)

Here, the superscript ∗ stands for the complex conjugate, which makes P (k) positive definite. The Dirac delta
is a consequence of translational invariance (homogeneity). Otherwise, the ensemble average 〈δ(k)δ(k′)〉
would acquire a phase factor when x→ x+ ∆x. If the field δ(x) is real, δ∗(k) = δ(−k), and we obtain

〈δ(k)δ(−k′)〉 = P (k)(2π)3δD(k + k′) . (A.14)

Requesting further rotational invariance implies that the power spectrum depends only on k = |k|, i.e.

〈δ(k)δ∗(k′)〉 = P (k)(2π)3δD(k − k′) . (A.15)

Note that, with our Fourier convention, the Dirac delta distribution is given by

δD(k) =
1

(2π)3

∫
d3r e−ik·r . (A.16)

The connected 2-point correlation function is the Fourier transform of the power spectrum. For a three-
dimensional homogeneous and isotropic random field with zero mean, we have

ξ(2)(r) =

∫

k

P (k) eik·r =
1

2π2

∫ ∞

0

dk k2P (k)j0(kr) . (A.17)

Here, j0(x) = sin(x)/x is a spherical Bessel function. For sake of completeness, note that, in one and two
dimensions, we have

ξ(r) =
1

π

∫ ∞

0

dk P (k) cos(kr) (1D) (A.18)

ξ(r) =
1

2π

∫ ∞

0

dk kP (k)J0(kr) (2D) (A.19)

respectively, where J0(x) is a regular Bessel function. The fact that P (k) is positive definite however does
not imply that ξ(2)(r) is also positive definite. Indeed, we have

∫
d3r ξ(2)(r) = lim

k→0
P (k) , (A.20)
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which should vanish following the ergodic hypothesis for the zero-mean field δ. This implies that ξ(2)(r) has
to be negative for some values of r. The variance of an isotropic random field is given by

σ2 = ξ(0) =
1

2π2

∫ ∞

0

dk k2P (k) =

∫ ∞

0

dk

k
∆2(k) , (A.21)

where we have introduced the dimensionless power spectrum ∆2(k) which quantifies the variance of the
density field per unit ln k and, unlike P (k), is independent of the Fourier convention used. In our convention,
∆2(k) ≡ k3P (k)/(2π2).

These results can be extended to higher-order correlation functions. For instance, the bispectrum
B(k1,k2,k3) is the expectation value

〈δ(k1)δ(k2)δ(k3)〉 = B(k1,k2,k3)(2π)3δD(k1 + k2 + k3) . (A.22)

The Dirac delta ensures that the wavevectors ki correspond to the three sides of a triangle, so that the
three-point function is invariant under translations. Isotropy further implies that B be a function of the
wavenumbers ki = |ki| solely. In analogy with the power spectrum, the 3-point connected correlation
function is the Fourier transform of the bispectrum,

ξ(3)(x1,x2,x3) = (2π)3

∫

k1

∫

k2

∫

k3

δD(k1 + k2 + k3)B(k1,k2,k3)ei[k1·x1+k2·x2+k3·x3] . (A.23)

The trispectrum and higher-order poly-spectra are defined analogously.
Finally, the Fourier-space two-point correlation functions of vector and tensor fields, such as

〈δ(k)vi(k′)〉′ , 〈vi(k)vj(k′)〉′ , 〈δ(k)Kij(k
′)〉′ , 〈Kij(k)Klm(k′)〉′ , (A.24)

can be decomposed into products of the vector k̂i, the tensors δij and (k̂mk̂n − δmn/3) [cf. Eq. (2.22)], and
the totally trace-free projection tensor

Pijlm
(
k̂
)

= k̂ik̂j k̂lk̂m −
1

7

(
δij k̂lk̂m + 5 perm.

)
+

1

35
(δijδlm + 2 perm.) . (A.25)

We often deal with a smoothed version of the density field δR, obtained by convolving with a spherically
symmetric filtering kernel WR, where R denotes the filter scale. Throughout, the kernels are normalized
through

∫
d3xWR(|x|) = 1, which implies limk→0WR(k) = 1. The three most popular filtering kernels

WR(x) and their Fourier transform WR(k) are, respectively,

• sharp-k filter:

WR(x) =
3

4πR3

[
3
j1(x/R)

x/R

]
, WR(k) = ΘH(1− kR) (A.26)

• Gaussian filter:

WR(x) =
1

[2πR2]
3/2

e−
1
2x

2/R2

, WR(k) = e−
1
2R

2k2

(A.27)

• Tophat filter:

WR(x) =
3

4πR3
ΘH

(
1− x

R

)
, WR(k) = 3

j1(kR)

kR
. (A.28)
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Here, Θ(x) is the Heaviside step function (Tab. 2) and

j1(x) =
sinx− x cosx

x2
(A.29)

is a spherical Bessel function. Bearing in mind that convolution in real space is a multiplication in Fourier
space (and vice versa), the variance of the random field on scale R thus is

σ2(R) = 〈δ2
R〉 =

∫ ∞

0

dk

k
∆2(k) |WR(k)|2 . (A.30)

Appendix A.3 Gaussian random fields

Gaussian random fields are essential in cosmology for mainly two reasons. Firstly, the inflationary
paradigm predicts that the primordial fluctuations which gave rise to the large-scale structure of the Universe
closely followed Gaussian statistics; moreover, this is confirmed by CMB observations, which find that the
CMB temperature is Gaussian to roughly one part in a thousand [580]. Secondly, the central limit theorem,
which states that the superposition of a large number of (uncorrelated) random processes asymptotes to a
Gaussian distribution, can often be applied in large-scale structure; for example, in the case of projected
density fields [856].

The definition of a Gaussian random field, with zero mean, is that its distribution functions are given
by Gaussian multi-variates,

Pn(y) =

√
det C−1

(2π)n/2
exp

(
−1

2
y>C−1y

)
, (A.31)

where y is the random vector (δ(x1), . . . , δ(xn)) and C−1 denotes the inverse of the covariance matrix, with
entries given by

Cij = 〈δ(xi)δ(xj)〉 . (A.32)

Note that the covariance matrix is symmetric and non-negative definite (which also implies |C| ≥ 0).
A key property of Gaussian random fields is that, in the Fourier representation, the phases of the

Fourier modes follow independent white-noise distributions. Equivalently, the real and imaginary part of
the coefficients follow independent Gaussian distributions. Let us assume that the fluctuation field δ(x) is
periodic over a volume V = L3, so that the integral

∫
k

in Eq. (A.12) is replaced by (1/V )
∑
k, where the

sum runs over integer multiples (nx, ny, nz)kF and kF = 2π/L is the fundamental wavenumber. Then, δ(k)
is dimensionless. Furthermore, let us denote the real and imaginary parts of δ(k) by Re δk and Im δk. Their
joint probability distribution is the bivariate Gaussian

p
(
Re δk, Im δk

)
dRe δkd Im δk =

1

πσ2
k

exp

[
− (Re δk)2 + (Im δk)2

σ2
k

]
dRe δkd Im δk , (A.33)

where σ2
k = (2π)3P (k)/k3

F is the variance of Re δk and Im δk (which depends only on k due to isotropy). In
terms of the amplitude |δk| and phase φk, we have

p(|δk|, φk)d|δk|dφk =
1

πσ2
k

exp

[
−|δk|

2

σ2
k

]
|δk|d|δk|dφk , (A.34)

i.e. |δk| follows a Rayleigh distribution. Note that for real scalar fields δ(x), we have the additional
constraints Re δ−k = Re δk, Im δ−k = − Im δk, in which case δk must be generated over half of the plane
(e.g. kz ≥ 0) only.

For a homogeneous Gaussian random field, all the statistical information is contained in the connected
2-point correlation ξ(2)(x) or, equivalently, in the power spectrum P (k). All the higher-order connected
correlation functions are identically zero, so that their measurement from observations strictly tests Gaus-
sianity. The n-point correlation functions 〈δ(x1) . . . δ(xn)〉 then simplify to a sum of products of irreducible
2-point functions ξ(2). This property is known as Wick’s theorem. For instance, the 4-point correlator in
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Eq. (A.6) simplifies to

〈δ(x1)δ(x2)δ(x3)δ(x4)〉 = ξ(2)(x1,x2)ξ(2)(x3,x4) + 2 perm. . (A.35)

While the initial conditions are currently found to be consistent with perfect Gaussianity, in particular
using measurements of the CMB, the observed, late-time distribution of galaxies is highly non-Gaussian
due to gravitational instability and galaxy bias. Therefore, unlike the primary CMB anisotropies whose
distribution is almost perfectly Gaussian and hence completely described by the power spectrum, higher-
order correlation functions are necessary to specify the galaxy distribution. Note that the density contrast
(or CMB temperature, for that matter) cannot be exactly Gaussian because the field has to satisfy the
physical constraint δ > −1. Nevertheless, Gaussianity can be a good approximation when the amplitude of
fluctuations is small, i.e. when the density fluctuations are still linear.

The fact that the likelihood of a Gaussian statistical field is so simple allows for several important analyt-
ical results, including the number density of peaks in the initial density field (Sec. 6.2). Exact renormalized
bias operators can be derived for Gaussian fields, as described in Sec. 6.6 and [100]. For this, we define
orthogonal polynomials [857] with respect to a given weight p(w), for example the joint PDF of the 5 peak
invariants. Orthogonal polynomials satisfy

∫
dnw p(w)On(w)O?n′(w) = δnn′ , (A.36)

where O?n is the dual polynomial to On, n,n′ are sets of indices, δnn′ denotes the Kronecker symbol in the
space of these sets, and p(w) is the joint 1-point distribution of the 5 peak invariants. Univariate orthogonal
polynomials, which depend on only one element of the vector w, are always their own dual.

We now give the first few dual polynomials for the bivariate Hermite polynomials which are employed
in Sec. 6.6.1 [see 196, for details]:

H?
n0(ν, J1) = Hn(ν) , H?

0n(ν, J1) = Hn(J1) ,

H?
11(ν, J1) = νJ1 − γ1 ,

H?
21(ν, J1) = ν2J1 − J1 − 2γ1ν ,

H?
12(ν, J1) = νJ2

1 − ν − 2γ1J1 ,

H?
31(ν, J1) = ν3J1 − 3νJ1 − 3γ1ν

2 + 3γ1 ,

H?
22(ν, J1) = ν2J2

1 − ν2 − J2
1 − 4γ1νJ1 + 1 + 2γ2

1 . (A.37)

Note that one could work with the variable z = (J1 − γ1ν)/
√

1− γ2
1 rather than J1 as in [492] and, thus,

end up with univariate Hermite polynomials.
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Appendix B Cosmological perturbation theory

In this appendix, we review the PT approach to the description of the nonlinear gravitational evolution
of dark matter density and velocity fields. On large scales, where the perturbative bias expansion is valid,
the vorticity as well as baryonic pressure effects are small, and the nonlinear evolution of the cosmic matter
density field can be well approximated by a self-gravitating, presureless, longitudinal-velocity single fluid.
We will turn to the corrections induced by neglecting the aforementioned effects in Appendix B.3.

Appendix B.1 Standard perturbation theory

In the pressureless-fluid approximation, the time evolution of the density δ(x, τ) and velocity fields
v(x, τ) are governed by the continuity, Euler and Poisson equations:

∂

∂τ
δ(x, τ) + ∇ · {[1 + δ(x, τ)]v(x, τ)} = 0 (B.1)

∂

∂τ
v(x, τ) + [v(x, τ) ·∇]v(x, τ) +H(τ)v(x, τ) = −∇Φ(x, τ) (B.2)

∇2Φ(x, τ) =
3

2
H2Ωm(τ)δ(x, τ) . (B.3)

These equations are strictly valid for ΛCDM only; however, they are also highly accurate for canonical,
non-clustering dark energy models where the sound horizon of the dark energy component is of order H−1

(see Sec. 8.3 for a brief discussion).
In Fourier space, we can eliminate the gravitational potential Φ and express the longitudinal velocity

field in terms of the velocity divergence θ ≡∇ · v(x, τ) to obtain the following two equations:

∂δ(k, τ)

∂τ
+ θ(k, τ) = −

∫

k1

∫

k2

(2π)3δD(k − k12)α(k1,k2)θ(k1, τ)δ(k2, τ), (B.4)

∂θ(k, τ)

∂τ
+H(τ)θ(k, τ) +

3

2
H2(τ)Ωm(τ)δ(k, τ) = −

∫

k1

∫

k2

(2π)3δD(k − k12)β(k1,k2)θ(k1, τ)θ(k2, τ).

(B.5)

where kij··· ≡ ki + kj + · · · , and

α(k1,k2) =
k12 · k1

k2
1

, β(k1,k2) =
k2

12(k1 · k2)

2k2
1k

2
2

. (B.6)

In SPT, Eqs. (B.4)–(B.5) are solved perturbatively in terms of the linear density contrast δ(1)(k, τ):

δ(k, τ) =

∞∑

n=1

δ(n)(k, τ), θ(k, τ) =

∞∑

n=1

θ(n)(k, τ), (B.7)

where the superscript (n) indicates that a term involves n powers of the linear density contrast; we refer to
such a term as being n-th order in perturbation theory.

On very large scales, k → 0, δ(1) is much less than 1, and the quadratic source term on the right-hand
side of Eqs. (B.4)–(B.5) can be neglected. Then, all Fourier modes evolve independently, and we obtain a
single second-order ordinary differential equation for the evolution of the linear density contrast, δ(1)(k, τ):

∂2

∂τ2
δ(1)(k, τ) +H(τ)

∂

∂τ
δ(1)(k, τ)− 3

2
Ωm(τ)H2(τ)δ(1)(k, τ) = 0 . (B.8)

We see that the time evolution equation is scale-independent; that is, all Fourier modes evolve at the same
rate, independent of k. In fact, this is the reason why time derivatives of the density field can be reordered
to be successively higher order in perturbation theory in Sec. 2.5.2–2.5.3. We can then factor out the linear
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growth factor D(τ) by writing δ(1)(k, τ) = [D(τ)/D(τ0)]δ(1)(k, τ0), where τ0 is a reference time, and D(τ)
obeys

d2

dτ2
D(τ) +H d

dτ
D(τ)− 3

2
Ωm(τ)H2D(τ) = 0 , (B.9)

where initial conditions are setup so that D(τ) follows the growing mode, which corresponds to D(τ) ∝ a(τ)
during matter domination. Unless otherwise indicated, all relations in this review are independent of the
overall normalization of the growth factor. For reference, two popular choices for the latter are i) D(τ) = a(τ)
during matter domination (for a� 1), which is denoted as Dmd(τ) in the text; and ii) D(τ0) = 1, where τ0
corresponds to today’s epoch.

The linear-theory velocity divergence field is then obtained from the linearized continuity equation
[Eq. (B.4)],

θ(1)(k, τ) = −d lnD(τ)

dτ
δ(1)(k, τ) = −fH(τ)δ(1)(k, τ) , (B.10)

where the logarithmic growth rate f(τ) ≡ d lnD/d ln a. Note that the identity

d(Hf)

dτ
= H2

(
3

2
Ωm − f − f2

)
(B.11)

follows from the linear equations of motion.
The equations of motion Eqs. (B.4)–(B.5) motivate an ansatz of writing the n-th order solution in

Eq. (B.7) as

δ(n)(k, τ) =

∫

k1

· · ·
∫

kn

(2π)3δD(k − k12···n)Fn(k1, · · · ,kn, τ)δ(1)(k1, τ) · · · δ(1)(kn, τ)

θ(n)(k, τ) =−H(τ)f(τ)

∫

k1

· · ·
∫

kn

(2π)3δD(k − k12···n)Gn(k1, · · · ,kn, τ)δ(1)(k1, τ) · · · δ(1)(kn, τ), (B.12)

with symmetrized density and velocity divergence kernels, respectively, Fn andGn. From the linear solutions,
F1 = G1 = 1 is obvious. Inserting the ansatz Eq. (B.12) into Eqs. (B.4)–(B.5) yields evolution equations
for the kernels (see, e.g. [250]). In general, the kernels Fn and Gn depend on time, except when Ωm/f

2

is constant in time. This is indeed the case for the EdS Universe where Ωm = f = 1 and the kernels
become particularly simple. The usual practice in SPT is to calculate the time-independent kernels in the
EdS Universe and apply the same kernels to other cosmologies. In this case, the linear growth function
encodes the entire cosmology dependence of the nonlinear solutions in SPT. For ΛCDM and quintessence
cosmologies, this approach provides a very accurate description of the full solution [858]. Specifically, the
second-order kernels F2 and G2 in the EdS cosmology are given by

F2(k1,k2) =
5

7
+

2

7

(k1 · k2)2

k2
1k

2
2

+
k1 · k2

2k1k2

(
k1

k2
+
k2

k1

)
,

G2(k1,k2) =
3

7
+

4

7

(k1 · k2)2

k2
1k

2
2

+
k1 · k2

2k1k2

(
k1

k2
+
k2

k1

)
. (B.13)

The second-order density and velocity field can also be written in real space as

δ(2)(x, τ) =
17

21
[δ(1)]2 +

2

7
[K

(1)
ij ]2 − si(1)∂iδ

(1) , (B.14)

− 1

H(τ)f(τ)
θ(2)(x, τ) =

13

21
[δ(1)]2 +

4

7
[K

(1)
ij ]2 − si(1)∂iδ

(1) , (B.15)

where on the right-hand side of Eq. (B.14) all terms are evaluated at x, τ . Here,

s(1)(q, τ) = x
(1)
fl (τ)− q = −∇

∇2
δ(1)(q, τ) (B.16)
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is the first-order Lagrangian displacement, and

K
(1)
ij =

[
∂i∂j
∇2
− 1

3
δij

]
δ(1) (B.17)

is the first-order tidal field [Eq. (2.21)]. The third-order expressions in real space are given in Eq. (B.46)
together with Eq. (B.48) below.

Finally, we give the result for the next-to-leading (NLO, or 1-loop) contribution to the matter and
velocity power spectra. We will drop the time argument for clarity. It can be easily restored in the linear
power spectra and perturbation theory kernels, if desired. The NLO matter power spectrum is given by
Pmm(k) = PL(k) + P nlo

mm(k), where

P nlo
mm(k) = P (22)

mm (k) + 2P (13)
mm (k) , (B.18)

P (22)
mm (k) ≡ 〈δ(2)(k)δ(2)(k′)〉′ = 2

∫

p

[F2(p,k − p)]
2
PL(p)PL(|k − p|) = I [δ(2),δ(2)](k)

P (13)
mm (k) ≡ 〈δ(1)(k)δ(3)(k′)〉′ = 3PL(k)

∫

p

F3(p,−p,k)PL(p) , (B.19)

where I [O,O′](k) is defined in Eq. (4.23), and the explicit expression for P
(13)
mm (k) can be found in [859].

Similarly, the NLO matter-velocity cross-power spectrum and velocity-velocity power spectrum are given by
Pmθ(k) = −fHPL(k) + P nlo

mθ (k) and Pθθ(k) = (fH)2PL(k) + P nlo
θθ (k), where

P nlo
mθ (k) = P

(22)
mθ (k) + 2P

(13)
mθ (k) , (B.20)

P
(22)
mθ (k) ≡ 〈δ(2)(k)θ(2)(k′)〉′ = −2Hf

∫

p

F2(p,k − p)G2(p,k − p)PL(p)PL(|k − p|)

P
(13)
mθ (k) ≡ 1

2

[
〈θ(1)(k)δ(3)(k′)〉′ + 〈δ(1)(k)θ(3)(k′)〉′

]
= −1

2

[
(Hf)P (13)

mm (k) + (Hf)−1P
(13)
θθ (k)

]

P nlo
θθ (k) = P

(22)
θθ (k) + 2P

(13)
θθ (k) , (B.21)

P
(22)
θθ (k) ≡ 〈θ(2)(k)θ(2)(k′)〉′ = 2(Hf)2

∫

p

[G2(p,k − p)]
2
PL(p)PL(|k − p|)

P
(13)
θθ (k) ≡ 〈θ(1)(k)θ(3)(k′)〉′ = 3(Hf)2PL(k)

∫

p

G3(p,−p,k)PL(p) . (B.22)

The accuracy of the SPT predictions for the nonlinear matter power spectrum and bispectrum has been
studied extensively using simulations [283, 860, 861, 287, 862, 248, 101, 127, 269, 612, 863]. Moreover,
Ref. [101] showed that the accuracy improves significantly at higher redshifts (z > 1) where the nonlinear
scale is smaller (see below).

Appendix B.2 Feynman rules of large-scale structure

The calculation of matter and galaxy statistics in perturbation theory can be performed efficiently by
using a diagrammatic representation. The Feynman rules are as follows (see [344] for a detailed description):

1. An n-point correlation function is represented by a collection of diagrams with n outgoing external
legs.

2. Interaction vertices have m ≥ 2 ingoing lines p1, · · · ,pm coupling to a single outgoing line p. Each
such vertex is assigned a factor

m!Fm(p1, · · · ,pm)(2π)3δD(p− p1···m) . (B.23)

One assigns a positive (negative) sign to outgoing (ingoing) momenta. Each ingoing line has to be
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directly connected to a propagator (linear power spectrum).26

3. Propagators are represented as vertices with 2 outgoing lines of opposite momentum±k,
PL(k)

−k k
,

and they are assigned a factor PL(k).

4. All momenta that are not fixed in terms of momentum constraints are integrated over via

∫

p

≡
∫

d3p

(2π)3
. (B.24)

A diagram without any loop integral is said to be a leading-order (LO), or tree-level diagram.

5. Each diagram is multiplied by the symmetry factor, which accounts for the number of all nonequivalent
labelings of external lines and degenerate configurations of the diagram.

As an example, the NLO contribution to the matter power spectrum [Eq. (B.18)] can be represented as:

P nlo
mm(k) = P (22)

mm (k) + 2P (13)
mm (k) =

F2 F2

+
F3

. (B.25)

Appendix B.3 Effective field theory and the nonlinear scale

The pressureless fluid equations Eqs. (B.1)–(B.2) that we have considered so far are not strictly correct,
as they neither take into account shell crossing of the dark matter, nor the presence of pressure in the
baryonic component. In reality, dark matter is governed by the collisionless Boltzmann, or Vlasov equation,
which predicts that multi-streaming occurs on small scales. Indeed, Eqs. (B.1)–(B.2) are obtained from the
Vlasov equation by truncating the hierarchy of velocity moments, and dropping the second- and higher-order
moments, which contain the effective pressure and anisotropic stress. The pressure of the baryon fluid, on
the other hand, cannot be neglected on small scales. The Effective Field Theory approach to Large-Scale
Structure (EFTofLSS [83, 84]) provides a rigorous approach to take into account these beyond-pressureless-
perfect-fluid contributions from small-scale perturbations. Essentially, this can be seen as a bias expansion
for a specific tracer that obeys stress-energy conservation. The latter in fact ensures that Eqs. (B.1)–(B.2)
are only corrected by higher-derivative contributions.

The derivation of the EFT contributions proceeds by smoothing the density δΛ(x, τ) and velocity vΛ(x, τ)
fields on the arbitrary scale Λ, retaining only modes k . Λ (see Sec. 2.10). While this erases the small-scale
perturbations, the latter contribute stochastic terms, and moreover are modulated by δΛ and vΛ, leading to
additional long-wavelength contributions. In the end, one obtains a contribution −∂jτ ij/ρm on the right-
hand-side of the Euler equation, where the effective stress tensor τij captures the pressure and viscosity forces
induced by the small-scale fluctuations. Expanding this to leading order in the large-scale fluctuations, the
effective stress tensor can be written as [83, 84]

[τij ]Λ = peff(Λ)δij + ρm

[
c2s(Λ)δΛδij −

c2bv(Λ)

aH
δij∇ · vΛ −

3

4

c2sv(Λ)

aH

(
∂iv

j
Λ + ∂jv

i
Λ −

3

2
δij∇ · vΛ

)]
+ · · · .

(B.26)
Here, peff , cs, cbv, csv are, respectively, effective pressure, adiabatic sound speed, bulk viscosity coefficient,
and shear viscosity coefficient, which depend on Λ. Note that peff leads to a stochastic contribution to the
matter velocity vi(k) which in Fourier space is proportional to iki (see also Sec. 2.8). Since the quantities
cs, cbv, csv are due to the dependence of the small-scale density and velocity fields on the large-scale en-

26This is because diagrams that involve interaction vertices directly connected to each other are absorbed into higher-order
interaction vertices.
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vironment, they can in principle be calculated numerically by following a peak-background split argument
similar to the one discussed in Sec. 3. Further, the effective stress tensor τij can be expanded up to any

order in terms of a basis of counter-terms that is constructed out of the same Π
[n]
ij that are employed in the

general Eulerian bias expansion in Sec. 2.5.3 [344].
Up to third order in perturbations, which is the highest order that is relevant for the expressions given

in this review, there is only a single EFT contribution:

δ
(3)
Λ

∣∣∣
c.t.

(k, τ) = −α(τ,Λ)D3(τ)
k2

k2
nl

δ(1)(k, τ)WΛ(k) , (B.27)

where “c.t.” stands for counter-term, WΛ denotes the smoothing kernel used to integrate out the small-scale
modes, and knl is the nonlinear scale which we will define below. The free coefficient α cannot be predicted
from perturbation theory and needs to be determined by fitting to simulations or observations. Essentially,
it corresponds to an effective sound speed. We can now choose a vanishingly small smoothing scale Λ−1 → 0,
in which case we obtain another contribution to the NLO matter power spectrum [Eq. (B.18)],

P nlo
mm

∣∣∣
c.t.

(k, τ) = −2D2(τ)(2π)c2s
k2

k2
nl

PL(k, τ) , (B.28)

where we have traded limΛ−1→0 α(Λ) for c2s. This results in the contribution given in Eq. (4.22), where
we have absorbed the growth factor D2(τ) into c2s,eff . Furthermore, by allowing cs to be fit to simulations,

this correction term absorbs the dependence of the SPT contribution P
(13)
mm in Eq. (B.18) on fully nonlinear

small-scale modes that cannot be described by perturbation theory. Empirically, one finds values for cs of
order 1 (e.g., [85]). Note that the leading stochastic EFT contribution to the matter power spectrum scales

as k4P
{4}
εm (τ) [346], where εm ∝ peff and P

{4}
εm (τ) is its power spectrum amplitude in the low-k limit which

only depends on time. The scaling with k4 is required by mass and momentum conservation [71, 344]. In
terms of the perturbative counting of terms, this is a higher-order contribution; however, εm is relevant in
the NLO halo-matter cross-power spectrum (Sec. 4.1.4).

We now turn to the general expectation for how large higher-order nonlinear terms to the n-point
functions of matter and biased tracers are at a given scale k. The most important scale is the nonlinear
scale which we here define as the scale where the dimensionless matter power spectrum k3PL(k)/(2π2)
becomes unity. Note that various different choices are possible here, since this is only a rough estimate for
the scale where higher-order corrections become of order one. For our reference cosmology, this corresponds
to knl(z = 0) ' 0.25hMpc−1. At and below this scale, PL(k) can be approximated by a power law
PL(k) ∝ kn with n = −1.9 · · · − 1.7 depending on the precise fit range chosen. As discussed in Sec. 4.1.4,
higher-order SPT contributions to the n-point functions roughly scale as (k/knl)

n+3 ∼ (k/knl)
1.1···1.3, while

the leading EFT term scales as (k/knl)
2, for cs = O(1).

Appendix B.4 IR resummation

The perturbative expansion and counting of terms discussed so far in this Appendix (as well as in
Sec. 4.1.4) relies on the assumption of a smooth, slowly varying linear matter power spectrum. In reality,
the plasma oscillations in the baryon-photon fluid prior to recombination imprint a small-amplitude oscil-
latory pattern in the linear matter power spectrum, the well-known BAO feature first pointed out by [41],
with oscillation period kBAO = 2π/rs ≈ 0.06hMpc−1, where rs ≈ 106h−1 Mpc is the sound horizon at
recombination. These oscillations are damped towards higher k by Silk damping.

Now consider a perturbation with wavenumber p ∼ kBAO. This mode induces a displacement s which
moves small-scale perturbations with k � p. Perturbatively, this effect is captured at second order by the
contribution si∂iδ. However, the effect of higher-order displacement terms on the oscillatory (“wiggle”) part
of the power spectrum is not suppressed, since the displacement itself is modulated over scales of order rs.
Fortunately, since this is a pure displacement effect, i.e., a coordinate transformation, these terms can be
resummed [269, 270, 271, 272]. This resummation relies on the fact that (i) the relevant modes sourcing the
displacement are in the perturbative regime (p . 0.2hMpc−1), and (ii) that the shape of the oscillatory
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feature is well known. Crucially, only the long-wavelength displacement effects on this oscillatory feature
are resummed, as they are the ones which are enhanced.

First, we split the linear power spectrum into smooth (s) and oscillatory parts (w) via

PL(k) = P sL(k) + PwL (k) , (B.29)

where

PwL (k) = sin

(
k

kBAO

)
fenv(k) (B.30)

is a strictly oscillating function whose amplitude is controlled by the smooth envelope fenv(k), while P sL(k)
is defined as the remainder. Then, the IR resummation acting on the oscillatory part yields [272]27 (see
[270, 271, 864] for similar results)

P IR-resum.
mm (k) = P sL(k) + exp

[
−Σ2(εk)k2

] (
1 + Σ2(εk)k2

)
PwL (k)

+ P nlo
mm

[
PL(k′)→ P sL(k′) + exp

(
−Σ2(εk′)k′2

)
PwL (k′)

]
(k) . (B.31)

Here, P nlo
mm[· · · ](k) stands for the NLO matter power spectrum Eq. (B.18) evaluated using the IR-resummed

version of the linear power spectrum. Finally,

Σ2(Λ) =
1

6π2

∫ Λ

0

dpPL(p) [1− j0(prs) + 2j2(prs)] (B.32)

is essentially the covariance 〈sisj〉 of the linear Lagrangian displacement, after angle-averaging and smoothing
with a sharp-k filter at the scale Λ. ε� 1 is a parameter controlling down to what scale the IR resummation
should occur; Ref. [271] choose ε = 1/2. The term +Σ2k2 in parentheses in the first line of Eq. (B.31)
prevents the double counting of terms that appear in the NLO expression on the second line. As shown
in [270, 271, 864, 272], the IR-resummed matter power spectrum and its Fourier transform, the correlation
function, significantly improve the match in the shape of these correlations with full N-body simulations on
the scales around the BAO feature (r ∼ rs in real space; 0.05hMpc−1 . k . 0.3hMpc−1 in Fourier space).

At this, leading order in the wavelength 1/p of the soft modes that lead to displacements, the displace-
ments are the same for both matter and LSS tracers, due to the equivalence principle (Sec. 2.7; see also
[865]). This means that we can immediately make use of the IR resummation in the prediction for halo and
galaxy clustering in real space, by generalizing Eq. (B.31) to:

P IR-resum.
hm (k) = b1P

s
L(k) + b1 exp

[
−Σ2(εk)k2

] (
1 + Σ2(εk)k2

)
PwL (k)

+ P nlo
hm

[
PL(k′)→ P sL(k′) + exp

(
−Σ2(εk′)k′2

)
PwL (k′)

]
(k) , (B.33)

and

P IR-resum.
hh (k) = b21P

s
L(k) + b21 exp

[
−Σ2(εk)k2

] (
1 + Σ2(εk)k2

)
PwL (k) + P {0}ε

+ P nlo
hh

[
PL(k′)→ P sL(k′) + exp

(
−Σ2(εk′)k′2

)
PwL (k′)

]
(k) , (B.34)

where the second line in each equation is obtained by replacing the linear power spectrum with its IR-
resummed version in Eq. (4.22). Again, this is because the IR resummation only deals with displacement
terms which, at leading order in derivatives, are only modified by biasing through the trivial factor b1. This
holds analogously for the displacement from the galaxy rest frame into redshift space (Sec. 9.3.2), whose
IR contributions can similarly be resummed. Refs. [89, 180, 866, 867, 865] provide resummed results for
two-point functions in redshift space.

27Eq. (7.4) there; we have dropped the 2-loop-order displacement terms ∝ D6 in that expression, since they are numerically
small. Note also the different Fourier convention adopted in [272].
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Appendix B.5 Convective SPT approach and conserved evolution at third order

In this section, we provide some details on the calculation of the evolution of a conserved biased tracer
at third order in perturbation theory that is briefly presented in Sec. 2.4. The “convective SPT” system,
consisting of the continuity and Euler equation Eqs. (B.1)–(B.2) for matter and the continuity equation
Eq. (2.17) for the biased tracer, can be written in compact form as

D

Dτ
Ψ = − σ ·Ψ + S (B.35)

where

Ψ(x, τ) =




δg(x, τ)

δ(x, τ)

θ(x, τ)


 ; σ(τ) =




0 0 1

0 0 1

0 3
2ΩmH2 H


 ; S(x, τ) =




−δg θ
−δ θ
−(∂ivj)

2


 . (B.36)

The fact that σ is degenerate already shows that the three equations are not really coupled, but rather the
equation for δg can be integrated separately as done in Sec. 2.3. Eq. (B.35) allows for a convenient, compact
derivation of both δ and δg. In the following, we will solve this system up to third order.

Source term

The goal is to integrate Eq. (B.35) along the fluid trajectory. However, the source term S involves some
subtleties, in particular the third component S3 = (∂ivj)

2, since the derivative is with respect to Eulerian
coordinate x. The velocity shear ∂ivj is nonlocally related to the degrees of freedom δ, θ themselves [since
v = (∇/∇2)θ]. We can use a trick, namely the fact that the displacement is the integral of the peculiar
velocity along the fluid trajectory xfl(q, τ), and therefore

v(xfl[q, τ ], τ) =
D

Dτ
s(q, τ) . (B.37)

In the remainder of this section, we will abbreviate convective derivatives D/Dτ as primes. Further, we need
to transform the derivative from x to the fluid flow or Lagrangian coordinate q via

∂ix =
(

[1 +M ]
−1
)i
j
∂jq , (B.38)

where M ij = ∂iqs
j . At second order, we then obtain

∂ixv
j =

[
∂iq + (∂iqsk)∂kq

]
s′j +O([δ(1)]3) . (B.39)

Here, the left-hand side is defined at the Eulerian coordinate (x, τ) while the right-hand side quantities are
defined at the corresponding Lagrangian coordinate q. With these expressions, we can construct source
terms that are expressed purely in terms of convective time and Lagrangian spatial derivatives. Specifically,
the third component of the source term, S3, is at first and second order given by (App. B in [131])

(S(1))3 = − [a′(τ)]2
[
(K(1))2 +

1

3
(δ(1))2

]

τ0

(S(2))3 = 2a [a′(τ)]2
[
−2

3
δ(1)σ(2) − 2K

(1)
ij Dijσ(2) +

1

9
(δ(1))3 + δ(1)(K(1))2 + (K(1))3

]

τ0

, (B.40)

where

σ(2) ≡ ∂ks(2)k =
1

2

[
−2

7
(δ[1])2 +

3

7
(K [1])2

]
(B.41)

is the divergence of the second-order Lagrangian displacement.
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Initial conditions

In order to integrate Eq. (B.35), we need to provide an expression for the initial conditions at some
initial time τ∗. The quantities δ∗, θ∗ are obtained by integrating only the matter part [Ψ]i=2,3 from τ = 0 to
τ = τ∗. Throughout, we only consider the fastest-growing-mode solutions for the density and velocity field.
That is, the final time τ is assumed to be late enough so that all the slowly growing modes are subdominant
[503, 505].

Under the assumptions explained in Sec. 2.4, the galaxy density δ∗g at the “formation time” is given by
Eq. (2.44), which we repeat here for convenience:

δ∗g ≡ δg(xfl(τ∗), τ∗) =

3∑

n=1

b∗n
n!

[δ∗]n + b∗K2 tr
[
(K∗ij)

2
]

+ b∗K3 tr
[
(K∗ij)

3
]

+ bδK2δ∗ tr
[
(K∗ij)

2
]

+ ε∗ + ε∗δδ
∗ + ε∗δ2 [δ∗]2 + ε∗K2 tr

[
(K∗ij)

2
]
, (B.42)

where here and throughout a superscript ∗ indicates that a quantity is evaluated at x∗ ≡ xfl(τ∗) and τ∗.
The stochastic fields ε∗, ε∗X (X = δ, δ2, K2) are assumed to be first-order random variables.

Solution

We define the matrix A(τ, τi) as the solution to the following matrix ODE with boundary condition

∂τA(τ, τi) + σ(τ)A(τ, τi) = 0; A(τ, τ) = 1 . (B.43)

In order to obtain closed analytical expressions, we restrict to an EdS Universe. In this case, A assumes a
simple form constructed out of the growing and decaying modes which scale as a(τ) ∝ τ2 and H(τ) ∝ τ−3,
respectively (App. B in [131]). In the final result, we then replace scale factors a(τ) with growth factors
D(τ), as described after Eq. (B.12).

Given the initial condition for Eq. (B.35) from above, Ψ(x∗, τ∗) = (δ∗g , δ
∗, θ∗) with Eq. (B.42), the

particular solution to Eq. (B.35) is then given by

Ψ(x, τ) = A(τ, τ∗)




δ∗g

δ∗

θ∗


+

∫ τ

τ∗

dτ ′ A(τ, τ ′)S(xfl(τ ′), τ ′) . (B.44)

The interpretation of Eq. (B.44) is clear: the density and velocity of the fluid and galaxy at position (x, τ) is
given by an integral over the fluid trajectory of the source term multiplied by the Green’s function A(τ, τ ′).
Eq. (B.44) leads to the SPT result for matter, in particular for the terms that are invariant under time-
dependent coordinate shifts x→ x+ ξ(τ). The non-invariant terms, which are not captured by Eq. (B.44),
are precisely the displacement terms relating the solutions in Lagrangian and Eulerian coordinates. Finally,
expanding in these displacements to the same perturbative order then yields exactly the SPT result. Thus,
the convective SPT calculation keeps track of the displacement terms exactly (i.e., it resums them), similar
to Lagrangian perturbation theory.

At second order, we then recover our previous result, Eq. (2.33) as well as Eqs. (B.14)–(B.15). Specifically,
the solution reads

Ψ(2)(x, τ) =




bE1 (τ)δ(2) + bE2 (τ)(δ(1))2/2 + bEK2(τ)(K
(1)
ij )2 + εEδ (τ)δ(1)

D2(τ)
[

17
21 (δ(1))2 + 2

7 (K
(1)
ij )2

]

−D(τ)Ḋ(τ)
[

13
21 (δ(1))2 + 4

7 (K
(1)
ij )2

]




q

. (B.45)

28Note that θ(3) in Eq. (B23) of [131] lacks an overall minus sign.

236



At third order, we obtain for the matter fields [131]28

δ(3) =
341

567
δ3 +

11

21
K2δ +

2

9
K3 +

1

6
Otd

θ(3) = − fH
[

71

189
δ3 +

5

7
K2δ +

2

3
K3 +

1

2
Otd

]
, (B.46)

where Kn stands for tr[Kn
ij ], and all quantities on the right-hand side are evaluated at linear order and

at τ . Otd is defined in Eq. (2.50). Note that, although all quantities appearing in Eq. (B.46) are defined
using derivatives with respect to x, the distinction between Eulerian and Lagrangian derivatives in these
terms only matters at higher order. Notice further that the coefficient of the δ3 term in δ(3) is exactly the
third-order coefficient of the perturbative expansion of spherical collapse in an EdS Universe [Eq. (2.14)],
as expected: for a spherically symmetric perturbation, Kij = 0, and δ(3) has to reduce to the cubic term in
the perturbative expansion of the spherical collapse solution. To the authors’ knowledge, despite its fairly
simple form, Ref. [131] was the first to give the complete expression for δ(3), θ(3) in real space. Interestingly,
the expression for the nonlinear density derived by Ref. [136] from ellipsoidal collapse [444, 435] does not
contain a term of the form KijDijσ(2), while it matches the PT result at second order. The same is found in
the local tidal approximation (LTA) of [445], as well as the fully relativistic local approximation derived in
[150]. The underlying reason is that the evolution equations of an isolated ellipsoidal perturbation are only
approximate, since they neglect the dynamical interaction with the large-scale environment. When allowing
for general configurations, the nonlinear evolution of tidal fields in cosmology is nonlocal [868, 148, 149].

Finally, in order to obtain the density at a fixed order in standard Eulerian perturbation theory, we need
to displace Ψ from a fixed Lagrangian position to the Eulerian position, by expanding in the argument. Let
us define the Eulerian solution ΨE through

ΨE(x) = Ψ(x− s[q, τ ]) . (B.47)

Ψ on the right-hand side contains all invariant terms, which we have obtained above. We now perform
a Taylor expansion in s as well as a perturbative expansion of s, noting that s is itself a function of the
Lagrangian rather than Eulerian position. We obtain at third order

ΨE,(3)(x, τ) = Ψ(3) − si(1)∂iΨ
(2) −

[
si(2) − sj(1)(∂js

i
(1))
]
∂iΨ

(1) +
1

2
si(1)s

j
(1)∂i∂jΨ

(1) , (B.48)

where on the right-hand side all quantities are evaluated at x, τ , and Ψ(n) = {δ(n)
g , δ(n), θ(n)}, are given in

Eq. (B.45) for n = 2, and Eq. (2.49), Eq. (B.46) for n = 3, respectively. As expected, the displacement from
Lagrangian to Eulerian position, being merely a coordinate shift, does not affect the bias relation at any
order.

Appendix B.6 Conserved evolution and bias expansion beyond the EdS background
We now allow for a more general expansion history, in particular ΛCDM or quintessence (neglecting per-

turbations in the dark energy component), and derive how this changes the evolution equations of a conserved
tracer in the convective SPT approach. For this, we transform the time coordinate in the equations of motion
Eq. (2.43) to lnD, where D is the linear growth factor [Eq. (B.9)]. Since d lnD/dτ = Hd lnD/d ln a = Hf
by definition of the growth rate f , we introduce

ṽ ≡ (Hf)−1v and
D

D lnD
≡ ∂

∂ lnD
+ ṽi∂i . (B.49)

Note that θ̃ = ∂iṽ
i = −δ at linear order. Using Eq. (B.11), we then obtain

D

D lnD
Ψ̃ = − σ̃ · Ψ̃ + S̃ (B.50)

Ψ̃(x, τ) =




δg(x, τ)

δ(x, τ)

θ̃(x, τ)


 ; σ̃(τ) =




0 0 1

0 0 1

0 3
2

Ωm
f2

3
2

Ωm
f2 − 1


 ; S̃(x, τ) =




−δg θ̃
−δ θ̃
−(∂iṽj)

2


 . (B.51)
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We see that the equations maintain the same structure, and that the departure from EdS of the equations
of motion is completely quantified by Ωm(a)/f2(a) − 1. In particular, the time dependence of the second-
order matter density field is, instead of [D(τ)]2, given by a second-order growth factor D2(τ), obtained
by integrating [D(τ)]2 against the Green’s function corresponding to Eq. (B.51). Only starting at third
order do we obtain two different time dependences in the contributions to δ at the same perturbative order;
specifically, D3,1(τ) and D3,2(τ), obtained respectively by integrating [D(τ)]3 and D2(τ)D(τ) against the
Green’s function.

We now go back to the construction of the set of general local bias operators in Sec. 2.5.2–2.5.3. The
first instance of a new operator being induced by the different time evolution in quintessence cosmology is at

third order, where Π
[3]
ij defined via Eq. (2.63) in Sec. 2.5.3 separates into two different operators Π

[3,1]
ij , Π

[3,2]
ij .

Now, the reason for why we do not need to include convective time derivatives of δ itself, or equivalently
tr[Π[n]], in the perturbative bias expansion also holds in the more general case considered here: by including
time derivatives of all other operators constructed out of ∂i∂jΦ, we already obtain the operators appearing
in the time derivatives of δ, or equivalently in the perturbative contributions δ(2), δ(3), · · · . Thus, we do not
need to include tr[Π[3,i]], and the first new operator in the Eulerian basis Eq. (2.64) of the bias expansion
appears at fourth order, where

tr[Π[1]Π[3]] −→ tr[Π[1]Π[3,1]] , tr[Π[1]Π[3,2]] . (B.52)

Conversely, in the EdS limit these two operators have to combine into tr[Π[1]Π[3]]. This means that the
bias coefficients of the two different fourth-order operators will be approximately equal, with a fractional
difference scaling as D3,1(τ)/D3,2(τ)−1� 1. Thus, the bases of bias operators described in Sec. 2.5.2–2.5.3
can be straightforwardly extended beyond EdS to quintessence cosmologies. Moreover, all explicit results
for galaxy and halo statistics derived in Sec. 4, which only rely on perturbative results up to third order,
are independent of the EdS assumption. While the time evolution of bias parameters for conserved tracers
[Eq. (2.52)] is modified from the EdS case, this is not of practical relevance if all the bias parameters are
determined from the data at a fixed time.
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Appendix C Bias conventions and their relation

The general bias expansion consists of a set of operators {O[n]
i }, i = 1, · · ·Nn, at each order n in

perturbation theory (as discussed in Sec. 2.8, the stochastic terms involve the same basis of operators as
well, hence we do not need to consider them explicitly here). A superscript [n] indicates that the lowest-order
contribution to this operator is at n-th order in perturbation theory. Of course, there are contributions at

order n+ 1, n+ 2, and so on as well. Any linearly independent combination of the O
[n]
i at a given order n

leads to an equivalent bias expansion. For example, for n = 1, we only have a single operator O[1] = δ, but
O[1] = θ/H or O[1] = ∇2Φ/H2 constitute equivalent choices. Correspondingly, several different conventions
for the first few orders of the bias expansion have been used in the literature. We provide a brief summary
of the relations between the most commonly used bias conventions here.

Let us denote the set of operators in a given basis at a fixed order n in perturbation theory as O =

{O[n]
i }Nni=1. The bias expansion at n-th order can then be treated as an Nn-dimensional vector space.

Consequently, a different basis Õ can always be written as

Õ = M ·O , (C.1)

where M is an invertible Nn ×Nn matrix. Then, the coefficients, i.e. the bias parameters which we write
as b = {b

O
[n]
i
}Nni=1, transform via the transpose of the inverse of M :

δg ⊃
Nn∑

i=1

b
O

[n]
i
O

[n]
i =

Nn∑

i=1

b̃
Õ

[n]
i
Õ

[n]
i ⇒ b̃ =

(
M−1

)> · b . (C.2)

Note that even if one or more of the Õ
[n]
i is the same as O

[n]
i , the corresponding bias parameter b̃

O
[n]
i

in

general differs from b
O

[n]
i

due to the transformation in the Nn-dimensional vector space. We now derive

these transformations for frequently used bias conventions at second and third order.

Appendix C.1 Second order

At second order, the basis used in this review consists of O = {δ2, (Kij)
2}. Another frequently used

basis is Õ = {δ2,G2}, where

G2 ≡
[
(∂i∂jΦ̂)2 − (∇2Φ̂)2

]
= (Kij)

2 − 2

3
δ2 , (C.3)

where Φ̂ ≡ 2Φ/(3ΩmH2) = ∇−2δ. We then obtain

b̃δ2 = bδ2 +
2

3
bK2 and b̃G2

= bK2 . (C.4)

Finally, using the tensor

Π
[1]
ij ≡ ∂i∂jΦ̂ = Kij +

1

3
δijδ (C.5)

introduced in Sec. 2.5.3, one can choose

(
tr
[
Π[1]

])2

= δ2 , tr

[(
Π[1]

)2
]

= K2 +
1

3
δ2 (C.6)

as second-order basis. This yields

b̃(tr Π)2 = bδ2 − 1

3
bK2 and b̃tr[Π2] = bK2 . (C.7)
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Appendix C.2 Third order

At third order, an operator nonlocally related to ∂i∂jΦ appears, which can be defined in a variety of
ways. In this review, we mostly use the definition in Eq. (2.50),

O
(3)
td ≡

8

21
K

(1)
ij Dij

[
(δ(1))2 − 3

2
(K

(1)
ij )2

]
. (C.8)

Note that, unlike the operators δ2, (Kij)
2, it is not obvious how the definition of this operator is to be

extended to higher order in perturbations. We will return to this shortly. Let us relate O
(3)
td to the second-

order tensor appearing in the general Eulerian bias expansion (Sec. 2.5.3),

Π
[2]
ij ≡ (Hf)−1 D

Dτ
Π

[1]
ij −Π

[1]
ij . (C.9)

Note that Eq. (C.9) is valid at any order in perturbation theory. At second order in PT, this yields

Π
[2]
ij

∣∣∣
(2)

= ∂i∂kΦ̂∂k∂jΦ̂ +
10

21

∂i∂j
∇2

(
δ2 − 3

2
(Kkl)

2

)
. (C.10)

This result can be derived in a variety of ways. Appendix C.3 gives some details on the Fourier-space
derivation which makes use of the SPT kernel expansion (Appendix B.1). Eq. (C.10) immediately yields

tr[Π[1]Π[2]]
∣∣∣
(3)

=
5

4
O

(3)
td + (Kij)

3 +
16

21
δ(Kij)

2 +
17

63
δ3 . (C.11)

This can now be used to define Otd at all orders in PT, although we do not need the result for any of the
expressions presented in this review.

O
(3)
td can also be related to the second-order Lagrangian distortion tensor M

(2)
ij . Using that

M
(2)
ij =

∂iq∂
j
q

∇2
q

(∇q · s(2)) = [fH∂τMij −Mij ]
(2)

(C.12)

where ∇q · s(2) = − 1

7

[(
δ(1)
)2

− 3

2

(
K

(1)
ij

)2
]

= −3

4

[
δ(2) +

θ(2)

Hf

]
(C.13)

is the divergence of the second-order Lagrangian displacement, we obtain

O
(3)
td =

8

3

[
M (1) ij − 1

3
δij trM (1)

]
M

(2)
ij . (C.14)

In Eq. (C.12) we have used that convective time derivatives reduce to ordinary time derivatives for operators
defined in terms of Lagrangian coordinates.

Further, relating O
(3)
td to the velocity potential Φv ≡ −(fH)−1∇−2θ, we can also write [128, 197]

O
(3)
td = Γ3 +

16

63
δ3 − 8

21
δ(Kij)

2 ,

where Γ3 ≡ (∂i∂jΦ̂)2 − (∇2Φ̂)2 −
[
(∂i∂jΦv)

2 − (∇2Φv)
2
]
. (C.15)

Note that, at linear order, Φ
(1)
v = Φ(1) so that Γ3 = Γ

[3]
3 starts at third order in PT. Specifically, we have at

this order

Γ
(3)
3 = 2KijDij

[
δ + (fH)−1θ

](2) − 4

3
δ
[
δ + (fH)−1θ

](2)
, (C.16)

where [
δ + (fH)−1θ

](2)
=

4

21

[
δ2 − 3

2
K2

]
. (C.17)
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MÕO δ3 δK2 K3 O
(3)
td

δ3 1

δG2 -2/3 1

G3 -1/9 1/2 -1

Γ3 -16/63 8/21 1

(M−1)>
ÕO

bδ3 bδK2 bK3 btd

b̃δ3 1 2/3 2/9

b̃δG2 1 1/2 -8/21

b̃G3
-1

b̃Γ3 1

Table C.14: Transformation between the third-order basis of operators O = {δ3, δK2, K3, O
(3)
td } adopted in this review, and

Õ = {δ3, δG2, G3, Γ3} adopted in [197] (left). The right table gives the corresponding transformation of bias parameters.
Vanishing matrix elements are indicated as empty cells for clarity.

MÕO δ3 δK2 K3 O
(3)
td

δ3 1

δK2 1

st -1/2

ψMR 328/3969 -4/49 -8/63 -8/21

(M−1)>
ÕO

bδ3 bδK2 bK3 btd

b̃δ3 1 41/63

b̃δK2 1 -9/14

b̃st 6 -2

b̃ψMR -63/8

Table C.15: Transformation between the third-order basis of operators O = {δ3, δK2, K3, O
(3)
td } adopted in this review, and

Õ = {δ3, δK2, st, ψMR} adopted in [128] (left). The right table gives the corresponding transformation of bias parameters.
Note that Ref. [128] use bMR

3 = 6b̃δ3 and bMR
δs2

= 2b̃δK2 , and that s3 ≡ K3 can be re-expressed in terms of the other operators

in Õ and hence is redundant. Vanishing matrix elements are indicated as empty cells for clarity.

Using that

G3 ≡ −
1

2

[
2(∂i∂jΦ̂)3 + δ3 − 3(∂i∂jΦ̂)2δ

]

= − (Kij)
3 +

1

2
δ(Kij)

2 − 1

9
δ3 , (C.18)

as defined in [197], we then obtain the relation between the third-order operator basis adopted in [197] and
the basis used here, which is summarized in Tab. C.14.

Finally, we can relate O
(3)
td to the operators defined in [128] through (note that sij there equals Kij as

defined here)

η ≡∇2Φv −∇2Φ̂ ,

tij ≡
(
∂i∂j −

1

3
δij∇2

)
Φv −Kij = Dijη . (C.19)

At second order in PT, this yields

η(2) = − 4

21

([
δ(1)
]2
− 3

2

[
K

(1)
ij

]2)
. (C.20)

We then have

st ≡ sijtij = Kij

(
∂i∂j
∇2

)
η = −1

2
O

(3)
td . (C.21)

Using Eq. (B.46), the operator ψ = ψMR defined in [128] can eventually be expressed at third order as

ψ
(3)
MR ≡

[
η − 2

7
(Kij)

2 +
4

21
δ2

](3)

= − 8

21
O

(3)
td +

328

3969
δ3 − 4

49
δ(Kij)

2 − 8

63
(Kij)

3 . (C.22)
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Tab. C.15 summarizes the relation between the third-order operator basis adopted in [128, 137] and the basis
used here. Note that K3 (denoted as s3 in their notation) is linearly dependent on the other operators in
their basis and hence not included here. Alternatively, one could replace either st or ψMR with the operator
K3.

Refs. [128, 137] introduce a bias parameter b3nl which multiplies the term proportional to fnlo(k)PL(k)
in the NLO galaxy power spectrum, Eq. (4.22), where fnlo(k) is defined in Eq. (4.23). In our notation, this
parameter is given by

b3nl = −32

21

(
bK2 +

2

5
btd

)
, (C.23)

where the prefactor comes from matching fnlo(k) and the function σ2
3(k) defined in [128]. Inserting our

results from Sec. 2.4 for Lagrangian LIMD bias [Eq. (2.34) and Eq. (2.53)], we obtain

b3nl =
32

315
bL1 , (C.24)

in agreement with [137]. Note, however, that b3nl is different from the bO discussed throughout the review,
since it does not multiply a single bias operator. Instead, it is defined as a coefficient of a specific term in the
NLO (1-loop) contribution to the galaxy power spectrum (indeed, we see from Eq. (C.23) that it involves
both second- and third-order biases).

Appendix C.3 Derivation of Π[2]

Using the definition of the convective time derivative [Eq. (2.18)], and the perturbation theory expansion

of the density and velocity fields [Eq. (B.7)], Π
[2]
ij can be formally written as a sum over perturbation-theory

contributions [131]:

Π
[2]
ij (k, τ) =

∞∑

n=1

Dn(τ)

[
kikj

|k|2 (n− 1)δ(n)(k)

+
1

Hf
n−1∑

m=1

∫

k1

∫

k2

(2π)3δD(k − k12)
k1 · k2

k1

ki2k
j
2

k2
2

θ(m)(k1)δ(n−m)(k2)

]
.

(C.25)

At second order, we can restrict to n = 2 and m = 1. This yields

Π
[2]
ij (k, τ) =

∫

k1

∫

k2

(2π)3δD(k − k12)

[
ki12k

j
12

k2
12

F2(k1,k2)− 1
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δ(k1)δ(k2) , (C.26)

where µ12 = (k1 · k2)/k1k2 and we have used Eq. (B.12). The two displacement terms which are linear in
k1 · k2 can be combined over a denominator 1/(k2

1k
2
2|k12|2) to give

Π
[2]
ij (k, τ) =

∫
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∫
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We can now read off the real-space expression corresponding to Π[2]:

Π
[2]
ij (x, τ) =

10

21

∂i∂j
∇2

[
δ2 − 3

2
K2

]
+ ∂i∂kΦ̂∂k∂jΦ̂ . (C.27)
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This is Eq. (C.10). More generally, the following relations are useful to commute displacement terms with
an inverse Laplacian:

1
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In particular, this yields

∂i∂j
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. (C.29)

These relations can also be used to directly derive Π
[2]
ij from the real-space expression for δ(2), Eq. (B.14).
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Appendix D Halo finding algorithms

Collections of bound particles, or dark matter halos, identified in N-body simulations are a central tool
for testing the predictions of bias models. It would be desirable to process halo catalogs into weighted
samples with statistical properties similar to those hosting the observed galaxies, quasars, clusters, or other
tracers. However, this proves to be quite challenging owing to uncertainties in the relation between galaxies
and dark matter halos. Moreover, there is freedom in defining even the most basic halo property, its mass.

Halo identification algorithms, or “halo finders”, can be broadly divided into two categories: Friends-
of-Friends (FoF) finders [23] and spherical overdensity (SO) finders [869]. The choice of halo finder and
mass definition is somewhat arbitrary and is often made to suit specific purposes. For example, the mass
assignment of SO halos is more closely connected to the predictions of the spherical collapse model, which
many of the results for Lagrangian models of halos presented in Sec. 5–6 rely on, and to observable mass
proxies such as the weak lensing signal or the temperature of thermal X-ray emitting gas.

Particle membership of SO halos is defined by being inside a spherical shell centered on the center-
of-mass of particles which encloses a fixed interior density ρ(< R) = ∆SO ρm(z). The halo mass is given
by the sum of the member particle masses. Unbound particles inside this shell are sometimes pruned. A
common choice for the interior density threshold is ∆SO = ∆vir(z) ≈ 200, which ensures that the mean
effective linear collapse threshold δcr is close to the spherical collapse prediction (δcr = 1.686). Larger values
∆SO = 500 − 2500 are also adopted to obtain a closer match to observationally inferred halo masses. On
the other hand, particle membership, and hence mass, of an FoF halo is determined by being separated by
less than a linking length λ from another member particle, where, typically, λ ∼ 0.15 − 0.2 in units of the
mean interparticle distance. Such linking lengths can yield a mean effective critical threshold δcr which is
lower than the spherical collapse prediction.

The question of how SO halo masses can be mapped onto friends-of-friends masses remains a matter
of debate (see [870, 615] for a discussion). The halo mass definition is clearly of relevance to Lagrangian
models of halos as well as universal mass functions phrased in terms of the peak significance νc ≡ δcr/σ(M):
changing the mass assigned to halos also changes νc for each halo through σ(M), and, thereby, changes the
multiplicity νcf(νc).
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[639] R. de Putter and O. Doré, ArXiv e-prints (2014), [arXiv:1412.3854].
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