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Abstract. Peculiar velocities of objects in the nearby universe are correlated due to the
gravitational pull of large-scale structure. By measuring these velocities, we have a unique
opportunity to test the cosmological model at the lowest redshifts. We perform this test,
using current data to constrain the amplitude of the “signal” covariance matrix describing
the velocities and their correlations. We consider a new, well-calibrated “Supercal” set of
low-redshift SNe Ia as well as a set of distances derived from the fundamental plane relation
of 6dFGS galaxies. Analyzing the SN and galaxy data separately, both results are consis-
tent with the peculiar velocity signal of our fiducial ΛCDM model, ruling out the noise-only
model with zero peculiar velocities at greater than 7σ (SNe) and 8σ (galaxies). When the
two data sets are combined appropriately, the precision of the test increases slightly, resulting
in a constraint on the signal amplitude of A = 1.05+0.25

−0.21, where A = 1 corresponds to our
fiducial model. Equivalently, we report an 11% measurement of the product of the growth
rate and amplitude of mass fluctuations evaluated at zeff = 0.02, fσ8 = 0.428+0.048

−0.045, valid for
our fiducial ΛCDM model. We explore the robustness of the results to a number of conceiv-
able variations in the analysis and find that individual variations shift the preferred signal
amplitude by less than ∼0.5σ. We briefly discuss our Supercal SN Ia results in comparison
with our previous results using the JLA compilation.
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1 Introduction

Galaxies in the universe respond to the gravitational pull of large-scale structure, leading to
the so-called peculiar velocities. This extra velocity shifts the redshift of the galaxy via the
Doppler effect: (1 + zobs) = (1 + z)(1 + v‖/c), where z and zobs are the true and observed
redshift, and v‖ is the peculiar velocity projected along the line of sight. Peculiar velocities
of galaxies are not random; roughly speaking, objects physically close to each other are being
pulled by similar large-scale structures and are therefore more likely to have similar velocities.
The statistical properties of the velocity field are related to the matter power spectrum and
are straightforward to calculate [1, 2].

Measuring peculiar velocities is also, in principle, straightforward. Since an object’s
observed redshift is a combination of the Hubble expansion redshift and the peculiar velocity
contribution, an independent estimate of the Hubble redshift is required. At low redshifts
z � 1, the Hubble law applies, and we have cz ≈ H0d, where H0 is the Hubble constant and d
is the proper distance. In this limit, there is negligible dependence on cosmology (apart from
H0, which we will effectively marginalize over). Therefore, if one can obtain an independent
distance measurement, one can estimate the peculiar velocity. This basic strategy has been
employed for well over three decades [1–8].

The challenging aspect is that peculiar velocities of ∼300 km/s are typically much
smaller than the Hubble expansion velocity; the two are similar in size only at the very
lowest redshifts, z ∼ 0.001. The signal-to-noise ratio for the measured velocity of a single
object is v‖/(czσln d), which is proportional to 1/z for a fixed fractional distance error σln d.
For a 10% distance measurement (σln d = 0.1), the velocity signal-to-noise per object is
less than unity for z > 0.01. The study of the peculiar velocity field therefore requires the
statistical power of hundreds or thousands of objects. These measurements, in turn, have the
ability to constrain the cosmological model, which predicts the typical size of the velocities
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and their pairwise correlations. Such an approach has originally been used to constrain the
matter density as well as the galaxy bias [9–14]. More recently, the velocity measurements
have been used to test for consistency with expectations from the ΛCDM model [5, 8, 15–24],
to measure cosmological parameters [6, 7, 25–28], or to test the statistical isotropy of the
universe [29–35]. Others have highlighted the importance of accounting for peculiar velocities
when constraining dark energy with SN Ia data [36–39] and forecasted the ability of future
peculiar velocity surveys to constrain cosmology [40–42].

Our goal in this paper is to test the standard ΛCDM cosmological model by searching for
the presence of the predicted velocities and their correlations. We will use modern peculiar
velocity data and leverage the full statistical power of each individual object to perform a
single test. Specifically, we define the covariance matrix of measured magnitude residuals as
the sum of signal and noise contributions,

C ≡
〈
∆m ∆m>

〉
observed

= AS + N , (1.1)

where ∆m is the vector of magnitude residuals, which are linearly related to the peculiar
velocities, while S and N are, respectively, the signal and noise covariance matrices (see
section 3 for definitions). Our goal then is to constrain the parameter A or, equivalently,
the product of the growth rate and amplitude of mass fluctuations fσ8 which is propor-
tional to A1/2 (with only small dependence on other cosmological parameters). We apply
formalism similar to that which we recently outlined in [43], hereafter referred to as HSS,
where we explicitly constrained the amplitude A. Here we analyze a new SN Ia data set
featuring unprecedented photometric calibration across the various low-redshift samples. In
addition, we study a large sample of galaxies from the six-degree-field galaxy survey (6dFGS)
with distances derived from the fundamental plane relation. We will determine whether the
amplitude A preferred by the data is different from zero and consistent with unity, thus
performing a powerful test of our fiducial ΛCDM model.

The rest of the paper is organized as follows. In section 2, we describe the SN and galaxy
samples we use in the analysis. In section 3, we describe our methodology, which largely
follows our approach in HSS. We review the calculation of the signal covariance matrix and
then describe our likelihood analysis in detail. In section 4, we present the results of our test
and evaluate the robustness of these results to several conceivable variations in the analysis.
In section 5, we discuss our new results in comparison to those of previous studies and then
summarize our conclusions.

2 Data Sets

In this section, we separately describe the selection of the SN Ia and galaxy data we use in
the analysis.

2.1 Supercal SN Ia sample

SNe Ia are useful standard candles for measuring cosmological distances. After correcting
their peak brightnesses for stretch (i.e. light-curve width, decline time) and color, each SN Ia
can provide a distance measurement with roughly 7–10% precision. While the total number
of SNe observed is relatively small — hundreds, rather than many thousands of galaxies
— the precise distance estimate makes the SNe useful for a wide variety of cosmological
applications, including the study of the peculiar velocity field that is the subject of this
work.
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For our analysis, we consider a new “Supercal” compilation of SNe Ia. The Supercal
sample includes data from multiple low-redshift surveys presented and analyzed in [44], all
with photometric systems recalibrated according to [45] and with distance biases corrected
according to [46]. The sample has 50% more SNe than the JLA sample, primarily due to the
addition of the second data release of the CSP SN survey [47] and the addition of the CfA4
survey [48]. The recalibration given in [45] uses the relative consistency of the Pan-STARRS1
photometry over 3π steradians of the sky to tie together the photometric systems of all the
low-redshift surveys. Furthermore, [46] corrects for distance biases dependent on the light-
curve properties of the SNe, which have a small marginalized effect on average distances but
can affect distances of individual SNe by up to 0.3 mag.

Note that neither the recalibration nor the bias corrections were featured in the JLA
analysis. Each of these will have some impact on inferences of A, as our analysis measures
peculiar velocities that are coherent across the sky, and our results are thus more sensitive
to biases in individual SNe or subsamples located in particular regions of the sky than the
usual isotropic analysis that is suitable for measuring expansion history and dark energy
parameters.

For the Supercal analysis, we employ the SALT2 light-curve fitter [49], which provides
a peak magnitude, stretch (x1), and color (c) for each SN light curve, along with associated
errors. Reasonable data quality cuts were applied to remove SNe which are not expected to
follow the empirical standardization relations. Specifically, we keep only SNe with x1 < 3,
σx1 < 1, c < 0.3, σc < 0.1, a light-curve fit probability greater than 10−3, and an uncertainty
in the time of peak brightness of less than two days. After a ΛCDM fit to the Hubble
diagram, we apply a 4σ outlier rejection. In our main analysis, the stretch and color correction
coefficients are held fixed at their best-fit values from this fit (α = 0.14, β = 3.1). Since these
parameters are well-determined from the full Hubble diagram fit and therefore measured
independently of the low-redshift SNe, this simplification will not significantly affect our
results.

For each SN subsample, we have included calibration systematic uncertainties by adding
a correlated component to the covariance matrix following the Supercal analysis [45]. There-
fore, the noise covariance matrix for SNe, corresponding to N in eq. (1.1), has non-negligible
off-diagonal components. Calibration systematic uncertainties have comprised > 80% of the
total systematic uncertainty in past analyses (e.g. [44, 50]), and for the present analysis we
include only these systematics. While other systematic uncertainties may have a significant
impact on measurements of the dark energy equation of state due to differences between the
low-z and high-z samples, they are likely to be much less important for an analysis of just the
lowest-z SNe. The calibration systematics are at the . 2% level for the different subsamples.

The final Supercal dataset contains 164 objects at z < 0.05 and 208 at z < 0.1, where
the latter is the maximum redshift used in our fiducial analysis. While this sample is smaller
than some low-redshift SN samples used in previous peculiar velocity studies (e.g. [20, 24, 29,
30, 32, 39]), it contains only SNe which have been placed on a consistent, and newly improved,
calibration footing. Note that the Johnson et al. [24] SN compilation consists of multiple SN
samples, each with its own (and often loose) light-curve quality and parameter cuts, and
each fit with either a different light-curve fitter or different reddening law. As different SN
samples cover different parts of the sky, this approach could introduce large systematic biases
in distance (∼10% [51]) which would propagate to biases in the measurement of the velocity
covariance across the sky. Such distance biases can be partially mitigated by comparing
overlapping SNe in the different samples, though likely not below 5% due to the limited
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statistics of overlapping SNe [44]. Our use of a uniformly calibrated and fitted SN sample
avoids these serious concerns.

2.2 6dFGS fundamental plane sample

The fundamental plane (FP) describes an empirical relation [52, 53] connecting various prop-
erties of elliptical galaxies, most commonly their effective physical radius, central velocity
dispersion, and average surface brightness. In the three-dimensional space of these observ-
ables, elliptical galaxies exhibit a small scatter in a particular direction and thus fall roughly
on a plane, which can be written as

r = as+ bi+ c , (2.1)

where r, s, and i are, respectively, the logarithms of physical radius, velocity dispersion, and
surface brightness. The parameters a, b, and c are unknown a priori and must be determined
by a fit to data. While surface brightness and velocity dispersion can be directly measured,
the physical radius must be inferred from the angular size. By definition, r = rang + log10 dA,
where dA is the angular diameter distance. Fitting galaxies to the FP relation allows a
determination of the radius r and therefore the distance dA for each galaxy.

The six-degree-field galaxy survey (6dFGS; [54, 55]) has mapped the majority of the
southern sky and obtained redshifts for over 100,000 galaxies, resulting in a 2.4σ detection of
the baryon acoustic oscillations along with a 4.5% measurement of the distance to z = 0.106
[56], which is the lowest-redshift BAO distance measurement to date.

With this large sample of low-redshift galaxies, 6dFGS also allows unprecedented studies
of local large-scale structure and bulk flows. A suitable subsample of 6dFGS galaxies was
selected for fitting to the FP in order to estimate distances and peculiar velocities [24, 57–59].
Distances, relative to the background expansion, were determined for a set of 8,885 galaxies
in [58]. In their analysis, the FP was modeled as a trivariate Gaussian in the space of the FP
observables. A maximum likelihood procedure was used to fit eight free parameters, three of
which define the centroid of the distribution, two of which indicate the plane’s orientation (a
and b above), and three of which describe the extent of the distribution (standard deviation)
in orthogonal directions [57].

For our main analysis, we use these reported distances and their associated errors di-
rectly.1 In section 4.2, we perform our own fit using a simpler model for the FP in order to
check the consistency of the results for different photometric bands. Note that any corre-
lations among the distance measurements, for instance due to uncertainties in photometric
calibration, are implicitly assumed to be negligible here. In our analysis, this corresponds to
a diagonal noise covariance matrix N.

3 Methodology

The aim of this analysis is test the standard ΛCDM model for the presence of the expected
peculiar velocity signal. Our basic methodology follows that of [43], where we introduced
the dimensionless parameter A, which represents the amplitude of the peculiar velocity “sig-
nal” contribution to the full covariance matrix of distance residuals. That is, the velocity
covariance is given by

C = AS + N , (3.1)

1http://www.6dfgs.net/vfield/table1.txt

– 4 –



0 50 100 150 200 250 300 350

l (deg)

-80

-60

-40

-20

0

20

40

60

80

b
(d
eg
)

Figure 1. Galactic coordinates of objects in the 6dFGS FP sample (blue points) and Supercal SN Ia
compilation (red circles). For the SN Ia sample, we show only the objects with z < 0.1, the redshift
range considered in our main analysis. The solid black curve indicates the celestial equator (zero
declination).

where A = 1 for our fiducial ΛCDM model and A = 0 for magnitude residuals that are
explained by noise alone. Here, S is the part of the covariance due to peculiar velocities and
their correlations induced by large-scale structure, while N represents the statistical noise,
which includes measurement uncertainty, intrinsic dispersion of the distance indicator, and
any systematic uncertainties that may also induce pairwise correlations in the residuals.

In this section, we first review the calculation of the peculiar velocity signal covariance
described in HSS [43]. We go on to discuss our choice of likelihood and the associated
statistical analysis.

3.1 Peculiar velocity covariance

The covariance of magnitude residuals is given by [1, 36, 43]

Sij ≡ 〈∆mi ∆mj〉 =

[
5

ln 10

]2 (1 + zi)
2

H(zi)dL(zi)

(1 + zj)
2

H(zj)dL(zj)
ξij , (3.2)

where ξij is the velocity covariance given by

ξij ≡ ξvel
ij ≡ 〈(vi · n̂i)(vj · n̂j)〉 (3.3)

=
dDi

dτ

dDj

dτ

∫
dk

2π2
P (k, a = 1)

`max∑
`=0

(2`+ 1)j′`(kχi)j
′
`(kχj) [P`(n̂i · n̂j)− δ`0] ,

where primes denote derivatives of the Bessel functions with respect to their arguments. Here
τ is the conformal time, dτ = dt/a, Di is the linear growth function evaluated at redshift zi,
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and χi = χ(zi) is the coordinate distance evaluated at that redshift. Further, j`(x) denotes
the spherical Bessel functions, and P` are the Legendre polynomials. The power spectrum
P (k, a) is evaluated using CAMB [60] at the present epoch (a = 1) and assuming nonlinear
theory modeled by halofit [61, 62]. Including nonlinearities in P (k) has an appreciable effect
only for objects with small separations, including those at z . 0.01. Given that those nearby
objects contribute appreciably to the overall constraint, the use of the fully nonlinear power
spectrum is important. Note that only the first few terms in the sum over the multipoles
contribute, except for objects which are nearly along the line of sight. We therefore assume
`max = 20 if cos(θ) < 0.95 and `max = 200 otherwise, and we have verified that these choices
lead to sufficiently accurate results. Eq. (3.3) matches the expression from HSS [43] for the
full-sky window, hence the appearance of the Kronecker delta function. We have shown in
HSS that assuming a full-sky window is an excellent approximation.

To perform these calculations, and also throughout our analysis, we assume a (flat)
ΛCDM model with parameters fixed to values consistent with Planck [63] and other probes.
That is, we fix the matter density relative to critical Ωm = 0.3, physical baryon and matter
densities Ωbh

2 = 0.0223 and Ωmh
2 = 0.14, scalar spectral index ns = 0.965, and amplitude

of the primordial power spectrum As = 2.0 × 10−9 at k = 0.05hMpc−1. For these choices,
the derived value of the Hubble constant is h = 0.683 and the amplitude of mass fluctuations
is σ8 = 0.80. Note that we will effectively marginalize over H0. Thus, apart from the
combination fσ8, our results only weakly depend on cosmology through the shape of the
matter power spectrum controlled by ΩmH0.

The direct evaluation of the covariance matrix for all objects in the survey is one com-
putationally expensive part of our analysis. With O(104) objects for Supercal and 6dFGS
combined, we must evaluate the expression in eqs. (3.2)–(3.3) a total of O(108) times. Af-
ter tabulating the growth factor, power spectrum, and the spherical Bessel functions, the
calculation takes about 12 hours on a modern 24-core desktop computer.

3.2 Likelihood Analysis

In HSS [43], we modeled the SN Ia magnitude residuals as a multivariate Gaussian,

L(A) ∝ 1√
|C|

exp

[
−1

2
∆mᵀC−1∆m

]
, (3.4)

where C = AS + N and the elements of ∆m are the magnitude residuals, ∆mi = mcorr
i −

mth(zi,M,Ωm). Here,M is the zero-point offset in the magnitude-redshift relation, which we
will return to below. However, it is actually the magnification µ that is Gaussian-distributed,
since it is proportional to the large-scale peculiar velocity field at the low redshifts where the
effect of lensing is unimportant:

µ
z�1
=

2

aHχ̃

(
v‖ − v‖o

)
. (3.5)

Because in HSS we limited our SN Ia samples to z > 0.01, where the peculiar velocity
contribution to the redshift (∼300 km/s) is ∼10% or less, the first-order relation between
magnitude and µ,

∆m ≈ − 5

2 ln 10
µ , (3.6)

is sufficient, and thus ∆m is approximately Gaussian as well.
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In the present analysis, we would like to use all of the newly calibrated SNe, including
those at z < 0.01, where the signal-to-noise is the largest. At these lowest redshifts, the signal,
expected to be Gaussian in µ, is therefore not Gaussian in magnitude. On the other hand,
the SN noise uncertainties are small enough (∼7–10%) that the noise distribution would be
approximately Gaussian for either quantity. We therefore choose to model the SN velocities
as Gaussian in µ. In terms of the observed magnitude residuals and their covariance, the
magnification and its covariance are given by

µ = −2
[
10∆m/5 − 1

]
, (3.7)

Cµµ =

(
2 ln 10

5

)2

C∆m∆m , (3.8)

where we have propagated the covariance at lowest order.
We therefore make slightly different choices for the SN and galaxy likelihoods, and the

reasoning is as follows:

• For SNe Ia, the distance uncertainties due to measurement error and intrinsic scatter
are relatively small (∼7–10%), so we can therefore expect the noise distribution to
be approximately Gaussian in either magnitude or magnification µ. Since the peculiar
velocity signal is expected to be Gaussian in µ but not in magnitude for SNe at z < 0.01,
we use a SN Ia likelihood that is Gaussian in µ.

• For galaxies, distance uncertainties are large (∼27%), and the noise distributions have
been shown [58] to be nearly Gaussian for log-distance residuals. Since the vast majority
(> 99%) of galaxies lie at z > 0.01, where the signal should be approximately Gaussian
in either µ or log-distance, we use a galaxy likelihood that is Gaussian in log-distance.

In deriving the SN Ia or galaxy distance estimates, one fits for empirical quantities
that are not known a priori. These include an intrinsic scatter term — extra scatter in the
astrophysical relation that is not explained by measurement error alone, as well as a constant
distance offset — the M parameter corresponding to the SN Ia absolute magnitude or the
c parameter in eq. (2.1) for the galaxy FP. These “nuisance” parameters have already been
fixed to their best-fit values in our data; however, since we are now improving the model
by introducing the signal covariance, it would not be surprising if the data prefer to shift
the values of these parameters. For instance, the inferred intrinsic scatter should be smaller,
since we are now explaining some of this scatter with the peculiar velocity signal.

In order to avoid any potential bias, we fully marginalize over these parameters in
our analysis. That is, in addition the signal amplitude A, we introduce ∆σ2

int and ∆M as
parameters and let

N→ N + ∆σ2
int I , (3.9)

∆mi → ∆mi + ∆M , (3.10)

where I is the identity matrix. Here we assume flat priors on ∆σ2
int and ∆M and compute

the likelihood over a grid of parameter values.
In addition to the separate SN Ia and galaxy analyses, we also perform a combined

analysis with the hope of improving the precision of our test and our constraints on A. Given
that the nuisance parameters — the intrinsic scatters and distance offsets — are unique to
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Figure 2. Constraints on the amplitude of signal covariance separately for the Supercal SN Ia
compilation (dashed blue), the 6dFGS FP sample (dashed red), and the combined analysis (solid
black). The likelihood curves are normalized by area, and the vertical, dashed black line at A = 1
corresponds to our fiducial ΛCDM model.

the separate data sets, one might be tempted to simply multiply the marginalized posteriors
for A. However, this relies on the statistical independence of the two data sets. While there
is little overlap in survey footprint between the SNe and galaxies (see figure 1), the objects
are at very low redshifts and still physically close. For the combined analysis, then, we must
compute a joint signal covariance matrix and include the non-zero covariances between the
SN and galaxy blocks. In other words, Sij is now given by eq. (3.2) with i and j running
over both SN Ia and galaxies, while the noise covariance is block diagonal. With this in
hand, we construct a combined Gaussian likelihood, employing µ as the SN observable and
log-distance as the galaxy observable. Of course, we must scale the SN-galaxy covariance
block by a constant factor (2/5) ln 10 to account for the difference in the observable for these
two types of objects.

The combined analysis requires us to vary five parameters — A, plus two nuisance
parameters (∆σ2

int and ∆M) for each data set. Since each likelihood computation involves
effectively inverting a large matrix, we opt for an MCMC approach to reduce the number
of likelihood evaluations. We use the basic version of the Metropolis-Hastings algorithm,
and since the dimensionality of the parameter space is relatively small with most of the
parameters well-constrained, convergence is not an issue. We use a Gaussian kernel (with
bandwidth 0.06) to smooth the marginalized posterior distribution for A.

4 Results: Constraining the signal covariance amplitude

In figure 2, we show our results for the likelihood of A, the amplitude of signal covariance
in the peculiar velocity data, separately for Supercal SN data (dashed blue) and 6dFGS
galaxy data (dashed red). In both cases, we have marginalized over a shift in the intrinsic
scatter and in the constant offset as described in section 3.2. We also show the results
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of the combined analysis (solid black), where we have marginalized over the four nuisance
parameters (intrinsic scatters and offsets for both SN Ia and galaxy data).

In table 1, we summarize numerically the constraints shown in figure 2. For each data
set, we list the maximum-likelihood (ML) value for A, the 68.3% and 95.4% confidence inter-
vals (CI), and the mean and standard deviation of the distribution. Note that, while Supercal
and 6dFGS prefer somewhat different values for A, we have verified that the constraints are
mutually consistent; if each were an independent measurement of A, the probability that the
combined χ2 relative to the best-fit A would be larger than what we observe, due to chance
alone, is p = 0.2, indicating discrepancy at only ∼1.3σ.

We also list the ∆χ2 value corresponding to A = 0. Although we write ∆χ2 by conven-
tion, we are of course comparing the more general −2 ∆ lnL, which includes the term for the
Gaussian prefactor in the likelihood L. For this calculation, we minimize χ2 separately for
both hypotheses, A = 0 and A free, varying all of the nuisance parameters to avoid unfairly
penalizing the A = 0 hypothesis. Note that this procedure is one step away from a true
model comparison test for which one would include a term to penalize the model with A
free for having one extra free parameter. For instance, given the ∆χ2 values in table 1, the
Akaike Information Criterion (AIC) test result is simply ∆AIC = ∆χ2−2, a small difference
in our case.

At leading order, the parameter A is proportional to the cosmological parameter com-
bination (fσ8)2. The dependence on other cosmological parameters (e.g. Ωm, Ωb, ns) is
negligible at the level of our current constraints, given variations in those parameters allowed
by the Planck data. Hence, given the value fσ8 = 0.418 derived for our fiducial ΛCDM
model at the effective redshift zeff = 0.02, we can easily convert the constraints on A into
constraints on fσ8 (zeff = 0.02), which are also listed in table 1. Note that the effective
redshift of our constraint, taken to be the (S/N)2-weighted mean redshift, is 0.014 for the
SN sample and 0.024 for the galaxy sample, though for simplicity, we quote the constraint at
zeff = 0.02 in all cases, as the difference is negligible. Note that here we are following most
literature on the subject and only varying the combination fσ8, fixing all other cosmological
parameters (e.g. Ωm, Ωb, ns) to fiducial values. This is a reasonably good approximation,
given that the velocity covariance signal largely depends on fσ8, but we note that a full
analysis, one which combines constraints from multiple cosmological probes, would involve
simultaneously varying all cosmological parameters.

As apparent from figure 2 and table 1, we find the data consistent with A = 1 at 1σ
(68.3% CL) in all cases. The A = 0 hypothesis is ruled out at > 7σ by SN Ia data and > 8σ

Data Set ML 68.3% CI 95.4% CI 〈A〉 ± σA ∆χ2
∣∣
A=0

fσ8 (z = 0.02)

SN Ia (Supercal) 0.78 (0.58, 1.06) (0.42, 1.41) 0.88± 0.26 58.4 0.370+0.060
−0.053

Galaxy FP (6dFGS) 1.33 (1.00, 1.72) (0.72, 2.18) 1.42± 0.37 68.7 0.481+0.067
−0.064

SN Ia + Galaxy 1.05 (0.84, 1.30) (0.65, 1.58) 1.10± 0.24 137.6 0.428+0.048
−0.045

Table 1. Summary of constraints on the amplitude A of the signal covariance. For each data
combination, we list the maximum-likelihood (ML) value, the 68.3% and 95.4% confidence intervals
(CI), and the mean and standard deviation of the posterior distribution for A. We also list the ∆χ2

value corresponding to the A = 0 hypothesis along with the 68.3% CL constraint on fσ8 (zeff = 0.02)
inferred from the constraint on A and the fiducial model.
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Figure 3. Our constraint on the combination fσ8, which we measure at redshift zeff = 0.02 from the
combined analysis of SN Ia and galaxy velocities, is shown as the red data point. We also show past
measurements of the same quantity from 6dFGS at z ' 0 and SNe (black leftmost data point [24]),
SNe alone (purple data point [26]), 6dFGS alone at z = 0.067 [64], GAMA [65], WiggleZ [66], BOSS
[67], and VIPERS [68]. The solid line shows the prediction corresponding to our fiducial flat ΛCDM
cosmology.

by galaxy data.
As discussed in section 3.2, the combined analysis is not trivial in the sense that one

cannot simply multiply the individual SN Ia and galaxy posteriors because there are signifi-
cant peculiar velocity signal correlations between SN and galaxy pairs. Instead, we proceed
as described in section 3.2 and include the cosmological correlations between individual SN
and galaxy velocities, which depend on the angular positions and redshifts of the objects.
We find that combining the two sets moderately improves the precision of our test, and we
obtain the constraint A = 1.05+0.25

−0.21 at 68.3% confidence. The A = 0 hypothesis is ruled out
at > 11σ, and the standard error of A is reduced by roughly 30% relative to that for galaxies,
though only slightly relative to that for SNe.

Scaling from our fiducial model, we convert our constraint on A into a constraint on
fσ8 (zeff = 0.02) = 0.428+0.048

−0.045 for the combined analysis of SNe and galaxies. In figure 3, we
show this constraint along with other constraints on this parameter combination from major
galaxy surveys over the past decade. We see that our constraint is very competitive with,
and complementary to, the other existing constraints.

4.1 Robustness of the SN Ia analysis

One might wonder whether our choice to treat the SN Ia residuals as Gaussian in magnifica-
tion µ, which is proportional to the velocities, rather than Gaussian in magnitude (logarithm
of distance), has an appreciable effect on our results.

First, as a sanity check, we restrict the sample to SNe with z > 0.01, where the peculiar
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Figure 4. Constraints on the amplitude of signal covariance as a function of the maximum redshift
used in the analysis for SNe Ia (left panel) and galaxies (right panel). The overlapping error bars
denote the 68.3%, 95.4%, and 99.7% confidence limits for a given zmax.

velocity contribution to the redshift (∼300 km/s) is less than ∼10%. Since the noise uncer-
tainties on SN distances are also small (roughly 7–10%), we would expect the likelihood to
be approximately Gaussian in both µ and magnitude, and so our constraint on A should be
unaffected by this choice. We perform this check and find that, while the constraints are
now weakened without the high signal-to-noise SNe at z < 0.01, the posterior for A is nearly
identical for either choice of the likelihood function.

Next, we perform the same test but include all of the SNe (up to z = 0.1). Using a
likelihood that is Gaussian in magnitude rather than µ shifts the peak of the marginalized
posterior for A to 0.71, a shift of −0.07 or ∼0.3σ. The mean value is similarly shifted, while
the uncertainty is not significantly changed. This variation therefore produces changes in A
comfortably smaller than the statistical error. Furthermore, given the linear relation between
µ and velocity (eq. (3.5)), we expect a likelihood that is Gaussian in µ to be much closer to
the true likelihood and, correspondingly, any systematic effect resulting from our choice of
approximate likelihood to be smaller than this shift.

Finally, as a further check for possible systematic effects in the data, we repeat the SN
analysis but vary the maximum redshift. For each zmax in the left panel of figure 4, we show
the constraints on A after marginalizing over the two nuisance parameters. The results are
very consistent as we vary zmax. It is also interesting to note that the constraints negligibly
improve after zmax ' 0.05 and remain unchanged after z = 0.1, illustrating the importance
the lowest-redshift SNe. On the other hand, the handful of SNe at z < 0.01 cannot provide
useful constraints by themselves, particularly if we expect them to constrain the two nuisance
parameters as well.

We thus find no evidence for any systematic effects that contribute significantly in
comparison to the statistical uncertainty in A. The fact that SNe furnish such a precise
distance estimate and have well-studied systematics suggests they will continue to be a useful
probe of peculiar velocities, even if they are relatively much smaller in number than galaxies.

4.2 Robustness of the galaxy FP analysis

As illustrated in figure 2 and shown in table 1, our nominal constraints on A from 6dFGS
galaxy data are consistent with A = 1 and rule out the A = 0 model at > 8σ. Here we
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Figure 5. Effect of variations in the galaxy velocity analysis on A constraints. In the left panel,
the fiducial analysis (solid black curve) is compared to variations with the redshift range restricted to
z > 0.01 (dashed red) and with galaxy redshifts used in place of any estimated group/cluster redshifts
(dashed blue). The right panel shows constraints on A for alternative fits to the FP using orthogonal
regression under the assumption of an infinite plane with uniform intrinsic scatter. We compare
results for the J-band (solid black), H-band (dashed blue), and K-band (dashed red) photometry.

will explore the robustness of this result to a number of conceivable variations in the fiducial
analysis.

As discussed in section 3.2, at the lowest redshifts (z . 0.01) where the peculiar velocities
are comparable to the cosmological redshift, the signal is expected to be approximately
Gaussian in the velocities and magnification and therefore cannot be Gaussian in terms of
magnitude or log-distance. Since the FP-derived galaxy distances have (noise) distributions
that are nearly Gaussian in log-distance, and since the vast majority of galaxies lie at z > 0.01
where the signal should be approximately Gaussian in either quantity, we have chosen to
model the galaxy velocities as Gaussian in log-distance. To investigate the extent to which
this choice may bias our result, we simply repeat the analysis without the z < 0.01 galaxies
altogether. The corresponding constraints on A are shown in the left panel of figure 5; they
are nearly identical to the constraints from the fiducial analysis and only slightly weaker.
This illustrates that, not only are the lowest-redshift galaxies not biasing the result, they do
not contribute significantly to the constraint on A.

In our fiducial analysis, we default to using the group/cluster redshifts estimated for
galaxies that have been identified as group/cluster members, and indeed the 6dFGS galaxy
distances were derived assuming these redshifts. To test whether this choice affects our
results, we repeat the analysis using the individual galaxy redshifts throughout. The con-
straints on A for this scenario are also shown in the left panel of figure 5 (the curve labeled
zgal). We find that using the individual galaxy redshifts moderately weakens the constraints
and shifts the peak of the likelihood by 0.22 to A = 1.55, a shift of ∼0.5σ (relative to these
weaker zgal constraints).

Finally, we would like to investigate the extent to which observational systematics, or
systematics related to the FP relation, may affect our results. The galaxy distances we
adopt were estimated by fitting the J-band FP using a trivariate Gaussian model. Although
distances were derived for J-band photometry only, there are also velocity dispersion and
surface brightness measurements derived from observations in the H and K bands. Since the
FP is an empirical relation, and since there is no fundamental reason why the J band should
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be used, one might wonder whether cosmological results from the other bands are consistent.
After all, the FP is fit empirically, with substantial astrophysics in play, and it is not hard
to imagine that different bands may be affected by different astrophysical systematics.

To study the extent to which such systematics may affect our results, we re-fit the FP
ourselves for all three bands using the FP data described in [59]. The procedure used in
[58] for fitting the trivariate Gaussian model is rather involved, so we adopt a simpler but
common approach: treat the FP as an infinite plane with uniform scatter and fit the plane
using a type of orthogonal regression. Similar fits were performed in [69–71], among others.
We adopt the likelihood for multidimensional orthogonal regression that is described well in
[71], and we use some of their notation. Up to an irrelevant additive constant, we have

− 2 lnLFP =
∑
i

wi

[
(αᵀxi + c)2

σ2
i

+ ln(σ2
i )− ln(αᵀα)

]
, (4.1)

where α> = [a, b, −1] and x>i = [si, ii, ri]. Note that r was inferred from rang using the
same fiducial expansion history (flat ΛCDM with Ωm = 0.3) that we assume in our main
analysis. The weights wi are inversely proportional to the selection probability and were
computed according to [57]. The uncertainty σi is given by

σ2
i = α>Σiα+ σ2

r , (4.2)

where σr is the intrinsic scatter about the relation projected in the r direction and Σi is the
covariance matrix for the ith galaxy’s observables s, i, and r. Note that, as explained in [57],
the errors given for i and r are strongly correlated with correlation coefficient −0.95, and
accounting for this correlation reduces the scatter σr needed to explain the data.

Using the MCMC approach, we constrain the four free parameters (a, b, c, σr) of the
FP. The results are shown in table 2, where we list the mean and standard deviation for each
parameter and for each photometric band (the posteriors are nearly Gaussian).

In the right panel of figure 5, we compare the constraints on A assuming the infinite-
plane, uniform-scatter model for the FP and using our constraints on the parameters. Overall,
these constraints favor a higher amplitude of signal covariance than our main results from
the FP model of [58]. Since this alternative FP model is embedded as a special case of their
more general Gaussian model, we emphasize that this large shift is not itself evidence of a
systematic effect in our main result, though it does underscore the need to rigorously fit the
empirical FP relation.

On the other hand, we can now study the effect of fitting the FP using the different
photometric bands. We find that results from the J , H, and K bands are in remarkable
agreement, and we can estimate the size of a systematic error due to the photometry by
computing the (sample) standard deviation of the three ML values for A (2.02, 2.20, and
2.25). This suggests that the uncertainty is less than 0.12, comfortably smaller than our
statistical uncertainty for either model of the FP.

5 Discussion and conclusions

5.1 Comparison to JLA results

Our results are in excellent agreement with expectations from the standard ΛCDM model;
however, it is instructive to compare our SN results more carefully with those from HSS. At
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J Band H Band K Band

ML µ± σ ML µ± σ ML µ± σ

a 1.513 1.513 ± 0.013 1.494 1.494 ± 0.013 1.492 1.492 ± 0.013

b −0.8566 −0.8566 ± 0.0046 −0.8448 −0.8448 ± 0.0044 −0.8199 −0.8199 ± 0.0041

c −0.421 −0.422 ± 0.030 −0.293 −0.294 ± 0.031 −0.323 −0.324 ± 0.030

σr 0.0885 0.0885 ± 0.0010 0.0887 0.0887 ± 0.0010 0.0865 0.0866 ± 0.0010

Table 2. Fits to the FP for the 6dFGS sample under the assumption of an infinite plane with uniform
scatter. The FP is fit separately for each of the three photometric bands, and in each case we list the
ML values, means, and standard deviations for the inferred FP parameters.

face value, the results here are substantially different from those obtained for the JLA sample
in HSS, where we found that JLA prefers a ML value of A = 0.19; however, the results were
found to be consistent with A = 1 at the 95.4% (2σ) CL.2 In contrast, our present results
using the Supercal sample favor the value A = 0.78. Quantitatively, the discrepancy between
the JLA and Supercal posteriors for A is not especially significant, with a p-value of ∼0.1.
Nevertheless, it seems prudent to briefly investigate why the JLA and Supercal samples give
different results.

We first select objects that are common to the two samples; at z < 0.1, this is a sample
of 87 SNe. Using only this overlap sample, the likelihood for A is broader than that from
either JLA or Supercal, as expected, and for Supercal it peaks at A = 0.42, closer to the
best-fit from JLA. We then select and fit the remaining 121 SNe at z < 0.1 that are unique
to Supercal, leading to a likelihood with a peak at A = 0.86. Clearly, it is these SNe found
in Supercal but not JLA that dominate the constraint and lead to a strong preference for a
higher value of A. This is not too surprising, as the highest signal-to-noise SNe at z < 0.01
are not included in the JLA sample.

5.2 Conclusions

In this study, we have used redshift and distance measurements from both the Supercal SN Ia
analysis and the 6dFGS FP analysis to search for the presence of peculiar velocities and their
correlations predicted by the standard cosmological model. We applied the basic formalism
and approach described in HSS [43], which is particularly transparent and straightforward
to implement. We used the data to constrain a single parameter of interest, the overall
amplitude A of the signal covariance matrix, where A = 1 is the value expected based on
our fiducial ΛCDM model. In the analysis, we paid special attention to the modeling of the
data, justifying our specific choices for the likelihood function and explicitly marginalizing
over nuisance parameters (scatter, distance offsets) to avoid a potential bias.

Our results (figure 2, table 1) indicate good mutual agreement between the SN and
galaxy samples as well as agreement with the peculiar velocity signal of the fiducial model
(A = 1) at < 1σ. Combining the two data sets, we obtain A = 1.05+0.25

−0.21 (68.3% CL)
and rule out the zero-peculiar-velocity case (A = 0) at > 11σ. Equivalently, we report an
11% measurement of the product of the growth rate and amplitude of mass fluctuations

2In HSS we also found that the Union2 sample [72] prefers A ≈ 1, clearly in agreement with the present
results using the Supercal sample.
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fσ8 = 0.428+0.048
−0.045 at an effective redshift zeff = 0.02. Note that this constraint assumes

ΛCDM, with other cosmological parameters (e.g. Ωm) fixed to fiducial values.
Our analysis is most similar to that of [24], which also studies SN Ia and 6dFGS galaxy

velocities and finds qualitatively similar results. The principal difference in the data is the
SN Ia sample. Our Supercal sample, while somewhat smaller, features dramatically improved
photometric calibration, with the photometric systems of different low-redshift surveys tied
together consistently. Our sample selection therefore largely circumvents serious concerns
about the SN Ia calibration heterogeneity in previous work (see section 2.1). Our approach is
also somewhat different. Instead of separating the velocity constraints into wavenumber bins,
or using binning to smooth the velocity field, we treat each object individually and constrain
the amplitude of the signal covariance directly to constrain the cosmological model. In this
sense, our study is complementary to that of [24], and we note our overall agreement.

The fact that our results using a somewhat different approach are in agreement with
those of previous studies suggests that peculiar velocities are finally becoming a reliable
probe of large-scale structure. This is a very encouraging development relative to the state
of the field in the 1990s, when peculiar velocities seemed to favor high values of the matter
density now known to be incorrect (e.g. [73–75]). Nevertheless, careful inspection of recent
results shows that some caution is still in order, as the constraints from velocities still show
dependence on both the choice of data and the analysis. For example, our Supercal results
are mildly discrepant with the JLA results in HSS (though the two are formally concordant
at well within 2σ). And while we argue that the Supercal analysis provides the most carefully
calibrated and fitted SN sample to date, we and others still benefit from “knowing the right
answer” for cosmological parameter values, thanks to precise cosmological constraints from
the CMB and other probes. To circumvent this problem, one should introduce blinding
in these analyses to avoid a subjective bias, much like the procedures routinely applied in
particle physics experiments [76].

In conclusion, our 11% measurement of fσ8 at zeff = 0.02 is in excellent agreement
with the prediction of the currently favored ΛCDM cosmological model. Upcoming velocity
surveys such as TAIPAN3, Widefield ASKAP L-band Legacy All-sky Blind Survey (WAL-
LABY4; [77, 78]) and Westerbork Northern Sky HI survey (WNSHS; see [79]) will significantly
increase the sample of nearby galaxies and enable a ∼3% measurement of fσ8 [80, 81]. These
constraints will complement those from redshift-space distortions at higher redshifts (see fig-
ure 3), significantly extending the lever arm in redshift for constraints on dark energy and
gravity and ushering in an era of precise tests of structure formation at redshifts near zero.
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