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ABSTRACT

We explore the use of mm-wave emission line ratios to trace molecular gas density when observations
integrate over a wide range of volume densities within a single telescope beam. For observations
targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz
& Thompson (2007), we model emission for a set of common extragalactic lines from lognormal and
power law density distributions. We consider the median density of gas producing emission and the
ability to predict density variations from observed line ratios. We emphasize line ratio variations,
because these do not require knowing the absolute abundance of our tracers. Patterns of line ratio
variations have the prospect to illuminate the high-end shape of the density distribution, and to
capture changes in the dense gas fraction and median volume density. Our results with and without
a high density power law tail differ appreciably; we highlight better knowledge of the PDF shape as
an important area. We also show the implications of sub-beam density distributions for isotopologue
studies targeting dense gas tracers. Differential excitation often implies a significant correction to the
naive case. We provide tabulated versions of many of our results, which can be used to interpret
changes in mm-wave line ratios in terms of changes in the underlying density distributions.

1. INTRODUCTION

Gas volume density, ρ, plays a central role in most
theories explaining star formation in molecular clouds
(e.g., see Gao & Solomon 2004b; McKee & Ostriker
2007; Lada et al. 2010; Padoan & Nordlund 2011;
Federrath & Klessen 2012; Krumholz et al. 2012, among
many others). Many models, especially those based
on turbulent clouds (e.g., Padoan & Nordlund 2002;
Krumholz & McKee 2005; Hennebelle & Chabrier 2011;
Feldmann et al. 2011), consider the free fall time τff ∝
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ρ−0.5 as the governing timescale for star formation,
with an impact on the output cluster population (e.g.,
Kruijssen 2012). Another class of observationally
motivated “threshold models” (Gao & Solomon 2004b;
Wu et al. 2005; Heiderman et al. 2010; Lada et al. 2010;
Wu et al. 2010; Lada et al. 2012; Evans et al. 2014),
posit that stars form only in the densest parts of clouds,
with the star formation rate driven by the gas mass above
a gas volume density threshold.
This important theoretical role for gas density agrees

with observations of local clouds. These show star
formation confined to the highest density regions
(Lada & Lada 2003; Heiderman et al. 2010; Lada et al.
2010; André et al. 2014), and that the amount of high
column density material in a cloud correlates with its
ability to form stars (Kainulainen et al. 2009).
Testing these theories requires estimating gas density

across galaxies. Such estimates also offer the prospect to
understand how galaxies set the density of their gas. The
nearby galaxy population offers access to a range of con-
ditions and a clean external perspective not available in
the Milky Way, and so offers many advantages as a lab-
oratory to explore the role of gas density. The challenge
to making such measurements is that the concentrations
of dense gas seen in Milky Way clouds are very compact,
∼ 0.1−1 pc (e.g., Lada & Lada 2003; André et al. 2014)
and lie within larger, lower density superstructures. As
a result, even within the ∼ 40 pc beam of the high-
est resolution gas maps targeting nearby galaxies (e.g.,
Schinnerer et al. 2013), a vast range of gas volume den-
sities are convolved together within an individual extra-
galactic beam.
Given this limitation, multi-line spectroscopy has

become the standard approach to investigate the
density of gas across galaxies (e.g., Gao & Solomon
2004b; Garćıa-Burillo et al. 2012; Kepley et al. 2014;
Usero et al. 2015; Chen et al. 2015; Bigiel et al. 2016).
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By contrasting a line excited at high gas densities, e.g.,
HCN (1-0), with a line excited at nearly all gas densities,
e.g., CO (1-0), one can estimate the fraction of dense
gas. In a pioneering study, Gao & Solomon (2004a) car-
ried out a large survey of HCN in bright galaxies and
used this approach to show that, to first order, the ra-
tio of IR-to-HCN luminosity appears constant across the
galaxy population, while the ratio to IR-to-CO does not.
Gao & Solomon and following authors (e.g., Wu et al.
2005, 2010; Lada et al. 2012) interpreted this as evidence
for a universal gas density threshold for star formation.
More recent studies of normal star-forming galaxies

by Garćıa-Burillo et al. (2012), Usero et al. (2015), and
Bigiel et al. (2016) reveal a more complex relationship
between high critical density lines, CO emission, and star
formation. Usero et al. (2015) and Bigiel et al. (2016)
demonstrated that both HCN (1-0)/CO (1-0), tracing
the dense gas fraction, and IR/HCN (1-0), tracing the
efficiency with which dense gas forms stars, depend on
environment. These results have the same sense as
those obtained contrasting local clouds with those in the
Milky Way center (Longmore et al. 2013; Kruijssen et al.
2014).
So far, these extragalactic studies have mainly con-

sidered a two-phase molecular medium in which gas is
either “dense,” and so emits HCN or HCO+, or “not
dense,” and so emits CO. This is a poor representation
of the cold interstellar medium (ISM). Turbulent the-
ories predict a wide range of densities, distributed ap-
proximately lognormally within any given cloud (e.g.,
Padoan & Nordlund 2002). Milky Way observations that
resolve individual clouds show a large range of column
densities, implying a large range of volume densities (e.g.,
Kainulainen et al. 2009; Abreu-Vicente et al. 2015). The
functional form of the density distribution is still debated
(e.g., Lombardi et al. 2015; Schneider et al. 2015), but
all observations and models agree that a wide range of
densities coexist within any individual region.
Further complicating the issue, emission from high

density tracers like HCN (1-0) or HCO+ (1-0) does not
come exclusively from gas above some threshold collider
density. The emissivity (line emission per mass) of a
molecule does peak at some collider density, and that
peak depends on the critical density, optical depth, and
temperature of the molecule in question. But regions
with lower densities can still emit; they merely do so
with lower efficiency. If low density regions outnumber
higher density regions, then they may contribute appre-
ciably to, or even dominate, emission from that molecule.
This ability of gas to emit below the nominal critical den-
sity (even after modification for line trapping) has been
emphasized in the Galactic literature (e.g., Shirley 2015;
Mangum & Shirley 2015, and references therein) but less
explored in other galaxies.
In this paper, we consider the impact of these two ef-

fects on extragalactic observations that integrate over a
wide range of distributions. We model line emission from
regions that contain a wide distribution of densities, and
account for a realistic dependence of emissivity on col-
lider density. To do this, we treat a cloud as an ensem-
ble of one-zone non-equilibrium models (calculated using
RADEX; van der Tak et al. 2007) that share an optical
depth, and so an escape probability. This approach fol-
lows Krumholz & Thompson (2007), who laid out this

cloud model but focused on how density distributions
influence observed star formation scaling relations (see
also the closely related paper by Narayanan et al. 2008).
Here, we investigate the implications of sub-beam den-
sity distributions and realistic emissivities on observed
millimeter line emission.
The paper proceeds as follows. We describe our model

and calculations in §2. Then, in §3.1 we note several re-
sults from one-zone models that are important to inter-
pret emission from density distributions. In §3.2 we show
results integrated over realistic density distributions. We
consider the median density producing emission, the pat-
tern of line ratio changes induced by changing sub-grid
volume density distributions, and the ability of line ratio
variations to gauge changes in the dense gas mass fraction
and median density. We also consider the implications
of sub-beam density distributions for isotopologue ratios
and dense gas conversion factors. We summarize our con-
clusions and discuss implications and future directions in
§4.

1.1. Definitions of Densities

We discuss a number of densities throughout the pa-
per. For clarity, we summarize these here. All densities
refer to molecular hydrogen, H2. We neither account for
helium nor consider collisions with electrons or atomic
hydrogen. Given that we focus on relative statements
and cold, dark gas, these approximations should have
minimal impact.

• Collider density (nH2): the volume density of H2

molecules. This is an input to our one zone models.
When we refer to density distributions, we mean
collider density distributions.

• Critical density: For a given transition and ki-
netic temperature, the collider density at which
collisional de-excitations balance radiative de-
excitations, taking no account of line trapping. See
Shirley (2015) for a recent review.

• Effective critical density: For a given transition
and kinetic temperature, the collider density at
which collisional de-excitations balance radiative
de-excitations, taking into account radiative line
trapping. See Shirley (2015) for a recent review.

• Most effective density for emission (neff): For a
given transition, kinetic temperature, and optical
depth, the minimum density at which the emissiv-
ity of the line (defined below) reaches 95% of its
peak value. This is a new quantity defined in this
paper. It is similar, but not identical, to the effec-
tive critical density. Often, effective critical density
is used as a short-hand for the density at which gas
is best at emitting. This quantity measures this di-
rectly. We present tabulated results neff below.

• Median density for emission (nemis
med ): For a given

transition, kinetic temperature, optical depth,
and density distribution, the collider density be-
low which half of the line emission is generated.
A closely related quantity is the main focus of
Krumholz & Thompson (2007).



Density Distributions and Line Ratio Patterns 3

TABLE 1
Molecular Transitions Considered

Transition Frequency τa nH2(ǫmax)b Xmol
c

(GHz) (cm−3)

HCNd J = 1 → 0 88.630 1 2× 105 10−8

HCO+ J = 1 → 0 89.189 1 4× 104 10−8

HNC J = 1 → 0 90.663 1 1× 105 10−8

CS J = 2 → 1 97.980 1 7× 104 10−8

13COe J = 1 → 0 110.201 0.1 8× 102 2× 10−6

12CO J = 1 → 0 115.271 10 1× 102 10−4

12CO J = 2 → 1 230.538 *f 1× 103 10−4

12CO J = 3 → 2 345.796 *f 9× 103 10−4

Note. — Data for models for these species taken from Leiden
Atomic Molecular Database (LAMBDA; Schöier et al. 2005).
a Representative optical depth assumed for this line. When not
otherwise noted, this τ is used throughout the paper.
b Minimum collider density, nH2, at which the emissivity reaches
95% of its peak value for T = 25 K and the representative τ .
c Fiducial abundance of the molecule adopted in this paper. This
divides out of many aspects of the analysis.
d We ignore the splitting of the HCN 1-0 line because the component
spacing is small compared to typical extragalactic line widths.
e Results for C18O are essentially equivalent to those for 13CO if
both lines are taken to be optically thin. We plot only 13CO for
clarity.
f For internal consistency, we calculate emission from CO (2-1) and
CO (3-2) using the N/∆v calculated for CO (1-0). Thus these lines
are pinned to an assumed τ for CO (1-0).

• Median density by mass (nmass
med ): For a given den-

sity distribution, the collider density below which
half the mass lies.

We also refer to the dense gas fraction, fdense. For a
given density distribution, this is the fraction of mass
in the distribution that lies above a density threshold,
nthresh. We adopt nthresh = 104.5 cm−3 by default, but
also consider a range of possible threshold values.

2. METHOD

We consider a suite of commonly observed rotational
transitions of molecules in the 80−115 GHz range. These
lines, listed in Table 1, are bright enough that they can be
surveyed in other galaxies. They are excited at a range
of densities, so that ratios among them offer the prospect
to constrain changing density distributions. Focusing on
the 80–115 GHz range, we aim to de-emphasize excita-
tion concerns due to temperature, highlighting the effect
of changing density. We do include the J = 2 → 1 and
J = 3 → 2 transitions of CO, because these are observed
across many nearby galaxies and often serve as bulk
gas tracers for practical reasons (e.g., Leroy et al. 2009;
Wilson et al. 2012). This suite of lines closely resem-
bles that mapped by the IRAM Large Program EMPIRE
(Bigiel et al. 2016), the survey of Usero et al. (2015), and
ALMA mapping by Gallagher et al. (in prep.). A goal of
this paper is to help inform interpretation of those and
similar observations.
For each molecule, we create a grid of one zone models

(§2.1), each describing a single set of physical conditions.
From each, we calculate the emissivity, ǫ, which will be
our figure of merit for much of the paper (§2.2). We com-
bine these one zone models to simulate emission from a
realistic distribution of densities. To do this, we follow
Krumholz & Thompson (2007) and make the simplify-
ing assumption that a single escape probability, and so

a single optical depth, describes each transition through-
out the beam (§2.3). We combine this assumption with
an assumed density distribution (§2.4) to calculate the
beam-averaged emissivity, 〈ǫ〉. Ratios of 〈ǫ〉 for different
lines but otherwise matched conditions can be observed
as line ratios. Thus, this approach allows us to explore
the impact of changing density distributions on observed
line ratios. While useful and a large improvement over
a one zone treatment, this model has several shortcom-
ings. We describe these and note directions for future
improvement in §2.6.

2.1. Grid of One Zone Models

For each molecule, we use the RADEX code
(van der Tak et al. 2007) to predict the emission from
a series of one zone models. Each model assumes a sin-
gle collider (H2) volume density, nH2, kinetic tempera-
ture, Tkin, and column-per-line width, Nmol/∆v, of the
molecule15. Given these inputs, RADEX solves for the
level populations and predicted emission without assum-
ing local thermodynamic equilibrium (LTE).
Our model grid covers a range of kinetic temperatures,

Tkin = 10−300 K, and a range of H2 collider densities,
nH2 = 101−108 cm−3. This range of collider (H2) densi-
ties spans from well below to well above the critical den-
sity of each transition of interest. The range of column-
per-line width, N/∆v, is 1013−1019 cm−2 (km s−1)−1 for
the CO molecules and 1010−1016 cm−2 (km s−1)−1 for
the other molecules. We chose these ranges to span from
optically thin (τ . 0.1) to optically thick (τ & 10) for
each molecule.
We space grid points logarithmically along each axis

of the grid, sampling 60 points along the Tkin and
Nmol/∆v axes and 70 points along the nH2 axis. At
each (nH2, Tkin, Nmol/∆v) point, we record the intensity,
I, of each low J line in K km s−1, and its optical depth,
τ . The result is a grid of τ(nH2, Tkin, Nmol/∆v) and
I(nH2, Tkin, Nmol/∆v) that serves as the backbone of our
calculations.
All models assume the expanding sphere (classic large

velocity gradient, LVG) geometry (Goldreich & Kwan
1974; Sobolev 1960). We use the version of RADEX re-
leased on November 30, 2011 and adopt molecular data
from the Leiden Atomic Molecular Database (LAMBDA;
Schöier et al. 2005) for HCN, HNC, HCO+, CS, 13CO,
12CO. We also ran model grids for C18O. The results are
very similar to those for 13CO and we only present the
13CO results here. To use our model for C18O, we suggest
to divide the emissivity relative to H2 by the 13CO/C18O
abundance ratio.

2.2. Emissivity

For each one zone model, we calculate the emissivity, ǫ,
of each transition. We define emissivity as the intensity,
I, divided by the column density, N ,

ǫ =
I

N
. (1)

15 We treat the column density (of the observed molecule) per
unit line width, Nmol/∆v, rather than Nmol and ∆v separately. In
the escape probability treatment, it is this quantity that maps to
optical depth rather than the two quantities separately.
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Thus, the emissivity, ǫ, measures how effectively gas
emits in the specified transition for the conditions in
the model. It has units of K km s−1 (cm−2)−1. Along
with a mean molecular mass, the emissivity can be re-
cast to have units of K km s−1 (M⊙ pc−2)−1. There-
fore ǫ is the mass-to-light ratio of gas with the given
(nH2, Tkin, Nmol/∆v).
In practice, we are interested in the emitted intensity

per unit total gas (H2) rather than emitted intensity per
unit mass of HCN or CO. Therefore, our calculations use
the column of the emitting molecule, Nmol. Thus, when
we write ǫ below we mean

ǫ =
I

NH2
=

I

Nmol X(mol)−1
. (2)

Here X(mol) refers to the abundance of the molecule,
with X(mol) ≡ Nmol/NH2. Our models yield I/Nmol.
We note our fiducial values of X(mol) for each molecule
in Table 1. These are 10−8 for CS, HCN, HCO+, HNC,
10−4 for CO, and 2× 10−6 for 13CO (i.e., 50 times lower
than CO). These are motivated by existing abundance
estimates (e.g., Mart́ın et al. 2006), but for many of the
results in this paper, the exact values of X(mol) are not
important. Instead, we will be interested in how the
ability of molecular gas to emit in these lines varies as a
function of changing density distributions, optical depth,
and so on. As discussed in the next section, our model
treatment implies modest changes in at least some values
of X(mol) within the model framework.

2.3. Distributions of Densities With Shared τ and Tkin

Observations of a whole cloud or a large part of a
galaxy will blend emission from gas at many densities.
To simulate this, we combine one zone models, which
each have a single associated nH2, to model a distribu-
tion of densities. Our key simplifying assumption is that
the emission for each line comes from gas that shares a
single Tkin and τ . That is, we consider a distribution of
densities, but take the gas to be isothermal and adopt a
fixed optical depth within each beam.
The condition of fixed τ , and so fixed escape probabil-

ity, follows Krumholz & Thompson (2007), though our
implementation differs in detail. For a given transition,
Tkin, and nH2, τ depends on Nmol/∆v. While column
densities at the scales relevant to radiative transfer can
be difficult to gauge at extragalactic distances, τ can
be accessed by observations, including via comparison of
rarer isotopologues to the main gas tracers (e.g., Jiminez-
Donaire et al. MNRAS submitted).
For the rest of the paper, we will not focus on the

actual values of the column density, Nmol, or column-
per-line width, Nmol/∆v. Instead, for each transition we
will consider ǫ(nH2, Tkin, τ), where τ is the optical depth
of that transition. We derive this quantity from our grid
of one zone models by selecting the appropriate nH2 and
Tkin and then interpolating along the curve of Nmol/∆v
vs. τ for our model grid to select Nmol/∆v that gives the
desired value of τ . Then we interpolate within our grid
to calculate ǫ(nH2, Tkin, τ). Because of the fine spacing
of the model grid, the interpolation has only a minor
influence on the results.
Fixing Tkin and τ , we consider a distribution of volume

densities, P (nH2). We sum over all densities to derive the

beam averaged emissivity:

〈ǫ〉 =

∫

nH2 P (nH2) ǫ(nH2, T, τ)dnH2
∫

nH2 P (nH2) dnH2
. (3)

The beam-averaged emissivity, 〈ǫ〉, resembles the one
zone emissivity (Equation 2) in that it describes the in-
tensity of the line per column of H2. However, 〈ǫ〉 now
measures the effective emissivity of a whole distribution
of densities convolved together.
We weight by nH2 in Equation 3 because P (nH2) repre-

sents the probability of finding a gas volume density nH2

in a given volumetric cell within the cloud. The amount
of emission from gas at nH2 will trace the total amount of
mass at that density, rather than the amount of volume.
The amount of mass at nH2 is given by nH2P (nH2).
Multiple Transitions of the Same Molecule: Picking

τ for one transition while fixing nH2 and Tkin implies
Nmol/∆v. With nH2, Tkin, and Nmol/∆v specified, the
emission from other transitions of the same molecule is
also determined. Thus, once we specify τ for CO (1-0),
the optical depth of CO (2-1) and CO (3-2) are no longer
free parameters. In this paper, this issue arises mainly
for CO. In general, our approach is to specify an ob-
servationally motivated τ for a single transition for each
molecule. We then calculate emission from the other
transitions self-consistently (see Rosolowsky et al. 2008,
for a similar approach treating Galactic observations of
ammonia). This means that the optical depth of these
other transitions may not be fixed across the model dis-
tribution. In exchange, the calculated line ratios among
multiple transitions of a single molecule will make phys-
ical sense.
Implicit Changes in Relative Abundances: A corollary

of this point is that our model implies modest changes
in the relative abundance of the molecules that we treat.
For each molecule at each density, we pick Nmol/∆v to
yield our fiducial τ for the specified transition. Because
we fix the distribution of nH2, the ratio Nmol/nH2 will
change from density to density to keep τ fixed. As a
result, the relative values of, e.g., NHCN and NCO will
vary within a model distribution. This does not rep-
resent an inherent inconsistency, but does assume that
mild abundance variations will conspire to yield fixed
τ . We discuss alternative formulations below (§2.6).
The Krumholz & Thompson (2007) model suffers from
the same internal inconsistency. They formulate this
as a cloud radius that varies from transition to transi-
tion, so that in their model Nmol/∆v can vary because
Nmol ≈ nH2 X(mol)/Rmol varies with Rmol, where Rmol

is the radius of the emitting region. Because radius of
the HCN-emitting region, RHCN, and the CO-emitting
region, RCO, can differ, the total abundance will also
vary in this formulation.

2.4. Realistic Density Distributions

We explore emission from lognormal density distribu-
tions, sometimes modified to include a power law tail
at high density. Lognormal distributions are expected
based on simulations (e.g., Vazquez-Semadeni 1994;
Mac Low & Klessen 2004; Elmegreen & Scalo 2004), and
we follow the description outlined for turbulent gas
in Padoan & Nordlund (2002). Observations do sup-
port the existence of lognormal column density distri-
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Fig. 1.— Illustration of model density distributions by volume
(blue) and mass (green), with (dashed) and without (solid) power
law tails at high densities. Vertical lines indicate the mean density
(gray) and the adopted threshold for the onset of a power law tail
(pink), when one is present. Although a large part of the volume
holds low density gas, most of the mass resides in a small part
of the volume with high densities (see Padoan & Nordlund 2002).
Similarly, although the power law tail adds only a small amount of
additional volume at high densities, it contains ∼20% of the mass
for this model.

butions within a cloud (e.g., Kainulainen et al. 2009;
Rathborne et al. 2014; Abreu-Vicente et al. 2015). How-
ever, power law descriptions of the column density dis-
tribution may be equally valid given observational un-
certainties (e.g., Lombardi et al. 2015). Even when a
lognormal describes the bulk of the gas in a cloud, self-
gravity may lead the densest gas to exhibit power-law
density distributions (e.g., Kainulainen et al. 2009, 2013;
Stutz & Kainulainen 2015).
Note that the appropriate form of the density distri-

bution on scales larger than a cloud, including the &kpc
regions observed by many mm-wave spectral studies, re-
mains a subject of investigation. On larger (60 pc) scales,
molecular gas surface densities do appear to exhibit
an approximately lognormal distribution (Leroy et al.
2016), though processes other than turbulence may cre-
ate the lognormal surface density distributions observed
at these large scales (Berkhuijsen & Fletcher 2015). Sim-
ulations show density distributions that can depend
strongly on environment and the nature and strength of
stellar feedback (e.g. Hopkins et al. 2013). At the least,
one might expect the superposition of a diverse popu-
lation of lognormal and power law distributions. Here
we begin the the simplest assumption and note further
explanation as an area for future work.
Lognormal Distributions: In the Padoan & Nordlund

(2002) formulation, the volume elements in a cloud show
a distribution of gas volume densities described by:

dP (lnn′) ∝ exp

(

−
(lnn′ − lnn′)2

2σ2

)

d lnn′ , (4)

where dP is the fraction of cells with volume densities
in a logarithmic step d lnn′ centered on n′; n′ = nH2/n0

is the volume density normalized by the mean volume

density, n0; and σ is the width of the distribution. The
distribution does not peak at the mean volume density,
n′ ≡ 1, but at the mean of the logarithm, lnn′. The two
are related via lnn′ = −0.5σ2 (see Padoan & Nordlund
2002, for details). In practice, we work in log10 rather
than ln, so the σ that we quote are in dex and differ from
those in the Padoan & Nordlund (2002) formalism by a
factor of ln 10 ≈ 2.3.
Equation 4 describes the distribution of volume den-

sities in the cloud. This differs from the distribution of
mass because higher density cells hold more mass. The
fraction of mass in a given logarithmic density step is
dm ∝ ndP . Thus, as discussed by Padoan & Nordlund
(2002), most mass resides in dense substructures that
occupy a relatively small fraction of the volume.
In practice, we implement Equation 4 numerically,

also creating a mass distribution from dm = ndP .
Each lognormal distribution is specified by two num-
bers: the mean density, n0, and the rms logarith-
mic width, bookkept in dex (i.e., log10), σ. Following
Padoan & Nordlund (2002), for a distribution resulting
from isothermal supersonic turbulence, σ is closely re-
lated to the three dimensional turbulent Mach number,
M. In that case

σ ≈ 0.43
√

ln(1 + 0.25M2) dex . (5)

Typical Mach numbers in spiral and starburst galaxies
span the range M ≈ 5−100, so that we will mainly be
concerned with σ ≈ 0.6−1.2 dex (e.g., see Leroy et al.
2016). Unless otherwise noted, we adopt a fiducial σ =
0.8 dex, corresponding to M ∼ 10.
Power Law Tails: Observations and simulations sug-

gest that self-gravity in the densest parts of a cloud
leads to the formation of a power law tail in P (n) at
high nH2. This effect is observed to vary from cloud-to-
cloud, with the amount of mass in the tail correlating
with the star-forming activity (Kainulainen et al. 2009;
Abreu-Vicente et al. 2015).
We explore this effect by incorporating a power law tail

into some of our density distributions. In these cases, we
follow Federrath & Klessen (2013) and take P (nH2) to
be a power law of form

dP (lnn′) ∝ exp (α lnn′) where n′ > n′

thresh . (6)

Here n′

thresh is the threshold for the onset of the power
law tail in units of the density normalized by the mean,
n0. α is the slope of the power law in logarithmic units.
Note that this is offset by one power from the slope
in non-logarithmic units, so that dP (n) ∝ nα−1 (see
Federrath & Klessen 2013). As a result, for any α < −1
the mass distribution (∝

∫

n×nα−1dn) will converge. In
these models, a lognormal distribution still describes gas
at n′ < n′

thresh.
Following Federrath & Klessen (2013) and

Vallini et al. (2016), we take lnn′
thresh ≈ 3.8. That

is, we set the power law to begin at ∼ 45 times
the mean density of the cloud. We take α = −1.5,
intermediate in the range of −1 to −2.5 found by
Federrath & Klessen (2013), though towards the steep
end of the values observed for column density distribu-
tion in Orion (Stutz & Kainulainen 2015). In principle,
the appropriate threshold for the onset of self-gravity
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depends on the Mach Number and other quantities
(see Federrath & Klessen 2013), with our adopted value
appropriate for M ≈ 7 (Krumholz & McKee 2005;
Padoan & Nordlund 2011). Parameter studies of n′

thresh
and α will be useful but lie beyond the scope of this
paper.
Figure 1 illustrates our model distributions of vol-

ume densities for an example case with mean density
n0,H2 = 103 cm−3 and width σ = 0.8 dex. We show both
the amount of volume and the amount of mass at each
density, and illustrate the distribution with and without
a power law tail. In this case, the power law tail inte-
grated from n′

thresh through nH2 = 107 cm−3 holds ∼20%
of the total mass. The same density range in the pure
lognormal case holds only ∼7% of the mass. Thus, de-
spite the modest fraction of volume in the power law tail,
it has an appreciable impact on the mass distribution.

2.5. Emission From Distributions of Densities

We create density distributions for a range of σ and n0

appropriate to normal spiral galaxies and modest star-
bursts. In each case, we make two versions of the dis-
tribution: one with a power law tail and one without
a power law tail. From these density distributions, we
calculate the corresponding mass distributions. We note
the volume density below which 50% of the mass lies and
the fraction of the mass in the power law tail, if one is
implemented. Finally, we calculate the fraction of the
mass that lies at densities above nH2 = 104.5 cm−3, a
value commonly conflated with “dense” gas.
We then combine our mass distributions with our grid

of one zone models, assuming a fixed Tkin and τ . For
each model and each line in Table 1, we calculate 〈ǫ〉, as
defined in Equation 3. This is the emission per unit mass
of the whole observed region. We also record the volume
density below which 50% of the light is emitted.
The tables present results from these calculations,

which serve as the basis for the plots and discussion in
the rest of this paper.

2.6. Limitations of the Model and Directions for
Improvement

Our major simplifying assumption is that all zones
within a beam share the same τ . That is, our model
has a vastly simplified geometry. As mentioned above,
fixing τ imposes modest variations in the relative abun-
dances of different species. These also exist in the
Krumholz & Thompson (2007) model, manifesting as
different cloud radii for each molecule.
An alternative approach would be to specify τ for a

single transition and a single species (e.g., CO) and then
adopt a fixed abundance pattern to derive Nmol/∆v for
all other species, allowing their optical depth to vary. We
consider assuming fixed τ to impose moderate optical
depth on the key transitions (something apparently re-
quired by observations, e.g., Meier et al. 2015, Jimenez-
Donaire et al. submitted) more reliable than adopting
an uncertain abundance pattern.
One can imagine alternative configurations, with cou-

pling between adjacent zones or built-in correlations, e.g.,
between τ and nH2. A natural alternative to fixed τ
would be to impose some dynamical state on the in-
dividual zones and so link nH2 to N/∆v. Such mod-
els have been frequently invoked in the context of the

CO-to-H2 conversion factor (e.g., Maloney & Black 1988;
Bolatto et al. 2013) and used to treat ensembles of clouds
(e.g., Aalto et al. 2015). The validity of imposing such
a constraint on each small range of gas densities within
a cloud is unclear, but this represents a direction for ex-
ploration. In particular, assuming a dynamical state for
the power law tail, when present, represents a natural
addition to the model.
We assume that a single, constant temperature, Tkin,

describes our clouds, and consider a restricted range,
Tkin ≈ 15−35 K for most of the paper, taking Tkin = 25 K
by default. The model grid includes a larger range of
temperatures. Although these are not the focus of the
paper, accounting for the effects of Tkin variations will be
key to explore with the contrast between central molecu-
lar zones and galaxy disks. This contrast between these
two common environments is dramatic and readily ob-
served in both the Milky Way (e.g., Longmore et al.
2013; Kruijssen et al. 2014) and other galaxies (e.g.,
Usero et al. 2015). Density is thought to play a key
role in this contrast (e.g., Krumholz & Kruijssen 2015;
Krumholz. et al. 2016), but temperature variations will
also need to be accounted for. More, resolved Galac-
tic clouds do show significant temperature substructure,
and a density-temperature or optical depth-temperature
correlation could be added to the model in place of fixed
Tkin. However, at present we have no general prescription
to implement.
Finally, beyond the variations needed to fix τ , we as-

sume fixed abundances, X(mol), throughout our models.
One could modify Equations 2 and 3 to account for vary-
ing abundances. These could change within the distribu-
tion as a function of density or appear as overall changes
in the normalization of 〈ǫ〉 between measurements. Im-
plementing such chemical variations is beyond the scope
of this paper, but even simple PDR models show signif-
icant chemical substructure within clouds, so this is a
productive direction for future investigation. Here, we
begin using the simplest approach, and trust that the
strongest abundance variations occur at the lowest and
highest densities, while most of the mass, and the focus
of this study, rests at intermediate scales.
To address these concerns, comparison to PDR

models (e.g., Le Bourlot et al. 2012), numerical sim-
ulations that can capture complex cloud geometry
(e.g., Glover & Clark 2012), and detailed observations
of Galactic clouds offer a clear way forward. The
DESPOTIC code by Krumholz (2014) offers the prospect
to make several next steps; it allows multi-zone clouds
and implements some basic PDR structure.
For the remainder of the paper, we emphasize that

insight can be gained from our simple approach, which
already offers a large improvement over one zone models.

3. RESULTS

Our models predict how mm-wave line emission de-
pends on changes in the sub-beam density distribution,
and so give a framework to explore density variations
across galaxies. Before discussing these results, we show
the dependence of emissivity, ǫ, on nH2 and τ in our grid
of one zone models (§3.1). We then consider emission
from distributions of densities (§3.2). We examine the
median density from which emission emerges (§3.3), the
emergent line ratio pattern (§3.4), and the ability to es-
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Fig. 2.— Visualization of our one zone model grid. Normalized emissivity as a function of collider volume density, nH2, for our considered
transitions at their nominal optical depths (Table 1; the curves in the figure match the order of the legend from left to right). Here,
normalized emissivity is defined as emission per unit column density divided by the maximum for that line at any density. The suite of lines
that we consider is excited at a range of volume densities, so that observing all of these lines in a beam gives sensitivity to the distribution
of volume densities within the beam. The dependence of emissivity on volume density is not a perfect step function. Instead material at
densities below the nominal effective density still emits, only somewhat less efficiently.

timate changes in the density distribution based on line
ratio variations (§3.5). We also use our models to explore
the generality of dense gas conversion factors (§3.6) and
complications in the use of optically thin isotopologues
to gauge optical depths (§3.7).

3.1. Emissivity, Density, and Optical Depth in One
Zone Models

The emissivity, ǫ, varies across our grid of one zone
models as a function of nH2, Tkin, and τ . The variation
of ǫ with nH2 will be key to understand our results for
density distributions. Figure 2 shows ǫ(nH2) for fixed
Tkin = 25 K and the τ in Table 1. The absolute emissivity
of the molecules varies from line to line. To highlight the
dependence on nH2, we normalize results for each line by
the maximum ǫ for any density in the calculation.
Figure 2 illustrates the sensitivity of our line suite to

a wide range of collider densities. It also shows that
while ǫ does peak at some nH2 value, it can be substan-
tial even at much lower densities. In this calculation,
ǫ remains & 0.1 times its peak value even at nH2 ten
times lower than the density for peak emissivity. That
is, molecules still emit effectively well below the density
that maximizes their emissivity. This point has been rec-
ognized and widely emphasized in the Galactic literature
(see Evans 1999; Shirley 2015). In extragalactic observa-
tions, where observations necessarily average over a wide
range of densities in a single beam, it is potentially even
more important than in the Milky Way.
For the optically thick lines, the drop in ǫ at high nH2

results from our assumption of fixed τ . The optical depth
for a given transition depends on the column density of
molecules in the lower state for that transition (J = 0 for
most of our molecules, J = 1 for CS). At densities near
the peak, the molecules do not obey LTE. Sub-thermal
excitation leads to a higher fraction of molecules in the
lower, absorbing state. At higher densities, as LTE sets

in, the column needed to reach our adopted τ will be
higher because more molecules will be in the higher J
states. If we remake Figure 2 fixing Nmol/∆v instead of
τ , then we do not see a similar drop in ǫ at high nH2 for
optically thick lines. For optically thin lines, ǫ will still
peak near the critical density for fixed Nmol/∆v because
at higher nH2, near LTE, some additional potentially
emitting molecules will be excited out of the emitting
state.
In addition to collider density, optical depth sets ǫ at

fixed Tkin. At high τ , emitted photons are re-absorbed
rather than escaping, allowing more time for collisional
de-excitation. This line trapping (Scoville & Solomon
1974; Goldreich & Kwan 1974) lowers the effective crit-
ical density of a line, with the well-known result that
at high τ , the effective critical density is adjusted by a
factor τ−1 relative to the critical density in the absence
of line trapping (for recent treatments see Shirley 2015;
Scoville et al. 2015).
Thus high τ lowers the nH2 for peak ǫ at a given Tkin.

The left panel of Figure 3 illustrates the effect of chang-
ing τ on the normalized emissivity vs. nH2 plot seen in
Figure 2. The right panel shows how changing τ affects
the peak of the ǫ vs. density curve over the range where
τ ≈ 1. For convenience, we include a machine readable
table (Table 2) reporting the collider density, nH2, at
which the emissivity reaches 95% of its peak value given
some Tkin and τ .
At fixed Tkin, the absolute value of ǫ depends on both

nH2 and τ . Figure 4 shows the interplay of these two
factors for CO and HCN. We plot ǫ, normalized to the
peak of the whole plane, over a wide range of τ and nH2.
The figure shows the decrease in nH2 for maximum ǫ with
increasing τ (the peaks move left as one moves up). It
also illustrates that at or around the critical density, ǫ
becomes higher for lower τ . As one would expect, the
most emissive gas has low optical depth and nH2 near
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Fig. 3.— Visualization of our one zone model grid. (left) Normalized emissivity (y-axis) as a function of collider volume density (x-axis)
for 12CO (1-0) considering a range of optical depths, τ (color). Lines with lower optical depths (blue) require higher collider densities to
reach their maximum emissivity. The result is that thin CO transitions, like 13CO (1-0) or C18O (1-0), emit maximally well at higher
densities than thick transitions. This is the well-known effect of “line trapping” lowering the effective critical density of a transition (e.g.,
see Goldreich & Kwan 1974; Shirley 2015). (right) Most effective density for emission from one zone non-LTE RADEX models as a function
of assumed optical depth for our considered transitions over the range τ = 0.1 to τ = 1 (the lines proceed in order of the legend from
bottom to top of the plot). At the low end, this approaches the classical critical density. At the high end, the standard factor of τ−1 to
account for line trapping applies.

Fig. 4.— Visualization of our one zone model grid. Emissivity, ǫ, of CO (left) and HCN (right) at fixed Tkin as a function of optical
depth, τ , and collider density, nH2. Contours show 10, 20, 30, . . ., 90% of the peak ǫ over the whole plane. Tkin = 25 K for all models.
The plots show decrease of nH2 for maximum ǫ with increasing τ and the decrease in ǫ with increasing τ at fixed nH2.

the critical density of the transition.

3.2. Emission for Density Distributions

We combine our one zone calculations to simulate emis-
sion from a distribution of densities within the beam.
As described in §2.3, we calculate the distribution of
mass as a function of volume density, nH2P (nH2) for re-
alistic distributions of densities. Then we multiply the
mass distribution by the one zone emissivity shown in
the previous section. From this product, we calculate
the beam-averaged emissivity, 〈ǫ〉, and the density below

which 50% of the light is emitted for each spectral line,
nemis
med (see §1.1).
Figure 5 illustrates the interplay of emissivity and den-

sity distribution at the core of the model. The red curve
shows ǫ(nH2) of HCN for Tkin = 25 K and τ = 1. The
blue curves show a series of lognormal distributions with
varying mean density, n0, and width, σ. The product
of the emissivity and the mass distribution, shown as a
purple curve, indicates how much emission emerges from
each density. The plots take ǫ and the mass distribution
to be normalized at their peak values, but we do not
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Fig. 5.— Illustration of our model for HCN emission. The purple curves show emission as a function of collider density, nH2, for lognormal
distributions with a range of mean densities, n0 (in cm−3), and widths (σ in dex). The blue curves show the distribution of mass, the
red curve — which is the same in all panels — shows ǫ(nH2) for HCN at Tkin = 25 K, τ = 1. Their product, the purple curve, shows the
light emitted as a function of density. Even as ǫ(nH2) remains fixed, the density of gas emitting HCN (1-0) changes dramatically with the
sub-beam density distribution.

normalize the emission, so that the purple curves can be
compared among panels to see how the integrated bright-
ness of the line varies.

3.3. What Densities Produce Emission?

Figure 5 illustrates how the density of gas producing
HCN emission depends on the sub-beam density distribu-
tion. Perhaps most strikingly, when the gas at densities
far below the critical density significantly outmasses gas
at high density (as in the top left panels), most HCN
emission comes from modest density gas. When much
of the mass lies at high nH2, as in the bottom row,
the density for emission tracks the density of the gas
and HCN traces the total gas reservoir, as CO does for
lower density clouds (see Krumholz & Thompson 2007;
Narayanan et al. 2008).
We identify the characteristic density for emission,

nemis
med , as the density below which half the emission

emerges. For HCN, we plot nemis
med as a function of n0,

σ, and τ in Figures 6 and 7. Figure 6 shows the effect
of varying the mean density, n0, and distribution width,
σ on nemis

med for models with and without a power law
tail. The range of σ spans from 0.4−1.2, correspond-
ing to M ≈ 2.5−100. Although we illustrate the case
for HCN, other dense gas tracers show similar behaviors
with shifted density scales.
For a lognormal distribution (left panel in Figure 6),

the median density for HCN emission depends on both
the mean, n0, and the width, σ. A high n0 shifts the
distribution of masses to higher nH2. A high σ does the
same, both by shifting the peak of the mass distribution
and by extending the wing of the distribution to higher
densities. Both effects yield higher nemis

med (see §2.4 or
compare across a row in Figure 5), and for pure lognor-
mal distributions, σ and n0 exert similar effects. This
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Fig. 6.— Median density for emission of HCN (1-0), nemis
med

, as a function of the mean density, n0, and width, σ, for lognormal density
distributions without (left) and with (right) a power law tail (§2.4). Contours are spaced by 0.1 dex. The range of σ corresponds to
turbulent Mach numbers M ≈ 2.5−100. For pure lognormal distributions, the median density for HCN emission varies strongly with the
combination of n0 and σ. It can reach low values, nH2 . 103−104 cm−3, for values of n0 and σ observed for extragalactic molecular
clouds. A power law tail, if present, changes the picture (right panel). Such a tail ensures the presence of some high density, high emissivity
material even for low n0. In this case, nemis

med
remains & 104.5 cm−3 except for very narrow, low n0 distributions. Because the power law

tail now sets the high density mass distribution, the influence of σ also decreases when such a tail is present.

Fig. 7.— As Figure 6, but now plotting optical depth, τ , on the y-axis while holding the distribution width fixed at σ = 0.8 dex. Optical
depth plays a modest role for the pure lognormal case (left panel) at low n0. It has a stronger impact on nemis

med
when the density distribution

includes a power law tail (right panel). In this case a high optical depth allows gas with densities on the tail to emit effectively at lower
nH2 and so lowers nemis

med
.

interplay leads to the curved contours in the left panel
of Figure 6. To achieve a given nemis

med a distribution can
either have high σ or high n0 or both.
The absolute value of nemis

med varies over a wide range
in the left panel of Figure 6. Lognormal distributions
with low n0 and low σ will generate most of their HCN
emission from low nemis

med . 103−104 cm−3. Such dis-
tributions do not have high beam averaged emissivity
(the purple curve is low in Figure 5), but they could be
common. Cloud-averaged mean densities . 102.5 cm−3

and Mach numbers M . 5−10 are widespread in nearby
galaxies (e.g., Bolatto et al. 2008; Hughes et al. 2013b;
Leroy et al. 2016). If the sub-beam density distributions
in such clouds were pure lognormals, then much of their
HCN emission could arise from gas at moderate densi-
ties, in contrast to the normal extragalactic view of HCN
as a high density tracer.
The right panel of Figure 6 shows that the inclusion of

a power tail in the density distribution (see §2.4) changes
this picture somewhat. Such a tail can add high nH2,
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TABLE 2
Density for Maximum Emissivity in

One Zone Models

Line Tkin log10 τ log10 n
0.95
eff

[K] [cm−3]

12CO10 10.0 -1.00 3.38
12CO10 10.0 -0.90 3.37
12CO10 10.0 -0.80 3.36
12CO10 10.0 -0.70 3.35
12CO10 10.0 -0.60 3.33
12CO10 10.0 -0.50 3.30
12CO10 10.0 -0.40 3.28
12CO10 10.0 -0.30 3.25
12CO10 10.0 -0.20 3.21
12CO10 10.0 -0.10 3.17
· · · · · · · · · · · ·

Note. — The full version of this table is
available as online only material. The ta-
ble reports the minimum collider density
at which the emissivity, ǫ, reaches 95% of
its peak value for a given Tkin and τ .

high ǫ material to clouds with otherwise low mean den-
sities. When we include such a tail in the calculation,
the range of nemis

med narrows considerably across the pa-
rameter space in Figure 6. As long as σ & 0.6 dex
(M & 5), the median density for emission is in the
range nH2 & 104.5 cm−3. For narrower density distri-
butions (σ . 0.6 dex) with modest n0, our formulation
of the power law tail does not add as much high den-
sity material and nemis

med still reaches low values. This
may only reflect an issue with our adopted threshold for
the onset of the power law; we fix this at a multiple of
n0, while a more general physical prescription might re-
flect σ and other physical properties of the gas (e.g., see
Krumholz & McKee 2005; Federrath & Klessen 2012).
The inclusion of a power law tail diminishes the influ-

ence of σ on nemis
med compared to the pure lognormal case.

Though this results partially from our model formula-
tion, the physical point is general: in the case where self-
gravitating structures dominate the high end of the den-
sity distribution, the turbulent Mach number may have
diminished effect on emission from high density tracers.
This can be tested, for example, by correlation of density
sensitive ratios like HCN/CO or CS/CO with measure-
ments of the turbulent velocity dispersion, e.g., from high
resolution CO imaging.
Figure 6 adopts a fixed optical depth, τ = 1, for HCN.

Variations in τ will also affect nemis
med . In Figure 7 we plot

nemis
med for HCN, holding σ fixed at 0.8 dex but allowing

τ to vary from 0.1 to 10. Again the left panel shows
results for a pure lognormal, and the right shows results
for a distribution with a power law tail at high densities.
The overall sense of both panels is that a high τ leads
to a lower nemis

med , but that the effects are modest over the
plausible range of τ for HCN.
For the lognormal case, τ exerts a weaker influence

than variations in σ. Variations across the plausible
range of τ (optically thin up to τ ∼ 10) change nemis

med
by only a factor of a few at fixed n0. Optical depth has
a stronger influence when a power law tail is present and
the mean density, n0, is low. In this case, a higher τ
shifts the density for maximum emission (the effective
critical density) to lower nemis. This allows lower den-

sity material on the tail to emit effectively. The result
is that τ plays a main role in setting nemis

med for modest
n0 . 103 cm−3 when a power law tail is present.
The plots here illustrate nemis

med for HCN. Similar trends
hold for our other lines. In general, the interplay of a re-
alistic density distribution and ǫ(nH2) can lead to a wide
range of emitting densities for lognormal distributions.
Including a power law tail, however, mitigates the varia-
tion for many cases. Optical depth exerts a more modest
influence on nemis

med than the density distribution in the
lognormal case, but can play a significant role when a
power law tail is present and n0 is modest.
We include tabulated results for nemis

med as a function of
τ , n0, σ, and Tkin for each line in Table 3. These can be
used to reproduce the results of this and the following
sections.

3.4. Beam-Averaged Emissivity and Line Ratio Patterns

The convolution of emissivity and the density distri-
bution determines the overall ability of the gas to emit.
For each model, we record the beam-averaged emissiv-
ity, 〈ǫ〉, defined in Equation 3. 〈ǫ〉 measures emission per
unit mass averaged over the whole density distribution,
and so quantifies how well a given density distribution
emits in a given transition. In Figure 5, 〈ǫ〉 corresponds
to the integral of the purple curves, and so varies across
the figure.
Figure 8 shows 〈ǫ〉 as a function of n0 and σ for

HCN (1-0) and 12CO (1-0) at their fiducial τ . For
HCN (1-0) shown in the left panel, 〈ǫ〉 changes by more
than two orders of magnitude across the plotted param-
eter space. The sense of the variation follows Figure 5:
high n0 and high σ lead to higher 〈ǫ〉 because they yield
more dense gas in the distribution. The right panel shows
〈ǫ〉 for CO (1-0) at τ = 10. In contrast to HCN (1-0),
CO (1-0) shows little variation in 〈ǫ〉, reflecting that the
low densities needed to excite emission are present across
the whole model grid. These weak variations in 〈ǫ〉 help
motivate the use of low J CO as a tracer of the total H2

column.
The top left panel in Figure 9 shows how 〈ǫ〉 changes

with mean density, n0, for each of our target lines.
This plot assumes a pure lognormal distribution with
σ = 0.8 dex (M ∼ 11). The density-sensitive transi-
tions (HCN (1-0), HNC (1-0), HCO+ (1-0), CS (2-1)),
show strong variations in 〈ǫ〉 as n0 changes. These tran-
sitions are much brighter in denser gas. As a result, 〈ǫ〉
increases by more than an order of magnitude as n0 goes
from ∼ 102 cm−3 to 105 cm−3. Meanwhile, the CO tran-
sitions show weak variations in 〈ǫ〉 across the same range
of n0.
By observing ratios between the dense gas tracers and

the CO lines, one can leverage these differences in 〈ǫ〉
to constrain the sub-beam density distribution. The top
right panel of Figure 9 shows 〈ǫ〉 for each line divided
by 〈ǫ〉 for CO (1-0). These 〈ǫ〉 ratios can be directly
observed as line ratios within a matched beam. That is,
the top right panel of Figure 9 shows predicted line ratio
patterns for lognormal density distributions with a range
of mean densities, n0.
The pattern in Figure 9 changes with n0. Line ratios

between high density tracers and CO (1-0) change by
more than an order of magnitude as n0 varies. Variations
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TABLE 3
Beam Averaged Emissivity and Density Distributions

Line Distribution log10 n0 σ log10 Xmol log10 n
mass
med

log10 fdense Tkin log10 τ log10 〈ǫ〉 log10 n
emis
med

[cm−3] [dex] [cm−3] [K] [K km s
−1

cm−2 ] [cm−3]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

12CO10 LOGNORMAL+TAIL 2.00 0.6 -4.00 2.41 -1.63 15.0 -1.00 -19.20 2.78
12CO10 LOGNORMAL+TAIL 2.00 0.7 -4.00 2.60 -1.31 15.0 -1.00 -19.14 2.98
12CO10 LOGNORMAL+TAIL 2.00 0.8 -4.00 2.80 -1.14 15.0 -1.00 -19.10 3.15
12CO10 LOGNORMAL+TAIL 2.00 0.9 -4.00 2.98 -1.03 15.0 -1.00 -19.07 3.27
12CO10 LOGNORMAL+TAIL 2.00 1.0 -4.00 3.11 -0.96 15.0 -1.00 -19.06 3.36
12CO10 LOGNORMAL+TAIL 2.00 1.1 -4.00 3.22 -0.92 15.0 -1.00 -19.04 3.42
12CO10 LOGNORMAL+TAIL 2.00 1.2 -4.00 3.30 -0.88 15.0 -1.00 -19.04 3.47
12CO10 LOGNORMAL+TAIL 2.25 0.6 -4.00 2.66 -1.50 15.0 -1.00 -19.11 2.93
12CO10 LOGNORMAL+TAIL 2.25 0.7 -4.00 2.85 -1.19 15.0 -1.00 -19.08 3.12
12CO10 LOGNORMAL+TAIL 2.25 0.8 -4.00 3.04 -1.01 15.0 -1.00 -19.05 3.28
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Note. — The full version of this table is available as online only material. The table reports results for line emission for distributions of densities
observed within a beam. Columns report: (1) emission line, (2) distribution shape, (3) mean density for lognormal part of density distribution,
(4) rms dispersion in lognormal part of density distribution, (5) adopted abundance of species relative to H2, (6) median density by mass for the

adopted distribution, (7) dense gas mass fraction, defined as gas above nH2 = 104.5 cm−3, (8) adopted kinetic temperature, (9) adopted optical
depth, (10) calculated beam-averaged emissivity of H2, (11) median density for emission.

Fig. 8.— Beam-averaged emissivity, 〈ǫ〉, of HCN (1-0) (left) and CO (1-0) (right) for z lognormal density distribution as a function of the
mean, n0, and width, σ, of the distribution. As expected, the emissivity of HCN varies according to the fraction of high density material,
which is higher for high n0 and high σ. Optically thick CO exhibits only weak emissivity variations, consistent with its use as a tracer of
the total H2 column. The ratio of the two lines provides a diagnostic of the mass of high density material in the beam.

among transitions that trace similar densities are much
smaller. For example, ratios among the CO lines change
by a factor of . 2 as n0 changes more than two orders of
magnitude.
The exact ratios in Figure 9 depend on our adopted

abundances, which are often poorly known. Even if we
do not know the true abundances, they may remain ap-
proximately fixed among targets. In this case, comparing
line ratios offers a way to diagnose changes in physical
conditions. That is, translating an HCN/CO ratio to a
dense gas fraction requires knowledge of the abundance
of HCN and CO. But comparing two HCN/CO ratios to
one another may allow a comparative statement about
the mean density or the dense gas fraction in which fac-
tors like abundance divide out.
The bottom panels in Figure 9 illustrate this approach

for a pure lognormal (left) and a lognormal distribu-
tion with a power law tail (right). Again we plot ra-
tios relative to CO (1-0). Now, however, we normal-
ize each line ratio pattern by the pattern calculated for
n0 = 103 cm−3. Thus, the figure shows how we ex-
pect line ratios to change as n0 changes. For example,
if n0 changes from 103 cm−3 to 104 cm−3, then we ex-
pect HCN/CO to increase by 0.5 dex, about a factor of
3. These changes are independent of the absolute value
of the adopted abundances, they require only that the
abundance remains fixed between locations.
In the next section, we explore the quantitative rela-

tionship between changing line ratios and changes in the
dense gas fraction or median density. Before proceeding,
we note some qualitative behavior from Figure 9. First,
large changes in n0 induce large changes in the ratios be-
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Fig. 9.— Beam averaged emissivity, 〈ǫ〉, and line ratio patterns as a function of changing mean density, n0. We adopt our fiducial τ
and take σ = 0.8 dex and Tkin = 25 K throughout. (top left) 〈ǫ〉 as a function of n0 for each line, normalized to 〈ǫ〉 for that line at
n0 = 103 cm−3. Here we plot results for pure lognormal distributions. The emissivity of a distribution in the CO lines varies only weakly
with its mean density. However, 〈ǫ〉 for the high density tracers depends strongly on the sub-grid density distribution. (top right) Implied
line ratio pattern relative to CO for our fiducial abundances and different n0, again for pure lognormal distributions. Line ratios between
dense gas tracers and CO lines vary strongly with density. Internal ratios among CO lines and dense gas tracers vary more weakly. The
exact pattern depends on our adopted abundances. (bottom row) Line ratio patterns, now normalized to the pattern at n0 = 103 cm−3, for
various n0. We calculate results for both a pure lognormal distribution (bottom left) and one with a power law tail (bottom right). These
variations in line ratios are robust to the absolute abundance pattern, but will be affected by abundance variations. For both distributions,
the most density-sensitive lines show the strongest variations (e.g., HCN (1-0), HNC (1-0), CS (2-1)) relative to CO. In the lognormal case,
a changing density distribution creates a “flaring” pattern of line ratio variations when the lines are sorted by effective critical density. This
signature is far less pronounced when the power law tail dominates the density distribution (e.g., this is the case at low n0 in the bottom
right plot).

tween dense gas tracers and total gas tracers. This is the
strongest behavior in the figures. Internal ratios among
CO lines or dense gas tracers show relatively weak con-
trasts, but a change in n0 leads to significant changes
between any dense gas tracer and CO.
Second, the magnitude of this variation depends in de-

tail on the sub-grid density distribution adopted. That
is, the pure lognormal distributions (left) and those that
include a power law tail at high densities (right) show
distinct results. The model with a power law tail shows
weaker variations in line ratios across the same range

of n0. It also shows less variation among the different
high density tracers, especially at low mean density (the
bluer colors). For the lower end of n0, ∼ 102−103 cm−3,
the four high density tracers all show about the same
strength of variations despite their different effective crit-
ical densities.
Meanwhile, the pure lognormal shows strong variations

in line ratios that “flare” as a function of effective crit-
ical density. That is, variations in line ratio as a func-
tion of n0 are strongest for our highest critical density
line, HCN. They appear weakest for HCO+, which has
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Fig. 10.— As the bottom row of Figure 9 but now varying Tkin

while other quantities remain fixed. We plot line ratios relative to
those expected for Tkin = 35 K, so that the figure shows the ex-
pected changes to the observed line ratio pattern due to tempera-
ture variations. These are much weaker than the density variations
seen in Figure 9.

the lowest effective critical density among our dense gas
tracers. This flaring pattern is also evident in the lognor-
mal with a power law, but the behavior is much weaker
and appears more prominently at high n0 than at low
n0, where it is almost absent.
The differences between the pure lognormal and the

case with a power law tail can be understood from the
shapes of the two distributions. To first order, each
tracer picks up material at or above some effective critical
density. In the power law case, as long as two densities
both lie on the power law tail, the ratio of material above
these two densities will be fixed. That is:

M(n > n1)

M(n > n2)
=

∫∞

n1
nαdn

∫∞

n2
nαdn

∝
n1+α
1

n1+α
2

. (7)

Where we have used the definitions above16 and take
α < −1. Equation 7 illustrates that once α and two
threshold densities on the power law tail are determined,
then the ratio of mass above these two densities on the
power law tail will be fixed. In other words, the power
law itself is scale free: n0 only affects the lognormal part
and the interface between the two.
No such fixed ratio holds for the lognormal. The inte-

gral above some threshold density falls rapidly with in-
creasing threshold (∝ 0.5(1−erf n)). As a result, for any
pair of densities, the ratio will change as the mean of the
distribution changes. The sense of the change is that the
mass above a threshold density close to (but still above)
the mean density changes less than the mass above a
threshold density at a high value. Thus, for the lognor-
mal distribution the lines with highest effective critical
densities (HCN, HNC) show the strongest variations in
their ratios. Those with lower effective critical densities
show weaker variations. This leads to the flaring seen

16 Recall that α is the slope in logarithmic units, so that the
integral in normal space goes as

∫
n× nα−1 ∝

∫
nα.

in Figure 9. It will also lead to a non-linear mapping
between any given line ratio and dense gas fraction, as-
suming that dense gas fraction is defined relative to some
fixed threshold density.
Temperature variations create weaker changes in the

line ratio pattern than density variations. Figure 10
shows the effect of varying Tkin while other inputs to the
model remain fixed. Over the range Tkin = 10−50 K, line
ratio variations induced by changing temperature show
lower magnitude and less flaring than those that we cal-
culate for changing n0. This reflects that a higher Tkin

also renders the CO line brighter. A higher Tkin does
have some effect on the line ratio pattern, though, be-
cause high Tkin lowers the critical density and so makes
it easier to excite emission from dense gas tracer at in-
termediate densities.
Implication for Observations: Figures 9 and 10 show

how one can approach observations of an ensemble of
lines (e.g., as in the EMPIRE survey; Bigiel et al. 2016).
Density variations should induce large changes in ratios
between the CO lines and high density tracers. When the
lines are sorted by effective critical density, changes in the
mean density for a lognormal or similar steep and curving
distribution should produce flaring line ratio variations.
That is, the lines with highest effective critical density
respond most strongly to density changes. When a power
law tail is present, such flaring will be weaker, and the
lines that sample the power law tail should change in
lock step. The line ratio variations themselves will also
be weaker in the presence of a power law tail, because
such a tail ensures the presence of some high density gas.
Thus, ensembles of lines can in principle be used to

constrain the characteristic shape of the sub-resolution
density distribution. Another application is to use a suite
of lines to help control for abundance variations. In the
bottom row of Figure 9, we have assumed the abundance
of each molecule to remain fixed between beams, though
we have not assumed any particular abundance values.
In the case that one line exhibits a distinct behavior while
the others indicate density variations, abundance varia-
tions (which do happen) represent a logical hypothesis.
Figure 9 does illustrate an issue with our target line

suite. Our lines sort into two groups, which broadly ex-
hibit similar behaviors. All four CO lines show weak
line ratio changes with density, while all four dense gas
tracers show strong variations. We have chosen the
λ ≈ 3 mm lines most readily observable in other galax-
ies, but this suite leaves us with limited sensitivity to
intermediate densities.

3.5. Quantitative Estimates of Changing Gas Density

Beyond the qualitative analysis in the previous section,
we would like to use mm-wave line ratios to infer quanti-
tative changes in the underlying density distribution. We
expect changes in the ratio, e.g., of HCN-to-CO to reflect
differences in the fraction of dense gas, fdense. Assuming
that some characteristic density distribution holds from
beam-to-beam, these ratios will also reflect changes in
the median density of gas by mass, nmass

med .
We test our ability to infer changes in fdense and nmass

med
using a grid of models. Across this grid, we vary the
mean density from n0 = 102 cm−3 to 104 cm−3, the
distribution width from σ = 0.6 to 1.2 dex (M ≈ 5
to 100), and the temperature from Tkin = 15 to 35 K.
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TABLE 4
Line Ratio Predictors of Gas Density

Lognormal + Tail Pure Lognormal
Line Relative Slopea Scatterb Slopea Scatterb

to CO (1-0) (dex) (dex)

Predicting fdense

HCO+ 1.21 0.19 2.31 0.35
CS 1.08 0.18 1.86 0.33
HNC 1.05 0.15 1.70 0.27
HCN 0.98 0.16 1.41 0.26

Predicting median nH2 by mass

HCO+ 2.03 0.44 1.68 0.51
CS 1.85 0.41 1.54 0.47
HNC 1.83 0.35 1.47 0.42
HCN 1.73 0.36 1.34 0.42

Note. — Power law index relating the change in line ratio
to the change in median H2 density by mass, nmass

med , and
dense gas fraction, fdense. Models run over mean densities
from log10 n0[cm

−3] = 2 to 4, Tkin = 15 to 35 K, and σ = 0.6
to 1.2 dex. We report results with and without a power law
tail separately. Models assume our fiducial optical depths.
a Best fit slope, α, of a scaling y = αx, that goes through
the origin, with x the logarithmic change in line ratios, e.g.,
log10 (HCN/CO)1−log10 (HCN/CO)2, and y the logarithmic
change in nmass

med .
b Indicative logarithmic scatter about the power law scaling.
Reflective of ability of ratio to predict changes in gas density.
For comparison, the whole model grid (with no fit) has scatter
∼1 dex in nmass

med and ∼0.5−0.7 dex in fdense.
c Fraction of mass at densities above nH2 = 104.5 cm−3.

These values of n0 and σ span most of the values observed
for whole clouds in normal and starburst galaxies (e.g.,
Leroy et al. 2015, 2016). We calculate line ratio patterns
for each model in this grid (Table 3). Then for all possible
model pairs, we measure the logarithmic change in each
line ratio,

∆ log10 HCN/CO =
log10 IHCN,1/ICO,1

log10 IHCN,2/ICO,2
, (8)

where the subscripts 1 and 2 refer to some pair of models
in the grid and ∆ log10 HCN/CO is expressed in dex.
For each model pair, we also measure the logarithmic

change in the median density by mass, nmass
med , and the

dense gas mass fraction. Here, nmass
med is defined as the

density below which half the mass in the distribution lies.
The dense gas fraction, fdense, is defined as the fraction
of mass above some threshold density, nthresh. We take
nthresh = 104.5 cm−3 as our default threshold and explore
the appropriate definition of nthresh below.

3.5.1. Estimating the Dense Gas Fraction

A main use for ratios like HCN/CO is to estimate the
fraction of gas mass that is dense. Figure 11 shows how
well ∆ log10 HCN/CO predicts changes in the dense gas
mass fraction across our model grid. We plot results
for pure lognormal distributions (left) and distributions
with power law tails (right) separately. Figure 11 adopts
a threshold density nthresh = 104.5 cm−3.
In both cases, ∆ log10 HCN/CO can predict changes in

fdense, but the two distributions yield different results.
For the case with a power law tail ∆ log10 HCN/CO re-
lates to fdense via a roughly linear relation. We expect
such behavior based on the arguments in §3.5, with the

ratio in the mass above any two densities on the power
law fixed for fixed α. For most of our models, both HCN
and nthresh used to define fdense sample power law part of
the distribution. In this case we expect a simple, linear
relation between the dense gas tracer and fdense. The
scatter in our model reflects temperature variations and
cases where the lognormal part of the distribution con-
tributes to the calculation.
The relationship between fdense and ∆ log10 HCN/CO

appears steeper for the pure lognormal (left panel of Fig-
ure 11). Following our argument in §3.5, the steep, curv-
ing form of the lognormal renders the ratio of area above
any two densities sensitive to the mean of the distribu-
tion. This, in turn, leads to a steeper than linear relation
between fdense and ∆ log10 HCN/CO.
We plot results for HCN/CO, but report results for

all of our dense gas tracers in Table 4. Following the
logic above, for the power law tail case, all tracers show
slopes near unity with modest (≈ 50%) scatter across the
model grid. When a fixed-slope power law tail is present,
dense gas tracers behave as expected and do a good job
of tracing the fraction of mass in dense gas. Tracers
with lower effective critical densities show mildly non-
linear slopes and shallow scatter as the lognormal portion
of the distribution begins to contribute to the emission
in some cases. For a pure lognormal, the relationships
between ∆ log10 HCN/CO and ∆ log10 fdense are steeper,
with power law index from 1.4 to 2.3. In this case, the
line ratio variations predict fdense with larger scatter, a
factor of ∼ 2 across the grid.
Figure 11 shows results for dense gas defined by a

threshold density nthresh = 104.5 ≈ 3×104 cm−3. This is
also the definition adopted by Gao & Solomon (2004a).
Figure 12 shows how the results depend on our definition
of dense gas. We vary nthresh and calculate (1) the best
fit power law slope relating ∆ fdense to ∆ HCN/CO, (2)
the scatter among all model pairs about this best-fit re-
lation, and (3) the scatter in ∆ log10 fdense relative to the
total scatter in the model grid. This latter is relevant be-
cause for low values of nthresh the grid itself shows little
variation; most models have a large fraction of their mass
above nthresh ≈ 103.5 cm−3. The contrast between the
scatter about the fit and the scatter in the grid highlight
the accuracy with which HCN/CO picks out fdense.
Figure 12 again shows distinct behavior for the pure

lognormal (left) and the case with a power law tail at
high density (right). In the case of a power law tail, any
threshold density above log10 nH2 ≈ 4.5 cm−3 yields a
nearly linear relation between ∆ HCN/CO and ∆fDense.
In the case of the pure lognormal, the exact scaling
depends strongly on the threshold density chosen. In
the pure lognormal case, high threshold densities yield a
steep slope and larger scatter about the fit.
Thus, when a fixed-slope power law tail is present

in the density distribution, ∆ log10 HCN/CO and other
dense gas tracers appear to be stable tracers of the dense
gas mass fraction for most reasonable definitions. They
capture ∆ log10 fdense with modest scatter over a range of
plausible temperature, density, and Mach number varia-
tions. For the case of a pure lognormal distribution, the
relationship between line ratios and fdense is more unsta-
ble, and depends sensitively on adopted definitions. We
return to these different results for different distributions
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Fig. 11.— Mapping between changes in HCN-to-CO line ratio (x-axis) to changes in the dense gas mass fraction fdense (defined relative
to nthresh > 104.5 cm−3). We calculate cloud-integrated emissivities for a range of densities (log10 n0 = 2−4 cm−3), distribution widths
(σ = 0.6−1.2 dex), and temperatures (Tkin = 15−35 K). Then, we pair calculations and measure the logarithmic contrast in line ratios and
dense gas fractions. Contours show the 68% and 95% range of model pairs at for each change in line ratio. Colored points show binned
results. Lines in both panels indicate the best fit scaling for ∆ log10 HCN/CO < 1.5

Fig. 12.— Effect of choice of density threshold to define fdense on the ability of HCN/CO to predict fdense. Best fit slope, scatter, and
improvement over scatter in the model grid for various definitions of fdense for a pure lognormal (left) and a lognormal with a power law
tail (right). When a power law tail is present, our results are robust to choice of threshold above ∼ 104.5 cm−3, while the appropriate fit
for the pure lognormal depends sensitively on the adopted threshold.

below. Briefly, we prefer the case with a power law tail as
more physical, given the presence of ongoing star forma-
tion in most regions targeted by extragalactic surveys.
But addressing this question represents a natural next
topic for observational and theoretical work.

3.5.2. Estimating the Median Density

The CO lines constrain the integral under the distri-
bution, while dense gas tracers access the integral only
above some high density. If the shape of the density
distribution is known, combining these two pieces of in-
formation constrains nmass

med .
Figure 13 shows results from our model grids using

pairs of models to relate the logarithmic change in nmass
med

to ∆ log10 HCN/CO. Again, gray contours enclose 68%
and 95% of the model pairs at a given ∆ log10 HCN/CO.
The colored points show the models binned by change in
line ratio. Black lines show the best fit slope for change
in line ratios< 1.5 dex. Table 4 reports the best fit slopes
and scatter for each dense gas tracer.
Changing line ratios can predict changes in the median

nH2 by mass across our model grid. However, they do
so with a factor of ∼ 2−3 rms accuracy and the slope
of the best fit scaling depends on the adopted sub-beam
distribution. To first order, this calculation works by
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Fig. 13.— Using changes in the HCN/CO line ratio to infer changes in the median nH2 by mass. As Figure 11, but now both panels
relate HCN-to-CO line ratio (x-axis) to changes in nmass

med
(y-axis).

taking the integral above the effective critical density of
some dense gas tracer, normalizing by the integral under
the whole distribution (traced by CO), and relating this
to the median of the distribution. The mapping is not
perfectly one to one across the model grid, but does work.
This calculation works about equally well for the two

distributions, but it seems better posed for the pure log-
normal. In this case, the whole distribution of densities
obeys a single simple functional form. Thus, it makes
sense to constrain the whole distribution by contrasting
the high density wing and the integral under the whole
curve. In the case of the power law tail, the results rely
sensitively on the adopted threshold joining the two dis-
tributions and slope of the power law tail.

3.5.3. Using Ensembles of Lines

So far, we have considered how changes in a single line
ratio map to changes in the underlying density distribu-
tion. We saw results for different lines in Table 4 and
discussed the qualitative use of multiple lines in Section
3.4. Modern surveys will often capture many of these
transitions (e.g., see Bigiel et al. 2016), so that a pattern
of ratios analogous to what we saw in Section 3.4 are
available for each source.
In Figure 14, we explore the use of ensembles of lines

to fits the underlying density distribution. We use the
model grid from the previous sections, varying n0 =
102−104 cm−3, σ = 0.6−1.2 dex, and Tkin = 15−35 K.
Again, we consider pairs of models. A pair of model im-
plies a change in line ratios, dense gas fraction, nmass

med ,
n0, and σ. We draw 1, 000 random pairs of models from
the larger model grid. For each drawn model pair, A,
we imagine that we have observed the line ratio varia-
tions implied by this model pair. Then, we search the
whole grid for all model pairs that produce the same line
ratio variations within a tolerance of 0.05 dex (∼ 12%).
This resembles the typical ∼ 10−20% calibration uncer-
tainty for mm-wave observations. These are ”good fit”
model pairs, that would match the line ratio pattern for
A within the uncertainties.
We compare the variation in fdense, n0, σ, and the

median nH2 for good fit model pairs to those known for
A. Based on the scatter in these parameters for good-fit
model pairs about the true values for A, we gauge the
rms accuracy with which a given line suite can access the
true variations in each quantity.
We repeat this exercise using only the HCN/CO ra-

tio, then using both the HCN/CO and HCO+/CO ra-
tio, then using CO along with all four dense gas tracers,
and finally using all lines in our model. For comparison,
we measure the scatter across the model grid itself. We
show the results for a lognormal distribution with (left)
and without (right) a tail in Figure 14.
Figure 14 illustrates a few key points. First, con-

straints on the distribution width, σ, and mean density,
n0, are individually weak. The combination of the two
produces nmass

med , and this quantity is better constrained.
Fitting using only HCN/CO already improves the accu-
racy dramatically compared to randomly drawing from
the model grid. Adding additional lines further improves
the ability to recover the nmass

med for lognormal distribu-
tions with and without tails. Each additional line helps
better constrain this quantity, including folding in the
full suite of CO transitions (“All Lines”).
Unsurprisingly, the dense gas fraction is the best-

constrained quantity in this exercise. Here, too, addi-
tional lines add accuracy, though the gain from addi-
tional dense gas tracers is relatively modest, improving
the accuracy of the fit by ∼ 0.1 dex. Again, folding in
13CO and several low-J CO lines improves our recovery
of fdense, dropping uncertainties to ∼ 0.1 dex.
The exact numerical results in Figure 14 depend on our

adopted model grid, knowing the optical depths of our
lines, and other details. But the qualitative conclusions
should be robust. The mean density and distribution
width are individually less well constrained than nmass

med ,
which they combine to set. In the lognormal case, one
does some constraint on σ, but the low dynamic range
expected is an issue. The dense gas mass fraction is al-
ready constrained well by a single line ratio. This accu-
racy can be improved by the combination of many lines.
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Fig. 14.— Accuracy of recovered model inputs requiring all line ratios to match the model within a tolerance of 0.05 dex. If fitting
observations, these would also be good fits to the data. The two panels show results for a pure lognormal (left) and a lognormal distribution
with a powerlaw tail (right). From left to right in each panel, we show the scatter in the model grid itself (not a fit), a fit using only the
HCN/CO ratio, and then fits adding in HCO+, all dense gas tracers, and all lines. The figure shows that fdense can be recovered most
accurately. The median density by mass, nmass

med
, can also be fit if the distribution is known. Adding more lines improves the fit. The

most significant constraints come from using the first line and folding in all lines, including those with critical densities . the mean of the
distribution.

TABLE 5
Dense Gas Conversion Factors

Line τ ≤ 1 1 ≤ τ ≤ 3 τ ≥ 3

αdense ± scatter
(M⊙ pc−2 (K km s−1)−1) ± (dex)

HCO+ 1.5± 0.16 dex 2.3± 0.23 dex 5.3± 0.34 dex
CS 8.2± 0.11 dex 11.4± 0.16 dex 23.7± 0.28 dex
HNC 3.4± 0.08 dex 4.8± 0.14 dex 9.8± 0.25 dex
HCN 4.5± 0.06 dex 6.3± 0.10 dex 12.2± 0.21 dex

Note. — Median and scatter in αdense across the model grid
where n0 = 102−104 cm−3, σ = 0.6−1.2 dex, and Tkin =
15−35 K. Here dense gas is defined using a threshold density
nthresh = 104.5 cm−3. All calculations assume an abundance
X(mol) = 10−8. The quoted scatter does not account for uncer-
tainties in this quantity, which affects the answer linearly. Note
that the table quotes linear αdense but logarithmic scatter (in
dex).

Perhaps surprisingly, adding a suite of low-J CO lines
can substantially improve the fit.
Note that in practice, the model grid does not repre-

sent a suite of equally likely conclusions. Using external
knowledge of the temperature or the distribution width
(e.g., from the Mach number gauged via measured veloc-
ity dispersions) will improve the ability to infer the full
density distribution. More, as discussed above, a key role
of multiple dense gas tracers is to provide some robust-
ness to abundance and optical depth variations. That
role is not reflected in Figure 14.

3.6. Dense Gas Conversion Factors

We have emphasized tracking changes in the gas den-
sity via changing line ratios. A more direct approach
is to simply translate the flux of HCN, HCO+, or
another dense gas tracer into a mass of dense gas.
Gao & Solomon (2004a,b) suggest αHCN ≈ 10 M⊙ pc−2

(K km s−1)−1 to translate HCN luminosity to the mass

Fig. 15.— Conversion factors relating line emission to dense gas
mass for a dense gas threshold of nthresh = 104.5 cm−3. The gray
region shows the range of dense gas conversion factors for CO, and
so represents a control (this much scatter offers little predictive
power). The colors show results for HCO+ (purple), HCN (red),
HNC (blue), and CS (green), all using our fiducial abundance of
10−8.

of gas at nH2 & 3 × 104 cm−3. Our calculations yield
conversion factors for each line and each grid point.
How good of an approximation is a fixed αHCN or a

fixed αHCO+? Considering the same range of densities,
distribution widths, and temperatures as above, we cal-
culate the conversion factor relating each dense gas tracer
to the dense gas mass for each model. Following the pre-
vious section and Gao & Solomon (2004a), we adopt a
threshold of nH2 & 3× 104 cm−3 to define dense gas. In
this exercise, we consider distributions with and without
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a power law tail together.
For each line, we consider models with these physical

parameters described by a range of optical depths. At
each τ , we find the mean and the scatter in log10 α, which
we plot in Figure 15. As a control, we show the scatter
in the dense gas conversion factor for CO (1-0) as a gray
region. We expect (and find) CO on its own to do a
poor job of tracing the dense gas. When the scatter
in a dense gas conversion factor approaches this value,
the utility of that conversion factor is also limited. All
conversion factors produced by the model will scale with
our adopted abundance, taken as X(mol) = 10−8 for all
lines here. We summarize the results in Table 5.
We calculate αdense,HCN between about 3 and 30

M⊙ pc−2 (K km s−1)−1. For matched abundances, HCN
and HNC yield similar conversion factors. HCO+ pro-
duces a lower conversion factor, reflecting its lower ef-
fective critical density, and CS (2-1) has a moderately
high conversion factor. In each case, the scatter at fixed
optical depth is modest in the optically thin case, but
becomes larger when the line becomes optically thick.
Most simply, this reflects temperature variations, which
will linearly affect α when the line is thick.
Accounting for the two times higher HCN abundance

assumed by Gao & Solomon (2004b), these calculations
agree well with their αHCN ≈ 10 M⊙ pc−2 (K km s−1)−1

for densities above ∼ 3 × 104/τ cm−3. This general
agreement belies significant uncertainty. Both the opti-
cal depth and the abundance (and thus chemistry) must
be known to calculate the conversion factor using this
approach. In the optically thick regime, the temperature
also plays a large role. To first order, all of these quanti-
ties act linearly, so that even a factor of two uncertainty
in each (which seems optimistic) implies factor of ∼ 3.5
uncertainties.
To understand the uncertainty in dense gas conver-

sion factors, it may be helpful to contrast these with the
CO-to-H2 conversion factor (see review in Bolatto et al.
2013). As Figure 8 shows, 〈ǫ〉 (and so αCO) of CO (1-0)
varies only weakly across a wide range of density distri-
butions, so that αCO does vary strongly as a function of
the sub-beam density distribution, all other things held
equal. Meanwhile, the assumption of a fixed dynamical
state, either marginal boundedness or virialization, has
been widely argued and observed for whole clouds (e.g.,
see Bolatto et al. 2013; Heyer & Dame 2015). More, the
12CO lines are usually optically thick, if only because
CO represents the dominant carbon reservoir in the well-
shielded parts of molecular clouds. In the CO case,
the line width of a cloud is set by the cloud dynamical
state. The high opacity combines with modest tempera-
ture variations to fix the specific intensity in the line at
a weakly varying brightness temperature. Then at fixed
metallicity, with αCO ∝ ρ0.5 T−1

kin (e.g., Maloney & Black
1988; Narayanan et al. 2012; Bolatto et al. 2013, and
many others).
Neither high opacity nor a fixed dynamical state can

be taken as a given for the gas traced by HCN, HCO+,
or similar lines. Unlike CO, these do not represent a
main carbon reservoir and their absolute abundances
are often quite low. These lines are observed to have
some opacity, but not the pervasive optical thickness of
12CO. Meanwhile, the densities traced by these lines rep-

resents a subset of the cloud. For clouds of changing
mean density, virial parameter, and with different self-
gravitating substructures the dense gas tracers may or
may not trace exactly the emission from this tail. Thus,
while, Gao & Solomon (2004b) argue for a fixed dynam-
ical state for HCN-emitting regions, there does not ap-
pear to be a strong a priori reason to take specifically
the HCN-emitting gas to be in a particular, universal
dynamical state.
Instead of assuming a dynamical state for a particular

line, the natural place to introduce such a criteria to our
model is to couple the column and line width integrated
over the power law tail, which could be taken at least to
be gravitationally bound. The issue is that this couples
the column density of H2 to the line width, again requir-
ing one to adopt an abundance for NH2/∆v to imply an
optical depth in any given line.
Thus, Figure 15 and Table 5 give approximate conver-

sion factors consistent with previous work. These high-
light the systematic variation of α with optical depth.
They also give a sense of the relative conversion fac-
tors for different lines modulo different abundances. But
these calculations remain subject to large systematic un-
certainties related to the sub-beam density distribution,
opacity, abundance (chemistry), and temperature. Many
of these factors can divide out of a relative approach. Our
view remains that because τ is observationally accessible,
fixing τ and comparing line ratios offers a more robust
path than invoking an absolute conversion factors.

3.7. Implications for Isotopologue Studies

Our model assumes that the optical depth is known,
or can be known. The main driver for this assumption
is that rare, optically thin isotopologues offer the chance
to gauge the optical depth of the main dense gas trac-
ing lines. Alternatively, such observations may constrain
the isotopic abundance, which can give clues to recent
nucleosynthesis or enrichment patterns as well as cloud
chemistry.
The optical depth of a line changes its ǫ(nH2), and

thus its sensitivity to gas density. When a distribution
of densities exists within the beam, the thin transition
will arise from a denser subset of the gas than the opti-
cally thick main line. In distributions like those that we
consider, this can have the effect of depressing emission
from optically thin isotopologues of optically thick dense
gas tracers. The effect will be strongest when the mean
density of the cloud is lower than the effective critical
density of the lines in question, so that density strongly
affects emissivity. Thus, we expect this to be a larger
effect for HCN or HCO+ than for CO.
Figure 16 shows this effect. The key physics appear

in the ratio of the beam averaged emissivity at some op-
tical depth, 〈ǫ〉(τ), to the beam averaged emissivity in
the optically thin case, 〈ǫ〉(τ ≈ 0.1). In the limit of
τ ≫ 1, for local thermodynamic equilibrium and oth-
erwise fixed physical conditions, we expect this ratio to
approach τ−1. If the relative abundance of the isotopo-
logues being studied is known, one is optically thin, and
one is optically thick, then the abundance ratio is multi-
plied by this τ−1 to produce the expected line ratio (e.g.,
CO typically has τ ≈ 10 and a 12C/13C ≈ 50; therefore
typical 12CO/13CO ratios are ∼ 50× 10−1 ≈ 5).
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Fig. 16.— Effect of differential excitation on measured isotopologue ratios. Beam averaged emissivity of an optically thick line divided
by that of the same line when optically thin. The simple LTE case with τ ≫ 1 and LTE predicts a ratio of τ−1. However, taking into
account a distribution of densities, emission from the optically thin line is often weaker than one would expect. This results in apparent
suppression of the line ratios often used to gauge optical depth, one that must be accounted for to avoid highly biased results in many
common cases. An analogous effect should be included to estimate Tkin from multi-J observations that integrate over density distributions.

Figure 16 plots deviations from this simple case due
to differential density sensitivities, which also incorpo-
rate excitation. In the left panel, we hold all other
things fixed, and we compare the emissivity of HCN at
τ = 1, 2, 5, and 10 to HCN at τ = 0.1. For distributions
centered at high densities, the expectation of a ratio ap-
proaching τ−1 roughly holds. However, as we change the
mean density of the distribution, n0, the ratio changes.
The sense is that for lower mean densities, the beam-
averaged emissivity of the optically thin gas becomes
much worse relative to the optically thick gas. This is
most extreme for the lognormal case at low mean densi-
ties. However, even when a power law tail is present, the
effect can be large.
The right panel shows the same plot taking τ = 5 for all

four dense gas tracers and 12CO (1-0). Although 12CO
shows some differential excitation effects at low densities,
the effect here is far more modest. All of the dense gas
tracers show significant deviations from the simple ex-
pectation for mean densities n0 . 103 cm−3, with HCO+

requiring lower densities to show these variations. These
differential excitation effects become important when an
appreciable amount of gas lies below the critical density
of the line in question. This makes isotopologue studies
using CO somewhat robust, and HCO+ — which has an
intermediate critical density — more robust than HCN
or HNC, all other things being equal.
Taking the lognormal with a tail, Figure 16 shows that

for τ ≈ 5, the magnitude of the correction from the sim-
ple case is a factor of ∼ 2−3. That is, the ratio of an
optically thin tracer like H13CN to HCN will be ∼ 2−3
times lower than the expectation for the simple case if
n0 . 103 cm−3. The difference, due to differential ex-
citation, should not be confused with optical depth or
abundance effects.
To apply these results generally, one can take our tab-

ulated calculations and, for matched conditions, com-
pare 〈ǫ〉(τ)/〈ǫ〉(τ ≈ 0.1) to either the simple expectation

(∼ τ−1) or the value found at high densities. This fac-
tor represents the part of the line ratio due only to dif-
ferential excitation and not abundance or optical depth
effects.
Optically thin isotopologues remain a crucial way

to probe the optical depth of mm-wave lines and iso-
topic abundance, especially in other galaxies. Indeed,
given the importance of optical depth to understand the
density-sentivity of the lines that we discuss, more such
observations are crucial. However, Figure 16 cautions
that sub-resolution density distributions and differential
excitation should be borne in mind when interpreting ob-
served ratios. Without taking these into account it would
be easy to solve for an optical depth lower than the true
value while observing low density gas. Considering iso-
topologue ratios for HCN, HNC, and HCO+, Jimenez-
Donaire et al. (MNRAS submitted) demonstrate the
need for such corrections in real measurements. Their
synthesis of the literature and new measurements and
limits show high HCN/H13CN and HCO+/H13CO+ ra-
tios in regions where n0 should be . 103 cm−3. These
ratios yield different interpretations in the LTE case and
the case described here.

4. DISCUSSION AND SUMMARY

Integrating over a wide range of densities within a sin-
gle telescope beam is unavoidable when studying molec-
ular gas at extragalactic distances. To date there has
been limited effort to interpret spectral line observations
in the context of realistic sub-beam distributions, with
modeling mostly considering one or two-phase media. To
move forward, mm-wave line emission must be modeled
taking into account realistic sub-resolution distributions,
similar to the treatment of stellar populations in popu-
lation synthesis or multiple dust populations in IR SED
modeling.
In this paper, we consider the interaction of realistic

density distributions with the emissivity of common mm-
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wave transitions. We focus on a suite of transitions in
the 85−115 GHz range that are commonly used to trace
density. Building on work by Krumholz & Thompson
(2007), our model treats emission within a beam as the
sum of emission from a collection of one-zone models that
share a characteristic optical depth, τ , and temperature,
Tkin, but have a realistic distribution of collider densities,
nH2.
To implement this, we use the one-zone non-LTE code

RADEX (van der Tak et al. 2007) to calculate the emis-
sivity, ǫ, of gas in each line across a range of nH2,
Tkin, and τ giving ǫ(nH2, Tkin, τ). We calculate emis-
sion from a density distribution by combining one-zone
models in which the escape probability (via τ) is fixed,
while varying the collider density, nH2. We implement
two density distributions: a pure lognormal and a log-
normal distribution that exhibits a power law tail at
high densities. Theoretical, numerical, and observational
work all commonly invoke this combination of density
distributions as a reasonable description of the cold,
turbulent gas that produces low-J mm-wave line emis-
sion (e.g., Vazquez-Semadeni 1994; Padoan & Nordlund
2002; Krumholz & McKee 2005; Kainulainen et al. 2009;
Federrath & Klessen 2013, among many others), though
there are some caveats from recent Milky Way work
(Lombardi et al. 2015).
While Krumholz & Thompson (2007) and the closely-

related paper by Narayanan et al. (2008) mainly focused
on star formation scaling relations, we are interested in
the use of mm-wave line emission to trace gas density
within a telescope beam. Because of the small physi-
cal scales involved, spectroscopy offers almost the only
way to access the small-scale density distribution across
a wide range of extragalactic environments. Despite the
faintness of the high effective density lines like HCN
(1-0), HCO+ (1-0), and CS (2-1), the Atacama Large
Millimeter/submillimeter Array, the Green Bank Tele-
scope, and the IRAM telescopes are now able to reg-
ularly observe these transition across the disks of nor-
mal galaxies (e.g., Kepley et al. 2014; Usero et al. 2015;
Bigiel et al. 2016, Gallagher et al. (in prep.), among oth-
ers).
The paper includes a large set of tabulated results

available as online-only material (Tables 2 and 3). These
report:

1. The minimum collider density, nH2, at which each
line achieves 95% of its maximum emissivity for
a given Tkin and τ in a one-zone model (Table
2). This is closely related to the effective critical
density (e.g., Shirley 2015, and references therein).
Having such values tabulated for the non-LTE case,
cast directly in terms of emissivity and calculated
across the transition from optically thin to optically
thick lines, may be useful to readers.

2. The beam-averaged emissivity, 〈ǫ〉, and median
density for emission in each studied transition for
a range of Tkin, τ , and density distributions com-
parable to those found across the local galaxy pop-
ulation (Table 3). From these, line ratio patterns
can be constructed for any adopted set of optical
depth and temperature.

4.1. Using Line Ratios to Trace Density

We examine the ability of mm-wave line ratios to trace
the sub-beam density distribution. For these purposes,
the interaction between the emissivity, ǫ(nH2, Tkin, τ),
and the density distribution, P (nH2), is crucial. From a
mixture of one zone models and combinations that model
a density distribution, our conclusions include:

1. Gas can still emit effectively at densities well below
its effective critical density. That is, the emissivity,
ǫ(nH2), of a mm-wave transition still has high val-
ues for at least a decade in nH2 below the density
of peak emissivity (see Figure 2).

2. The flux that emerges from each density in the
cloud is the product of the mass at that density
and the emissivity at that density. For realistic dis-
tributions, P (nH2) drops with increasing nH2 near
the critical density of the dense gas tracers. This
often leads to the case where the density distribu-
tion and emissivity exert competing effects: there
is more mass at lower densities but gas emits better
at high densities (see Figure 5).

3. For a pure lognormal distribution, the interaction
between ǫ(nH2) and P (nH2) leads to large vari-
ations in the median density producing emission
from high density tracers. We illustrate this for
HCN (1-0), and a similar case holds for other lines.
In cases of low mean density, n0, and narrow distri-
bution width, σ (expected for low Mach number),
the median density of gas producing HCN emis-
sion can fall well below the critical density of HCN.
When this happens the overall emissivity of the gas
in HCN also drops. Thus we for regions in which
modest density gas produces most HCN emission,
HCN/CO and similar line ratios will also be low
(see Figure 6).

4. The presence of a power law tail in the density dis-
tribution tends to suppress variations in the me-
dian density for emission. Such tails are expected
for self-gravitating gas and lack a preferred scale.
As a result, they produce much weaker variations
in the median density for emission. For exam-
ple, HCN emission from a distribution with our
fiducial power law tail almost always arises from
∼ 104−105 cm−3 gas (see Figure 6).

The sub-beam density distributions also affects the
beam-averaged emissivity, 〈ǫ〉, so that some lines emit
better for certain density distributions.

5. Variations in 〈ǫ〉 are strongest for the dense gas
tracers, which have high 〈ǫ〉 when more dense gas
is present. 〈ǫ〉 remains more nearly constant for
the low-J CO lines, reflecting their common use as
total gas tracers. As a result of these differential
variations in 〈ǫ〉, line ratios have the power to cap-
ture changes in the density distribution within the
beam (see Figures 8 and 9).

The sense of these variations is that lines with effec-
tive critical densities low compared to the mean density,
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like the low-J CO transitions, vary little in their emis-
sivity. Transitions with effective critical densities high
compared to the mean density see their emissivity vary
strongly as the density distribution changes. Thus, ratios
like HCN-to-CO have the power to probe the fraction of
dense gas or the mean gas density within a beam.
The exact value of 〈ǫ〉, or any individual line ratio,

depends on our adopted abundances. These are often
poorly known. To help circumvent this concern, we high-
light the power of line ratio variations.

6. In the case that two regions have different density
distributions and the abundances remain fixed (but
also unknown), the measured variation in line ra-
tios has the power to trace the change in density
distribution within the beam, independent of the
absolute adopted abundance (see Figure 9).

7. These line ratio variations will be strongest for lines
with the highest effective critical densities. Thus,
the signature of a changing density distribution is
a “flaring” pattern of line ratios when the lines are
sorted as a function of increasing critical density
(see Figure 9).

8. The shape of this flare reflects the high end form
of the density distribution. For a self-similar dis-
tribution like a power law, the ratios of all lines
on the power law tail relative to CO will vary in
lock-step. For a downward curving, steep distri-
bution like a lognormal, line ratio variations will
increase in strength with increasing critical density
(see Figure 9).

Beyond accessing the shape of the high density tail,
line ratio patterns allow some prospect to control for
abundance variations. If several high density tracers
are observed, then consistency (or lack thereof) among
their variations can help distinguish changing abun-
dances from changing density.

9. We also examine the impact of temperature vari-
ations on changing line ratio patterns. In general,
Tkin variations exerts a weaker influence on line ra-
tios than changing density because they affects all
lines, including those with with low critical densi-
ties. However, Tkin does still have a some impact on
the line ratios because it lowers the effective critical
density of the dense gas tracers (see Figure 10).

We quantify how changes in the line ratio map to vari-
ations in the dense gas mass fractions, fdense, and nmass

med .
Here, the shape of the high end of the density distribu-
tion plays a large role.

10. When a power law tail describes the distribution at
high densities, HCN/CO, HCO+/CO, and similar
ratios trace variations in fdense with approximately
linear slope. This remains true for most reasonable
definitions of “dense” gas. That is, if a power law
tail is present and approximately universal, then
the interpretation of dense gas tracers may be rel-
atively straightforward (see Figure 11).

11. On the other hand, if the density obeys a steep,
curving distribution like a lognormal, the interpre-
tation of line ratio variations becomes more com-
plex. We calculate scaling relations relating vari-
ations in HCN/CO and other line ratios to varia-
tions in fdense, but caution that these are nonlinear
and depend on the adopted threshold density. Still
within a factor of ∼ 2−3 scatter, these ratios can
capture variations in the dense gas mass fraction
and nmass

med (see Figures 11 and 13).

Given strong priors on the Mach number or mean den-
sity, the grid of models that we consider could be nar-
rowed considerably. In this case, the inference of changes
in fdense and nmass

med from line ratio variations can be even
more precise.
Current surveys often capture a suite of line ratios.

We explore the use of an ensemble of ratios to estimate
changes in the sub-resolution density distribution. We
do this by directly fitting line ratio variations to our grid
of models. This approach can be implemented generally
using the online tables included with the paper.

12. We show that including multiple lines improves the
accuracy with which variations in the sub beam
density distribution are recovered. Variations in
the mean density, n0, and distribution width, σ,
are, in general, less well recovered than their com-
bination, nmass

med . Changes in the dense gas fraction,
fdense tend to be better recovered than nmass

med (see
Figure 14).

13. Including more lines in the fit steadily improves
the accuracy with which the model variations are
recovered. The best fit comes from including all
dense gas tracers and multiple tracers of lower den-
sity gas, here meaning the low-J and optically thin
CO lines (see Figure 14).

4.2. Differential Excitation and Isotopologue Studies

Our model specifies the optical depth rather than the
abundance. One motivation for this is that the optical
depth of mm-wave transition can be constrained by ob-
servations. The most direct way to do this is to pair
observations of the main tracers with optically thin iso-
topologues.

14. We show that in the presence of the sub-beam den-
sity distributions considered by our analysis, differ-
ential excitation between the main line and the op-
tically thin isotopologue complicates this analysis.
Even treating the two molecules as identical, the
optically thin line has different ǫ(nH2). This, con-
volved with the sub-beam density distribution, can
affect the line ratio. If one interprets observations
of the optically thin tracer without taking these ef-
fects into account, the optical depth inferred can
be biased by a factor of & 2−3 (see Figure 16).

15. The key physics behind this effect are captured in
the ratio 〈ǫ〉(τ)/〈ǫ〉(τ = 0.1) for fixed Tkin and den-
sity distribution. This is the ratio of beam aver-
aged emissivity of a molecule at some optical depth
to the beam averaged emissivity for that molecule



Density Distributions and Line Ratio Patterns 23

when optically thin. We show this factor for some
representative cases, and it can be calculated from
our tabulated model grid. When a power law tail
is present and the mean density is low compared to
the critical density of the thin line, we arrive at the
factor of 2−3 connection mentioned above. For a
pure lognormal centered at low mean density, the
effects can be even more extreme (see Figure 16).

16. Although we do not focus on temperature in this
paper, a related approach to differential excitation
should be used to infer temperatures from line ra-
tios. ǫ(nH2) varies with Tkin and with transition;
e.g., see the case for CO in Figure 2. When using
multi-J HCN or HCO+ observations to constrain
Tkin, it will be important into account the convo-
lution of ǫ(nH2, Tkin) and P (nH2) in order to con-
strain Tkin.

4.3. Dense Gas Conversion Factors

We emphasize differential measurements, because
these may help control for an unknown absolute abun-
dance scale. However, it will still often be of interest to
discuss absolute masses or mass fractions of dense gas.
To this end, we examine the dense gas “conversion fac-
tors” implied by our models (see Figure 15). These are
formally the ratio 〈ǫ〉 to fdense, and give the factor by
which line luminosity should be multiplied to calculate
the dense gas mass.
Our derived conversion factors depend on the opti-

cal depth, abundance, Tkin, and the density distribution.
This renders them substantially uncertain. The overall
normalization that we find agrees with previous work for
matched assumptions. But we emphasize that arguments
based on a fixed dynamical state at a particular density
inside a cloud remain aggressive. Our calculations as-
sume a fixed abundance for all four dense gas tracers. In
this case at fixed τ , αHCO+ < αHNC ≈ αHCN < αCS.

4.4. Next Steps

We have presented a framework for interpreting mm-
wave line ratio observations. A number of natural next
directions recommend themselves.
Observations: First and foremost, we need a large

set of observations targeting individual regions in other
galaxies. These should include transitions that sample a
range of densities, similar to the line suite considered in
this paper. With such a large database, it will be pos-
sible to place empirical constraints on the shape of the
high density PDF as well as identify which tracers show
coherent variations and which show signatures of strong
abundance variations.
Ideally, these observations can be paired with high

resolution imaging of ISM structure. Such observa-
tions have the prospect to constrain the mean density
and Mach number at the scale of whole clouds (e.g.,
Leroy et al. 2016). Such external constraints on n0 and σ
offer the prospect to validate the models proposed here.
Then, if the models are validated, they offer the prospect
to place priors on the model grid when it is applied to
individual regions.
We have taken the optical depth to be known, or at

least observable. However, the isotopologues of the dense
gas tracers discussed here are very faint. Their emission

is further suppressed by the differential excitation effects
discussed here. As a result constraints on the optical
depth of the dense gas tracers are actually quite weak to
date. Systematic observation of H13CN, H13CO+, 13CS,
etc. in the disks of normal galaxies will be essential to
break a key degeneracy in the model.
Fortunately, current mm-wave facilities can make

many of these key observations. ALMA, the Green Bank
Telescope (GBT), the IRAM telescopes, and other mod-
ern facilities have the ability to survey dense gas tracers
and cloud properties across nearby galaxies. Several re-
cent, ongoing, and planned surveys promise to expand
our knowledge of dense gas tracers across nearby galax-
ies (e.g., Usero et al. 2015; Bigiel et al. 2016, Gallagher
et al., in prep.; and upcoming efforts using ARGUS on
the GBT). Meanwhile, ALMA and NOEMA are rapidly
expanding our knowledge of cloud-scale ISM structure,
often in overlapping targets (e.g., Hughes et al. 2013a;
Leroy et al. 2016).
Despite good prospects for the next few years, many

key lines remain very faint. Systematic surveys of
optically thin isotopologues (e.g., Jimenez Donaire et
al., MNRAS submitted) or imaging of dense gas trac-
ers in normal galaxies at high physical resolution (e.g.,
Rosolowsky et al. 2011) will remain very challenging in
normal star-forming galaxies beyond the Local Group.
Similarly, sensitivity considerations limit the suite of
available lines for extragalactic studies compared to those
used in the Galaxy. The long term prospects for such
studies may require an increase even beyond the capabil-
ities of ALMA. One natural facility to enable such studies
would be a Next Generation Very Large Array optimized
for mm-wave studies. Large receiver arrays on large sin-
gle dish telescopes offer another promising direction.
Power Law Tails: A recurring result of our analysis is

that the shape of the density distribution at high nH2

exerts a large influence. The results for a power law tail
and a pure lognormal distribution differ substantially.
A main way to improve the interpretation of high den-
sity tracers is to resolve the question of how common a
power law tail is, whether it has a universal slope, and
the threshold density for its onset.
Most current extragalactic surveys target large areas of

star-forming galaxies, often selected for local or global ac-
tivity. We expect such locales to harbor self-gravitating
gas that serves as the immediate fuel for star formation.
In that sense, we do have a basic expectation that a
power law tail should be present at some level in most
star-forming regions. We do not, however, have a strong
expectation for the universality of the slope of this tail or
the density at which it becomes the dominant contributor
to the PDF. Our power law models show an optimistic
case, in which these factors do not vary much from beam
to beam.
Galactic studies have made large progress identifying

power law tails in column density distributions and link-
ing these to environment in the cloud and Galaxy (e.g.,
Abreu-Vicente et al. 2015; Stutz & Kainulainen 2015).
From some combination of these studies, spectral surveys
and highly resolved observations of the nearest galaxies,
we can hope to understand a characteristic slope, typi-
cal range of variation, and condition for onset of a power
law tail. For modeling distributions in other galaxies, an
approach like that of Draine et al. (2007) may be most
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appropriate, in which the strength of a power law tail
relative to the lognormal acts as a free parameter in the
model.
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