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ABSTRACT

We developed a modification to the calculation of the two-point correlation func-
tion commonly used in the analysis of large scale structure in cosmology. An estimator
of the two-point correlation function is constructed by contrasting the observed dis-
tribution of galaxies with that of a uniformly populated random catalog. Using the
assumption that the distribution of random galaxies in redshift is independent of an-
gular position allows us to replace pairwise combinatorics with fast integration over
probability maps. The new method significantly reduces the computation time while
simultaneously increasing the precision of the calculation. It also allows to introduce
cosmological parameters only at the last and least computationally expensive stage,
which is helpful when exploring various choices for these parameters.

Key words: large-scale structure of Universe – distance scale – dark energy – surveys
– galaxies: statistics – methods: data analysis

1 INTRODUCTION

The two-point spatial correlation function (2pcf) is a key
tool used in astrophysics for the study of large scale structure
(LSS). Given an object such as a galaxy, the number of other
galaxies within a volume element ∆V at a distance s from
the first galaxy is

∆N = n(1 + ξ(s))∆V, (1)

where n is the mean number density and ξ(s) is the two-
point correlation function characterizing the deviation from
the uniform distribution in separation between galaxies
(Peebles 1973).

The correlation function ξ(s) and its Fourier transform,
the galaxy power spectrum P(k), have been used to describe
the distribution of matter in galaxy surveys (Yu & Peebles
1969; Peebles & Hauser 1974; Groth & Peebles 1977; Feld-
man et al. 1994). During the past decade ξ(s) has become
a popular tool for the reconstruction of the clustering signal
known as baryon acoustic oscillations, or BAO (Eisenstein
et al. 2005). The BAO signal is the signature of the den-
sity differences that arose in the early universe before the
thermal decoupling of photons and baryons (Sunyaev & Zel-
dovich 1970; Peebles & Yu 1970). It is detectable today as
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a characteristic peak in the galaxy spatial correlation func-
tion at roughly s = 110h−1 Mpc, where h defines the Hubble
parameter H0 = 100h km s−1 Mpc−1.

Given a spectroscopic survey containing the 3D coor-
dinates of each galaxy, there exist several possible ways to
estimate ξ(s). The most popular estimator is due to Landy
& Szalay (1993), which is constructed by combining pairs of
galaxies from a catalog of observed objects D (“data”) and
a randomly generated catalog R with galaxies distributed
uniformly over the fiducial volume of the survey but using
the same selection function as the data. The Landy-Szalay
(LS) estimator is

ξ̂(s) =
DD(s)− 2DR(s) +RR(s)

RR(s)
, (2)

where DD, RR, and DR are the normalized distributions
of the pairwise combinations of galaxies from the data and
random catalogs (plus cross terms) at a given distance s
from each other.

There exist many 2pcf estimators other than the LS es-
timator, and they have different advantages and limitations.
However, all commonly known estimators are functions of
DR and/or RR distributions (see Hamilton (1993); Kerscher
et al. (2000); Vargas-Magana et al. (2013)) and therefore
depend on the random catalog R. To limit statistical fluc-
tuations in ξ̂(s), it is typical to generate random catalogs
with one to two orders of magnitude more galaxies than the
survey under investigation. Unfortunately, the “brute-force”
computation of ξ̂(s), in which all possible pair combinations
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are counted, is anO(N2
R) calculation due toRR, whereNR is

the number of galaxies in the random catalog R; this results
in a trade-off between statistical uncertainties and computa-
tion time. This trade-off has consequences beyond reducing
uncertainties. For example, researchers often simulate a vari-
ety of cosmological parameters when studying the LSS, but
the computational overhead required to calculate ξ̂(s) may
limit the number and type of possible analyses that can be
carried out. The overhead also increases the effort needed to
compute the covariance of the 2pcf as well as the effect of
different sources of systematic uncertainties.

In this paper, we suggest a method which substantially
reduces the time needed to compute RR and DR and hence
is applicable to any estimator ˆξ(s)1. Moreover, the compu-
tationally intensive part of the calculation is independent
of the choice of cosmological parameters, allowing exploring
a larger parameter space. The method is based on the as-
sumption that the probability for a galaxy to be observed
at a particular location in the random catalog can be fac-
torized into separate angular and redshift components. This
assumption is frequently made in the analysis of large scale
structures and it allows us to replace pairwise combinatorics
in the calculations of RR and DR with fast integration over
probability maps. We find that the estimation of ξ̂(s) signifi-
cantly speeds up with respect to the brute-force calculation.
In practical terms, this means an estimate of ξ̂(s) which is
typically carried out on large computing clusters can be per-
formed on a modern notebook computer.

The paper is structured as follows. In Section 2 we de-
scribe the mathematical justification of the method. In Sec-
tion 3 we describe the resulting algorithm used to compute
ξ̂(s) in detail. The performance of the algorithm is studied in
Section 4 using mock catalogs and spectroscopic data from
the CMASS portion of the Sloan Digital Sky Survey (SDSS)
DR9 catalog (Ross et al. 2012; Sanchez et al. 2012; Ander-
son et al. 2013; Percival et al. 2014). We then conclude in
Section 5.

2 MATHEMATICAL PROOF

2.1 Random-random distribution

The 3D position of any galaxy ~r is described by its right
ascension α, declination δ, and its redshift z. Based on this
information the cosmological distances are calculated given
a set of cosmological parameters: ΩM - the present day rela-
tive matter density of the universe, Ωk - the measure of the
curvature of space, and ΩΛ - the relative density due to the
cosmological constant. The comoving radial distance r(z) is
calculated from the observed redshift z as

r(z) = DHI(z), (3)

where

DH = c/H0 (4)

is the Hubble distance, c is the speed of light and I(z) is
calculated as:

I(z) =

∫ z

0

dz′
(
ΩM (1 + z′)3 + Ωk(1 + z′)2 + ΩΛ

)−1/2
. (5)

1 The code can be downloaded from http://www.pas.rochester.

edu/~regina/LaSSPIA.html
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Figure 1. Calculation of the distance between points 1 and 2
given their comoving distances from the Earth r1 and r2 and

their angular separation θ12.

The transverse distance t(z) is calculated as:

t(z) =


DH/

√
Ωk sinh

(√
ΩkI(z)

)
, for Ωk > 0

r(z), for Ωk = 0

DH/
√
|Ωk| sin

(√
|Ωk|I(z)

)
, for Ωk < 0

(6)

As suggested by current cosmological constraints (see
e.g. Aubourg et al. (2015); Ade et al. (2016)), Ωk is small
and thus eq. 6 can be approximated by

t(z) = r(z)
(

1 +
Ωk
6

(
I(z)

)2)
. (7)

The angular separation θ12 between points 1 and 2 given
their right ascension α, declination δ is calculated as

θ12 = cos−1 ( cos δ1 cos δ2 cos (α1 − α2) + sin δ1 sin δ2
)
. (8)

The distance s12 between these two points (illustrated in
Fig. 1) is approximated by:

s12 =
√
σ2

12 + π2
12, (9)

where σ12 and π12, the distances transverse and parallel to
the line of sight (LOS) respectively, are defined as:

σ12 = (t1 + t2) sin
θ12

2
, (10)

π12 = |r1 − r2| cos
θ12

2
. (11)

Since random catalogs are typically generated by uniformly
populating the fiducial volume of the survey, the galaxy dis-
tribution over z, and thus over r, is factorizable from the
angular distribution. In other words, any angular region of
the sky has the same distribution of galaxies in z (see Ross
et al. (2012) and Fig. 2). This means that the expected count
of random galaxies, R(~r), can be factorized into the product
of the expected count Rang(α, δ) at a given angular position
and a redshift probability density function (PDF) Pz(z):

R(~r) = Rang(α, δ)Pz(z). (12)

R(~r) evaluated this way has smaller statistical uncertainty
since the precision of Rang(α, δ) depends on the number of
points in the 2D angular cell, and the precision of Pz(z)
depends on the number of points in the 1D range in z. In
contrast, the statistical precision without the factorizability
assumption is determined by the number of points in a 3D
cell (z, α, δ). We will show in Section 4 that the uncertainties
in ξ̂(s) evaluated using the suggested method are indeed
smaller.

MNRAS 000, 1–8 (2016)
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Figure 2. Distribution of galaxies over redshift and comoving

distance r, calculated using cosmological parameters defined in

Section 4, in four widely separated regions of the Northern sky
based on the SDSS-III DR9 random catalog. Regions are defined

by the following selection criteria: region 1 (−4 < δ < 8o, 125 <

α < 250o), region 2 (8 < δ < 57o, 108 < α < 135o), region
3 (25 < δ < 50o, 135 < α < 225o), region 4 (8 < δ < 40o,

225 < α < 265o).

The expected count of random-random galaxy pairs sep-
arated by a distance s can be expressed as:

RR(s) =
1

2

∫
dΩ1dz1dΩ2dz2 Rang(α1, δ1)Pz(z1)

×Rang(α2, δ2)Pz(z2) δ(s− s12),

(13)

where Ω represents a solid angle (and dΩ = cos δ dδ dα), s12

is calculated according to eq. 9. The integral is taken over the
entire fiducial volume of the random catalog R, and a factor
of 1/2 is introduced to account for double counting of the
random-random pairs. The Dirac-δ function is introduced to
ensure that the distance between two galaxies s12 is equal to
the distance of interest s. To isolate the angular variables, we
rewrite the δ function in eq. 13 as an integral of the product
of two δ functions:

δ(s− s12) =

∫
dθ δ (s− s12) δ(θ − θ12). (14)

Note that the second δ function is independent of the radial
positions r1, r2 of the galaxies, or their redshifts. Thus, RR
can be rewritten as

RR(s) =

∫
dz1dz2dθ Pz(z1)Pz(z2) f(θ)

× δ (s− s12) , (15)

where

f(θ) =
1

2

∫
dΩ1dΩ2 Rang(α1, δ1)Rang(α2, δ2)

× δ(θ − θ12) (16)

is the count of RR galaxy pairs whose angular separation is
θ.

The count of random galaxy pairs is constructed in two
steps:

(i) histogramming, where we construct the distribution
f(θ) over angular separation using the count of random
galaxies Rang(α, δ) according to eq. 16,

(ii) integration, where we convolve the angular distribu-
tion with the redshift PDFs Pz(z1) and Pz(z2) to obtain the
distribution of random pairs over s.

Note that only the second step depends on the choice of
cosmological parameters.

2.2 Data-random and data-data distributions

Unlike in the random catalog, in the data catalog the dis-
tribution of galaxies over z cannot be factorized from their
angular distribution. Thus, the count distribution over the
opening angle between galaxies in the data and random cat-
alogs is also a function of z1, the position of the data galaxy:

g(θ, z1) =

∫
dΩ1dΩ2 D(z1, α1, δ1)Rang(α2, δ2)

× δ(θ − θ12). (17)

The DR distribution can then be calculated as

DR(s) =

∫
dz1dz2dθ Pz(z2) g(θ, z1)

× δ (s− s12) . (18)

At the histogramming step, we construct the distribution
g(θ, z1) according to eq. 17, keeping track of the redshift
of the data galaxies z1. At the integration step g(θ, z1) is
convolved with the redshift PDF Pz(z2) to obtain the dis-
tribution of data-random pairs over s according to eq. 18.

Finally, the data-data count DD is estimated using a
brute-force iteration over all possible data galaxy pairs. For
uniformity, the DD calculation is also broken down into his-
togramming and integration steps. At the histogramming
step the count distribution over the opening angle u(θ, z1, z2)
is constructed from the pair count of data galaxies keeping
track of the redshifts of both galaxies in the pair.

At the integration step, DD(s) is evaluated from
u(θ, z1, z2) by converting the redshifts into distances and
calculating the distance between the two galaxies s. This
breakdown does not offer any time savings in the calculation
of DD, but it allows for the definition of the cosmological
parameters only at the second step. This way the computa-
tionally intensive first step can be performed once and then
the computationally fast second step is performed for each
set of cosmological parameters.

2.3 Generalization of the 2pcf to anisotropic case

The discussion up to this point has dealt with only a spher-
ically symmetric 2pcf. However, the algorithm is easily gen-
eralized to study anisotropy in the 2pcf (Davis & Peebles
1983).

The histogramming step is identical to the isotropic
case. At the integration step, we compute RR, DR and DD
in two dimensions (σ, π):

RR(σ, π) =
1

NRR

∫
dz1dz2dθ Pz(z1)Pz(z2) f(θ)

× δ(σ − σ12)δ(π − π12), (19)

MNRAS 000, 1–8 (2016)
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DR(σ, π) =
1

NDR

∫
dz1dz2dθ Pz(z2) g(θ, z1)

× δ(σ − σ12)δ(π − π12), (20)

where the distances transverse (σ) and parallel (π) to the
LOS are computed according to eqs. 10 and 11 respectively.

The BAO signal is expected to manifest itself as an
ellipse in this 2D histogram. In the isotropic case the ellipse
is reduced to a circle.

3 DESCRIPTION OF THE ALGORITHM

3.1 Weights

To data we apply the weights according to the prescription
of Ross et al. (2012) to deal with the issues of close-pair cor-
rections (wcp), redshift-failure corrections (wrf), systematic
targeting effects (wsys) and shot noise and cosmic variance
(wFKP) (Feldman et al. 1994) such that the total weight of
a given data galaxy is:

wD = wFKP · wsys · (wrf + wcp − 1). (21)

Each galaxy in the random catalog has a z-dependent weight
wR(z), defined the same way as wFKP in data catalog. The
algorithm can be generalized to the case where the random
weights also depend on angular position and are factorizable
into angular and redshift weights: wR = wR(z)wR(α, δ).

3.2 Binning

RR and DR are calculated using finely binned probability
densities in (α, δ) and z defined from the existing random
catalog, or based on the completeness map and the radial
selection function. The choice of the bin sizes is important
and is determined by the final bin size ∆s desired in ξ̂(s).
In practice, this means that the bin sizes in α, δ and θ must
be smaller than the angle θmin subtended by ∆s at the out-
ermost radius of the data set, Rmax at least by a factor of
two (θmin = ∆s/2/Rmax). The bin size in z should be cho-
sen such that the corresponding ∆r(z) be smaller than ∆s
by the same factor. We note that the binning is not equal-
area but for fine enough bins it does not affect the result.
Some assumption about the cosmological parameters must
be made for the calculation of Rmax and r(z), so to be on
the conservative side one should use the largest Rmax for the
set of the cosmological parameters under evaluation, which
typically means using the smallest value of Ωm. Using this
algorithm with steps smaller than 1 h−1 Mpc is possible but
impractical as it results in an angular map that is too finely
segmented and thus very large and noisy.

3.3 Limits

In the calculation presented in this paper, we only consider
galaxy pairs separated by a distance less than a certain max-
imum distance scale of interest lmax. For this, the 2D angular
space is divided into regions of the size (∆α,∆δ), such that
∆α = ∆δ = lmax/rmin, where rmin = Rmin cos(δmax). Here,
Rmin is the smallest radial distance of the survey for a set
of cosmological parameters under consideration (typically
corresponding to the largest value of Ωm), and δmax is the
maximum declination of the survey. The algorithm proceeds
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Figure 3. Top: Distribution of the DR9 random catalog in (α, δ)

in the northern sky. Middle: the DR9 random catalog in the south-
ern sky. Bottom: a zoomed-in view of northern sky. The positions

of galaxies observed in the DR9 survey are plotted as white stars.

to calculate f(θ12), g(θ12, z1) and u(θ12, z1, z2) only within
one (∆α,∆δ) region and its neighbors.

3.4 Algorithm

3.4.1 Probability Density Functions

Once the binning and limits are chosen, the algorithm pro-
ceeds as follows. First, using the random catalog, we produce
the count distribution Rang(α, δ) and PDF Pz(z). For each
galaxy, Pz(z) is incremented by wR(z)/NR, and Rang(α, δ) is
incremented by 1. If the catalog contains the angular depen-
dent weight wR(α, δ) then Rang(α, δ) is incremented by that
amount. This part of the algorithm is linear in the number
of galaxies in random catalog and hence is very fast.

Examples of binned angular histograms are shown in
Fig. 3. It is clear from the zoomed up view that the statisti-
cal fluctuations, determined by the finite size of the random
catalog, are significant. However, it is important to note that
these fluctuations are much smaller than the fluctuations in

MNRAS 000, 1–8 (2016)
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3D cells with full coordinates (z, α, δ), effectively used in
the brute-force approach, or in any other approach that re-
lies on 3D number density distribution. In this paper, we
generate the 2D angular and 1D redshift probability maps
based on an existing random catalog (published along with
the observational data), but ideally these maps should be
generated directly based on the tile completeness and radial
selection function. This approach will create smoother prob-
ability maps and minimize the shot noise associated with the
use of random catalogs.

3.4.2 Histogramming

We compute the random-random 1D binned distribution
f(θ12) using Rang(α, δ). To compute binned f(θ12), we con-
sider all non-repeating pairs of angular cells (α1, δ1) and
(α2, δ2). The angle θ12 between the two cells is calculated
from their angular positions using eq. 8 and the correspond-
ing bin is incremented:

f(θ12) += aRang(α1, δ1)Rang(α2, δ2), (22)

where a factor is introduced such that a = 1/2 when the two
cells are identical and a = 1 otherwise.

Then, we calculate the data-random 2D binned distri-
bution g(θ12, z1) using galaxies from the data catalog and
Rang(α, δ). Here, we consider every pair of a data galaxy
(z1, α1, δ1) and an angular cell (α2, δ2). The angle θ12 be-
tween the data galaxy and the angular cell is calculated from
their angular positions using eq. 8 and the corresponding 2D
bin is incremented:

g(θ12, z1) += wDRang(α2, δ2), (23)

where wD is the weight of the data galaxy.
We compute the data-data 3D binned distribution

u(θ12, z1, z2) by looping over all non-repeating pairs of galax-
ies. Each pair is weighted by the product of the weights of
individual galaxies in the survey:

u(θ12, z1, z2) += wD1 × wD2 . (24)

3.4.3 Integration

Next, we perform an integration over redshifts z1 and z2 and
produce the distributions RR, DR and DD. This is achieved
in three nested loops iterating over θ12, z1 and z2. Given
these three variables and choice of cosmological parameters,
we compute the distance separation s12 using eq. 9 and in-
crement the corresponding bin of the final distributions:

RR(s12) += f(θ12)Pz(z1)Pz(z2), (25)

DR(s12) += g(θ12, z1)Pz(z2), (26)

DD(s12) += u(θ12, z1, z2). (27)

For the computation of the anisotropic 2pcf distances σ12

and π12 are computed according to eq. 10 and eq. 11 respec-
tively.

3.4.4 Normalization

The histograms are normalized in the following way. For the
unweighted calculation (all galaxies have weight 1), the nor-
malization constant of RR is simply NRR = NR(NR− 1)/2.

However, for the weighted calculation, the normalization
constant NRR is:

NRR =

NR∑
i=1

NR∑
j=i+1

wRi w
R
j (28)

where wRi is the weight of the ith galaxy in the random cat-
alog. In this specific form, the calculation is O

(
N2
R

)
and re-

quires a double loop over indices. However, it can be rewrit-
ten as:

NRR =
1

2

(NR∑
i=1

wRi

)2

−
NR∑
i=1

(
wRi

)2

 (29)

which is now an O (NR) calculation. The same approach can
be applied when normalizing the DD histogram.

For the unweighted calculation, the normalization con-
stant of DR is simply NDR = ND×NR where ND is the to-
tal number of galaxies in the data catalog. For the weighted
calculation, the normalization constant NDR is:

NDR =

ND∑
i=1

wDi

NR∑
i=1

wRi (30)

where wDi is the weight of the ith galaxy in the data catalog.
The normalization constant NDR only requires an O (NR)
computation and hence can be computed quickly even in the
weighted calculation. Finally, the LS estimator is calculated
according to eq. 2. All the other estimators can be calcu-
lated just as easily, based on DD, RR and DR distributions
computed above.

4 PERFORMANCE OF THE ALGORITHM

4.1 Algorithm settings and Random catalog
generation

The performance of the new algorithm is evaluated by calcu-
lating the runtime and the uncertainty of the LS estimator
of the 2pcf. Though the method described in this paper can
be applied under any cosmology, for certainty we assume a
ΛCDM+GR flat cosmology with parameters consistent with
those used in the analysis of the SDSS-III DR9 data set (An-
derson et al. 2013), i.e. ΩM = 0.274 and ΩΛ = 0.726. In the
distance calculation we set H0 = 100h km s−1 Mpc−1, and
define the distances in units of h−1 Mpc.

Usually, the calculations of RR and DR are the most
computationally expensive since the size of the random cata-
log is typically much larger than the size of the data catalog.
Therefore, we report the results of RR and DR for different
sizes of random catalogs, while we do not change the data
catalog.

To generate random catalogs of any desired size, we
begin with the northern sky of the existing SDSS-III DR9
random catalog which contains ∼3.5M galaxies and extract
the distributions Rang(α, δ) and Pz(z). We then randomly
generate new galaxies according to the product of these dis-
tributions. In each angular cell we generate the number of
galaxies NR(α, δ), which is distributed according to Poisson
distribution with a mean of Rang(α, δ). Each of these galax-
ies is assigned a redshift z, which is distributed according to
Pz(z). Weights are a function of the redshift z. While the

MNRAS 000, 1–8 (2016)
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the random catalog.

new catalogs may amplify existing statistical fluctuations in
the DR9 random catalog, our interest is in testing the run-
time of the algorithms and estimating the variation from
the mean in ξ̂(s) as a function of random catalog size. We
find the bias in the 2pcf, defined as deviations from the true
mean (which is zero), is significantly smaller than statistical
uncertainties (Fig. 8). The bias is produced by shot noise
in the random catalog, so if Rang(α, δ) and Pz(z) are gener-
ated from the tile completeness and radial selection function
it can be minimized.

4.2 Timing study

We compare the timing of the algorithm presented here
against brute-force pair counting and the parallelized algo-
rithm CUTE (Alonso 2012). In all cases, we report runtime
in CPU hours rather than elapsed wall-clock time. As in the
fast algorithm, the brute-force pair count and computation
with CUTE are performed using a grid scheme with a max-
imum distance of lmax = 400h−1 Mpc. Hence, the three sets
of results include the same amount of statistics.

In Fig. 4, we show the runtime of the algorithms mea-
sured for the pure algorithmic parts of the executable, which
are based on a C++ implementation running on modern
CPUs for random catalog sizes of NR = 1M to 50M galax-
ies. For this study we chose the following algorithm settings.
The size of the binning in the right ascension α, declination
δ and the angular separation θ is 1 mrad, which corresponds
to the transverse separation of 2.55h−1 Mpc at the outer-
most radius. The binning in r corresponds to a separation
of 1h−1 Mpc along the LOS. As expected, the runtime of
our realization of the brute-force calculation as well as that
of CUTE are proportional to N2

R for RR and NR for DR. In
contrast, the runtime of the fast algorithm plateaus around
a constant value because it depends on the fiducial volume
and the number of angular and radial bins, rather than the
size of the random catalog NR. The maximum runtime of the
fast algorithm is reached when each bin in the Rang(α, δ) dis-
tribution is populated and hence is used in the calculation
of ξ̂(s).
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∆s. In this study lmax = 200h−1 Mpc. The binning in r is ∆s/2.

The angular binning is ∆s/2/Rmax.
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Figure 6. The total runtime (in CPU hours) of the fast calcula-
tion of the pair-wise combinations as a function of the maximum

distance lmax. The binning in r is 1h−1 Mpc. The angular binning
is 0.56 mrad.

The fits of the runtime dependence on ∆s, shown in
Fig. 5, include terms proportional to ∆s−1 and ∆s−2. The
fits of the runtime dependence on lmax, shown in Fig. 6,
include terms linear and quadratic in lmax. The numbers of
bins in α, Nα and δ, Nδ scale inversely with the bin size ∆s
in the final histogram, and linearly with the distance scale
of interest lmax. The total number of the 2D angular cells is
the product of Nα and Nδ. Thus, the calculation time scales
linearly with the total number of the 2D angular cells. Other
fast computational techniques based on the number density
rather than the actual permutation counting rely on data
distribution in 3D cells (Moore et al. 2001) and thus have
stronger scaling with the number of bins.
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Figure 7. Uncertainties in ξ̂(s) as a function s and the size of the

random catalog. The uncertainties are calculated as the RMS of
ξ̂(s) obtained with 20 catalogs generated for each of three catalog

sizes, for both methods of computing ξ̂(s).

4.3 Algorithm precision

To check the precision of the fast algorithm we generate 20
realizations of random catalogs with 3.5M galaxies each us-
ing the procedure described above. We estimate the root
mean square (RMS) of ξ̂(s) using the 20 random catalogs
and present it in Fig. 7. Note that though the bin size used
in computation is small as specified above, the result is plot-
ted with a much larger bin size, simply for visual purposes.
In both the brute-force and fast algorithms, the uncertainties
in ξ̂(s) decrease as the size of the random catalog increases,
but the uncertainties in the results based on the fast algo-
rithm are smaller than those in the respective brute-force re-
sults, in agreement with the qualitative argument presented
in Section 2.

To check the fast algorithm for bias, we compute ξ̂(s) for
20 mock catalogs representing D with 200k galaxies Poisson-
distributed within the survey volume. These mock catalogs
are produced using the same procedure used to generate the
random catalogs. We find no significant bias; that is, the
mean of ξ̂(s) is centered at zero as expected for a truly ran-
dom distribution, and its RMS obeys a Poisson distribution
(Fig. 8). Note that the Poisson error is dominated by DD,
since the DR and RR are much larger and hence contribute
smaller relative errors.

4.4 Performance on data with BAO signal

To demonstrate the performance of the algorithm for the
anisotropic case we present the result on a mock dataset
with a strong signal embedded (Fig. 9). The signal was gen-
erated by adding spatially correlated galaxy pairs on top of
a uniform background. The galaxy pair separation distance
is distributed according to a Gaussian of mean 105h−1 Mpc
and a standard deviation of 5h−1 Mpc. To avoid biasing the
z distribution of galaxies in the mock sample, after signal
addition some of the galaxies are removed to preserve the
original distribution in z.

Finally, the algorithm is also applied to the SDSS-III
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Figure 8. Mean and RMS uncertainty in ξ̂(s) of 20 uniformly-

generated mock data sets with 200k galaxies per data set.
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Figure 9. ξ̂(σ, π) based on a mock data set with embedded BAO

signal with the radius of 105h−1 Mpc. The BAO signal is clearly
seen as a circle in the 2D distribution.

DR9 BOSS data catalog. The results obtained from the fast
algorithm and the brute-force algorithm and their difference
are presented in Fig. 10. The BAO peak is clearly visible in
both, and the two distributions are consistent.

5 CONCLUSION

We have presented a new computational method of the
galaxy 2pcf that replaces summation over all possible galaxy
pairs with a numeric integration of the probability map. The
method provides a significant reduction in the calculation
time and improves the precision of the calculation. More-
over, the computationally intensive histogramming part of
the calculation is independent of the choice of cosmologi-
cal parameters. The output of the histogramming stage is
used at the fast integration stage, where the cosmological
parameters need to be defined to compute the cosmological
distances. The integration stage can be repeated for a dif-
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Figure 10. Top: ξ̂(s)× s2 for SDSS-III DR9 BOSS data catalog
using the fast algorithm suggested in this paper (blue) compared

to brute-force calculation (red). The error bars represent Poisson

uncertainties in DD. Bottom: the difference between the fast and
brute-force estimates of ξ̂(s)× s2.

ferent set of parameters without redoing the histogramming
stage allowing for a fast probe of a larger parameter space.

In the future, the method could be used for a fast eval-
uation of the galaxy correlations in large spectroscopic sur-
veys. In this case, the generation of large-size random cat-
alogs can be replaced by weighted probability maps deter-
mined by observational conditions.
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