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Abstract

We discuss the effect of hypothetical violation of Lorentz invariance at high ener-

gies on the formation of atmospheric showers by very-high-energy gamma rays. In the

scenario where Lorentz invariance violation leads to a decrease of the photon veloc-

ity with energy the formation of the showers is suppressed compared to the Lorentz

invariant case. Absence of such suppression in the high-energy part of spectrum of

the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is

used to set lower bounds on the energy scale of Lorentz invariance violation. These

bounds are competitive with the strongest existing constraints obtained from timing of

variable astrophysical sources and the absorption of TeV photons on the extragalactic

background light. They will be further improved by the next generation of multi-TeV

gamma-ray observatories.

1 Introduction

Very-high energy (VHE) gamma-ray astronomy is a rapidly developing branch of astrophysics

[1, 2]. Since the first ground-breaking detection of several multi-TeV gamma-ray events
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from Crab nebula in 1989 [3], it has evolved into a well-established technique for high-

quality astronomical observations. More than hundreds of TeV gamma-ray sources have been

discovered and studies of their spectra and variability have made valuable contribution to our

understanding of the internal processes in these objects [4]. The propagation of VHE photons

is affected by the interstellar medium, in particular, the photon background and magnetic

fields. Remarkably, it is also sensitive to tiny deviations from Lorentz invariance (LI).

Possible violation of Lorentz invariance (or Lorentz violation (LV) for short) is motivated

by some approaches to quantum gravity (see reviews [5, 6] and references therein). Several

approaches [7, 9, 8] predict that the departures from LI, while being tiny at energies accessible

in laboratory, grow with energy and become significant at a certain high energy scale MLV .

This scale is conventionally assumed to be of the order of Planck mass MP = 1.2×1019 GeV,

but can also lie a few orders of magnitude below1.

LV in the non-gravity sector is conveniently parameterized within the framework of effec-

tive field theory [11, 12, 13, 14, 15]. In this framework one postulates existence of a preferred

frame, commonly identified with the rest-frame of the CMB. Typical energy attained by a

particle in astrophysical phenomena is significantly higher (in CMB frame) than energy ever

obtained in the laboratory, making these phenomena a sensitive probe of LV [11]. The most

energetic particles detected in cosmic rays are hadrons (protons or nuclei) with energies up to

1020 eV [16]. Their observation has been used to set very stringent limits on LV for protons

[17, 18, 19, 20] and nuclei [21]. However, hadrons are not elementary particles and relating

these bounds to the fundamental parameters of a given model presents a complicated task.

On the other hand, particles from the sector of quantum electrodynamics (QED) — pho-

tons, electrons and positrons — are elementary2 and constraints on their properties translate

directly into the constraints on the underlying theory.

The key consequence of LV is the change in particles’ dispersion relations [14]. This

has two potential implications for VHE gamma rays. First, the dependence of the photon

propagation velocity on energy induces delays in the arrival time of photons with different

energies that can be constrained by timing observations of variable distant sources [24].

Second, it modifies the rates of particle reactions [11, 13, 25, 26]. Several processes, such

as photon decay γ → e+e− or photon splitting γ → 3γ, kinematically forbidden in LI

theory, can become allowed. Cross-sections of other reactions, allowed also in the standard

case (pair production on soft photon background or in the Coulomb field of a nucleus in

1For example, non-projectable Hořava-Lifshitz gravity [10] favors MLV in the range 1015 ÷ 1016 GeV.
2This is true in the simplest setup assumed in this paper. In more complicated scenarios [22, 23] the QED

states, as well as all other particles of the Standard Model, can be composite, which suppresses observable

effects of LV.
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the atmosphere), get modified. This affects the predictions for the gamma-ray spectra of

astrophysical sources. The absence of deviations from the predictions of the standard LI

theory in the observed spectra establishes bounds on the parameters describing LV.

VHE photons arriving to the Earth are detected through particle showers that they

produce in the atmosphere. The depth at which the shower is initiated is determined by

the cross section of the first photon–nucleus interaction, the dominant channel being e+e−

production in the Coulomb field of the nucleus — the Bethe–Heitler process [27]. As discussed

in [28, 26, 29], the cross section of the latter process sensitively depends on LV parameters

in the QED sector. In an interesting parameter range the shower formation is suppressed

compared to the LI case, leading to the suppression of the detected photon flux. In this

paper we emphasize the role of this effect in setting the constraints on LV and derive the

bounds following from the absence of suppression in the measured spectrum of the Crab

nebula.

The paper is organized as follows. In Sec. 2 we briefly describe the framework for parame-

terizing deviations from LI in QED and review the existing constraints on the LV parameters

focusing on the case of quartic dispersion relations. In Sec. 3 we discuss the effect of LV

on the formation of an atmospheric shower by a VHE photon and derive the corresponding

constraints on the scale of LV in the photon dispersion relation using the measurements of

the Crab nebula spectrum by HEGRA and H.E.S.S. collaborations. We also estimate the

reach of the Cherenkov Telescope Array (CTA) and future extensive air shower arrays in

improving these bounds. Section 4 is devoted to conclusions.

2 Existing constraints on Lorentz violation

The generic effect of LV is the modification of particles’ dispersion relations. Assuming

spatial isotropy in the preferred frame, particle energy E depends only on the absolute

value of momentum p in that frame. At momenta smaller than the LV scale MLV it can be

expanded in powers of p. Focusing on the QED sector and keeping up to quartic terms, one

writes the dispersion relations for photons and electrons/positrons:

E2
γ = p2

γ +
εγp

4
γ

M2
LV,γ

, E2
e = m2

e + p2
e(1 + δe) +

εep
4
e

M2
LV,e

, (1)

where εγ,e can take values ±1 and we allowed the scales suppressing the quartic contributions

for photons and electrons/positrons to be different in general. Note that, without loss of

generality, we have set the quadratic correction to the photon dispersion relation to zero, so
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that the low-energy velocity of photons is normalized to one; this can be always achieved by

an appropriate rescaling of the space- or time-coordinates3.

We have not included cubic terms in (1). Within the effective field theory framework,

such terms would arise from CPT -odd contributions in the Lagrangian [13, 14, 30, 31].

Phenomenologically, they are strongly constrained with the required suppression scale being

well above the Planck mass, see e.g. [32]. In what follows we assume that the underlying

theory is CPT invariant4, so that cubic corrections to the dispersion relations are absent.

Finally, the expressions (1) implicitly assume that the dispersion relations are the same

for states with different helicities. For photons, this is guaranteed by the CPT symmetry.

On the other hand, for the fermionic states CPT invariance only ensures that the dispersion

relation of electron with positive (negative) helicity coincides with the dispersion relation of

positron with negative (positive) helicity. We take the equality of the dispersion relations

of electrons with opposite helicities as an additional simplifying assumption. In principle, it

can be ensured by requiring that the QED sector is invariant under parity [26], as it happens

in the LI case. Our results will not depend on this assumption.

Note that the parameters in the dispersion relations (1) can be connected with the coef-

ficients in the Lagrangian of LV QED in the parameterization of [33, 34],

δe = −2̊c
(4)
2 ,

εe
M2

LV,e

= −2̊c
(6)
4 ,

εγ
M2

LV,γ

= −
c

(6)
(I)00√
π
. (2)

We now review the constraints on these parameters.

A. Constraints on LV in electrons. The parameter δe affects the physics at low energies

and can be constrained using terrestrial experiments. The analysis of radiation losses by the

electron and positron beams at LEP gives [35],

|δe| < 2× 10−15 . (3)

The constraints on MLV,e come from the observation of the Crab nebula spectrum in the

energy range up to 0.1 GeV. The spectrum has two peaks well described by the synchrotron-

self-Compton model (see [36] for review). This requires presence of electrons with energies up

to Emax,e ∼ 103 TeV in the plasma inside the nebula. They produce synchrotron radiation

that corresponds to the low-energy hump of the spectrum and rescatter it by the inverse

3 We do not consider in this paper loop corrections to the dispersion relations that can induce a logarithmic

running of the coefficients in (1) with momentum.
4While the CPT symmetry follows from LI, the converse is not true: a theory can be CPT invariant and

Lorentz violating at the same time.
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Compton process giving rise to the high-energy peak. Possible LV in electrons would modify

the intensity of the synchrotron radiation and hence change the Crab spectrum [37, 38]. This

leads to the following bound [38],

MLV,e > 2× 1016 GeV. (4)

This analysis is insensitive to LV in photons as the energy of the synchrotron radiation (up

to 0.1 GeV) is much smaller than the energy of electrons.

Ref. [38] performs the analysis under the assumption δe = 0. However, relaxing this

assumption is not expected to significantly change the constraint (4). Further, it is instructive

to estimate the bound on δe that can be obtained if the analysis is performed allowing for its

non-zero values. The relevant quantity for the synchrotron radiation is the deviation of the

group velocity of electrons from unity. Comparing the contributions to the group velocity

from the quadratic and quartic terms in the electron dispersion relation, we find that the

bound (4) can be translated into (cf. [39]),

|δe| . 3(Emax,e/MLV,e)
2 ∼ 10−20 . (5)

Of course, this is only a crude estimate and a careful analysis taking into account the

dynamical processes in the Crab nebula is required to set rigorous bounds on δe. The fact

that (5) is more than five orders of magnitude stronger than the best laboratory constraint

(3) makes such analysis promising. However, it is beyond the scope of the present paper.

We are going to see that the constraints on LV in the photon dispersion relation that can

be obtained from the current data are significantly weaker than for electrons. Therefore we

will neglect LV in electrons from now on.

B. Photon time of flight from distant sources. A quartic correction in the dependence

of photon energy on momentum implies the dependence of photon phase and group velocities

on energy. Depending on the sign of the correction, high-energy photons from fast flares in

distant sources would arrive earlier or later than low-energy ones. The time of flight analysis

has been performed for active galactic nuclei (AGN) [40], gamma-ray bursts (GRB) [41] and

pulsars [42]. Absence of statistically significant time-lags between photons with different

energies yields,

MLV,γ > 6.4× 1010 GeV, AGN [40] , (6)

MLV,γ > 1.3× 1011 GeV GRB [41] . (7)

The bound from pulsars is significantly weaker.
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The time of flight bounds have the advantage of directly constraining the photon dis-

persion relation, independently of the effects of LV on the interactions. However, they are

somewhat sensitive to the model of the source flare that contributes the largest uncertainty

in the analysis. Stronger bounds on MLV,γ are obtained by considering the physical processes

affecting the propagation and detection of VHE photons. The relevant processes differ de-

pending on whether εγ is positive or negative. With some abuse of language, we will refer

to these cases as “superluminal” and “subluminal” respectively.

C. Photon decay to e+e− pair. In the superluminal case (εγ = +1) a high-energy

photons can decay into e+e− pairs in the vacuum. This process occurs only if the photon

energy exceeds a certain threshold that can be found as follows. The quartic contribution

to the dispersion relation can be thought of as an effective momentum-dependent “photon

mass”,

m2
γ,eff (pγ) ≡ E2

γ − p2
γ =

p4
γ

M2
LV,γ

. (8)

It characterizes the amount of energy that can be transferred from the photon to the decay

products. The process γ → e+e− becomes allowed once mγ,eff exceeds5 2me. The pair is

created with approximately equal momenta — half of the initial photon momentum. Above

the threshold the decay is very rapid6 and leads to a sharp cutoff in photon spectrum of

all astrophysical sources: no high-energy photons can reach the Earth from astronomical

distances [13]. Thus, an observation of gamma rays of astrophysical origin with an energy

Eγ gives the bound,

MLV,γ >
E2
γ

2me

. (9)

The recent analysis [43] using the highest-energy photons observed from the Crab nebula

sets the constraint,

MLV,γ > 2.8× 1012 GeV (εγ = +1). (10)

Even if the photon decay into e+e− is kinematically forbidden, the flux from astrophysical

sources can be depleted by photon splitting γ → n γ. This process is kinematically allowed

whenever the photon dispersion relation is superluminal. Splitting into 3 photons7 γ → 3γ

5Recall that we neglect LV in electrons.
6When mγ,eff � 2me the decay width is given by Γγ→e+e− = (αp3γ)/(3M2

LV,γ), where α is the fine

structure constant [26].
7The width of splitting into 2 photons γ → γγ is generally expected to be more suppressed by additional

powers of the LV scale as in the limit of LI QED the matrix element with an odd number of external photon

legs identically vanishes (this is the statement of the Furry theorem), see a discussion in [6].
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was analyzed in [44] for the case of cubic corrections to the photon dispersion relation and

the width of this process was found to strongly depend on energy and the LV scale. Thus,

observations of multi-TeV photons of astrophysical origin put restrictive bounds on the latter.

However, a study for the case of quartic dispersion relation is missing in the literature. We

leave the derivation of the corresponding bounds for future.

D. Modification of pair production on background photons. Standard LI physics

predicts that a VHE photon interacts with extragalactic background light (EBL) producing

an e+e− pair, γγb → e+e−, where γ is the VHE photon and γb is a photon from the back-

ground. The mean free path of a photon with energy of several ∼ 100 TeV is ∼ 1 Mpc [45],

which leads to an attenuation of VHE photon flux from extragalactic sources. For sources

within the Milky Way this process is irrelevant.

Subluminal LV in photons (εγ = −1) shifts the threshold of pair production upward [46,

47, 48, 49, 50]. This leads to higher predictions for the VHE photon flux from extragalactic

sources than in the LI case. Non-detection of large fluxes constrains LV. Ref. [51] uses the

data on the Mrk 501 flare in 1997 [52] to establish a bound on the cubic correction to the

photon dispersion relation. Translating it into the bound on the quartic term one obtains,

MLV,γ & 3× 1011 GeV (εγ = −1). (11)

Recent analysis of the VHE part of the spectrum of Mrk 501 during the 2014 flare leads to

a stronger limit [53]:

MLV,γ > 7.5× 1011 GeV (εγ = −1) (12)

at 95% confidence level (CL). It is worth noting that these bounds rely on the assumption

that the observed cutoff in the Mrk 501 spectrum is not intrinsic to the source, but is fully

accounted for by absorption on EBL. Besides, they require modeling of the EBL spectrum.

While the understanding of EBL has significantly improved over the last decade (see [51, 54]

and references therein), some uncertainties still remain [55, 56].

In Refs. [57, 58] it was suggested that a very strong constraint,

MLV,γ & 1.2× 1022 GeV (εγ = −1), (13)

can be obtained from non-observation of a photon component in ultra-high-energy (UHE)

cosmic rays (energies & 1019 eV). In the LI case photons with such energies get absorbed

through pair production on the cosmic microwave background (CMB), whereas LV at a scale

below (13) would suppress this process and UHE photons would reach the Earth. Clearly,
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this argument requires UHE photons to be produced in the Universe in the first place. As

such, it essentially relies on the assumption that the dominant component of UHE cosmic

rays are protons that give rise to UHE photons through a cascade starting with a pion

production on CMB — the GZK process [59, 60]. At the moment it is not clear whether

this assumption actually holds [61].

3 Effect of Lorentz violation on atmospheric showers

The bounds on MLV,γ reviewed in the previous section have been derived under the assump-

tion of standard interaction of high-energy photons with the Earth’ atmosphere. We now

discuss the validity of this assumption and obtain new constraints by considering the effect

of LV on photon-induced atmospheric showers. We follow the approach of [29] which we

adapt here to the case of multi-TeV energies.

3.1 Suppression of the Bethe-Heitler process

A primary photon interacts with the atmosphere mainly through the Bethe – Heitler process

— pair production in the Coulomb field of an atomic nucleus in the air. The standard LI

result for the cross section of this process reads [27],

σBH =
28Z2α3

9m2
e

(
log

183

Z1/3
− 1

42

)
, (14)

where α is the fine structure constant and Z is the charge of the nucleus; for scattering

on nitrogen (Z = 7) this gives σBH ≈ 0.51 b. The depth of the first interaction X0 is a

random variable obeying exponential distribution with the mean value 〈X0〉 = mat/σBH '
57 g cm−2, where mat is the average mass of the atoms of the air (typically, nitrogen). The

first interaction leads to the development of an electromagnetic cascade with the number

of particles in the cascade reaching its maximum at the depth Xmax. The length of the

shower development ∆X ≡ Xmax − X0 follows the Gaussian statistics. The mean value

〈∆X〉 depends logarithmically on the primary photon energy and varies between 200 g cm−2

and 250 g cm−2 in the relevant energy range (from 100 GeV to 100 TeV). Within this range

the dispersion Σ∆X ≈ 50 g cm−2 is approximately constant [62].

As pointed out in [28, 26], LV changes the cross section of the Bethe – Heitler process.

Qualitatively this can be understood as follows. The electron mass in the expression (14)

characterizes the momentum transfer between the photon and nucleus required to produce

the e+e− pair. In the LV case the momentum transfer is shifted due to the presence of the
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effective photon mass (8). Thus, up to a factor of order one, the modified Bethe – Heitler

cross section can be estimated as (14) with the replacement

m2
e 7→ |m2

e −m2
γ,eff (pγ)/4| . (15)

This modification is not relevant for superluminal photons as the cross section essentially

remains close to its value in the LI theory as long as 0 < m2
γ,eff (pγ) < 4m2

e, i.e. as long as the

photon decay is forbidden; for higher values of m2
γ,eff photon decay provides the dominant

signature of LV. However, for subluminal photons the modification of the Bethe – Heitler

cross section can be important. If

m2
γ,eff (pγ) < 0 , |m2

γ,eff (pγ)| � 4m2
e (16)

the cross section gets strongly suppressed. These qualitative arguments are supported by

an explicit calculation in LV QED. Under the conditions (16) the modified cross section

reads [26],

σLV
BH =

16Z2α3

3|m2
γ,eff (pγ)|

log
1

αZ1/3
log
|m2

γ,eff (pγ)|
2m2

e

. (17)

The suppression factor
σLV

BH

σBH

'
12m2

eM
2
LV,γ

7E4
γ

· log
E4
γ

2m2
eM

2
LV,γ

(18)

quickly decreases with energy.

Smaller cross section delays the formation of the electromagnetic cascade which is now

initiated deeper in the atmosphere. Correspondingly, the depth of the maximal shower

development also increases. If it exceeds certain limiting value X lim
max which depends on the

experimental setup, the event cannot be recognized as a photon. This implies a fast drop

in the number of registered photons above certain energy which is determined by the LV

scale MLV,γ. Note that this effect is opposite to the other consequence of LV discussed in the

previous section, namely, inefficient absorption of multi-TeV photons on EBL which leads

to the increase of the photon flux from extragalactic sources. Therefore, in analyzing the

constraints on LV it is important to make sure that these two effects do not compensate each

other.

3.2 Constraints from observations of the Crab nebula

Absence of evidence for the suppression of the shower formation in the observational data

can be used to derive constraints on MLV,γ. The most energetic photon events have been

detected from the Crab nebula. The spectra were measured independently by the HEGRA
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experiment up to Eγ ∼ 75 TeV [63] and by H.E.S.S. up to Eγ ∼ 40 TeV [64]; they are shown

in Fig. 1. Both are well described by a power law(
dΦ

dE

)
obs

∝ E−n , n =

2.62± 0.02 HEGRA [63]

2.7± 0.1 H.E.S.S. [64]
(19)

without any significant evidence for a cutoff. As the Crab nebula is a galactic source, there

is no significant absorption on EBL.

In the presence of LV the measured flux gets reduced,(
dΦ

dE

)
LV

= Preg(Eγ) ·
(
dΦ

dE

)
LI

, (20)

where Preg(Eγ) is the probability to actually register a photon with energy Eγ. The latter

is equal to the probability that Xmax of the shower induced by the photon does not exceed

X lim
max. To find Preg we assume that LV affects only the cross section of the first interaction and

does not modify the subsequent development of the shower. This is justified as the secondary

particles in the electromagnetic cascade are less energetic than the primary photon. Then

Preg is given by

Preg(Eγ) =

∫ Xlim
max

0

dXmax

∫ Xmax

0

dX0
e
− (Xmax−X0−〈∆X〉)2

2Σ2
∆X

√
2πΣ∆X

· e−X0/〈X0〉LV

〈X0〉LV
, (21)

where

〈X0〉LV =
σBH

σLV
BH(Eγ)

〈X0〉LI . (22)

The registration probability starts deviating significantly from unity at the energies where

〈X0〉LV becomes comparable to X lim
max. In the limit 〈X0〉LV � X lim

max it tends to

Preg(Eγ) '
X lim

max − 〈∆X〉
〈X0〉LV

(23)

which reflects the fact that for large 〈X0〉LV the probability to form a shower is uniformly

distributed over the depth of the atmosphere.

The effect of LV on the prediction for the Crab spectrum is illustrated in Fig. 1. We take

the primary spectrum to be power-law with the spectral index fixed by the data points at

energies below 20 TeV. One clearly sees a break in the highest-energy tail of the spectrum

predicted by the model due to the suppression of shower formation. We now analyze the

HEGRA and H.E.S.S. datasets separately and obtain the constraints on MLV,γ from the

excess of the number of actually observed events over that predicted by the LV model.
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Figure 1: Photon spectrum of the Crab nebula obtained by collaborations HEGRA (385

hours of data from 1997 to 2002) [63] (left) and H.E.S.S. (4.4 hours of data during the flare

of March 2013) [64] (right). The dashed line corresponds to the best power-law fit of the

spectrum while the dotted lines show the prediction for the flux under the hypothesis of

Lorentz violation with a given MLV,γ.

A. HEGRA data. HEGRA experiment has collected 385 hours of data of the Crab photon

spectrum in the multi-TeV range during the period from 1997 to 2002 [63]. The obtained

spectrum shows power-law dependence till the last energy bin8 centered at Emax = 75 TeV

(see Fig. 1, left panel). Numbers of events in the direction of the source Non together with

the numbers of events in a region of the sky away from the source Noff characterizing the

background are listed for each energy bin in Table. 3 of Ref. [63]. The method of gamma–

hadron separation used in the HEGRA analysis does not include cuts onXmax; conservatively,

we take the depth of the atmosphere at the HEGRA location (approximately 1000 g cm−2

for showers from the zenith angle ∼ 45◦) as the limiting shower depth X lim
max.

Data in the highest energy bin have the strongest power in constraining LV. We apply

the likelihood ratio method [65, 66] to these data to test the one parameter family of LV

hypotheses parameterized by MLV,γ. The observed values (Non = 36, Noff = 104) are assumed

to be random realizations of Poisson distributions with the average values

〈Non〉 = 〈Ns〉+ 〈Nb〉 , 〈Noff〉 = α−1〈Nb〉 , (24)

where 〈Ns〉, 〈Nb〉 are the expectation values of the signal and background respectively, and

8A slight steepening may be seen at the end of the spectrum, but its significance is less than 2σ.
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α = 0.2 is the ratio of the on- and off-exposures [63]. The expectation value of the signal in

the presence of LV is given by,

〈Ns〉LV = Preg(Emax) 〈Ns〉LI , (25)

where 〈Ns〉LI is the expectation value of the signal in the standard LI theory; it is obtained by

extrapolating the flux from energies below 20 TeV with a power-law. The expectation value

of the background 〈Nb〉 is unknown and is marginalized over. The likelihood is calculated

as the probability to have the observed realization (Non, Noff) for a given value of MLV,γ,

normalized to the maximal value of the probability over all possible choices of MLV,γ. It is

known that the logarithm of the likelihood, multiplied by (−2), obeys the χ2 distribution.

The resulting likelihood profile is shown in Fig. 2, left panel. From it one reads the

constraint

MLV,γ > 2.1× 1011 GeV (εγ = −1) at 95% CL. (26a)

In the effective field theory parameterization of [33] this translates into a one-sided bound

on the coefficient c
(6)
(I)00,

c
(6)
(I)00 < 4× 10−23 GeV−2 at 95% CL. (26b)

The data exhibit a slight preference for MLV,γ ≈ 6 × 1011 GeV, but it is not statistically

significant. It is due to the fact that the observed flux in the last bin lies below the best

power-law fit.

Let us comment on the sensitivity of the bound (26) to the assumptions about the intrinsic

spectrum of the Crab nebula. If instead of a pure power-law, we use a model with a cutoff

in the intrinsic spectrum, the bound on LV scale will become stronger. Indeed, the slight

steepening of the observed spectrum in the last bins will be accounted for by the intrinsic

cutoff, leaving no room for an additional suppression due to LV. On the other hand, if the

model for the intrinsic spectrum includes hardening at high energies, the bound on MLV,γ

will get weaker. However, this scenario is disfavored according to the present theoretical

understanding of the VHE photon emission in the Crab nebula [67]. Thus, the bound (26)

can be considered as conservative.

B. H.E.S.S. data. The second data sample that we consider in this paper is the mea-

surement of the Crab spectrum resulting from 4.4 hours of data taking by the H.E.S.S.

observatory during the flare in March 2013 [64]. The data extend till Emax ∼ 40 TeV, see
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Figure 2: Dependence of the likelihood on the scale of Lorentz violation in photons MLV,γ

obtained using the Crab spectrum measurements by HEGRA (left) and H.E.S.S. (right).

The values of MLV,γ to the left of the vertical line are excluded at 95% CL.

Fig. 1, right panel9. The number of on- and off-events in the last bin are (Non = 4, Noff = 1).

The gamma-hadron separation technique implemented in H.E.S.S. uses a multivariate anal-

ysis method which includes, in particular, cuts on Xmax [69, 70]. Conservatively, we take

X lim
max = 600 g cm−2: deeper showers certainly would not be recognized as photon events.

We use the same approach as in the case of HEGRA dataset to determine the likelihood

of the LV hypothesis. The ratio between the on- and off-exposures for the last bin is taken

as α = 0.095 [71]. The resulting likelihood curve is shown in the right panel of Fig. 2. It

implies the bound,

MLV,γ > 1.3× 1011 GeV (εγ = −1) at 95% CL , (27a)

or

c
(6)
(I)00 < 10−22 GeV−2 at 95% CL (27b)

in the notations of [33]. This constraint is weaker than (26), which is a consequence of the

lower statistics. A full statistical analysis of the H.E.S.S. data on the Crab flare including

determination of Xmax for individual events has potential to improve the bound (27). Such

9 The H.E.S.S. data on the Crab spectrum in the quiet state [68], despite being collected over a longer

observation time (22.9 hours), terminate at a lower energy Emax ∼ 30 TeV and thus are less suitable for

constraining LV.
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analysis would require an access to the raw experimental data and is beyond the scope of

the present work.

The constraints (26), (27) obtained in this subsection are of the same order, but somewhat

weaker than the bounds from the absorption on EBL (11), (12). Still, they are important

to validate the latter bounds which rely on an implicit assumption that LV does not modify

shower formation for photons with energies below ∼ 20 TeV. Our study implies that this

assumption is indeed correct.

3.3 Estimates for future experiments

It is interesting to analyze how the bounds on LV can be improved by future observations.

Cherenkov Telescope Array (CTA) [72] will be able to measure the photon flux from the

Crab nebula at energy ∼ 100 TeV upon 50 hours of data taking for any realistic model of

the Crab emission spectrum. This forecast assumes the quality requirements of no less than

10 signal events in each energy bin and the statistical significance of non-zero flux detection

at least 5σ [73]. To estimate the CTA sensitivity to LV we take several sample values of

(Non, Noff) that satisfy these requirements (for α = 0.2), see Table 1. Next, we assume that

Non Noff 〈Ns〉LI 95% CL bound on MLV,γ (GeV)

11 3 10.4 1.72× 1012

20 18 16.4 1.90× 1012

30 42 21.6 1.95× 1012

Table 1: CTA exclusion potential for several realizations of the number of events corre-

sponding to 5σ detection of the photon flux in the energy bin centered at 100 TeV.

the expectation value of the signal predicted by the LI model 〈Ns〉LI coincides with the best-

fit value following from the measurements. Finally, we calculate the likelihood dependence

on MLV,γ following the approach described in the previous subsection; we assume that the

central energy in the bin is 100 TeV and use X lim
max = 600 g cm−2. The resulting 95% CL

bounds are listed in the Table 1. Conservatively, we conclude that a 5σ detection of 100 TeV

photon flux by CTA will allow to constrain

MLV,γ > 1.7× 1012 GeV (εγ = −1) . (28)

This is almost an order of magnitude stronger than the limit (26a) from HEGRA data and

exceeds the best current limit (12) by a factor of 2.5. Similar results can be obtained in the
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case of a 100 TeV photon flux detection by the HAWC experiment [74].

The above analysis provides a simple criterion to estimate the exclusion power of a given

experiment that can be used also at higher photon energies. Under the condition of a 5σ

detection of the photon flux, the values MLV,γ can be excluded at 95% CL if they suppress

the registration probability of the photon (21) by at least a factor of two,

Preg(Eγ) ≤
1

2
. (29)

Extensive air shower arrays, such as LHAASO [75], TAIGA (HISCORE) [76] and Carpet-

2 [77] are designed to register photons with energies up to (a few)×102 TeV. If the Crab

spectrum does not have a sharp cutoff up to these energies, they will be able to detect the

corresponding flux with high significance. Assuming a 5σ detection of photons with energies

∼ 400 TeV and using (29) as the exclusion criterion, one obtains the lower bound,

MLV,γ & 3× 1013 GeV (εγ = −1) . (30)

Clearly, the constraint on LV will get even stronger if photons with yet higher energies

are observed. At present we do not know if sources of such photons exist in the universe.

One possibility could be photons produced by the interaction of UHE cosmic rays with CMB.

These photons would have energies 1019÷ 1020 eV, but their flux is highly uncertain depend-

ing on the chemical composition of UHE cosmic rays and the unknown radio background.

Nevertheless, with an appropriate reconstruction of Xmax for individual events, the bounds

on LV can be obtained without any assumptions about the origin of primary photons or

their flux, the only requirement being a detection of a few photon-induced showers. In par-

ticular, a handful of 5 photon events with energies ∼ 1019 eV will be sufficient to set strong

trans-Planckian constraint MLV,γ & 4× 1023 GeV [29].

4 Conclusions

We have shown that in LV QED the cross section of the Bethe–Heitler process responsible

for the first interaction of VHE photons with the atmosphere is suppressed compared to the

LI theory. This increases the depth of the photon-induced showers which, in turn, leads to

suppression of the number of registered VHE photons. Using absence of such suppression in

the high-energy part of the Crab spectrum we obtained 95% CL lower bounds on the scale

of LV in photons. The bound following from the data collected by the HEGRA experiment

(26) is stronger than the one obtained using the H.E.S.S. data on the Crab March 2013 flare

(27), which is due to higher HEGRA statistics. A more detailed statistical analysis involving
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the characteristics of observed showers (in particular, the values of Xmax) would plausibly

improve the H.E.S.S. bound.

The constraints obtained in this work are a few times weaker than the bounds derived

from VHE photon absorption on EBL. Still, they play the role of validating the latter bounds

which were obtained under the assumption of the standard shower formation probability.

We have analyzed the potential of future experiments such as CTA and extensive air

shower arrays to improve the bounds on LV from shower formation. We have found that,

depending on the maximal energy of detected photons, the constraints can be improved by

one (Emax ∼ 100 TeV) or two (Emax ∼ 400 TeV) orders of magnitude. This is comparable to

the bound that can be obtained by CTA using the EBL absorption feature in the spectrum

of Mrk 501 under the most favorable assumption of the power-law emission spectrum10 [78].

It is worth emphasizing that the bounds derived from the shower formation mostly rely

on the physical processes happening in the atmosphere and thus are very robust. The only

modeling of the source that enters into our analysis is an assumption that a power-law

spectrum sets an upper limit on the primary photon flux. Future observations may require

more detailed models of the emission spectrum. However, given that the most plausible

source of photons with energies (a few)×100 TeV is the well understood Crab nebula, this

does not appear problematic. Moreover, a proper reconstruction of Xmax for individual events

allows to get rid of any assumptions about the primary flux, making the bounds completely

independent of the source model [29].
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