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MEAN FLOW EVOLUTION OF SATURATED FORCED
SHEAR FLOWS IN POLYTROPIC ATMOSPHERES

V. Witzke1 and L. J. Silvers1

Abstract. In stellar interiors shear flows play an important role in many
physical processes. So far helioseismology provides only large-scale
measurements, and so the small-scale dynamics remains insufficiently
understood. To draw a connection between observations and three-
dimensional DNS of shear driven turbulence, we investigate horizon-
tally averaged profiles of the numerically obtained mean state. We fo-
cus here on just one of the possible methods that can maintain a shear
flow, namely the average relaxation method. We show that although
some systems saturate by restoring linear marginal stability this is not
a general trend. Finally, we discuss the reason that the results are more
complex than expected.

1 Introduction

The complex gas dynamics present in stellar interiors is important for many stel-
lar process, such as mixing behaviour (see e.g. Zahn, 1974; Schatzman, 1977) and
magnetic field generation (e.g. Miesch and Toomre, 2009; Jones et al., 2010). The
tachocline, which is located at the base of the convection zone, is believed to play
a crucial role in these processes. This thin region with a strong radial shear flow
was theoretically predicted (Spiegel and Zahn, 1992) and subsequently confirmed
by helioseismic observations (e.g. Kosovichev, 1996).

Velocity measurements obtained by helioseismology suggest a hydrodynami-
cally stable tachocline (Miesch, 2007) i.e. the approximated Richardson number is
significantly greater than the theoretical stability threshold of 1/4 (Miles, 1961).
However, helioseismology is restricted to large-scale time-averaged measurements
(Christensen-Dalsgaard and Thompson, 2007), such that turbulent motions can
still be present on small length- and time-scales. Such a scenario, where a hy-
drodynamically unstable system appears stable on large scales was, for example,
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suggested by Vasil and Brummell (2009) and remains to be investigated.

Due to the inability of observing most astrophysical shear regions in detail, ana-
lytical and numerical techniques have to be used to investigate the motions present
in such regions. Most local numerical studies of shear flows that lead to turbulence
exploit an unforced flow (e.g. Caulfield and Peltier, 2000; Smyth and Winters,
2003), which results in a finite lifetime of an initially unstable background state.
However, astrophysical shear flows can be either transient features or be sustained
over very long time-scales. Thus investigations of astrophysical shear flows use
different methods to reach a sustained flow. While we previously have compared
various methods to sustain large-scale shear flows during the saturated phase (see
Witzke et al., 2016) here we concentrate on just one method. The method se-
lected, the relaxation method, is suitable for modelling a target flow in the satu-
rated phase. This method allows the time-scale on which the system is driven to
the initial shear flow to be adjusted. Through our investigations we shed light on
the question of how likely it is that an initially unstable shear flow will result in
global flow profiles that suggest a stable system. We analyse the saturated regime
of two differently stratified systems in terms of their horizontally averaged profiles
and the resulting effective Richardson number.

2 Model

We consider a three-dimensional domain of depth d, bounded by two horizontal
planes located at z = 0 and z = 1, and periodic in both horizontal directions.
The fluid is assumed to be an ideal monatomic gas with the adiabatic index
γ = cp/cv = 5/3 and constant transport coefficients. The set of dimensionless
equations describing the problem and the forcing method used to sustain an ini-
tial velocity, u0 = (u0(z), 0, 0)

T , are exactly the same as described in Witzke et al.
(2016).

In order to investigate whether an initially unstable system can reach a sat-
urated state where the horizontally averaged profiles, associated with large-scale
averaged measurements, suggest a stable system we focus on two differently strat-
ified cases. Case I is strongly stratified, but the polytropic index is chosen such
that it is not far from being unstable to convection. This case was investigated
in Witzke et al. (2016), where different forcings were compared. Here rather than
focusing on the different forcing methods we will instead examine the horizontally
averaged profiles during the saturated regime in order to understand if it suggests
a stable or unstable system. Case II is weakly stratified, but has a large polytropic
index to ensure that the system is far from the onset of convection. The Prandtl
number is taken σ = 0.1 for both cases, as σ < 1 is more relevant for stellar in-
teriors. All relevant parameters are summarised in Table 1. Using the relaxation
method we consider different relaxation times, τ0, in order to investigate how hor-
izontally averaged profiles are affected. Then, the system is evolved sufficiently
long after saturation to reach a statistically steady state.
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Table 1. Parameters for the investigated cases, where the resolution of the domain is

given by Nx, Ny and Nz . The dynamical viscosity is Ckσ, where Ck is the thermal

diffusivity and σ the Prandtl number. The temperature gradient is denoted by θ and

the polytropic index is m. For the initial velocity profile the shear amplitude is U0 and

the shear width is controlled by Lu. The resulting minimum Richardson number, Ri, is

calculated for the initial state.
Case Ckσ θ m U0 1/Lu Nx Ny Nz Ri

Case I 10−4 5 1.6 0.2 80 256 256 360 0.003
Case II 10−5 0.25 4 0.05 40 256 64 384 0.07

3 Results

During the evolution of an unstable shear flow the horizontally averaged density,
temperature and velocity profiles are modified. Therefore, the effective minimal Ri
number of the system changes. In stratified systems this modification comes from
two sources: The change in the Brunt-Väisälä frequency, due to changes in the
averaged density and temperature profiles, and the change in turnover rate of the
shear. For both cases we consider the first contribution remains small compared
with the latter one. The minimal effective Richardson number is calculated from
the horizontally averaged profiles as follows,

minRieff = min
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, (3.1)

where horizontally averaged quantities are denoted by an overbar. This quantity
is compared to the initial minimal Ri in order to study the change to the system.
Investigating Rieff for case I (see Fig. 1 (a)), we find that it increases significantly
and reaches a maximum when the instability saturates. Afterwards, Rieff fluctu-
ates around a value, and this value increases as τ0 increases. The late time values
are Rieff ≈ 0.09 for the relaxation method with τ0 = 10 and Rieff ≈ 0.01 for
τ0 = 1.0. For both runs of case I, Rieff obtained in the statistically steady state
is one order of magnitude greater than the initial Ri = 0.003 number.

For case II, see Fig. 1 (b), the system is initially closer to the stability threshold.
Varying the relaxation time gives rise to a similar trend as in case I, where the ef-
fective Richardson number during the quasi-static regime increases as τ0 increases.
When using τ0 = 50, the minimal Rieff becomes greater than 1/4 short after the
system starts to saturate. However, it drops down to approximately 0.2 at later
times. This shows that for a few special cases the Kelvin-Helmholtz instability
saturates by restoring linear marginal stability (Zahn, 1992; Prat and Lignières,
2014), but we did not find any evidence for an effective Richardson number greater
than the linear stability threshold value during a statistical steady state.
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Fig. 1. The minimal effective Richardson number obtained from the horizontally aver-

aged profiles as in Equation (3.1) with time for each of the two cases we consider. a)

case I using two different relaxations times τ0 is displayed. b) case II with three different

relaxation times τ0 is shown. The red line indicates the 1/4 stability threshold.

4 Conclusions

Investigating a shear flow instability after the system starts saturating reveals a
significant increase in the minimal Ri obtained from horizontally averaged pro-
files. It becomes evident that the relaxation time used in the forcing method has a
significant effect on the resulting minimal Rieff during the steady state. Starting
with an initially unstable configuration close to the stability threshold can lead
to a transient phase where the effective Ri number becomes greater than 1/4.
However, the minimal Rieff decreases notably below the stability threshold at
later times. It is therefore difficult to achieve a turbulent flow that looks stable
in a pure hydrodynamical system with a connectively stable stratification when
starting from an initially unstable configuration.
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