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We update the search for features in the Cosmic Microwave Background (CMB) power spectrum
due to transient reductions in the speed of sound, using Planck 2015 CMB temperature and polar-
isation data. We enlarge the parameter space to much higher oscillatory frequencies of the feature,
and define a robust prior independent of the ansatz for the reduction, guaranteed to reproduce the
assumptions of the theoretical model. This prior exhausts the regime in which features coming
from a Gaussian reduction are easily distinguishable from the baseline cosmology. We find a fit to
the ` ≈ 20–40 minus/plus structure in Planck TT power spectrum, as well as features spanning
along higher `’s (` ≈ 100–1500). None of those fits is statistically significant, either in terms of
their improvement of the likelihood or in terms of the Bayes ratio. For the higher-` ones, their
oscillatory frequency (and their amplitude to a lesser extent) is tightly constrained, so they can be
considered robust, falsifiable predictions for their correlated features in the CMB bispectrum. We
compute said correlated features, and assess their signal-to-noise and correlation to the ISW-lensing
secondary bispectrum. We compare our findings to the shape-agnostic oscillatory template tested
in Planck 2015, and we comment on some tantalising coincidences with some of the traits described
in Planck’s 2015 bispectrum data.

PACS numbers: 04.60.-m; 98.80.-k; 98.80.Cq; 98.80.Qc

I. INTRODUCTION

The Planck collaboration [1] has released all the data taken by the survey, including polarisation power spectrum
and some results of the analysis of the bispectrum. However, a likelihood for the CMB bispectrum has not been
released for public use. The analyses carried out by the Planck collaboration in the context of primordial fluctuations
have not found any strong deviation from the predictions of the canonical single-field slow-roll inflation paradigm.
In particular, they found no significant deviation from the vanilla power-law power spectrum [2], neither a detection
of any shape of primordial non-Gaussianity [3]. Some hints are reported for small deviations on both data sets, but
always in the low signal-to-noise regime, under the significance necessary to claim a detection. Some of those hints
persist from Planck 2013 [4, 5] through Planck 2015 (and even WMAP [6]), such as a dip at ` ≈ 20 and some small
features in the CMB temperature bispectrum, that have been deemed interesting by the Planck collaboration.

Many of the extensions of canonical single-field slow-roll inflation predict [7] correlated features in both the 2- and
3-point correlation functions.1 Notably, in a few cases, the correlations can be computed explicitly [8–12]. When
models with correlated features are tested against the data in a joint approach for different observables at the same
time, the significance of possible fits is expected to increase, as has been reported in particular for oscillatory feature
searches combining CMB power spectrum and bispectrum [13–15] (see also [16] for a model-independent approach).

This motivates us to update our ongoing search [17–19] for features produced by transient reductions in the speed of
sound of the inflaton [9] with the new Planck 2015 temperature and polarisation power spectrum data, in preparation
for a joint search including bispectrum data. As a part of it, we have re-evaluated the prior of our search to ensure
theoretical self-consistency in a more efficient way (imposed a priori, not a posteriori) and enlarged the parameter
space such that it covers all the configurations for which the feature is distinguishable from the baseline cosmology.
With the results of this updated search, we formulate predictions for the CMB bispectrum that are robust, i.e. are
guaranteed to be theoretically self-consistent and have a very narrow range of oscillatory frequencies. They are also
fundamentally different to the oscillatory bispectrum templates tested by Planck so far, in that the oscillations in the
squeezed limit are out of phase by π/2 with those on the equilateral and folded limits.

1 There is very extensive literature on this subject; we refer the reader to the recent review [8].
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The present paper is structured as follows: we begin by reviewing the theoretical framework for this family of
inflationary features, and describe their shape in the CMB observables (section II A); then, we present our ansatz for
the speed of sound reduction (section II B) and discuss the prior that we will employ in our sampling (section II C).
After discussing the data sets and methodology with which our search has been conducted (section III), we present
and discuss our results for the CMB power spectrum (section IV), and draw from them predictions for the CMB
bispectrum (section V) which are discussed in the context of Planck’s search for non-Gaussianity. Finally, we discuss
the relevance of our findings and prospects for searches for features of this kind (section VI). The numerical tools used
to carry out CMB bispectrum computation and forecasts are described in appendix A.

II. THEORETICAL MODEL AND PRIOR

A. Review of the theoretical model

We work in the framework of effective field theory of inflationary perturbations [20], described in terms of the
Goldstone boson of time diffeomorphisms, π(t,x). This is related to the adiabatic curvature perturbation linearly:
R(t,x) = −H(t)π(t,x), with H := ȧ/a and a is the scale factor (from now on, we use natural units, ~ = c = 1, define
the reduced Planck mass as M−2

Pl := 8πG, and denote physical time derivatives with an overdot, ˙ := d/dt).
The effective quadratic action for π reads

S2 = M2
Pl

∫
d4x

ε a3H2

c2s

{
π̇2 − c2s

(∇π)2

a2

}
, (1)

where ε := −Ḣ/H2 and the time-dependent speed of sound cs that appears in the action accounts for the effect of
the heavy components of the field space that are made implicit by the effective field theory.

In order to get a physical grasp of the significance of a speed of sound reduction, carrying out explicitly the
integration of the heavy mode in a 2-field scenario, one gets [21]

cs =

(
1 +

4θ̇2

M2 − θ̇2

)−2

, (2)

where θ̇ is the angular velocity of the background trajectory along the approximate minimum of the potential, and
M2 would be the mass squared of the heavy modes perpendicular to that trajectory if the trajectory were straight.
Thus, soft, adiabatic turns in the inflationary trajectory in field space result in transient reductions of the speed of
sound.2

We can rewrite the quadratic action (1) as

S2 = S2,free +M2
Pl

∫
d4x ε a3H2(−uπ̇2) , (3)

where S2,free := S2(cs = 1) and we have re-parametrised the varying speed of sound as [24]

u := 1− 1

c2s
, (4)

which departs from zero towards negative values when the speed of sound departs from unity. Treating the transient
speed of sound as a small perturbation of the free action and using the in-in formalism [25], one sees that mild changes
in the speed of sound seed features in the primordial power spectrum of curvature perturbations as [9]

∆PR
PR

(k) = k

∫ 0

−∞
dτ u(τ) sin(2kτ) , (5)

where PR = H2/(8π2εM2
Pl) is the featureless nearly-scale-invariant power spectrum corresponding to the constant

case cs = 1 (u = 0), and where u(τ) departs briefly and softly from zero and back, and τ is the conformal time.

2 Sufficiently sharp turns would violate the adiabatic condition that prevents quanta of the heavy degrees of freedom from being produced
[22, 23]: |ċs| �M |1− c2s |.
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One can also write the cubic action for the adiabatic mode:

S3 = M2
Pl

∫
d4x ε a3H2

{
−2 (1− u) sHππ̇2 − u π̇

[
π̇2 − (∇π)2

a2

]}
, (6)

where we have introduced the relative derivative of the speed of sound

s :=
1

H

ċs
cs
. (7)

In the cubic action above, two important assumptions have been made:

• Slow-roll contributions still present in constant-speed-of-sound scenarios are neglected. They come at order
O
(
ε2, η2

)
[26], so in order for this assumption to be correct (i.e. this here being the main contribution to the

cubic action), at least one of u or s must be significantly larger than the slow-roll parameters, at least at their
maximum deviation from zero.

• The cubic action due to the speed of sound reduction is treated perturbatively, so if we want to be sure that
higher order terms can be neglected, both the speed of sound and its change rate as they appear in the cubic
action, u and s, must be significantly smaller than 1 at their maxima.

Summarising:

max (ε, |η|)� max (|u|max, |s|max)� 1 . (8)

In section II C, we discuss how to impose those bounds in a natural way.
It is easy to check that the perturbative limit on |s|max ensures that the consistency conditions derived in [22, 27, 28]

are comfortably satisfied, setting a limit to the sharpness of the reduction at least as stringent as the ones found in
those references. Thus, as long as our prior duly imposes those bounds in |u|max and |s|max, we eliminate the risk of
fitting to the data features whose computation can be found a posteriori not to be theoretically consistent.3

From the cubic action above, again using the in-in formalism, one can compute the main contribution to the
bispectrum of the curvature perturbations [9]

BR(k1, k2, k3) =
(2π)4A2

sM
6
Pl

(k1k2k3)2

2∑
i=0

ci(k1, k2, k3)

(
kt
2

)i(
d

dkt/2

)i
∆PR
PR

(kt/2) , (9)

where kt := k1 + k2 + k3. The scale-independent shape coefficients ci are:

c0 := − 1

k2
t

(
k1k2+ cyclic. . .

)
+

1

4

1

kt

(
k3

1

k2k3
+ cyclic. . .

)
− 3

2

1

kt

(
k1k2

k3
+ cyclic. . .

)
+

1

4
kt

(
1

k1
+ cyclic. . .

)
− 5

4
, (10a)

c1 :=
1

k2
t

(
k1k2+ cyclic. . .

)
− 19

32
+

19

32
− 1

4

1

kt

(
k2

2 + k2
3

k1
+ cyclic. . .

)
︸ ︷︷ ︸

c1,sq

, (10b)

c2 :=
1

4

1

k2
t

(k2
1 + k2

2 + k2
3) , (10c)

where cyclic. . . means the 2 remaining cyclic permutations of the ki (the missing ki’s in a term are understood to be

implicit, e.g. k1k2+ cyclic. . . := k1k2 + k2k3 + k3k1).
Notice that, unlike in most of the literature, we are not extracting an overall amplitude fNL in front of the bispectrum.

We could use |u|max as a proxy for fNL, redefining (∆PR/PR)? := 1/|u|max∆PR/PR. Also, we notice that there is a
non-separable prior on |u|max and |s|max determined by eq. (8) (and developed in section II C). This non-separability
of the amplitude from the rest of the shape parameters should be taken into account when fitting this template to the
data, since the range of amplitudes |u|max allowed by the prior depends on the value of |s|max of the tested template
(see section II C).

3 This is different from the treatment in our previous work [17, 18], and also in [4, 29] for steps in the potential.
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The main result from [9] is thus that features in the power spectrum and the bispectrum are correlated in a very
simple, analytic way, and that both are easily expressed in terms of a mild, transient reduction of the speed of sound
u(τ) of the adiabatic mode. It is worth remarking that both observables were re-computed in the same theoretical
framework using the generalised slow-roll formalism in [18], and they were found to be consistent with the expressions
above, with agreement improving as the reductions get sharper (large |s|max), i.e. the regime where the generalised
slow-roll approximation works best.

Let us discuss a little the appearance of those features in both observables. Let as assume that the speed of
sound reduction happens around a particular instant τ0, that we will define as the instant of maximum reduction:
u(τ0) := −|u|max. The rate of change s being limited from below by the slow-roll parameters means that the reduction
must be approximately localised around τ0. The Fourier transform in eq. (5) turns that localisation into a linear-
in-k oscillatory factor sin(2kτ0) for the power spectrum feature, with possibly a small phase if the reduction is not
symmetric around τ0. The finite span in τ of the reduction imposes a finite envelope on top of those oscillations, the
details of which (weight of the tails, symmetry) are determined by the particular shape of u(τ).

In the bispectrum, all this remains true, the oscillatory factor being sin(ktτ0). The variation along total scale
kt := k1 +k2 +k3 is given mainly by ∆PR/PR and its derivatives, so when observed along kt in a particular direction
(i.e. a particular triangular configuration), the feature will look similar to that on the power spectrum: an enveloped
oscillation. The amplitude and phase do change across different triangular configurations: the central configurations
(i.e. those away from the squeezed limit, including the equilateral and folded limits) are dominated by the term with
the second derivative, and may receive additional contributions from the rest of the terms (mostly from the zeroth
derivative) if the reduction is not specially sharp, i.e. |s|max ∼ |u|max. The squeezed limit is completely defined by the
term c1,sq in the first derivative alone, which diverges towards that limit as the inverse of the smallest wave number.
Despite there apparently being squeezed contributions from c0 · ∆PR/PR, they cancel out, in agreement with the
consistency condition [26, 30].
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FIG. 1: Features in the primordial power spectrum 1(a) and bispectrum 1(b) (with (2π)4A2
sM

6
Pl(k1k2k3)−2 · S := BR) from a

Gaussian reduction in the speed of sound, eq. (11), with parameters B = −0.024, log β = 5.6 and τ0 = −203, corresponding to
one of our maxima a posteriori (see table I). Notice the linear oscillation along the (total) scale for the (bi)spectrum, and the
π/2 phase difference between the squeezed and both the equilateral and folded shapes of the bispectrum, as discussed at the
end of section II.

Due to the order of the derivatives, the oscillations in the squeezed limits are out of phase by π/2 with respect to
those at the central configurations. This can be seen clearly in figure 1(b), comparing the middle plot with the upper
and lower ones. This is the main difference with the shapes tested so far on the Planck bispectrum in the 2013 [5]
and 2015 [3] data releases (see section V), which are all proportional to sin(ωkt + φ), where the phase is the same for
all triangular configurations.

All the statements above about the characteristics of the features are independent from the particular ansatz chosen
for the reduction, and are illustrated in figure 1. In the next section, we present our case study: a Gaussian reduction
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of the speed of sound.4

B. Gaussian ansatz for the reduction

As in our previous work [17–19], we propose a reduction in the speed of sound as a Gaussian in e-folds (or,
equivalently, in physical time):5

u(τ) := B exp
{
−β(N −N0)2

}
= B exp

{
−β
(

log
τ

τ0

)2
}
. (11)

This reduction is parametrised by its maximum intensity B < 0, a sharpness β > 0 and an instant of maximum
reduction τ0 < 0 (or, equivalently, N0). As explained in the last section, τ0 is the instant around which the reduction
is localised. The intensity and the sharpness here are related to the maxima in the reduction |u|max and its rate of
change |s|max as

|u|max = −B and |s|max =

√
β

2

−B
e

1
2 −B

. (12)

Notice that this functional form has naturally 3 parameters only, (B, β, τ0), exactly as many as we used in the last
section to characterise a reduction in a model independent way: (|u|max, |s|max, τ0). Also, a Gaussian is one of the
simplest functions that softly departs from zero and returns.

C. Prior

In our previous work [17–19], we imposed a uniform prior directly on the parameters of the Gaussian reduction,
and checked that |s|max � 1 a posteriori. Since |s|max depends on both β and B simultaneously, see eq. (12), a
rectangular region in (B, β) does not map nicely into one in (|u|max, |s|max), where the prior motivated by eq. (8)
should be imposed. Thus, in those papers we successfully explored the parameter region of interest, but in an inefficient
manner: regions of the parameter space not allowed by the theory were thoroughly explored to later be thrown away.

In this work, we make tabula rasa and try to approach the prior choice in a model independent way, from the bare
consistency requirements of the theoretical framework, eq. (8) in section II A:

max (ε, |η|)� max (|u|max, |s|max)� 1 .

This condition on-the-maximum gives the prior a framing square shape, see figure 2(a): above the diagonal
|u|max = |s|max, the limits given by this equation must be imposed on |s|max, whereas below the diagonal they must
be imposed on |u|max.

A good, simple choice for a prior that fulfils the condition above, translating the strong inequalities into a probability
density which softly falls towards the limits, would be a symmetric log-Beta distribution6 defined over the interval
[max(ε, |η|), 1]:7

max (log10 |u|max, log10 |s|max) ∼ Beta(a, a) with a > 1, max (|u|max, |s|max) ∈ [max (ε, |η|) , 1] . (13)

The lower the value of the shape parameter, a > 1, the more disperse the distribution. The choice of a logarithmic pdf
is based on the limits of the interval being typically two orders of magnitude apart. The symmetry of the Beta(a, a)
distribution weighs both extremes equally, e.g. there is the same probability mass to the left of twice the lower limit,
than to the right of half the upper limit. In this work, we choose a = 5, which places the 95% confidence level interval
at approximately double/half the boundaries, and the 68% at thrice/third.

4 As an alternative approach, one could parametrise the equation of state of the inflaton and derive from it the variation in the speed of
sound, as in [31].

5 Choosing a Gaussian in τ would have been problematic: it would never be exactly zero by τ0, as required for the expression of the
bispectrum in eq. (9).

6 Not to be confused with the sharpness parameter β of the Gaussian reduction defined above.
7 For a random variable x in the domain [0, 1], x ∼ Beta(a, b) has a probability density function P(x) = xa−1(1 − x)b−1/N(a, b), with
N(a, b) := Γ(a)Γ(b)/Γ(a+ b).
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The lower limit in the expression above depends on the slow-roll parameters ε and η. Strictly, we should impose a
joint prior on (|u|max, |s|max, ε, η) which would account for the moving lower bound on eq. (8). Alternatively, we could
impose an equivalent prior on (|u|max, |s|max, ns, r), since (ns, r) are directly determined by the slow-roll parameters.

On the instant of maximum reduction τ0, the theoretical model imposes no requirements within the range (τi, 0),
where τi < 0 is the unknown conformal time at which slow-roll inflation started, and τ = 0 the conformal time
corresponding to the end of slow-roll inflation. Regarding the density of the prior on τ0, two natural choices would
be either a uniform prior on τ0 (no preference on the instant of maximum reduction in conformal time) or a uniform
prior on log(−τ0) (no preference in physical time or in e-folds, since t ∝ N ∝ log(−τ)). The choice depends on which
of t or τ one considers the natural time scale of inflation.

The prior distribution described above, for either choice of prior density on τ0, defines a weakly-informative Bayesian
prior on the reduction of the speed of sound. It is independent of the particular model for the reduction, and motivated
only by computational consistency.

Not all parameter combinations allowed by that prior generate features whose effect is observable within the CMB
window of scales, and even among those that do, some are not easily distinguishable from a similarly looking change
in the slow-roll or background parameters. We restrict ourselves to exploring the sub-space of the prior corresponding
to features that are observable and distinguishable:

Observability: If the reduction happens too early, it will not leave any trace on the observable scales of the CMB
power spectrum window. One can easily check that, for reasonable values of |u|max and |s|max, features happening
before τ0 = −8000 leave no trace in the CMB power spectrum. On the other hand, since |u|max = −B determines
the amplitude of the feature in the power spectrum, we can ignore values of |u|max < 10−3, which can never
lead to significant improvements in the likelihood.8

Distinguishability: We discard parameter combinations corresponding to features whose appearance mimicks
changes of the slow-roll parameters or the background cosmology. In [17], we found that this was achieved
by imposing that the feature is well contained within the observable scales, and that it performs at least four
full oscillations within that window. Those conditions are guaranteed respectively by imposing a minimum
sharpness of the Gaussian reduction of log β ≥ 0 (see thick red line in figure 2(a)), and a minimum oscillatory
frequency of |τ0| ≥ 70. This assumption also justifies ignoring effects from higher order slow-roll parameters,
such as running of the spectral index.

This immediately defines the interesting range of τ0 to be explored: τ0 ∈ [−8000,−70]. This interval covers three
orders of magnitude, so the balance may be tilted towards a log-uniform choice. Nonetheless, we sample both choices,
uniform and log-uniform, to keep our analysis robust. In our previous work [17–19] and also here (see section IV), we
find that τ0 is well constrained by the data, so the choice between priors here is not a vital one.

These assumptions also allow us to simplify the prior on (|u|max, |s|max). The requirements for distinguishability
ensure that there are no significant degeneracies in the posterior between the feature and the slow-roll parameters,
i.e. the estimation of the slow-roll parameters from Planck data are robust with respect to the introduction of the
feature. This robustness means that we can fix the lower limit in eq. (8) to the values found by Planck for the
slow-roll parameters: although relaxing that limit would allow for smaller values of the feature parameters, those
would never produce significant posterior probability, since they necessarily correspond to disfavoured values of the
slow-roll parameters.

We choose to fix that lower bound in eq. (8) to the central value of Planck’s estimate for η (the largest of the
slow-roll parameters), using temperature and polarisation data and assuming a featureless power spectrum with free
running of the spectral index [2]. That is η = 0.03. The choice of the central value instead of the upper bound is not
necessarily problematic, since the prior density on max(|u|max, |s|max) decays fast towards that limit: for a Beta(5, 5),
Planck’s 2-σ upper bound η ≈ 0.05 falls under the leftmost 5% of prior mass of max(|u|max, |s|max).

In summary, the sub-space of the Bayesian prior that we actually explore is given by

τ0 ∈ [−8000, −70] and max (log10 |u|max, log10 |s|max) ∼ Beta(5, 5), max (|u|max, |s|max) ∈ [0.03, 1] , (14)

with either a uniform or a log-uniform density on τ0 and additional limits on (|u|max, |s|max) given by log β ≥ 0 and
some minimum value for |u|max for which the features would be unobservable in the power spectrum due to their
small intensity (|u|max ≥ 10−3 would be enough; in practice, we use log β ≤ 14 for this limit, imposing a minimum

8 If we were fitting these features to the CMB bispectrum, we should allow for even smaller values of |u|max, since the amplitude of the
bispectrum features is also proportional to their sharpness, due to the derivatives in eq. (9).
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value for |u|max in the range 10−4–10−3, depending on |s|max). The density of this prior corresponds to the shading
in figure 2(a).

We shall not forget that the regions of the full prior discarded by observability and distinguishability are actually
allowed by the theory, and therefore the full prior must be taken into account in a full evidence computation. But
such computation is beyond the scope of this paper.

0.001 0.01 0.1 1

|u|max ≡ −B
0.01

0.1

1

|s
| m

ax

(a) Prior density in the parameters (log10 |u|max, log10 |s|max). The
thick red line represents the limit log β = 0, and the dotted lines

mark log β = 2, 4, 6, . . .

0.0 0.2 0.4 0.6 0.8 1.0

−B
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(b) Region in the parameters (B, log β) sampled with uniform
prior density in our previous work [17–19]. The new prior density

in figure 2(a) is plotted on top (shading), to highlight how much of
the old prior is theoretically disfavoured.

FIG. 2: Prior on intensity and sharpness of the speed of sound reduction in this work, 2(a), and in previous works, 2(b).

Let us now compare the new prior with the one we used in our previous work [17–19], which is uniform over the
region plotted in figure 2(b). If we plot the density of the new prior on top of the old uniform prior, we see that
approximately 2/3 of its area is unshaded, i.e. has null probability density under the new prior. If we trust that the new
prior appropriately accounts for the consistency requirements of the theory, then sampling from the old prior leads
to over-sampling theoretically uninteresting regions, while under-sampling the interesting ones. Thus, we consider
the present choice more reasonable and efficient, since not only are we more likely to find fits of theoretically allowed
features, but we are also able to do it in a fraction of the sampling time.

III. DATA SETS AND SAMPLING METHODOLOGY FOR THE POWER SPECTRUM

The features from the reduction are computed using a fast Fourier transform to perform the integral of the reduction
in eq. (5). The primordial power spectrum is then fed to a modified version of the CAMB Boltzmann code [32, 33]
(http://camb.info). We modified CAMB to adaptively increase the sampling density on k and ` only where necessary.

The features are fitted to the unbinned CMB TT, TE and EE power spectra of the Planck 2015 data release [1, 34].
The inclusion of the polarised spectra is an update on the previous searches that we performed using Planck’s 2013
data [17, 18]. The use of the unbinned likelihoods is justified by the high oscillatory frequency that the features can
reach: the ∆` = 30 binning of the multipoles corresponds roughly to a binning of ∆k = 2×10−3 Mpc−1 in primordial
scales, which is smaller than a full oscillation as soon as |τ0| > 1500, and we do explore much higher values.

The sampling is performed with the sampler/integrator PolyChord [35], which was chosen especially because of its
multi-modal sampling capabilities, since we know the likelihood to be multimodal from previous searches [17, 18].
Handling of the theory and likelihood codes and the sampler is performed with CosmoChord, a modified version of
CosmoMC [36] that incorporates PolyChord as a sampler.9

For the sake of performance, the value of the nuisance parameters of the Planck 2015 likelihood, which describe the
foreground effects and experimental calibration that affect the CMB measurement, are fixed to their best fit achieved

9 Our last search [19] was conducted with the MultiNest nested sampling algorithm [37–39]. The PolyChord sampler used in this work
is an improvement on MultiNest, that it is tailored for high-dimensional parameter spaces, thanks to the use of slice sampling at each
iteration to sample within the hard likelihood constraint of nested sampling.

http://camb.info
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Mode name |τ0| log10 |u|max log10 |s|max −102B log β ∆χ2
MAP

100 [100 (102) 105] [−1.82 (−1.59) − 1.47] [−1.11 (−0.91) − 0.62] [1.5 (2.6) 3.4] [4.4 (4.8) 6.8] -11

200 [195 (203) 207] [−2.16 (−1.62) − 1.44] [−1.01 (−0.78) − 0.57] [0.7 (2.4) 3.7] [4.5 (5.6) 8.2] -8

800 [770 (801) 830] [−2.06 (−1.37) − 0.77] [−0.94 (−0.53) − 0.47] [0.1 (4.3) 17.0] [2.0 (5.6) 8.2] -6

1000 [935 (1099) 1631] [−2.78 (−0.51) − 0.45] [−1.03 (−0.63) − 0.54] [0.1 (31) 35] [0 (1.5) 7.2] -4.5

TABLE I: 68% confidence level intervals and maxima a posteriori (MAP, in parenthesis) for the modes described in the text
and visible in figure 3. The ∆χ2 of the MAP’s are given with respect to the best fit of the baseline model to a featureless
power spectrum. We also provide c.l. intervals for the derived Gaussian ansatz parameters (B, log β). The c.l. intervals of τ0
for modes 100 and 200 correspond to a Gaussian in log |τ0|. Notice the similarity of the bounds on |s|max along the table: they
all correspond approximately to the prior limits (sec. II C).

by the Planck Monte Carlo sample with binned, polarised baseline likelihood (lowTEB + plikHM TTTEEE) and baseline
ΛCDM model.10 11 When not sampled (e.g. in the bispectrum study), the cosmological parameters are fixed to the
best fit of that same sample.

For each choice of prior density for τ0, we have run CosmoChord with 16 MPI processes, each allowed to thread
across 8 CPU cores. The PolyChord algorithm has been run in multi-modal mode, with 1000 live points, and a
stopping criterion of 1/100 of the total evidence contained in the final set of live points. Since we have fixed the value
of the nuisance parameters, there was no speed hierarchy of which to take advantage. With these parameters, each
run was completed within a few days.

IV. RESULTS OF FITS TO THE POWER SPECTRUM

We have performed the sampling on the CMB power spectrum data as described in the last section, varying
the baseline ΛCDM cosmological parameters (Ωbh

2, Ωch
2, θMC, τreio, logAs, ns) over a wide uniform prior, and the

feature parameters (τ0, |u|max, |s|max) using the prior described in section II C.
As stated in section II C, we have sampled twice, with two different priors for τ0: one is a uniform prior on |τ0|,

which assigns equal probability for a reduction occurring at any conformal time, and another with a uniform prior in
log10 |τ0|, which assigns equal probability for a reduction occurring at any physical time. Both cases are physically
well motivated. The result of both samples can be seen in figure 3, and the most relevant modes are shown in table
I. The reference value χ2 = 34655.5 for the effective χ2, used in figure 3 and table I, has been obtained from a
run with the same likelihood and a featureless primordial power spectrum. Those differences in χ2 are shown as an
approximate reference, since we have not used a thorough maximisation algorithm. The size of the decrease in χ2

does not amount to a detection, neither does the Bayes ratio: this model is disfavoured with respect to the baseline
ΛCDM when considering power spectrum data only.

We found no significant degeneracies between the parameters of the feature and those of the baseline cosmological
model; the correlation coefficients stay below |ρ| < 0.1 for most combinations, and only for some combinations with
(Ωbh

2, Ωch
2, ns) the correlation coefficient grows up to |ρ| ≤ 0.18, which is still smaller than what was found in fits to

the 2013 data [18]. This is consistent with the assumptions made in section II C in order to avoid those degeneracies,
namely the lower bounds |τ0| ≥ 70 and log β ≥ 0, which together enforce a minimum number of oscillations to occur
within the CMB window.

Looking at the marginalised posterior for |τ0|, we identify the following modes (see table I):

Low |τ0|: two modes at τ0 ∼ −100,−200. They both have a very well-determined oscillation frequency τ0 and
an amplitude |u|max of a few 0.01’s. Due to their low τ0, we take their confidence level intervals from the log-
uniform-τ0 sample, where they are better resolved. Both modes correspond to the sharp regime, |s|max � |u|max,
or high β.

High |τ0|: one mode at τ0 ∼ −800, with characteristics similar to the two modes above, but worse χ2 and looser
constraints on the parameters. Also, a much broader mode with τ0 ∼ −1100, with a wide posterior on τ0,
unbounded amplitude (constrained by the prior), and a clearly lower sharpness β than the rest of the modes,
which places it in the not-so-sharp regime, |u|max ≈ |s|max. Despite their different regime, the boundary between

10 See table 2.6 in https://wiki.cosmos.esa.int/planckpla2015/images/f/f7/Baseline_params_table_2015_limit68.pdf.
11 We have verified that varying the nuisance parameters has a negligible effect on our results.

https://wiki.cosmos.esa.int/planckpla2015/images/f/f7/Baseline_params_table_2015_limit68.pdf
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FIG. 3: Marginalised 1d posteriors and 2d χ2 scatter plots for the feature parameters (τ0, |u|max, |s|max) and the derived
parameter log β of eq. (11). The prior on (|u|max, |s|max) is described in section II C, with the 1d marginalised prior in dashed
red line – compare the (|u|max, |s|max) posterior with the prior in figure 2, and notice how almost nothing is learnt about |s|max

from the data. The prior on τ0 is either log-uniform, 3(a), or uniform, 3(b). The colour scale shows the ∆χ2 of the unbinned,
polarised Planck 2015 likelihood, and differences are given with respect to the best fit of the baseline model to a featureless
power spectrum. The modes observed along τ0 are described in table I.
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these two modes is not clearly defined, so we have imposed it at τ0 = −840 – thus their 68% c.l. limits on τ0
are just an approximation.

On the very high |τ0| > 2000 region, we do not find any significant mode. This is probably due to their high
oscillatory frequency: the transfer functions are almost constant with respect to them, so their projection on the
CMB sky smears out most of their intensity, needing too high values of |u|max = |B| that are disfavoured by the prior.

In all the modes above, |s|max is constrained by the prior only. This lack of predictivity on |s|max was already
observed in our previous work with Planck 2013 data [17–19]; there, it appeared as a degeneracy between the param-
eters (B, log β) of the Gaussian ansatz of eq. (11). Moving along that degeneracy eventually saturated the |s|max < 1
bound, which is avoided now by the new and more realistic prior. That degeneracy still persists, in a milder version,
between log10 |u|max and log10 |s|max. As explained in [17, 18], the degeneracy was caused by the fact that a simulta-
neous increase in |B| and log β produces almost no changes in the aspect of the feature in the CMB power spectrum
[18, figure 9]: a larger log β shifts the mode towards smaller scales, where damping and lensing erases most of the
primordial information, while a larger value of |B| keeps the power at larger scales constant. The new prior avoids
this effect, as it is illustrated by the difference between the current (τ0, log β) profile in figure 3 and the corresponding
ones in our previous work: [17, figure 1], [18, figure 5] and [19, figure 2] – in the last ones, the mode continues towards
higher values of log β with almost constant χ2, well past the |s|max = 1 mark.

Comparing these results with our previous searches in Planck 2013 and WiggleZ data [17–19], we see that the modes
at τ0 ≈ −100,−200 correspond respectively to the modes E , C already found there.12 Mode A appears as a very faint
mode with τ0 ≈ −377 and |u|max ≈ 0.02. However, modes B and D of Planck 2013 have no corresponding significant
signal in Planck 2015, neither does the mode found at τ0 ≈ −540 in [19]. To check whether those modes are still
present in Planck 2015 but have been suppressed by the new prior, we re-ran the chains with the old non-realistic
prior, uniform on (B, log β), and the binned likelihoods – we still found no trace of 2013’s modes B or D, but we
did find a mode close to τ0 ≈ −540, albeit with a very high |s|max that would discard it under the new prior. The
disappearance of mode B may be related to that mode’s benefiting from the spurious wiggle at ` ∼ 1800 in Planck
2013’s TT power spectrum.

To assess the effect of the new high-` CMB polarisation data in our samples, we repeated the analysis of the
uniform-τ0 case with Planck 2015’s unbinned TT power spectrum likelihood plus the low-` polarised likelihood. We
found that the high-` polarised data enhances the mode 100 while it significantly dampens the mode 1000, which
shows up more intensely and with a sharper τ0 c.l. interval when using TT+lowTEB. The other two modes do not
receive a large correction.

The residuals of these modes with respect to the best fit of a featureless ΛCDM baseline model are shown in figure
4, and their respective improvements in goodness of fit χ2 per multipole are shown in figure 5. We can see that
modes 100 and 200 span across most of the multipole range, fitting diverse structures in TT and EE. The mode
800 is restricted to the first acoustic peak and fits a small number of apparent wiggles in the data. The maximum a
posteriori (MAP) of 1000 tries to fit the dip in temperature at ` ≈ 20 and the following peak at ` ≈ 40, at the cost
of raising the power at ` ≈ 10 and below (a similar feature in 2015 data has been reported in [2, 41–44]). Despite
the goodness of the fit, this is in conflict with the apparent lack of power at very small multipoles seen in Planck’s
data, and may impose an even more stringent upper limit on the relative amplitude r of the tensor primordial power
spectrum. We leave the study of this possibility for future work.

We could ask whether two or more of those modes could be present in the data simultaneously. This would
correspond to the case of the inflaton suffering two consecutive reductions in its sound speed, e.g. due to two consecutive
turns in field space. The complete answer to that question would come from a fit of two simultaneous features with
the restriction that they do not overlap in τ . Their respective features in the CMB power spectrum may or may not
overlap. The subset of the parameter space in which the power spectrum features do not overlap can be characterised
using the present search: any pair of the modes that we found that do not overlap either on τ or on the power spectrum
could have occurred together. Looking at figures 4 and 6, we observe that the only two possible combinations would
be those of mode 1000 with either 100 or 200.

V. PREDICTED BISPECTRUM FEATURES

We have computed the CMB temperature bispectrum (TTT) (see e.g. figure 7) using an extension of the expansion
in total scale proposed in [45], described in appendix A. As expected, and similarly to what happens for the power

12 Notice that mode E on Planck 2013 was previously discarded due to its low |u|max and |s|max. The corresponding one in Planck 2015
does not have that problem, since at least |s|max is large enough.
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FIG. 4: Differences between the best fit to the Planck 2015 power spectrum (using polarised low- and high-` likelihoods [40])
of the ΛCDM baseline model, and the MAP’s of modes 100 (blue solid, darker), 200 (orange solid), 800 (orange dashed)
and 1000 (blue dashed, darker) from table I. Notice how mode 1000 (blue dashed, darker) fits the minus/plus structure at
` ≈ 20–40, how mode 800 (orange dashed) fits some apparent wiggles at the fist acoustic peak, and how modes 100 and 200
fit small deviations from the baseline model across a higher range of multipoles (cf. figure 5).

spectrum, we find the CMB TTT bispectrum to be close to the primordial oscillatory shape described in sec. II and
figure 1(b), modulated by the transfer functions.

Due to the the lack of a publicly released bispectrum likelihood, we have not been able to perform a joint analysis
of the power spectrum and bispectrum. But already at this point, we can use the posterior modes in the last section
(see table I) to make predictions for future searches in the bispectrum and to compare them to present searches of
similar templates, if any. The basis of those predictions is the narrow constraints on the oscillatory frequencies |τ0| of
the features, and their rather well-defined intensity |u|max, specially for modes 100 and 200, but also for mode 800
to a lesser extent. If a fit to the bispectrum of this kind of features hits any of these thin regions in τ0 and shows a
similar intensity |u|max, this would strongly hint towards the presence of a reduction in cs in the regime considered
here. As we stated in the previous section, the power spectrum data is not able to constrain |s|max beyond its prior.
Thus, we cannot predict a more concrete value for it.

We would like to especially remark modes 100 and 200 (see table I) as predictions for a signal in the bispectrum.
Their TTT bispectra (see figure 7) approximately presents some of the characteristics described in the reconstructed
Planck bispectrum (sec. 6.2.1 in [3, sec. 6.2.1]: a plus-minus structure in the equilateral limit at the `’s corresponding
to the first acoustic peak, `total ∈ [400, 1200], and a negative peak (though preceded by a positive one) associated to
the equilateral third acoustic peak, `total ∈ [2300, 3000]. They also present additional structure in other limits and
scales, where nothing has been particularly reported by the Planck collaboration in [3, 5], except for a mention of
small features in the folded limit and the squeezed limit, the last one claimed to be associated to the ISW-lensing
secondary bispectrum. The coincidence between the bispectra predicted by modes 100 and 200 and the description
of Planck 2015’s bispectrum is tantalising, given that the predicted features come from a fit to the power spectrum
only.

We can assess the likelihood that our predictions are found when tested directly on Planck 2015 data, as well as
their correlations with other primordial and secondary templates that have already been searched for. To do that,
we use the Fisher matrix formalism, assuming an idealised version of Planck’s effective beam and noise, and taking
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into account the TTT bispectrum only. In this formalism, the signal-to-noise ratio of a bispectrum template under an
experimental model is given by the square root of the auto-correlation of the template through a covariance matrix
that accounts for the expected experimental errors; the correlation between two templates, carrying the meaning of
the fraction of the intensity of a template that can be inferred from a measurement of a different one, is given by the
covariance between these two templates. The details of how this signal-to-noise and correlations have been computed
can be found in appendix A 5. The results for modes 100 and 200 are shown in table II. The signal to noise for
both modes is approximately the same, and it could possibly grant a detection if this template was tested against
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in the Sachs-Wolfe approximation: bconst = (27

∏3
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t ) [46–48]. In the equilateral limit, notice how
both bispectra present a plus-minus structure in the first acoustic peak (` ∈ [400, 1200]) and a negative peak at `t ≈ 2600,
similar to what is described on Planck TTT bispectrum data [3].

Mode S/N S/Nsqueezed Corr cos Corr sin Corr ISW-l

100 7.4 4.5 −0.26 −0.59 −0.03

200 7.5 4.0 −0.21 −0.65 −0.04

TABLE II: Signal-to-noise in the TTT bispectrum of the maxima a posteriori (MAP) of modes 100 and 200 and their isolated
respective squeezed contributions. The signal-to-noise is referred to the amplitude |u|max of the MAP for each mode, i.e. a
signal-to-noise of 5 for an amplitude |u|max = 0.1 would mean an error bar of 0.1/5 = 0.02 on that amplitude. We also show
the correlation on the TTT bispectrum between the MAP of each mode with the constant feature tested by Planck 2015 [3,
eq. (15)], with phases corresponding to the cosine and sine cases, as well as the correlation with the ISW-lensing secondary
bispectrum.

data containing the corresponding physical signal. We can also observe that between one half and two thirds of the
signal-to-noise stems from the divergent squeezed limit only. We have also computed the correlation between modes
100 and 200 and the ISW-lensing bispectrum, and found it to be very small despite the oscillatory nature in the
squeezed limit of both the ISW-lensing bispectrum and our template.

Direct searches for features have been performed in the bispectrum of both data releases of Planck, first using only
the TTT bispectrum [5] and later including polarisation and much higher oscillatory frequencies [3]. There, it was
stated that oscillatory features that connected the aforementioned structure found in Planck’s bispectrum achieved
higher significance, but in neither of those cases a fit was found with a significance high enough to be called a detection;
nevertheless the results from fits of oscillatory features were deemed “interesting hints of non-Gaussianity”.

We can speculate whether our predictions are consistent with those hints. In particular, let us look at the linearly-
oscillating templates tested by them, whose frequency very precisely satisfies ω ≈ |τ0|. None of the templates tested
by Planck present the shape weighting and difference in phase between limits of our shapes, or their particular
enveloping, that enhances the signal at high-`. So we focus on the simplest case of a constant feature [3, eq. (15)]
B(k1, k2, k3) ∝ sin[ω(k1 + k2 + k3) + φ]/(k1k2k3)2, unenveloped and shape-agnostic. Its correlations with our modes
100 and 200 for a frequency ω ≈ |τ0| and the sine and cosine phases are shown in table II. As we can see, the sine
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case is the most highly (anti) correlated one.13

Interestingly, the Planck collaboration do find a peak at ω ≈ 100, with a phase close to zero (especially in polarisa-
tion; the phase is not so small in temperature) and a negative amplitude with signal to noise of the expected order of
magnitude (∼ 0.5 times the signal to noise of our templates). We find this coincidence tantalising, and look forward
to testing our templates against Planck data directly in a joint search.

VI. CONCLUSIONS AND DISCUSSION

We have updated our ongoing search for features from transient reductions in the speed of sound of the inflaton
with the new Planck 2015 polarised power spectrum data. We have proposed and explored a prior that exhausts the
regime in which a feature coming from a Gaussian reduction in the speed of sound of the inflaton would be clearly
distinguishable from the baseline cosmology. Since the prior is exhaustive and Planck’s temperature power spectrum is
cosmic-variance-limited for almost all the range that is relevant for inflationary features, we can consider these results
definitive for the Gaussian ansatz, at least until higher signal-to-noise polarisation data is available for multipoles in
the range ` = 500–1500.

We have found some modes that, though not statistically significant using power spectrum data only, have a very
well constrained oscillation frequency and a rather well-defined amplitude, whereas their sharpness, in terms of |s|max,
is not constrained by the data but by the prior, which comes from the theoretical self-consistency. The predicted
correlated bispectra of two of these modes show traits similar to those described in Planck’s TTT bispectrum; in
addition, Planck’s search for linearly-oscillatory features picks up the frequency, sign and approximate phase of one
of them.

This apparent similarity, though not at all conclusive, motivates us to repeat the present search in the future,
including Planck’s temperature and polarisation bispectra, and using the prior described in section II C. Such a search
should also expand to regions of higher |τ0| (higher oscillatory frequency) where nothing was found in the power
spectrum – the amplitude of the bispectrum features, contrary to that of the power spectrum’s, is proportional to the
oscillatory frequency due to the derivatives in eq. (9) [12], and this significantly enhances the signal-to-noise of highly
oscillatory features [45]. If the features corresponding to these modes are actually present in the data, combined
searches in both the power spectrum and bispectrum are expected to greatly raise the significance of the fits [13, 15],
hopefully to detection-like levels.

If that combined search still fails to deliver enough significance, we will have to wait until larger tomographic data
sets are available, such as 21 cm tomography [49, 50] or the next generation of Large Scale Structure surveys [51, 52].
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Appendix A: Bispectrum computation

1. Review of expansion in total scale

We attempt to apply the method proposed in [45], based on an expansion in the total scale kt := k1 + k2 + k3.
There, one assumes that the primordial bispectrum can be written such that the shape function does depend on the
total scale only, i.e.

BR(k1, k2, k3) =
(2π)4A2

s

(k1k2k3)2
S(kt) . (A1)

Then one expands the shape function in a Fourier series in an interval [kt,min, kt,max] in whose extremes the shape
function is zero, up to a sufficient order nmax:

S(kt) =

nmax∑
n=0

[αncn(kt) + βnsn(kt)] , (A2)

where we have abbreviated

cn(k) := cos

(
2π n

k

kt,max − kt,min

)
, sn(k) := sin

(
2π n

k

kt,max − kt,min

)
. (A3)

The coefficients of the Fourier series are

αn =
2

kt,max − kt,min

∫ kt,max

kt,min

dkt S(kt)cn(kt) , (αn → βn , cn(kt)→ sn(kt)) . (A4)

A crucial advantage of this method is that the sine and cosine in the total scale are separable:

cn(kt) = cn(k1)cn(k2)cn(k3)−
[
sn(k1)sn(k2)cn(k3)+ cyclic. . .

]
(A5)

sn(kt) = −sn(k1)sn(k2)sn(k3) +
[
cn(k1)cn(k2)sn(k3)+ cyclic. . .

]
, (A6)

where cyclic. . . means the 2 remaining cyclic permutations of the ki.
Now, remember that the primordial bispectrum gets projected to the reduced CMB bispectrum as

b`1`2`3 =

(
2

π

)3 ∫
dr r2

∫
dk1 dk2 dk3 (k1k2k3)2BR(k1, k2, k3)

3∏
i=1

∆li(ki)jli(kir) . (A7)

Defining

C`n :=
2

π

∫
dk j`(kr) ∆`(k) cn(k) , (C`n → S`n , cn(k)→ sn(k)) . (A8)

and, equivalently

C`1`2`3,n := (2π)4

∫
dr r2

[
C`1nC`2nC`3n −

(
S`1nS`2nC`3n+ cyclic. . .

)]
(A9)

S`1`2`3,n := (2π)4

∫
dr r2

[
−S`1nS`2nS`3n +

(
C`1nC`2nS`3n+ cyclic. . .

)]
, (A10)

where cyclic. . . means the 2 remaining cyclic permutations of the `i. The final reduced bispectrum is

b`1`2`3 = A2
s

nmax∑
n=0

(αnC`1`2`3,n + βnS`1`2`3,n) . (A11)

The reduced bispectrum is thus separable, but there is an additional advantage: whatever model parameters the
primordial shape depends upon are now contained in the Fourier coefficients αn and βn (and, indirectly, in the choice
of nmax and the interval [kt,min, kt,max]). Thus, if we want to compute the CMB bispectrum for different values of
the primordial model parameters, while keeping the background cosmology unchanged, we only need to re-calculate
the Fourier coefficients, and we can re-use already pre-computed and stored, projected Fourier modes C`1`2`3,n and
S`1`2`3,n
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2. Extension and applicability to our bispectrum template

Let us now write a slightly more complicated template:

BR(k1, k2, k3) =
(2π)4A2

s

(k1k2k3)2
[f(k1)g(k2)h(k3)+ perms. . . ]S(kt) , (A12)

where perms. . . here runs over the possible combinations of the three functions and the three momenta. For symmetry
reasons, this is the way a separable factor would take; e.g. the simplest case would be k1 +k2 +k3, which corresponds
to f = k/2, g = h = 1, and k1k2k3 would correspond to f = g = h = 6−1/3k (these decompositions are not unique).

Now let’s promote the C`n and S`n to operators over functions of a single ki:

C`n[f ] :=
2

π

∫
dk j`(kr) ∆`(k) cn(k) f(k) , (C`n[f ]→ S`n[f ] , cn(k)→ sn(k)) . (A13)

and, equivalently

C`1`2`3,n[f, g, h] := (2π)4

∫
dr r2

∑
(f,g,h)

[
C`1n[f ]C`2n[g]C`3n[h]−

(
S`1n[f ]S`2n[g]C`3n[h]+ cyclic. . .

)]
(A14)

S`1`2`3,n[f, g, h] := (2π)4

∫
dr r2

∑
(f,g,h)

[
−S`1n[f ]S`2n[g]S`3n[h] +

(
C`1n[f ]C`2n[g]S`3n[h]+ cyclic. . .

)]
, (A15)

where the sum runs over all 6 permutations of the three functions f , g, h. In this case, the total reduced bispectrum
would be

b`1`2`3 = A2
s

nmax∑
n=0

(αnC`1`2`3,n[f, g, h] + βnS`1`2`3,n[f, g, h]) . (A16)

If we have more terms with said structure, we can recover the full bispectrum by just summing them over.
At this point, one may wonder how much complication we have introduced with respect to the method presented

in [45]. To see that, let’s detail the expected computational sequence if we want to obtain the full bispectrum:

1. Compute the C`n and S`n for each ` and n we are interested in. In this extension, this must be done at worst
three times per term, for three different f , g, h per term. That is at worst 3nterms.

2. Further integrate on r the necessary combinations of the C`n and S`n to get the C`1`2`3,n and S`1`2`3,n. In this
case, this must be done once per term, times the 3 cyclic combinations of the functions, so 3nterms again.

3. Decompose the shape functions S(kt) on Fourier modes and sum those over the C`1`2`3,n and S`1`2`3,n. In the
extension, this must be done once per term: nterms slower.

Thus, given that the two first steps are the ones that take longest by far and dominate the computation time, the
extension is 3nterms as slow (or a smaller number of times nterms if two or all three of f , g and h are the same, or if
they are the same within a term or between terms).

However, if we are not interested in varying the background cosmology, and if the parameters of the primordial
model enter through S(kt) only or as some external intensity factor fNL, but not through the functions f , g and h,
steps 1 and 2 can be pre-computed and stored. In that case, if one leaves the background cosmology unchanged, only
step 3 is carried out and this method is only nterms slower. Notice that the choice of the maximum order nmax and the
interval on which the Fourier decomposition is carried out depend implicitly on the model parameters; e.g. a higher
frequency oscillation of the primordial shape requires a higher nmax, which may not have been pre-computed yet.

In any case, remarkably, the computational costs grow only linearly with the number of terms, allowing us to
compute more complicated non-separable bispectra that account for a richer set of physical scenarios.

3. Notes on precision

Every step in the computation described above, 1 to 3, has its own considerations regarding to precision: first
the computation of the integrals of the C`n and S`n, then the computation of C`1`2`3,n and S`1`2`3,n, and finally, the
Fourier decomposition of the shape functions.
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a. Computation of C`n and S`n

We want to compute the integrals in eq. (A13) with enough precision. They have four elements: three oscillatory
functions (a transfer function, a spherical Bessel function and a sine or cosine) and a coefficient function of a single k.

To begin with, let us assume that the coefficient functions are very smooth compared to the rest of the oscillatory
factors, so we can care about the sampling of the oscillations only. This is a reasonable hypothesis at least in the case
that we are considering: they are monomials of a low degree.

For the oscillatory functions, we will parametrise the integration precision though an adaptive parameter NI ,
meaning the number of samples per oscillation of the fastest oscillator for each combination of ` and n. In this paper,
we use NI = 20, which should be enough for most purposes. The integrals are performed using a Simpson integrator.

a. Spherical Bessel functions: They behave in the asymptotic limit as

lim
x→0

j`(x) ∼ x` lim
x→∞

j`(x) ∼ 1

x
cos
(
x− (`+ 1)

π

2

)
. (A17)

Therefore, to be sure to have NI samples per oscillation, it is enough to have a δx = 2π/NI . In our particular case,
the function is evaluated at x := rk, which means that the wavelength along k is 2π/r. The distance along the
line of sight, r is evaluated later over a small interval around recombination. The worst-case scenario, the shortest
wavelength, corresponds to the maximum r of that interval. Thus, the desired sampling density on k will be

δk =
2π

NIrmax
, (A18)

where rmax is the maximum sampling value for the distance to recombination. For a reasonable value of rmax '
1.5 · 104 Mpc, this means δk ' 2 · 10−5 Mpc−1.

b. Transfer functions: They are roughly proportional to j`(rrek), so the sampling strategy is the same as the last
one, since rmax is sampled very close to recombination, rmax ' rre.

c. Fourier series basis: Since the wavelength of the basis function of order n is (kt,max− kt,min)/n, the necessary
sampling here is

δk =
kt,max − kt,min

NIn
. (A19)

Notice that for an interval of order 0 length we would need to go to an order n ∼ 104 in the Fourier expansion for the
basis functions to oscillate faster than the transfer and spherical Bessel functions. Thus, it will be the last ones that
in most cases will impose the sampling density.

b. Computation of C`1`2`3,n and S`1`2`3,n

The next step is to compute the integral along the line of sight from the recombination epoch to the present day
in eq. (A14). Roughly speaking, the CMB temperature anisotropy is mainly produced by the inhomogeneities on
the last-scattering surface, after photon-electron decoupling, so that the CMB photons are almost free to propagate
until they reach us today. Mathematically, this means that each multipole of the CMB radiation transfer functions
behaves like a Dirac delta function centred at ` ∼ rreck. Hence, it is enough to sample a thin interval around
rrec ' 1.4 · 104 Mpc [53]. In this work, we sample 200 points linearly spaced in the interval [1.3304, 1.5284] · 104 Mpc,
and integrate using a Simpson quadrature.

c. Fourier decomposition: limits, order and sampling in `

a. Limits of the Fourier decomposition: In the choice of the limits of the interval of the Fourier decomposition,
[kt,min, kt,max], we must take into account two things. First, it is preferable that the shape functions are zero in
both extremes of the interval; otherwise we can expect Gibbs overshoots and ringing in the extremes of the interval,
and in order to suppress them we would need to go to higher order of the Fourier series, adding computational
costs. Second, since the Fourier reconstruction is periodic outside the interval, if the interval is smaller than the
sampling interval of the transfer functions, we may find copies of the shapes at higher k’s. Given that the maximum
kt reached is three times the maximum ki sampled in the transfer functions, that have a sampling interval of roughly
ki ∈ [10−6, 0.35] Mpc−1, a good choice is to take the decomposition interval as kt ∈ [0, 1] Mpc−1. As long as the Gibbs
artefacts happen mostly at the end of the interval, they would be hidden by the low value of the transfer functions
there.
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b. Maximum order of the Fourier series: The order of the Fourier series must be high enough to correctly
represent the shape functions, which is completely model dependent. This is best checked by directly comparing the
original bispectrum shape with the reconstruction from the Fourier decomposition.

c. Sampling in ` space: Approximately, ` ' rrek; thus, if a sampling density δk accurately represents the pri-
mordial bispectrum, a corresponding δ` = rreδk should provide a good sample of the bispectrum. For computational
feasibility, we may reduce the sampling density in ` and construct a sufficiently accurate spline approximation, in
order to calculate e.g. the signal-to-noise.

4. Application to our case

Let us repeat the equation of the primordial bispectrum:

BR(k1, k2, k3) = |u|max
(2π)4A2

s

(k1k2k3)2

2∑
i=0

ci(k1, k2, k3)

(
d

dkt/2

)i
1

|u|max

∆PR
PR

(kt/2; |s|max, τ0) , (A20)

where kt := k1 + k2 + k3. The ci coefficients are given in equation (10).
We have made explicit the dependence on the parameters of the reduction in cs, (|u|max, |s|max, τ0), to highlight an

important property of this expression:

• |u|max enters only as an overall factor (the combination |u|−1
max

∆PR
PR

does not depend on it).

• |s|max and τ0 enter only through |u|−1
max

∆PR
PR

.

The rest of the factors do not depend on the particular choice for the reduction. Thus, we can pre-compute all the
integrals C`1`2`3,n and S`1`2`3,n for all function combinations, which amounts for most of the computing time for the
full CMB bispectrum calculation. Later, for a particular choice of parameter values for the reduction, we can very
quickly compute the Fourier decomposition of the total-momentum-dependent part, and sum the terms using the
pre-computed integrals.

We also need to care about two model-dependent aspects of the precision: the maximum order of the Fourier
decomposition nmax and the necessary sampling in ` (so we can interpolate for a faster computation of S/N). The
determinant quantity in both cases is the maximum oscillatory frequency of the feature, and thus the maximum |τ0|
that we are interested in.

For nmax, notice that the characteristic order of the feature, i.e. that whose Fourier frequency is equals the oscillatory
frequency of the feature, is |τ0|(kt,max − kt,min)(2π)−1. Decomposing the shape functions up to twice that frequency
should provide us with a good reconstruction. For the sake of safety, we may increase that order by a small security
factor:

nmax = |τ0|(kt,max − kt,min)
1

π
(1 + ε) . (A21)

For the maximum |τ0| we are interested in in this paper, 1600, an interval of 1 Mpc−1, as stated in the previous
section, and a security factor of 1 + ε = 1.5, the maximum order that we need to pre-compute is nmax = 765 (400 is
enough for the high β regime).

Regarding the sample in the `-space, notice first that, approximately, ` ' rrek. In the `-space, we aim at correctly
sampling the feature oscillation. With the relationship stated above, the wavelength in ` of the feature is, approxi-
mately, rre 2π/|τ0|. This means that if we wanted a reasonable amount of 20 samples per feature oscillation, to get a
good interpolation, we would need a sampling ∆` ' 3.

Here, we may notice that we can take advantage of the two different regimes, |s|max � |u|max and |s|max ≈ |u|max,
discussed in section II A: the features of highest β (|s|max � |u|max) have also a lower |τ0|, at most around 820, which
means that ∆` ' 5 is enough sampling. On the other hand, the features at lowest β (|s|max ≈ |u|max), though they
present a higher |τ0| and thus need a sampling of ∆` ' 3 or smaller, are dead by kt = 0.03 Mpc−1, which corresponds
roughly to `t = `1 + `2 + `3 ' 400. Thus we can sample more finely up to that `t, and more coarsely after it, allowing
for higher computational efficiency.
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5. Fisher matrix elements, signal-to-noise and correlations

We will use the spectra predicted/obtained to compute signal-to-noise and shape correlations through the Fisher
matrix [53] between two temperature bispectra i and j, assuming homogeneous noise:

Fij :=
∑

`min≤`1≤`2≤`3≤`max

2

π

(
`1 +

1

2

)(
`2 +

1

2

)(
`3 +

1

2

)(
`1 `2 `3
0 0 0

)2
b
(i)
`1`2`3

b
(j)
`1`2`3

σ2
`1`2`3

, (A22)

where `min and `max are the minimum and maximum values allowed for individual multipoles, here respectively 2 and
2000, and σ2

`1`2`3
is the approximate cosmic variance for a small bispectrum [54–57]

σ2
`1`2`3 ≈ C`1C`2C`3∆`1`2`3/fsky , (A23)

where C`i is the observed spectrum C`,obs = C`,theo +N`b
−2
` , where we have assumed an effective Gaussian beam with

θFWHM = 7.25 arcmin and white noise with standard deviation σN = 33µK arcmin, and the map mask leaves a sky
fraction fsky = 0.76. The geometrical factor ∆`1`2`3 enforces the triangular condition on the three `’s and evaluates
to 1, 2, 6 respectively for the cases of all `’s being different, two being equal and all being equal. For i and j being two
different bispectra, we assume the same background cosmology, and only a different inflationary model. We compute
the necessary Wigner 3-j symbol using the WIGXJPF algorithm [58].

From this Fisher matrix, one can derive the signal-to-noise and the correlation between two bispectra i and j as
[59] (

S

N

)
i

=
√
Fi,i and Ci,j =

Fi,j√
Fi,iFj,j

. (A24)

Notice that the correlation between two bispectra is independent of the amplitude of either.
We compute the Fisher matrix elements summing by slices of constant `t := `1 + `2 + `3, with `i ∈ [2, 2000], and

interpolating the values we have not sampled in our bispectrum computation. We sample as many slices as we can
within the target error for the Fisher matrix elements (5–10%).

In principle, we could have taken advantage of the actual separability of the modal-expanded shape to pre-compute
some of the steps of the Fisher matrix computation, and even maybe to create a KSW estimator, as is done in
[45]. However, we choose not to do so in the present work: the amount of pre-computation needed is high, due to the
sizeable number of different combinations of ci coefficients, and for now we do not want to streamline the Fisher matrix
element computations – we are not scanning the parameter space of the feature, but just computing signal-to-noise
and correlations for particular parameter combinations.
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