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Abstract

Circadian clocks must be able to entrain to time-varying signals to keep their

oscillations in phase with the day-night rhythm. On the other hand, they must

also exhibit input compensation: their period must remain about one day in

different constant environments. The post-translational oscillator of the Kai

system can be entrained by transient or oscillatory changes in the ATP fraction,

yet is insensitive to constant changes in this fraction. We study in three different

models of this system how these two seemingly conflicting criteria are met: the

Van Zon model (Van Zon et al., PNAS, 2007), the Rust model (Phong et al.,

PNAS, 2013), and the Paijmans model (Paijmans et al., PLoS Comput. Biol.,

2017). We find that the Paijmans model exhibits the best trade-off between

input compensation and entrainability: on the footing of equal phase-response

curves, it exhibits the strongest input compensation. Performing stochastic sim-

ulations at the level of individual hexamers allows us to identify, to the best of

our knowledge, a new mechanism, which is employed by the Paijmans model to

achieve input compensation: At lower ATP fraction, the individual hexamers

make a shorter cycle in the phosphorylation state space, which compensates for

the slower pace at which they traverse the cycle.
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Introduction

Circadian clocks help organisms to coordinate their metabolism and behavior

with the daily changes in the environment (1). These clocks are prevalent in

a wide range of organisms from bacteria to humans, but all have three impor-

tant features in common: First, a circadian clock is a self-sustained oscillator,

meaning that oscillations persist even in the absence of any external cue, with a

rhythm of about 24 hours. Second, the clock is entrainable so that its oscillations

can be kept in phase with the environments day-night rhythm. To this end, a

circadian clock must be able to respond to daily cues such as rhythmic changes

in light and temperature. Third, the clock has some form of input compensation,

such that the period is constant, even when the temperature or light intensities

change for longer times. Importantly, these last two requirements seem to be at

odds with each other. A clock that is easily entrained, because, for instance, the

rates of the biochemical reactions that make up the clock strongly depend on

temperature, would normally be expected to have a period that also depends on

the temperature. This clock would be a bad predictor of time. As was shown in

(2, 3), clock mutants having intrinsic periods ranging from 22 to 30 hours, are

outcompeted in a culture with wild-type cells with a period closer to 24 hours

when growing under a 12:12 light-dark cycle. Therefore, input compensation is

critically important to the function of a circadian clock. On the other hand, if a

clock would be completely insensitive to any external change, it would trivially

have a period that is insensitive to changes in the environment. However, such

a clock would not be entrainable, and as a result of biochemical noise, it would

inevitably run out of phase with the day-night rhythm. What the properties

of an oscillator should be to fulfill both conditions has been studied in different

systems, both experimentally and theoretically (4–10).

We use the post-translational oscillator of the Kai circadian clock, found in
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the freshwater cyanobacterium Synechococcus elongatus PCC 7942, as a model

system. It is well known that this circadian clock is sensitive to transient changes

in its environment, and hence entrainable, yet robust to permanent changes in

its input, thus showing input compensation (11–15). It was shown in a seminal

experiment in 2005, that the core oscillator can be reconstituted in-vitro, and

consists of the three proteins KaiA, KaiB and KaiC, in solution with ATP (16).

KaiC is a phosphotransferase (17, 18), which, depending on its conformation,

switches between phases of auto-phosphorylation and auto-dephosphorylation

(19, 20). KaiA is a nucleotide exchange factor, that facilitates exchange of

ADP to ATP in the nucleotide binding pockets of KaiC (21), which enhances

phosphorylation of KaiC. KaiB counteracts the effect of KaiA, by binding to

KaiC, and sequestering KaiA from solution (22, 23).

Remarkably, even in an in-vitro essay, the phase of the oscillator can be reset

while keeping a robust circadian period, by changing the temperature (16, 24, 25)

or the ratio of ATP to ADP in the buffer (26, 27). Also the redox state can

change the phase of the oscillator (28, 29), but the period is not maintained as

the oscillations are disrupted under oxidized conditions. In this work, we study

entrainability and input compensation under changes in the bulk ATP fraction,

by comparing three different models of the post-translational Kai oscillator.

It is known that the ATP fraction in the cytoplasm of S. elongatus, due to

photosynthesis, fluctuates between 90% during the day down to 30% at night

(26). Experiments show that a dark pulse induces a gradual drop in the cell’s

ATP level at any time of the day, which in turn induces a phase shift of the

circadian clock (26). To confirm that the ATP level is directly responsible for

this shift, Pattanayak et. al. constructed a transgenic cyanobacterium which

produces an enzyme that converts glucose into ATP, and thus maintains a steady

ATP level under a light-dark cycle when supplied with glucose (30). It turns out
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that the Kai oscillator in this transgenic cyanobacterium is no longer entrained

by light-dark pulses. From this the authors conclude that metabolic activity,

independent of its source, is the primary Zeitgeber in S. elongatus. We therefore

chose to investigate the influence of the ATP fraction on the Kai oscillator.

Specifically, we will study the effect of the ATP fraction on the hexamer model

by Van Zon et. al. (19); the extended monomer model, introduced by Phong

and coworkers in (27) as an extension of the simpler model originally proposed

in (31); and the model introduced in (32) which we refer to as the ”Paijmans

model” and which accounts for both KaiC its hexameric form and the fact that

each KaiC monomer contains two distinct phosphorylation sites. In general, as

shown in experiments, the effect of the ATP fraction on the oscillator is that,

during the phosphorylation phase of the oscillation, the phosphorylation rate is

roughly proportional to the ATP fraction, while during the dephosphorylation

phase, the overall rate of dephosphorylation is unaffected (26). We will study

the entrainability by applying a 6 hour pulse, during which the ATP fraction is

reduced from 100% to 40%, at different phases of the oscillation, and compare the

maximally induced phase shift in each model. We analyze period stability in each

model by running the models at different constant ATP fractions and observe

how the period and other important quantities of the oscillations change. Lastly,

simulations of our Paijmans model allow us to track each individual hexamer,

and measure the timing between states as it proceeds through its cycle. In this

way, to our knowledge for the first time, we can predict how individual KaiC

hexamers respond to external cues.

Below, the theory section briefly describes the three models, and the mecha-

nisms they employ to achieve input compensation and entrainability. We discuss

three mechanisms of input compensation, two of which have been partly iden-

tified elsewhere, and one of which is novel. The first, present in all models, is
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related to the delay between the moment the KaiC front runners (hexamers that

are more phosphorylated than the average) reach the top of their phosphoryla-

tion cycle, which is the point they no longer need KaiA to progress along the

cycle, and the later time at which the front runners reach a state in which they

sequester KaiA (27). As the ATP fraction in the bulk is reduced, the rate of

phosphorylation decreases, which means that it takes longer to reach the top of

the cycle, thus extending the phosphorylation phase. However, the lower rate of

phosphorylation also means that during the delay (whose length is independent

of the ATP fraction) less hexamers make it to the top of the cycle. This decreases

the number of KaiC molecules that can participate in sequestering KaiA, thus

shortening the dephosphorylation phase, counteracting the longer phosphoryla-

tion phase. The second mechanism, present only in the Rust model, is related

to the positive feedback in that model which results from the mutual inhibition

between the sequestration of KaiA by serine-phosphorylated KaiC, and KaiA

stimulating the transition from serine-phosphorylated to doubly phosphorylated

KaiC. The third mechanism, present in our Paijmans model, and first identified

here, concerns the path individual KaiC hexamers take through phosphorylation

state space: At lower ATP fraction, the individual hexamers move through a

smaller phosphorylation cycle, which compensates for the lower rate at which

they traverse this cycle. The generic idea of input compensation via a trade-off

between the size of the cycle in state space and the speed at which it is tra-

versed was presented by Lakin-Thomas et. al.(4) and later in more detail by

Hatakeyama and Kaneko (7, 8). Here we present a specific manifestation of this

mechanism at the level of individual hexamers. This mechanism is absent in the

Van Zon and Rust models, where the phosphorylation cycles of the hexamers or

monomers through state space are independent of the ATP fraction.

As period robustness can trivially be achieved by making the oscillator com-
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pletely insensitive to the ATP fraction, the results section investigates the phase

response curve for each model, which describes the induced phase shift of the

clock upon a pulse of ADP (1). We find that the models of Van Zon and Rust

are, depending on their sensitivity to the ATP fraction, either strongly entrain-

able yet have a period that depends on the ATP fraction or have a very stable

period but are not entrainable. In contrast, our Paijmans model exhibits both

input compensation and entrainability.

Theory

In this section we give a description of the three models of the post-translational

Kai circadian clock studied here and of how we adapted each model to include

the sensitivity of the phosphorylation rates to the ATP fractions in the bulk.

The only model parameter other than ATP fraction that we will vary in these

models is the relative affinity for ATP and ADP. Because the other model pa-

rameters, such as the slow phosphorylation rates, are often strongly constrained

by experimental results we keep them fixed and use the published values. We

explain which mechanisms for period stability are present in each model, to com-

pensate for the dependence of the phosphorylation rates on the ATP fraction.

Two of the three mechanisms that we describe below have been partly presented

elsewhere (27), yet we will discuss here how they are implemented specifically in

the respective models. For completeness, we give here also a qualitative descrip-

tion of the third, novel, mechanism, which is employed only by the Paijmans

model; this mechanism is discussed in much more detail in the Results section.

We first give an overview of the most important features of the Kai system.

The principal pacemaker of the Kai circadian clock consists of three proteins,

KaiA, KaiB and KaiC (33). The only enzymatic component is KaiC, which forms

a homohexamer, and consists of two domains, CI and CII. Both domains can
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bind and hydrolyze ATP, but only the CII domain can be phosphorylated. The

CII domain has two phosphorylation sites, the threonine and the serine site,

resulting in four different phosphorylation states for each monomer (31, 34):

unphosphorylated (U), phosphorylated only on serine (S), phosphorylated only

on threonine (T), and double phosphorylated on both serine and threonine, (D).

Because the phosphorylation rate of the threonine site is much higher than for

the serine site, and because the binding of KaiA to the CII domain of KaiC

suppresses the phosphorylation of the serine site, the threonine site is usually

phosphorylated before the serine site. The result is that in each oscillation a

KaiC monomer typically goes through an ordered phosphorylation cycle: U,T,D

and S. The hexamer can be in two conformations which we call the active and

inactive states, and the phosphorylation state will determine which conformation

the hexamer is in. In the active state, KaiA can bind to the CII domain and

promotes the phosphorylation of KaiC and in the inactive state, KaiB can bind

to the CI domain, which will then sequester and thereby inactive KaiA, such

that all KaiC will dephosphorylate.

Van Zon model

The Van Zon model describes the phosphorylation cycle at the level of KaiC

hexamers, and does not explicitly keep track of the KaiC monomers (19). A

simplified scheme of the model is shown in Fig. 1A: A hexamer can be in the ac-

tive conformational state, denoted by Ci, or in the inactive state, denoted by C̃i,

where i denotes its phosphorylation level. In the presence of free KaiA, active

KaiC (enclosed by the green box in Fig. 1A) is phosphorylated with a rate which

dependents on the KaiA concentration. When the hexamer has reached the fully

phosphorylated state, C6, it flips to the inactive conformation, C6 → C̃6, where

it immediately binds KaiB. The delay between full phosphorylation and KaiA
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sequestration, essential for synchronized oscillations, is set by the two dephos-

phorylation steps, C̃6 → C̃5 → C̃4 (blue box). The complexes C̃4 − C̃1, have a

very high affinity for KaiA, allowing them to sequester all free KaiA from the

solution (red box). This sequestration of KaiA forces the front runners that have

reached the bottom of the cycle (C0) and are ready to be phosphorylated again,

to wait, because KaiA is needed for phosphorylation. Sequestration of KaiA thus

allows the laggards (the hexamers that are falling behind in the phosphorylation

cycle) to catch up with the front runners, leading to the synchronization of the

oscillations of the individual hexamers. Only when most KaiC has reached C0,

is KaiA released in solution, and can a new phosphorylation cycle start again.

We use a coarse grained description to model the effect of the ATP fraction,

αATP=[ATP]/([ATP]+[ADP]), where [ATP] and [ADP] are the ATP and ADP

concentrations in the bulk, respectively, on the phosphorylation rates. Just like

in the Rust model (26), we assume that, when KaiA is bound, the probability

of having ATP instead of ADP bound, is

βATP =
αATP

αATP +KATP/ADP(1− αATP)
, (1)

whereKATP/ADP is the relative dissociation constant for binding ATP over ADP.

The effective phosphorylation rates become kphos = βATP k0phos, where k0phos is

the phosphorylation rate at 100% ATP. Dephosphorylation rates are indepen-

dent of αATP.

The Van Zon model employs one mechanism for period stability, which is

partly identified in (27). The mechanism is a direct consequence of the temporal

delay between the moment a hexamer reaches the top of the cycle, i.e. the state

C̃6 in which it no longer needs KaiA to progress along the cycle, and the time at

which it reaches C̃4 and starts sequestering KaiA. Thus, in particular, there is a
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lag between the moment when enough KaiC hexamers to fully sequester KaiA

have passed C̃6, and so are committed to the path towards sequestration, and the

moment when full sequestration is actually reached. The number of additional

hexamers that reach C̃6 during this delay is given by the duration of the delay

multiplied by the phosphorylation speed. Importantly, while the duration of the

delay is independent of the ATP fraction (since dephosphorylation from C̃6 till

C̃4 is independent of the ATP fraction), the rate of phosphorylation decreases

as the ATP fraction decreases. Consequently, the lower the ATP fraction, the

smaller the number of hexamers that can reach the state C̃6 during the delay.

The smaller number of C̃6, in turn, leads to a shorter time interval in which

all KaiA stays sequestered. This shortens the dephosphorylation phase, which

counteracts the longer phosphorylation phase, stabilizing the period.

Fig. 1B shows time traces for the KaiC phosphorylation level p(t) =
∑6

i=1 i(Ci+

C̃i)/(6KaiCtot) (dotted lines), and the fraction of inactive hexamers (solid lines),

at αATP=100% and 50%. The number of hexamers that can sequester KaiA in-

creases with the amplitude of the inactive fraction, such that this amplitude

sets the duration of the dephosphorylation phase. Indeed, as a clear signature of

the stability mechanism, at 50% ATP fraction, both the phosphorylation level

and the fraction of inactive KaiC rise slower while having a lower amplitude

compared to the oscillations at 100% ATP fraction.

Rust model

Contrary to the Paijmans model and the Van Zon model, the Rust model

describes the oscillations at the level of single monomers (26, 27, 31). As

shown in Fig. 1C, each monomer goes through the ordered phosphorylation cycle

U → T → D → S → U. Only when monomers have reached the phosphorylation

states S and D, they can bind KaiB with a low rate, and form D·B and S·B, re-
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spectively. Importantly, only the S·B state sequesters KaiA, while KaiA impedes

the occupation of the S·B state by enhancing the transition from S·B back to

D·B. This mutual inhibition between KaiA and the S·B state creates a positive

feedback loop for KaiA sequestration that is essential for oscillations. Initially,

when D·B transforms into S·B, KaiA stimulates the reverse reaction. During

this period of a quasi-equilibrium between the D·B and S·B states, the concen-

tration of their sum rises, [D·B] + [S·B], up to the point that [S·B] reaches a level

where it sequesters all KaiA. At this moment, the positive feedback is broken,

and the system rapidly switches to the dephosphorylation phase in which KaiA

is fully sequestered for a long time. The positive feedback thus creates a sharp

transition between the phase in which KaiA is free to simulate phosphorylation,

and the phase in which all KaiA is sequestered.

To include the effect of the bulk ATP fraction, we use the same coarse

grained description on the phosphorylation rates as in the original work: kphos =

βATP k0phos, where βATP is defined in Eq. 1. As was shown in (27), the ATPase

activity in the CI domain, which sets the rate of KaiB binding in this model,

does not depend on the bulk ATP fraction.

The Rust model implements two methods for period stability, where the first

is similar to that identified in the Van Zon model and described by Phong et.

al. (27). The slow KaiB binding step creates a temporal delay between, on

the one hand, the phosphorylation states D and S, which can only be reached

in the presence of free KaiA, and, on the other hand, the state S·B, which

sequesters KaiA. This delay allows monomers to reach the D and S state through

phosphorylation before all KaiA is sequestered. The number of monomers that

can reach the KaiB bound states increases with the phosphorylation speed, set

by αATP, and will determine the duration of the period in which all KaiA is

sequestered.
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The previous mechanism assumes that the delay between reaching the D

or S phosphorylated states and sequestering KaiA is constant, but the input

compensation can be enhanced further if this delay gets shorter when ADP is

added. More precisely, in order to sequester all KaiA, the concentration of S·B

monomers has to fulfill nS
seq[(S · B)min] ≥ [KaiAtot], where nS

seq is the number

of KaiA monomers sequestered by a single S·B KaiC monomer and [(S · B)min]

is the minimal concentration of S·B monomers to sequester all KaiA, KaiAtot.

Because the transitions between the states S·B and D·B are faster compared to

the transitions from these states to the U and T, the S·B −⇀↽− D·B transitions

are in quasi equilibrium. This means that [D·B] is related to [S·B] via the

steady state relation, [D·B]/[S·B]≈ kSD(αATP)/kDS = f(αATP), which depends

on the effective (de)phosphorylation rates, kSD(αATP) and kDS, respectively,

and, importantly, on the bulk ATP fraction. Consequently, the amount of D·B

required to have enough S·B to sequester all KaiA, is D·B≈S·B f(αATP), which

is related to αATP. Thus, at a lower bulk ATP fraction, the concentration

of KaiC bound to KaiB necessary to sequester all KaiA, [D·B]+[S·B], will be

lower, which compensates for the slower formation of these complexes during

the phosphorylation phase. Indeed, as shown in Fig. 1D, the concentration of

KaiC-bound KaiB increases much slower at a 50% ATP fraction compared to

100%, but the concentration of KaiC-bound KaiB at the moment that all KaiA

is sequestered, is also lower. Because fewer D phosphorylated monomers are

required to sequester all KaiA, the subsequent sequestration time is smaller,

shortening the period even more.

Paijmans model

The Paijmans model, explained in more detail in (32), is again a hexamer

model. This model, shown in Fig. 1E, explicitly describes the state of indi-
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vidual monomers, and in particular their serine and threonine phosphorylation

sites. Each monomer in a hexamer is phosphorylated in a well defined order:

First the threonine site is phosphorylated and then the serine site. Phosphory-

lation of the two sites has an antagonistic effect on the conformational state of

the hexamer: The U and T states stabilize the active conformation and the D

and S states stabilize the inactive conformation. Due to this antagonism, the

relative stability of the conformations do not depend on the absolute number of

monomers in a certain state, but rater on the difference between the number of

phosphorylated threonine and serine sites (35). Roughly, when more serine sites

are phosphorylated than threonine sites, the hexamer will switch conformation.

After flipping to the inactive state, the hexamer binds KaiB, but it can only

sequester KaiA after 6 KaiB monomers are bound. This delay allows hexamers

lagging behind to continue phosphorylation and reach the inactive state, which

is an essential property of our model to generate robust oscillations.

The Paijmans model explicitly simulates the binding and unbinding of nu-

cleotides, and the hydrolysis of ATP, in the CII domain, where the ATP is used to

phosphorylate the threonine and serine sites. The ATP fraction in the CII bind-

ing pocket is dependent on the bulk ATP fraction, because the binding rate of nu-

cleotides is directly proportional to αATP. Furthermore, the ATP fraction in the

binding pocket depends on the hydrolysis rate of ATP, and the relative affinity

for ATP and ADP. Importantly, both the effective phosphorylation and dephos-

phorylation rates depend on the ATP fraction of the binding pockets, because

both events occur via phosphotransfer with the bound nucleotide. This means

that a change in αATP has a much bigger effect on the (de)phosphorylation dy-

namics compared to models where dephosphorylation proceeds through a αATP

independent phosphatase reaction.

We choose the relative affinity of nucleotides for the binding pockets of the
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CII domain, KCII
ATP/ADP = 0.1, much lower than what is used in the Rust model

(26). As shown in (32), this value gives a good agreement with experiments

which measure the sensitivity of the phosphorylation dynamics on the bulk ATP

fraction in a system starting with KaiA and unphosphorylated KaiC only (26,

27). We have, however, also investigated the behavior of the other two models

with a relative affinity that is similar as used in the Paijmans model. In the

results section below, we will compare the other models with both high and low

relative affinity to the Paijmans model.

The oscillator employs two mechanisms of period stability. First, due to the

slow KaiB binding, there is a delay between flipping to the inactive conformation

after phosphorylation, and KaiA sequestration. This creates a pool of hexamers

in the inactive conformation that increases with the speed of phosphorylation,

set by the ATP fraction. Again, at lower αATP, fewer hexamers make it to the

inactive state, such that the dephosphorylation phase is shorter, which counter-

acts the longer phosphorylation phase.

The second mechanism for period stability is related to the path individual

hexamers traverse through phosphorylation state space before switching to the

inactive conformation. A hexamer switches to the inactive state when the num-

ber of phosphorylated serine sites, nS, exceeds the number of phosphorylated

threonine sites, nT. Due to the ordered phosphorylation of each monomer, the

threonine sites are phosphorylated before the serine sites, such that a hexamer

makes a wide arc in phosphorylation state space, (nT,nS), before the diagonal,

and the flipping criterion nS > nT, is reached. As the effective phosphoryla-

tion rates decrease for lower αATP, the size of the arc decreases, as discussed

in more detail below. This shorter path in state space counteracts the effect of

a slower progression along the path (due to the slower phosphorylation), and

creates another mechanism for input compensation, at the level of inidividual
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hexamers.

Note that the positive feedback loop on KaiA sequestration in the Rust model,

due to the mutual repression between KaiA and the S·B state of KaiC, is not

present in the Paijmans model. In this feedback loop in the Rust model, KaiA

stimulates the transition from the S to the D state, thereby preventing its own

sequestration (because only the S·B state significantly sequesters KaiA). How-

ever, because in the Paijmans model both the S and the D state stabilize the

ADP bound state in the binding pocket of the CI domain, which in turn sta-

bilizes the inactive conformation and the subsequent KaiB binding (leading to

KaiA sequestration), KaiA does not prevent its own sequestration by stimulat-

ing the S to D transition. Therefore, the mechanism of input compensation in

the Rust model resulting from the positive feedback loop, does not apply to the

Paijmans model.

Results

Dependence of oscillations on the ATP fraction reveals input

compensation on the ensemble level

To find out how effective the mechanisms for period stability are in the three

models, we run simulations of the models at constant bulk ATP fractions from

100% to 50%. For the Van Zon and Rust model, we consider two values of

the relative dissociation constant for ATP versus ADP: 1) With equal affinity

for ATP and ADP, KATP/ADP = 1.0 (solid lines in Fig. 2), as used and moti-

vated in the original model by Rust (26), and 2) With a lower affinity for ADP,

KATP/ADP = 0.19 (dashed lines), such that the effect on the ATP fraction in

nucleotide binding pocket, βATP (Eq. 1), as αATP decreases from 100% to 50%,

is similar to the drop in the Paijmans model of about 15% (see Methods sec-
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tion). As we motivated above, the relative affinity in the Paijmans model is

KATP/ADP = 0.1.

Fig. 2A shows how the period varies with decreasing αATP. Remarkably, the

three models have a different response to lowering αATP: Whereas in the Pai-

jmans model the period is almost constant, in the Van Zon model it increases

by 20%, while in the Rust model it decreases by 20%, as αATP decreases from

100% to 50%. This is reflected in the change in the amplitude of the phospho-

rylation levels, panel B, which decreases the strongest in the Rust model and

the least in the Van Zon model, with decreasing αATP. The results in pan-

els A and B are consistent: given the period stabilization mechanism due to

the delay, we expect that in all models fewer hexamers or monomers make it

through the cycle as αATP decreases, such that the amplitude of the oscillation

decreases, shortening the length of the dephosphorylation phase. This view is

further supported in panels C and D: Panel C shows the length of the phos-

phorylation phase, ∆tphosphorylation, defined as the time between a trough and

the next peak in phosphorylation level. As expected, this time increases in all

models as αATP decreases: due to the lowering of the phosphorylation rates, it

takes more time to reach the required phosphorylation state to sequester enough

KaiA. The length of the subsequent dephosphorylation phase, ∆tdephosphorylation,

defined as the time between a peak and the next trough in the phosphorylation

level, decreases in the Paijmans model and the Rust model, as a result of the

stability mechanism. However, in the Van Zon model, the stability mechanism

does not work as ∆tdephosphorylation increases with decreasing αATP. Because

KaiC is unable to sequester all KaiA in the system during the dephosphoryla-

tion phase, the phosphorylation of active hexamers continues during this phase,

which decreases the net dephosphorylation rate and extends its duration.

We point out that as the phosphorylation rates decrease, the number of hex-
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amers and monomers that traverse a full cycle each period, and sequester KaiA,

decreases. To show the effect of αATP on this fraction, we plot the total flux

of monomers or hexamers that move through the cycle per period, described in

more detail in (32) and in the Methods section, for each model in Fig. 2E. Panel

E shows a decrease in flux of around 15% for the Van Zon and the Paijmans

model at αATP = 50%. The Rust model has a much larger decrease in flux

of around 60%, which confirms the idea that input compensation is achieved

in this model by letting fewer monomers participate in the cycle and sequester

KaiA per period. Panel F gives the time interval per period when all KaiA

is sequestered by KaiC, ∆tKaiA sequestered, as defined in the methods section,

which shows that in all models the time of full sequestration indeed shortens

(see Methods section). Here, remarkably, the decreases upon lowering αATP is

the strongest for the Van Zon model, even though the decrease in the fraction

of hexamers that go through a cycle and sequester KaiA (panel E) is much less.

This is probably related to the fact that in the Van Zon model a hexamer can

only sequester 2 KaiA dimers, while in the Paijmans model 6 dimers per hexamer

and in the Rust model 2.5 dimers per monomer are sequestered. Therefore, the

number of inactive hexamers required to sequester all KaiA, is much higher in

the Van Zon model, compared to the other two models. Hence, a small change

in the amplitude in the concentration of inactive hexamers, has a big effect on

∆tKaiA sequestered. Note that below αATP of 65%, KaiA is never fully sequestered

in the Van Zon model, while oscillations persist.

Comparing results between different relative affinities, KATP/ADP, it is clear

that both the Van Zon and the Rust model are much less affected by the bulk

ATP fraction, when we choose a lower relative affinity for ADP, KATP/ADP=0.19.

For lower KATP/ADP, the probability that the binding pocket of the CII domain

is bound to ATP instead of ADP, is much less affected by changes in αATP.
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This makes the phosphorylation rates, and hence the oscillations, less sensitive

to αATP. Note that insensitivity of the period to αATP can trivially be achieved in

all three models by choosing a very low relative affinity for ADP, KATP/ADP → 0.

A robust period, however, is not enough for a biological clock to be a good

predictor of time. The key point is that a good biological clock has a period

which is insensitive to the average level of αATP, while, to keep it in phase with

the day in the presence of the inevitable biochemical noise, it is still entrainable

by periodic variations in this quantity. Therefore, in the next section, we study

how each model of the Kai oscillator responds to a transient lowering of the ATP

fraction.

Van Zon and Rust models only show strong entrainability at

equal nucleotide affinities

We expose the oscillator, running at a 100% ATP fraction, to a transient, six

hour pulse of a 40% ATP fraction, starting at different times from the last

trough in the phosphorylation fraction. To calculate the phase shift induced,

we compare the time trace of the phosphorylation fraction two troughs after the

onset of the pulse, with a control where no pulse is given (see Methods section).

Fig. 3, panels A, B and C, show phase response curves for the Paijmans

model, the Van Zon model and the Rust model, respectively, showing the in-

duced phase advances. Comparing the Paijmans model, with KATP/ADP = 0.1,

with the other two models with equal nucleotide affinities, KATP/ADP = 1.0

(solid lines), we see that the phase response curves are comparable: Both the

maximally induced phase advance and delays are around 4 hours in all models,

although the Rust model is capable of a particularly large phase advance of al-

most 10 hours. All models have a dead zone, where the pulse does not induce

a phase change, starting about 12 hours from the trough, which is thought to
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be essential for entrainment (6). However, when we reduce in the Van Zon and

Rust models the relative affinity to KATP/ADP = 0.19 (dashed lines), the ampli-

tude of the phase response curves become much smaller: In the Van Zon model

the maximal phase advance and delay are reduced to around one hour. In the

Rust model, the maximal phase delay is also reduced to about one hour, which

is significantly smaller than that in the Paijmans model; the maximal phase

advance is also strongly reduced, although it is reduced to a value that is only

slightly lower than that in the Paijmans model. The phase response curve of

the Rust model is thus asymmetric: an ADP pulse can induce a much stronger

phase advance than a phase delay. However, it was experimentally shown that

the phase response curve of the in-vitro Kai system is very symmetric (26, 30).

Therefore, comparing Fig. 3A-C with Fig. 2A shows that the Paijmans model

has the strongest similarity with the experimental data while it also gives the

best trade-off between entrainability and input compensation: On the footing

of equal phase response curves, Fig. 3A-C, the Paijmans model has the small-

est change in the period upon changing αATP, Fig. 2A. We also note here that

the symmetry of the PRC of the Paijmans model could be important, because

theoretical analysis indicates that the ability to accurately entrain to external

signals strongly depends on the shape of the PRC (6).

We want to know how the phase advance and delay is achieved in each model.

To this end, in panels D-I, we look at time traces of the phosphorylation level

(solid black lines) and the fraction of sequestered KaiA (solid purple lines), when

a pulse of ADP is given (shaded regions), where we set KATP/ADP = 1.0 for the

Van Zon and Rust models. For comparison, the dashed lines show the control

where no pulse is given. We choose the starting times of the pulses such that

a maximum phase advance (panels D-F) or phase delay (G-I) is induced, as

indicated by the arrows in the phase response curves, panels A-C.
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When the pulse is given at the moment that leads to a maximum phase de-

lay, then, in all three models, the ADP pulse only slows down the increase of

the phosphorylation level. When the ATP level returns to 100%, the phospho-

rylation level reaches the same peak height as compared to a situation where

no pulse is given. Therefore, the subsequent dephosphorylation phase, when all

KaiA is sequestered, has the same length as when no pulse is given. The ADP

pulse thus predominantly slows down phosphorylation.

When the pulse is given at the moment that leads to a maximum phase ad-

vance, then, in all three models, the ADP pulse causes the immediate start of

the dephosphorylation phase. Therefore, the peak in the phosphorylation level

is lower compared to the unperturbed case, and the number of hexamers or

monomers that is able to sequester KaiA is also smaller. The subsequent de-

phosphorylation phase shortens, causing the phase advance. Only in the Rust

model, the ADP pulse also initiates the immediate sequestration of KaiA, be-

cause, due to the sudden drop in phosphorylation rate from the S to the D state,

KaiA is incapable anymore to prevent its own sequestration.

Clearly, the period of the Paijmans model is insensitive to changes in the

average level of αATP, but the model is still entrainable to time-varying changes

in bulk ATP levels. If input compensation is achieved at the ensemble level, we

expect a large change in the amplitude of the phosphorylation level, combined

with large, equal but opposite changes in the lengths of the phosphorylation and

dephosphorylation phases of the oscillation, see Fig. 2, panels C and D. However,

even though the amplitude decreases by 40%, the changes in the time intervals

of the phosphorylation and dephosphorylation phases are small. Therefore, it

is not clear from the data in Fig. 2 how the Paijmans model achieves the high

level of input compensation. As we show next, input compensation arises not

only at the network level, but also the level of the individual hexamers.
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As the ATP fraction decreases, individual hexamers go through

a smaller cycle in phosphorylation state space

Up to now, the effect of ATP on the phosphorylation level has only been studied

at the level of the mean phosphorylation level, both experimentally and theoret-

ically. We want to know, for the Paijmans model, the effect of the ATP fraction

on the phosphorylation dynamics of individual hexamers. To this end, for each

hexamer, we track in time the number of phosphorylated threonine sites, nT,

and serine sites, nS , as it moves through its phosphorylation cycle (see Methods

section).

In Fig. 4, we show the distribution of hexamers in phosphorylation state

space, PnT,nS , and the fluxes between states, at different phases of the oscilla-

tion. Panel A shows, as indicated by the arrows, the time intervals at which we

take data during the oscillation, and panels B-F show the state of the ensemble

during these intervals, at αATP=100%. Panels G-L show the same, but now for

αATP=50%. Comparing the most populated phosphorylation states in panels

D and J, taken at the peak of the phosphorylation level, it is clear that more

threonine and serine sites are phosphorylated at 100% ATP level than at 50%.

Thus, higher phosphorylation rates result in wider path through phosphoryla-

tion state space for individual hexamers. This is a clear signature of another

mechanism of period robustness: at higher phosphorylation rates, corresponding

to higher αATP, the rate at which a system goes through state space increases,

yet the length of one cycle also increases (4, 8). It is important to note that the

phenomenon of the variation of the phosphorylation cycle with the bulk ATP

level emerges as a prediction of the Paijmans model; we did not deliberately

design the model to have this property.
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Microscopic cycles illuminate input compensation in individual

hexamers

Given our observation that individual hexamers make smaller cycles in phospho-

rylation state space when αATP decreases, we wanted to know how this affects

the timing for switching between the active and inactive conformation. This

timing is an important factor in the period of the oscillation, because it deter-

mines when and how long KaiA is sequestered. To this end, we measure the

time between two important events during a full cycle of a hexamer, illustrated

in Fig. 5A: 1) The start of the phosphorylation cycle, when a hexamer is in the

active state and, for the first time, either a threonine site or serine site is phos-

phorylated; 2) and half-way of the cycle, when the hexamer is in the inactive

state and is bound to six KaiB monomers. For all hexamers, we track the first

passage time from the start to reaching half-way, ∆tactive, and from half-way

to the start of a new cycle, ∆tinactive. The time of a full cycle is defined as

∆tcycle = ∆tactive +∆tinactive.

Note that the time in the active phase, ∆tactive, not only includes the phospho-

rylation and the switching to the inactive state, but also includes the binding of

KaiB monomers. We include the binding of KaiB in this state definition, because

KaiC recrosses the dividing surface that separates the active from the inactive

state many times, before it is finally committed to the inactive state. Including

the binding of KaiB into our criterion does not affect the results, because the

rate of KaiB binding is independent of αATP, and any change in ∆tactive due to

a different αATP is therefore related to changes in phosphorylation rates.

In Fig. 5B we show histograms of individual cycle times, ∆tcycle, at 100% ATP

(solid blue line) and 50% (dashed orange line). The distribution has maxima

at multiples of the period of the oscillation, indicated by dashed vertical lines.

Clearly, the cycle times of individual hexamers coincide with the period of the
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oscillation. Peaks at multiples of ∆tcycle correspond to hexamers that do not

bind 6 KaiB monomers during the first period, and hence have to wait for

another round, or more, to make the full cycle. Since the histogram for 50%

ATP has a fatter tail, hexamers are more likely to wait multiple periods before

completing the cycle, showing that indeed fewer hexamers participate in an

oscillation at lower ATP fractions. Fig. 5C shows the distributions of ∆tactive,

at 100% and 50% ATP. The distribution again has multiple peaks, mirroring

those in the distribution of cycle times (panel B). This indicates that at lower

αATP, synchronization becomes impaired because fewer hexamers make it to

the top of the cycle, where they have 6 KaiB bound and are committed to the

inactive state.

The inset of Fig. 5C zooms in on the first peak of the distribution, emphasizing

that even though the phosphorylation rates are different, the modes of the first

passage time distribution are remarkably similar; the difference is only 1-2 hours.

This paradox can be resolved by noting that the switch from the active to

inactive state is determined by the difference between the number of phospho-

rylated serine and threonine sites, nS−nT, respectively. In the Paijmans model,

the phosphotransfer rates for the threonine site are much faster than for the

serine site (see (31, 32, 34)). Therefore, compared to the slow phosphorylation

of the serine sites, nT will quickly reach its steady-state level during the phos-

phorylation phase. The steady-state level of nT will thus set the number of

serine sites that need to be phosphorylated before the hexamer can switch to

the inactive state. The steady-state level of nT decreases as the ATP fraction

of the buffer is reduced, because the rate of phosphorylation decreases and the

rate of dephosphorylation increases (in the presence of KaiA) with lower αATP,

respectively. Consequently, as αATP is decreased, less serine sites need to be

phosphorylated for the hexamer to switch conformation, which compensates for
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the lower rate of phosphorylation. This reasoning implies that the levels nS and

nT, at which a hexamer switches to the inactive state, also decreases. This can

be seen in panel E and F, which show the distribution of phosphorylation states

(nS,nT), at the moment a hexamer flips from active to inactive, at αATP=100%

and 50%, respectively. Clearly, nS and nT tend to be lower at the moments

of switching, when αATP=50%. This also suggests that at lower αATP, fewer

monomers are double phosphorylated. Fig. 5G shows histograms of the phos-

phorylation states of the hexamers at the moment when all KaiA is sequestered

in the system for the first time during a period. At αATP = 50%, 40% of the

hexamers have one or more monomers in the D state, while at αATP=50%, this

fraction is reduced to 10%.

Lastly, the distribution of inactive times, P (∆tinactive) in Fig. 5D, can be

explained. The distribution exhibits a shoulder at αATP=100%, which is due to

the fact that: 1) The number of hexamers that are in the inactive state is higher,

reflected by the higher first peak in Fig. 5B, resulting in a longer time where all

KaiA is sequestered. Therefore, the time hexamers have to wait before another

round of phosphorylation starts increases, which is included in ∆tinactive; 2)

Hexamers start their inactive phase at a higher phosphorylation level, comparing

panels E and F in Fig. 5, which results in a longer dephosphorylation phase.

We found that in the Paijmans model, input compensation is present both at

the ensemble level as well as at the level of an individual hexamer. To confirm

that the antagonistic effect of phosphorylation of the threonine and serine site

on the conformation indeed gives input compensation at the level of a single

hexamer, we will now study a simpler model which can only achieve input com-

pensation through this mechanism. As we will show, this minimal model not

only describes input compensation, but also entrainability. We emphasize that

while this model can yield phase-response curves that are qualitatively similar
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to those observed experimentally, the main purpose of the simplified model is to

clarify the physical origins of input compensation and entrainability at the level

of a single hexamer, not to quantitatively fit measurements of the Kai system.

Simple model with antagonism shows input compensation and

entrainability at hexamer level

To illuminate the mechanism behind input compensation at the hexamer level,

we here introduce a simplified version of the Kai system, consisting of only one

hexamer, flipping between the active and inactive conformation, without KaiA

and KaiB. This way, we can study hexamer level input compensation, without

input compensation at the ensemble level resulting from the interaction between

hexamers via KaiA. In this simple model, shown in Fig. 6A, each monomer has

a threonine and serine site, and the phosphorylation of these sites have an equal

but opposite effect on the free energy difference between the two conformations:

∆Gconf
I,A = δgconf (nS−nT). The resulting flipping rates between the active and in-

active state are kconff/b = kconf0 exp(∓0.5∆Gconf
I,A ), where kconf0 is a prefactor setting

the overall flipping rate.

Phosphorylation and dephosphorylation occur through phosphotransfer with

ATP and ADP in the nucleotide binding pocket, respectively. In the active

state, the nucleotide exchange and hydrolysis rates are much higher than the

phosphotransfer rates, such that the occupancy of the nucleotide binding pocket

with ATP compared to ADP is given by the steady state fraction βATP. We

include hydrolysis of ATP in the binding pocket because ADP is necessary for

dephosphorylation. In the inactive state, the nucleotide exchange rate is zero,

while hydrolysis rate is fast, such that the binding pocket is always occupied with

ADP. This means, like for the Kai system, dephosphorylation in the inactive

state is independent of αATP. We find βATP in the active state by solving the
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steady state equation for nucleotide exchange between the bulk and the binding

pocket, where we assume that the association rates of ATP and ADP are equal

and much higher than the dissociation rates (32),

βATP =















αATP

αATP+K
ATP/ADP

(1−αATP)+γ active,

0 inactive.

(2)

Here, KATP/ADP is the dissociation rate constant of ATP divided by that of ADP

and γ the hydrolysis rate constant divided by the ADP dissociation rate. The

phosphotransfer rates between the nucleotide and one of the phosphorylation

sites are given by kXY = βATP k0XY and kYX = (1−βATP) k
0
YX, where X and Y are

one of the four possible phosphorylation states of a monomer U,T,D and S. Note

that both in this simple model and in the full model (32), the dephosphorylation

rate depends on the presence of ADP in the binding pocket, which in turn makes

it dependent on the bulk ATP fraction. This dependence will affect the steady-

state level of the number of phosphorylated threonine sites at a given αATP, and

the cycle the hexamer traverses in phosphorylation state-space. However, this

change of the dephosphorylation rate is not essential for input compensation

through the adaptation of the phosphorylation cycle. In fact, the same model

behavior could have been achieved through an appropriate dependence of only

the phosphorylation rate on αATP. Indeed, the absolute rates do not matter:

only how the relative rates of phosphorylation and dephosphorylation depend

on the ATP fraction is important for the behavior of both the full model and

the minimal model presented here.

To elucidate the function of the antagonism in the antagonism model, we

compare it with another minimal model, the fixed cycle model as shown in

Fig. 6B, where each monomer only has one phosphorylation (serine) site. In
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this model, the hexamer flips to the inactive state when nS ≥ 5 and back to the

active state when nS ≤ 1, with a rate kconf0 . The phosphotransfer rates and their

dependence on αATP are the same as for the antagonism model. Parameters of

the antagonism and fixed cycle models are given in Table 1.

Parameter Value Parameter Value

kUT,kSD 20.0 h−1 KATP/ADP 0.1

kTU,kDS 10.0 h−1 kconf0 0.2 h−1

kTD,kUS 0.4 h−1 δgconf 2.0 kT
kDT,kSU 0.2 h−1 γ 0.25

Table 1: Parameters used in the simple antagonism model and the fixed cycle model.

We define the time the hexamer needs to progress through a cycle, ∆tcycle,

as the interval between two consecutive conformational switches to the active

state. Just like for the full model, measuring cycle times is hampered due to

the fact that the hexamer recrosses the dividing surface between the two con-

formations many times before finally committing to a conformation. However,

instead of using a grace interval to integrate out the recrossings (36), it turns

out that choosing a low rate for the conformational switch, kconf0 , compared to

the phosphorylation rates is already sufficient to prevent recrossing.

Fig. 6, panels C and D, show histograms of ∆tcycle for the antagonism and

fixed cycle model, respectively. Both panels show histograms at a 100 and 50%

ATP buffer. Remarkably, for the antagonism model, when αATP is lowered to

50%, the mode of the histogram shifts to a lower cycle time. This behavior

is surprising; We would expect the cycle times to increase since all the phos-

phorylation rates are lowered by a factor βATP. For the fixed cycle model, the

cycle times do indeed increase when αATP is lowered. In Fig. 6E we show how

the mode of P (∆tcycle) changes with αATP. Clearly, changing the ATP fraction

has a stronger and opposite effect on the cycle time of the fixed cycle model as

compared to the antagonism model.
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To highlight how the phosphorylation behavior changes with αATP in the

antagonism model, we show a histogram of the phosphorylation states where

the hexamer changes conformation, P (nT, nS), Fig. 6F, for different bulk ATP

levels. At any given ATP level the distribution shows two peaks: One in the

lower left corner resulting from the conformational switch to the active state

which does not change with αATP, and one for the conformational switch to

the inactive state which does depend strongly on αATP. As we lower αATP,

starting top right, the mode of P (nT, nS) for switching to the inactive state

gradually moves along the diagonal to lower phosphorylation levels. This shows

that the antagonism model is able to adapt its cycle through state space to

the external ATP fraction. Just like in the original Kai model, the antagonism

model compensates the lower phosphorylation rates with a smaller cycle through

state space. For the fixed cycle model, the phosphorylation state at which the

hexamer changes conformation does not change with αATP, such that the cycle

through state-space is fixed. Therefore, as the phosphorylation rates decrease,

the time required for a full cycle can only increase in this model.

How does the hexamer in the antagonism model adapt its phosphorylation

dynamics to the bulk ATP fraction? Fig. 6G shows a cartoon of the paths

a hexamer takes through phosphorylation state-space at 100% and 50% bulk

ATP fractions. Starting in the lower left corner where the active hexamer starts

unphosphorylated, the phosphorylation level of the threonine sites will quickly

reach their steady-state level, n̄T, because phosphotransfer with the threonine

sites is much faster than with the serine sites. This steady-state level increases

with αATP, such that at 100% ATP an active hexamer will typically have more

threonine sites phosphorylated than at 50% ATP. Because a hexamer switches

to the inactive state when nS > nT, the number of serine sites that need to be

phosphorylated before the hexamer can switch to the inactive state depends on
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n̄T, which in turn is set by αATP. As the phosphorylation of a serine site is

slow, the longer trajectory at αATP = 100% will increase the number of slow

steps required to switch to the inactive state, and the number of slow steps

to switch back to the active state again. This negates the effect of the faster

phosphorylation rates.

Next to input compensation for a constant bulk ATP fraction, the antagonism

model also shows entrainability at the level of a single hexamer by a transient

change in the ATP fraction. The blue arrow in panel G shows how a phase

advance can occur when temporarily αATP is lowered from 100% to 50% ATP.

Because the phosphorylation level of the threonine sites will quickly adjust to

the lower steady-state level for the new αATP, the number of phosphorylated

serine sites will suddenly outnumber the threonine sites, allowing the hexamer

to change conformation earlier, leading to a phase advance. In contrast, when

the transient pulse of a lower ATP level is given near the beginning of the cycle,

the conformational switch to the inactive conformation is delayed. In this case,

lowering αATP will slow down the phosphorylation of the serine sites, slowing

down the progress in the nS direction. Lowering αATP will lower n̄T, but because

near the beginning of the phosphorylation cycle nS is low, the system will not

immediately switch to the inactive state. When αATP returns back to 100% at

the end of the pulse and the hexamer has not switched to the inactive state yet,

the hexamer will return back to its old trajectory, i.e. the same trajectory when

no pulse had been given. However, the pulse of lower αATP means that it will

have progressed less far in the nS direction, and this leads to a phase delay. A

pulse of lower αATP will thus lead to a phase advance when the pulse induces a

premature switch, which is what tends to happen when the pulse is given later in

the phosphorylation phase of the cycle, while it will lead to a phase delay when

the pulse does not induce a switch, which is the typical scenario when the pulse
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is given earlier in the cycle. This simple model thus qualitatively explains how

input compensation and entrainability can be achieved simultaneously through

an antagonism mechanism within individual hexamers and thus shows that input

compensation at a network-wide level is not essential.

Discussion

All circadian clocks have to fulfill two seemingly conflicting requirements in or-

der to be a good predictor of time: A robust circadian period under a wide range

of external conditions, and entrainability such that the clock always moves in

phase with the day-night cycle. It is important to note that most circadian clocks

found in nature have a free running period that is one to a few hours off from 24

hours. The idea is that this mismatch improves the entrainability of the clock,

which is necessary to keep a robust phase relation with the day in the presence

of inevitable biochemical noise (6, 37). Therefore, when comparing different

models of circadian clocks, it is crucial to test them on the basis of both input

compensation and entrainability. It is becoming clear that the daily shifts in the

metabolic state of organisms, ranging from cyanobacteria to mammals, are an

important Zeitgeber for their circadian clocks (26, 38, 39). Recent experiments

show that the daily shifts in the cytoplasmic ATP level of the cyanobacterium

Synechococcus elongatus are an important cue for the entrainment of its Kai

circadian clock (30). To find out how changes in the ATP level affect the Kai

oscillator, we compared two widely-used models of the post-translational oscil-

lator, the hexamer model by Van Zon et. al. (19) and the monomer model by

Rust et. al. (27), with the Paijmans model (32), and studied how well they

fulfill the robustness and entrainability criteria.

We find, in agreement with experiments (27), that the period in the Paijmans

model is almost unaffected by the bulk ATP fraction, and that its hard to de-
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termine from the mean quantities related to the phosphorylation level what sets

this period stability. Apart from the amplitude in the phosphorylation level,

other quantities such as the length of the phosphorylation and dephosphoryla-

tion phase, do not change much with the bulk ATP fraction in the Paijmans

model. The other two models show clear signatures of input compensation.

The Van Zon model has too little input compensation, however, as shortening

the dephosphorylation phase by sequestering less KaiA is unable to compen-

sate slower phosphorylation. On the other hand, the Rust model has too much

input compensation, since the period decreases with lower ATP. Lowering the

phosphorylation rates has a too strong effect on the positive feedback loop regu-

lating KaiA sequestration, shortening the period too much. Note however, that

we chose the affinity for ATP over ADP a factor 10 higher to get good agreement

with experiments for the sensitivity of the phosphorylation speed to the bulk

ATP fraction (32). The fact that the Paijmans model is so stable, is therefore

perhaps not so surprising, as the sensitivity to ADP in the bulk is a factor 10

lower in the Paijmans model compared to the other two.

We then checked the entrainability of the respective models, and found that

the entrainability of the Paijmans model is comparable to that of the other

models, even though the relative affinity of ADP versus ATP is lower in the

Paijmans model. When we make the relative ADP/ATP sensitivity in the Van

Zon and Rust models similar to that of the Paijmans model, the amplitudes of

the phase response curves in these other models become very small, leading to

poor entrainability. This showed that the Paijmans model, contrary to previous

models, is capable of maintaining a robust circadian period, while at the same

time being strongly entrainable.

To elucidate how the Paijmans model achieves this combination of period

robustness and good entrainability, we studied the phosphorylation cycle of the
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threonine and serine sites in individual hexamers, at 100% and 50% bulk ATP

fractions. This showed that at 50% ATP, when effective phosphorylation rates

are lower, individual hexamers go through a smaller phosphorylation cycle. Our

analysis also revealed that the distribution of times for hexamers to complete a

full cycle peaks at multiples of the period and that peaks at times higher than

the period become more pronounced at lower ATP fraction, as fewer hexamers

make it through the full cycle each period. Remarkably, the time required to

complete the first part of the cycle, between when phosphorylation starts and

when 6 KaiB monomers are bound, seems to be little affected by the bulk ATP

fraction. This leads to the question of how, at different effective phosphorylation

rates, the timing of the conformational switch that ends the first part of the cycle

can be almost unaffected.

To address this question, we made histograms of the phosphorylation states of

the hexamers when they switch to the inactive state. At lower phosphorylation

rates, hexamers switch to the inactive state at a lower phosphorylation level,

compensating the longer time they need to phosphorylate the sites. This is in

marked contrast with previous models by Van Zon et. al. and Rust et. al.,

where the time required for individual units (be it hexamers or monomers) to

complete a full cycle, can only increase with decreasing ATP fractions. In these

models, period stability can only be achieved through the interaction between the

individual hexamers via KaiA sequestration (8), that is, via the delay between

the moment where KaiC no longer needs KaiA to progress along the cycle and

the point where KaiC sequesters KaiA: At lower αATP, less KaiC makes it to the

top of the cycle during the delay, making the dephosphorylation phase shorter,

which can then counteract the longer phosphorylation phase (27).

The Paijmans model presented here exploits this mechanism too, yet also

employs another one, which acts at the level of the individual hexamers. This
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mechanism utilizes the ordered phosphorylation of the threonine and serine site

in the monomers, in combination with their antagonistic effect on the confor-

mation of the hexamer. Previously, Lin et. al. argued that this antagonism

creates an ultra-sensitive switch which provides robustness against a varying

KaiA concentration (35). However, this antagonism also plays a key role in

our mechanism of input compensation. The antagonism entails that the state

at which the hexamer switches conformation does not depend on the absolute

number of phosphorylated threonine and serine residues, but rather on their

relative amounts. When the ATP fraction is low, their are typically fewer serine

and threonine sites phosphorylated (see (26, 32)), but since the switch to the

inactive conformation does not depend on the absolute number of phosphory-

lated sites, but on their relative amounts, hexamers switch conformation at a

lower number of phosphorylated sites. The net result is that, although the cycle

in state space is smaller at lower ATP fraction, the moment a hexamer switches

is robust against changes in the ATP fraction. And, since the phosphorylation

rates are sensitive to changes in the fraction, the hexamer still undergoes a

phase shift, essential for entrainability. We thus propose a new function for the

ordered phosphorylation cycle of the KaiC monomers: It allows the oscillator

to combine period robustness with high entrainability. We end our study with

a simplified model of the hexamer which includes the antagonism but no inter-

action between the hexamers through KaiA. This simple model suggests that

the antagonism is enough to achieve input compensation and entrainability and

that a network-wide mechanism is not essential.

This mechanism of input compensation is a result which we identified after

carefully studying the phosphorylation dynamics of individual hexamers and is

not an assumption built into the Paijmans model. Indeed, the mechanism was

an outcome of the model, which we had developed with the aim to describe the
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wealth of data that is available for this system (32). The antagonism extends our

understanding of the robustness of the post-translational Kai oscillator beyond

its implications for the robustness against varying nucleotide concentrations.

Apart from making the oscillator more robust against extrinsic fluctuations such

as in temperature and protein concentrations (35), the mechanism will also make

the oscillator more robust against intrinsic fluctuations arising from stochastic-

ity in biochemical reactions. Due to this intrinsic noise, the hexamers in the

ensemble will generally have different phosphorylation levels. Some hexamers,

the front runners, will take a relatively large cycle. When these hexamers reach

the dephosphorylation phase, they will sequester KaiA, taking it away from the

laggards that are still in the phosphorylation phase of the cycle. In the Van Zon

model, this stops the progression of the laggards around the cycle, causing them

to fall back to the beginning of the cycle. In contrast, in the Paijmans model

discussed here, the laggards will make a shorter cycle, but they will nonetheless

complete it and hence subsequently participate in sequestering KaiA. This in-

creases the number of hexamers that participate in the oscillations, and more

specifically, in sequestering KaiA. This is likely to increase the robustness.

Recently, it was shown that the transcription factor Elk-1 is first activated

via the fast phosphorylation of certain residues by the kinase ERK, and later

deactivated via the slower phosphorylation of other residues by ERK (40). Phos-

phorylation at different rates thus facilitates the robust transient activation of

Elk-1 in response to ERK activation. This suggests that our results on cyclic

phosphorylation of a protein combined with an antagonistic effect of phosphory-

lation on its activity, may have consequences even outside the realm of circadian

clocks.
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Experimental verification

Here we explore the possibilities for experimentally verifying the prediction that

individual hexamers adapt their phosphorylation cycle to the ATP fraction in

the bulk. In the original publication (32), we identify two key predictions of

our model and we describe experiments to verify them: 1) The relative stability

of the two conformations is determined by the ATP fraction in the binding

pockets of the CI domain and 2) this fraction is set by the relative number of

phosphorylated serine and threonine sites in the CII domain of the hexamer.

The verification of these predictions would already suggest input compensation

at the hexamer level since both conditions are necessary for the mechanism.

However, to directly measure the adaptation of the phosphorylation cycle,

we would have to measure the phosphorylation state of all hexamers at dif-

ferent phases of the oscillation, at different ATP levels (see Fig. 4). Current

experimental techniques, such as mass spectrometry, SDS-PAGE (31, 34), and

time resolved fluorescence spectroscopy (25), can identify the four (U,T,D and

S) phosphorylation states of the KaiC monomers. Experiments show, in agree-

ment with our model, that as the bulk ATP level decreases, the amplitude of

the phosphorylation cycle decreases (26, 27). However, the measured decrease

in the amplitude can result from two scenarios: 1) Hexamers go through a fixed

phosphorylation cycle such that at a lower bulk ATP level, when the amplitude

in the mean phosphorylation level decreases, fewer hexamers traverse a full cycle.

Therefore, fewer hexamers bind KaiB and sequester KaiA during an oscillation.

2) Hexamers traverse a smaller phosphorylation cycle at a lower ATP level, such

that the fraction of hexamers that traverse a full cycle during an oscillation

decreases much less than the decrease in the amplitude of the mean phosphory-

lation level. Current experiments do not allow us to distinguish between these

two scenarios. In the future, chemical crosslinking of KaiC hexamers and the
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indentification of crosslinked complexes by mass spectrometry may allow us to

track the phosphorylation state of whole hexamers (41, 42). This would make

it possible to track the fraction of hexamers in a certain phosphorylation state

as the Kai system traverses its phosphorylation cycle.

Less direct tests of our conclusions, in contrast, might be possible with cur-

rent technology. In particular, our model predicts that the switch to the inactive

confirmation depends on the difference between the number of phosphorylated

threonine and serine sites and not on their absolute level. This allows hexamers

to traverse a smaller phosphorylation cycle and still switch to the inactive con-

formation, bind KaiB and sequester KaiA. Therefore, by verifying that hexam-

ers switch to the inactive state at different phosphorylation levels, we indirectly

test whether hexamers go through a smaller cycle. We propose two experiments,

based on currently available techniques, that can test this prediction:

1) Mix different ratios of (phosphomimetic) monomers in the T and S states,

and measure the fraction of hexamers that are in the inactive state, as was done

in (35, 43). Now repeat this experiment at different ratios of unphosphorylated

monomers to phosphorylated monomers (at a specific ratio of T vs S). The

prediction is that the key variable that determines the fraction of hexamers that

are in the inactive conformation is nS−nT, and not the ratio of unphosphorylated

to phosphorylated monomers. To find the fraction of hexamers in the inactive

state, one could measure it directly (44), or indirectly via the fraction of KaiC

bound to KaiB (27, 35).

2) The same setup as in the experiment above, but now retrieve those monomers

from solution that are bound to KaiB using coimmunoprecipitation, as was

done in (35). Then measure the distribution of phosphorylation states of these

monomers. If KaiC were to bind KaiB only in specific phosphorylation states

(e.g., hexamers only bind KaiB when all monomers are fully phosphorylated),
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contrary to our prediction, then the distribution of phosphorylation states of the

monomers bound to KaiB would not change substantially with different initial

ratios of phosphorylated to unphosphorylated KaiC. However, when the ability

to bind to KaiB depends on the difference between S and T state monomers in

a hexamer, as our model predicts, then, we expect the fraction of unphosphory-

lated monomers to scale with the initial fraction of unphosphorylated (U-state)

monomers.

Methods

Models used

We use the Rust model described the SI of (27) and the Van Zon model in

the SI of (19), both described with ordinary differential equations (ODE’s),

propagated using the NDSolve function of Mathematica 8 (Wolfram Research).

The Paijmans model, introduced in (32), is propagated using the dedicated

Monte Carlo algorithm described in the same paper.

Model sensitivity to bulk ATP fraction

We want to compare the Van Zon and Rust models, using a relative affinity for

ATP versus ADP, such that the change of the ATP fraction in the nucleotide

binding pockets given that KaiA is bound, due to changes in αATP, is similar

to the change in the Paijmans model. In the Paijmans model, the steady state

fraction of ATP in the CII binding pocket, βCII
ATP, given that KaiA is always

bound to CII, is given by

βCII
ATP =

αATP kCII·ADP
off,KaiA

αATP kCII·ADP
off,KaiA + kCII

hyd + (1− αATP) kCII·ADP
off,KaiA KCII

ATP/ADP

. (3)
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Here, kCII·ADP
off,KaiA and kCII

hyd are the dissociation rate of ADP when KaiA is bound

and the hydrolysis rate of ATP, in the CII domain of KaiC, respectively. Using

the parameters presented in (32), we find that βCII
ATP decreases with 15% as we

lower αATP from 100% to 50% in Eq. 3. The ATP fraction in βATP, Eqn. 1, has

a similar scaling when we set KATP/ADP = 0.19.

Calculating mean quantities in Fig. 2

Results shown in Fig. 2 were taken after 10 oscillations, such that the system has

reached steady state oscillations. For the Paijmans model, presented quantities

are averages over 400 consecutive oscillations. The period is defined as the mean

of the peak-to-peak time in the phosphorylation level.

To calculate the flux trough a cycle, Fig. 2E, we require a reaction that has

to take place at least once, in order for a hexamer or monomer to complete a full

cycle. Here, a full cycle is defined as a series of states the hexamer or monomer

has to go through in order to be able to sequester KaiA. For the Rust model, we

calculate the flux between the U and T phosphorylation states, integrated over

a period P :

QRust =
1

P

∫ P

0
(kUT(t)U(t) − kTU(t)T (t)) dt, (4)

where kUT and kTU are the time dependent (depend on the free KaiA concentra-

tion) rates for phosphorylation and dephosphorylation of the T state, and U(t)

and T (t) are the concentrations of U and T phosphorylated monomers. For the

Van Zon model, we calculate the flux between switching to the inactive state

QVanZon =
1

P

∫ P

0

(

kfw C6(t)− kbw C̃6(t)
)

dt, (5)

where kfw and kbw are the rate constants for switching to the inactive or active

state, respectively. In the Paijmans model we measure the flux by counting the
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number of hexamers that have six KaiB monomers bound at some point during

the period, averaged over 400 oscillations.

The time interval in which all KaiA is sequestered, Fig. 2F, is defined as the

time interval when more than 99% of all KaiA dimers are sequestered by KaiC.

Calculating phase response curves in Fig. 3

To generate the phase response curves (PRC) shown in Fig. 3A-C, we applied

a 6 hour step-wise decrease in the ATP fraction. For the ODE models, we

derived the induced phase change by comparing the time of second through in

the phosphorylation level after the onset of the pulse, with the same trough of

the control where no pulse is given. For the Paijmans model, which contains

stochasticity, we fit a sinusoidal function to three oscillations in the time trace of

the phosphorylation level, one oscillation after the pulse is given. We compare

this with a fit to the phosphorylation level in a control simulation, where no

pulse is given, and calculate the phase shift between the fits. To suppress the

intrinsic number fluctuations present in the Monte Carlo simulations, we used a

simulation volume of 6 cubic microns, which is three times as large as the original

volume. Finally, to get the PRC in panel A, we averaged over 10 different

trajectories for each pulse start. The shaded region in Fig. 3A indicates the

standard deviation in the phase shift of these 10 runs.

Microscopic dynamics of the hexamer, Fig. 4, Fig. 5 and Fig. 6

To get the snapshots of the distribution of hexamers in phosphorylation state

space shown in Fig. 4, we first need to register the time of the troughs in

the phosphorylation level, ttri , for a time trace containing over 400 oscillations.

This allows us to calculate the trough-to-trough time, T tr
i = ttri+1 − ttri , for each

oscillation i. Then we define time intervals of one hour for the whole trajectory,
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(ttri +γ T tr
i , ttri +γ T tr

i +1.0), where γ ∈ [0, 1) sets the phase of the period at which

the time intervals start. During these intervals we keep track of the number of

phosphorylated threonine sites, nT, and serine sites, nS, in each hexamer. This

allows us to calculate the occupancy of each phosphorylation state, PnT,nS
, and

the fluxes between these states, during the one hour time window.
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Figure 1: The different models of the Kai system employ different mechanisms of
period stabilization. (A,B): Van Zon model; (C,D): Rust model (panel C after (27));
(E,F): new model. Phosphorylation level (dotted lines,B,D,F) and fraction of KaiC in
inactive state (solid lines,B,F) or in S·B + D·B (D, solid lines) at αATP=100% (blue)
and 50% (orange). Shaded regions indicate the phase where all KaiA is sequestered, at
αATP=100% (gray) and 50% (dark gray).

(continued next page)
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Figure 1: (continuing from previous page) (A) Van Zon model: Hexamers phospho-
rylate in the active phase (green box), with a rate that depends on αATP and the
amount of free KaiA, switch to the inactive state where they dephosphorylate and, af-
ter a delay (blue box), sequester KaiA (red box). (B) Both the phosphorylation level
and the fraction of inactive hexamers rise slower at αATP=50%, but due to the delay
between phosphorylation and KaiA sequestration, the dephosphorylation phase starts
at a lower maximum of the inactive fraction, which shortens the time window where
all KaiA is sequestered. (C) Rust model: Monomer is predominantly phosphorylated
in the order U,T,D,S. Phosphorylation depends on the ATP fraction and KaiA (black
arrows), dephosphorylation only on KaiA (blue arrows). To emphasize that phosphory-
lation of the threonine site is much faster than for the serine site, the arrows indicating
(de)phosphorylation of the threonine site are thicker. The delay is set by the slow KaiB
binding step (red arrows), and mutual inhibition between KaiA and the sequestration
state S·B. (D) Because at αATP=50% the rate from S to D is smaller, the ensemble
starts the dephosphorylation phase at a lower concentration of KaiB-bound KaiC. This
shortens the dephosphorylation phase, which compensates for slower phosphorylation.
(E) New model: In each hexamer, monomers go through the ordered phosphorylation
cycle, where T stabilizes the active state, and S the inactive state. Phosphorylation can
only occur with ATP (green arrows) and dephosphorylation only with ADP (red ar-
rows) in the CII binding pocket. (F) The inactive fraction (solid lines) increases slower
at αATP=50%, but reaches a lower maximum, leading to a shorter dephosphorylation
phase. However, the effect on the duration of the KaiA sequestration phase is not as
strong as in the Rust model. Because in the new model the switch to the inactive state
depends not on the absolute number of serine and threonine phosphorylated residues,
but rather on their difference, the decrease in the phosphorylation level (dotted lines)
has a smaller impact on the inactive fraction (solid lines), as compared to the impact
on the S·B+D·B fraction in the Rust model (panel D). (Our simulations of the Van Zon
and Rust models employ ordinary differential equations, but the new model can only be
described by stochastic simulations (32). Hence the curves in F show a small amount
of noise that is absent in B and D.)
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Figure 2: Dependence of the Paijmans (blue solid lines), Van Zon (red) and the
Rust (orange) models on the bulk ATP fraction, αATP. The quantity being plotted
is indicated by the legend above each panel, and in each case values are normalized
by the value at αATP = 100%, indicated by the horizontal dashed line. For the Van
Zon and the Rust models, we study versions with equal sensitivity for ATP and ADP,
K

ATP/ADP
=1.0 (solid lines), and a smaller sensitivity for ADP,K

ATP/ADP
=0.19 (dashed

lines). (A) The ATP fraction has an opposite effect on the period in the Van Zon and
the Paijmans model compared to the Rust model, (B) but the amplitude increases with
increasing αATP in all models. (C) The time between a through and the next peak in the
phosphorylation level, ∆tphosphorylation, decreases with αATP in all models, because the
phosphorylation rates increase. (D) In both the Paijmans model and the Rust model,
the time between a peak and the next trough, ∆tdephosphorylation, increases with αATP,
which compensates for the faster phosphorylation rates. In the Van Zon model however,
the dephosphorylation time interval decreases with αATP such that the compensation
for a stable period does not occur. (E) As the ATP fraction increases, the number of
hexamers or monomers that go through a full cycle per period increases, such that the
amount of KaiA that can be sequestered increases. (F) Therefore, the time interval
per period that all KaiA in the system is sequestered by KaiC, becomes longer with
increasing αATP.
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Figure 3: Sensitivity of the phase of the phosphorylation level, in the Paijmans model
(left column), Van Zon model (middle column) and the Rust model (right column), to
a 6 hour pulse of lowering of the ATP fraction to 40%. Panels A, B and C show the
phase advance in hours, due to the pulse, starting at the time indicated on the x-axis,
measured from the minimum in the phosphorylation level. The shaded region in panel
A shows the standard deviation of 10 independent runs of the Paijmans model, which,
contrary to the other two models, is stochastic. For the Van Zon and Rust models,
we show phase response curves for a scenario with an equal relative affinity for ATP
and ADP, KATP/ADP = 1.0 (solid line), and a version with a lower affinity for ADP,
KATP/ADP = 0.19 (dashed line). Arrows indicate extrema in the phase response curves,
for which we show the corresponding time traces in the panels with the adjacent label.
Panels D,E and F show the effect of a pulse (shaded region) when the phase delay is
the largest, on the phosphorylation level (solid black line) and the fraction sequestered
KaiA (solid purple line). Dashed lines show the development in the case no pulse is
given. Panels G,H and I show the effect of the pulse when the phase advance is the
largest. Results for the Paijmans model were obtained using kinetic Monte Carlo, and
ODE’s for the Van Zon and Rust models.
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Figure 4: In the Paijmans model, at a lower bulk ATP fraction, individual hexamers
make a smaller cycle through phosphorylation state space. We track the number of
phosphorylated threonine sites, nT, and serine sites, nS, in each individual hexamer
for one simulated hour at different phases of the oscillation. In panels A and G, the
shaded regions indicate at which phase of the oscillation hexamers were probed and
in which panel the result is shown. Panels B-F (αATP=100%, left column) and H-L
(αATP=50%, right column) show histograms of the probability of finding a hexamer
in a certain phosphorylation state, indicated by the color bar to the right of the right
column. Arrows are proportional to the flux through the state the arrow originates
from. Comparing states near the peak of the phosphorylation level, panels D and J,
hexamers at αATP=50% go through a smaller cycle compared to the situation at 100%
ATP. Specifically, the majority of hexamers go through nT=4 or 5 at αATP=100%, while
at 50% hexamers only reach nT=2 or 3. Furthermore, the ensemble is less synchronized
near the trough of the phosphorylation levels, comparing panels F and L. Results shown
are averaged over 400 consecutive oscillation cycles.
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Figure 5: Microscopic dynamics of the new model reveals input compensation at the
level of individual hexamers. (A) For each hexamer we measure, 1) ∆tactive: The time
between the first phosphorylation event, and having six KaiB bound to the hexamer
for the first time. 2) ∆tinactive: The time between having 6 KaiB bound and, after
dephosphorylation and switching back to the active state, the first phosphorylation
event. The time for completing a full cycle is: ∆tcycle = ∆tactive +∆tinactive.

(continued next page)
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Figure 5: (continuing from previous page) B, C and D show histograms of these time
intervals, comparing situations with 100% ATP (blue solid lines) and 50% ATP in the
bulk (orange dashed lines). (B) Distribution of times for completing a cycle. Peaks are
at multiples of the oscillator’s period of 24.3 hrs, as indicated by the vertical dotted
lines (period at 100% ATP). Peaks at ∆tcycle > 24.3hrs show hexamers that could not
complete a full cycle during one period of the oscillation. (C) Distribution of times
for phosphorylation and KaiB binding. Event though phosphorylation rates are lower
at αATP=50% as compared to 100%, the modes of their distributions are remarkably
similar, as emphasized by the inset which zooms in on the first peak. (D) Distribution of
times for dephosphorylation and waiting for a new round of phosphorylation. The bigger
shoulder at αATP=100% is a manifestation of the longer time during which all KaiA is
sequestered at this ATP level. At the end of their cycle, hexamers have to wait longer
before KaiA returns to solution and phosphorylation starts again. (E,F) Histograms of
the number of phosphorylated threonine sites, nT, and serine sites, nS, in individual
hexamers, at the moment when they switch to the inactive state, at αATP=100% (E)
and 50% (F). (G) Histograms of the number (different colors, defined on the right
side) of U,T,D and S phosphorylated monomers inside a hexamer, at the moment when
all KaiA in the system is sequestered. At αATP=100% more monomers are doubly
phosphorylated.
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Figure 6: Antagonistic regulation of the timing of the conformational switch of KaiC
creates input compensation in a single hexamer. In the antagonism model (A), fast
phosphorylation of the threonine sites (green dots) stabilizes the active conformation
(round monomers), and slow phosphorylation of the serine sites (red dots) stabilizes
the inactive state (square monomers). Phosphotransfer rates depend on αATP in the
active state, but not in the inactive state. We compare this model with the fixed cycle
model (B), where the phosphorylation of a monomer’s single phosphorylation site (red
dot) stabilizes the inactive conformation. (C,D) Distribution of cycle times, ∆tcycle,
defined as the time interval between two consecutive switches to the active state, for
the antagonism model (C) and the fixed cycle model (D) at 100% (blue solid line) and
50% (orange dashed) ATP buffer. (E) The mode of the distribution of cycle times for
different ATP fractions in the buffer, for the antagonism (green solid line) and fixed cycle
(purple dashed) model. (F) Distribution in phosphorylation state-space, P (nT, nS), of
where the hexamer switches to the inactive state (top-right, along diagonal) and the
active state (lower left corner), at different bulk ATP fractions. As αATP decreases, the
hexamer flips to the inactive state at lower phosphorylation levels. (G) Cartoon shows
typical cycles through phosphorylation state-space for a hexamer in the antagonism
model in a 100% (blue trajectory) and 50% (orange) ATP buffer. At 100% ATP, the
equilibrium level of phosphorylated threonine sites in the active state is higher than at
50% ATP, forcing the hexamer through a larger cycle as it can only change conformation
when it’s left of the diagonal through the state space (gray area). This compensates
the fact that it progresses through the cycle at a higher rate, such that the time to
complete a full cycle is less affected. A temporary lowering of the ATP level from 100
to 50%, can induce a phase advance as the phosphorylation level of the threonine sites
adjust to a lower equilibrium level allowing the hexamer to switch to the inactive state,
as indicated by the light blue arrow.
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