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Abstract

In this paper we consider three types of embedded options in pension benefit design.

The first is the Florida second election (FSE) option, offered to public employees in the
state of Florida in 2002. Employees were given the option to convert from a defined contri-
bution (DC) plan to a defined benefit (DB) plan at a time of their choosing. The cost of the
switch was assessed in terms of the ABO (Accrued Benefit Obligation), which is the expected
present value of the accrued DB pension at the time of the switch. If the ABO was greater than
the DC account, the employee was required to fund the difference.

The second is the DB Underpin option, also known as a floor offset, under which the em-
ployee participates in a DC plan, but with a guaranteed minimum benefit based on a traditional
DB formula.

The third option can be considered a variation on each of the first two. We remove the re-
quirement from the FSE option for employees to fund any shortfall at the switching date. The
resulting option is very similar to the DB underpin, but with the possibility of early exercise.
Since we assume that exercise is only permitted at discrete, annual intervals, this option is a
Bermudan variation on the DB Underpin.

We adopt an arbitrage-free pricing methodology to value the option. We analyse and value
the optimal switching strategy for the employee by constructing an exercise frontier, and illus-
trate numerically the difference between the FSE, DB Underpin and Bermudan DB Underpin
options.
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1 Introduction

Over the past two decades, there has been a significant global shift in employer sponsored pension
plans from Defined Benefit (DB) to Defined Contribution (DC). According to Watson (2017), DC
pension assets in 22 major pension markets have grown from 41.1% in 2006 to 48.4% in 2016.
However, there is also some growing recognition that DC plans may not always be the best option.
In 2013 the OECD1 identified six common flaws in DC systems, including excessive volatility of
funds in the pre-retirement phase, and decumulation options which are “not fit for purpose”.

Hybrid pension plans, which combine features of DC and the DB plans, may be able to meet em-
ployer and employee needs better than DC or DB individually. Numerous hybrid pension structures
have been proposed, with different objectives and different balance of employee and employer risk
allocation. Buchen et al. (2011) and Turner and Center (2014) present comprehensive surveys on
hybrid plans. Some popular examples include Cash Balance pension plans, Target Benefit pension
plans and DB Underpin plans. Studies have demonstrated that the hybrid pension market is ex-
panding in some areas. For example, Kravitz (2016) shows that the number of Cash Balance Plans
in the U.S. increased from 1337 in 2001 to 15178 in 2014).

The rising interest in hybrid pension plans suggests the potential for designing new risk-sharing
schemes. In this paper, a new hybrid pension design is introduced. The intuition behind the
new plan is based on two existing embedded options: the second-election option in the Florida
retirement system, and the DB underpin plan. This paper evaluates the new option using the
market consistent valuation method (see Boyle and Hardy (2003), Marshall et al. (2010) and Chen
and Hardy (2009) for the valuation of various insurance and pension products) and we compare
it with the Florida second election and the DB underpin options. This paper illustrates how the
flexible nature of hybrid pension plans allows sponsors to design new risk-sharing schemes based
on their risk appetite and objectives.

The remainder of the paper is structured as follows. Section 2 introduces the notation and assump-
tions, and provides detailed background information for the second-election option and the DB
underpin option. Section 3 presents the problem formulation for the new pension plan, as well as
some theoretical results in discrete time. Section 4 extends the work into the continuous case and
incorporates stochastic salaries. Section 5 displays the numerical results. Section 6 concludes.

1http://www.oecd.org/finance/private-pensions/designingfundedpensionplans.
htm
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2 Notation and Assumptions

c denotes the annual contribution rate (as a proportion of salary) into the DC plan. We assume
that contributions are paid annually. We also assume that all contributions are paid by the
plan sponsor/employer, although this is easily relaxed to allow for employee contributions.

T denotes the time of retirement of the employee.

r denotes the risk free rate of interest, compound continuously.

b denotes the accrual rate in the DB plan.

ä(T ) denotes the actuarial value at retirement of a pension of 1 per year.

St denotes the stochastic price index process of the funds in the DC account. We assume St
follows a Geometric Brownian Motion, so that

dSt
St

= rdt+ σSdZ
Q
S (t)

where ZQ
S (t) is a standard Brownian Motion under the risk neutral measure Q.

Lt denotes the salary from t to t + 1 for t = 0, 1, ..., T − 1, where t denotes years of ser-
vice. We assume that salaries increase deterministically at a rate µL per year, continuously
compounded, so that

Lt = L0e
tµL

We will also consider a stochastic salary process, in the continuous setting, assuming it is
hedgeable through the financial market:

dLt
Lt

= rdt+ σLdZ
Q
L (t)

dZQ
L (t)dZ

Q
S (t) = ρdt

where ZQ
L (t) is a standard Brownian Motion under the risk neutral measure Q and ρ is the

correlation coefficient between ZQ
L and ZQ

S (correlation between the stock market and the
salary increase).

We ignore mortality and other demographic considerations.
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3 DB-Underpin Plan

The DB Underpin pension plan, also known as the floor-offset plan in the USA, provides a guar-
anteed defined benefit minimum which underpins a DC plan. Plan sponsors make periodic con-
tributions into the member’s DC account, and separately contribute to the fund which covers the
guarantee. Employees usually have limited investment options to make the guarantee value more
predictable. At the retirement date, after T years of service, if the member’s DC balance is higher
than the value of the guaranteed minimum defined benefit pension, the plan sponsor will not incur
any extra cost. However, if the DC benefit is smaller, the plan sponsor will cover the difference.

Using arbitrage-free pricing, we can calculate the present value of the cumulative cost of the DB
underpin plan at time t = 0 as follows. We assume (more for clarity than necessity) that DB
benefits are based on the final 1-year’s salary, and we ignore all exits before retirement.

CU = EQ

[
T−1∑
t=0

e−rtcLt

]
︸ ︷︷ ︸

PV of DC Contributions

+ EQ

[
e−rT

(
bT ä(T )LT−1 −

T−1∑
t=0

ST
St
cLt

)
+

]
︸ ︷︷ ︸

Value of DB underpin option

Notice that the option value does not have an explicit solution, but can be determined using Monte
Carlo simulation. See Chen and Hardy (2009) for details on the valuation and funding of the DB
underpin option.

4 Florida Second Election (FSE) Option

In 2002, public employees of the State of Florida were given an option to switch from their DC
plan to a DB plan anytime before their retirement date. The cost of participating in the DB plan is
calculated by the accumulated benefit obligation (ABO), which is the present value of the accrued
benefit, based on current service and current pensionable salary.

We denote the ABO of the DB benefit for an employee with t years of service as Kt, so that

Kt = b Lt−1 t ä(T ) e
−r(T−t)

Under the FSE hybrid plan, let τ denote the time that the employee shooses to switch from the DC
plan to the DB plan. If the ABO at τ is more than the DC account balance, the employee needs to
fund the difference from her own resources. If the DC account is more than the ABO at transition,
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then the employee retains the difference in a separate DC top-up account which can be withdrawn
at retirement.

Mathematically, the present value of the total DC and DB benefit cost at inception is

Cse = sup
0≤τ≤T

EQ

[
τ−1∑
t=0

e−rtcLt + e−rτ
(
KT e

−r(T−τ) −Kτ

)]

where the first term, as in the previous section, is the present value of the DC contributions, and
the second term is the additional funding required for the DB benefit, offset by the ABO at transi-
tion, which is funded from the DC contributions. The ‘sup’ indicates that the valuation assumes
the switch from DC to DB is made at the time to maximize the cost to the employer. Milevsky
and Promislow (2004) studied the price and optimal switching time of the Florida option with
deterministic assumptions.

5 Bermudan DB underpin plan - Discrete Case

The FSE design has the advantage that it provides employees with the flexibility to choose their
plan type based on their changing risk appetite. However, employees retain the investment risk
through the DC period of membership, and also have the additional risk of a suboptimal choice
of switching time. Moreover, when the DC investment falls below the ABO of the DB plan, the
employee may be unable to switch, if they do not have sufficient assets to make up the difference.

Inspired by the idea of combining the DB underpin plan with the Florida option, we investigate a
new hybrid design, which we call the Bermudan DB underpin, which adds a guarantee at the time
of the switch from DC to DB. If the employee’s DC account is below the ABO when she elects to
switch, then the plan sponsor will cover the difference.

5.1 Problem Formulation

We assume that contributions are made annually into the DC account until the employee switches
to DB, and that we are valuing the benefits at t. We assume also that the employee has not switched
from DC to DB before time t, that the DC account is wt at t, and that future account values (up to
the switching time) follow the process

Wt+τ = wt
St+τ
St

+
τ−1∑
u=t

St+τ
Su

cLu τ = 1, 2, ...T − t.
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Then the present value at time t of the cost of future benefits (past and future service, DC and DB),
which is denoted by C1(t, wt), can be expressed as the sum of three terms:

1. The present value of the future contributions into the DC account before the member switches
to the DB plan.

2. The present value of the cost of the DB benefit, offset by the ABO at the time of the switch.

3. The difference between the ABO and the DC balance at the switching time, if positive.

We assume that the exercise dates are at the beginning of each year, before the contribution is made
into the DC account, so the admissible exercise dates are τ = 0, 1, · · ·T−t. We take the maximum
value of the sum of these three parts, maximizing over all the possible switching dates, as follows.

C1(t, w) = sup
τ∈[0,1,··· ,T−t]

EQ
t

[ τ−1∑
u=0

e−rucLu + e−rτ
(
KT e

−r(T−t−τ) −Kt+τ

)
+ e−rτ (Kt+τ −Wt+τ )

+

∣∣∣∣Wt = w

]
Notice that the switching time τ is involved in all three parts, which makes the analysis more
complex. However, using put-call parity, the problem simplifies to:

C1(t, w) =E
Q
t

[
KT e

−r(T−t)]
+ sup

τ∈[0,1,··· ,T−t]
EQ

[
e−rτ

(
Wτ+t −Kt+τe

−r(T−t−τ))+ ∣∣∣∣Wt = w

]
− w (1)

Details are given in Appendix A. The new formulation also consists of three terms:

• The present value of the DB plan benefits at time t.

• A Bermudan type call option, with underlying process Wt and strike value Kt.

• Offset by the existing DC balance at t.

The first and third terms do not depending on the switching time, and the first part does not even
depend on the DC balance. To study the optimal exercising strategy, we omit the first and third
terms and define our value function as

v1(t, w) = sup
τ∈[0,1,··· ,T−t]

EQ
t

[
e−rτ

(
Wt+τ −Kt+τe

−r(T−t−τ))+ ∣∣∣∣Wt = w

]
(2)

= sup
τ∈[0,1,··· ,T−t]

EQ
t

e−rτ (τ−1∑
u=0

St+τ
St+u

cLt+u + w
St+τ
St
− b(t+ τ)ä(T )Lτ+t−1e

−r(T−τ−t)

)+
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At time t, given that the DC account balance is w, we define the exercise value of the option,
denoted ve1(t, w), as the value if the member decided to switch at that date, and the continuation
value, denoted vh1 (t, w) as the value if the member decides not to switch. Then

ve1(t, w) =
(
w − tbLt−1ä(T )e−r(T−t)

)+
(3)

vh1 (t, w) = EQ
t

[
e−rv

(
t+ 1, (w + cLt)

St+1

St

)]
(4)

The option is not analytically tractable. In the next section, we present some of the properties of
the value function, which will enable us to use numerical solution methods.

5.2 The value function at T − 1

Since the option value at time T−1 depends only on the stock performance in the period [T−1, T ],
it can be solved using the Black-Scholes Formula for the continuation value

vh1 (T−1, w) = EQ

[
e−r
(
(w + cLT−1)

ST
ST−1

− b TLT−1ä(T )
)+
]

= N(d1)(w + cLT−1)−N(d2)b TLT−1ä(T )e
−r

where d1 =
1

σS

[
ln

(
(w + cLT−1
bTLT−1ä(T )

)
+

(
r +

σ2
S

2

)]
d2 = d1 − σS

thus

v1(T − 1, w) = max
(
w − b(T − 1)LT−2ä(T )e

−r, vh1 (T − 1, w)
)

5.3 The Exercise Frontier

The following proposition gives the general convexity and monotonicity of the value function

Proposition 1. At each observation date 0 ≤ t ≤ T , the value function v1(t, w) is a continuous,
strictly positive, non-decreasing and convex function of w.

The proof is given in Appendix A.2.

Like other Bermudan and American-type options, there exists a continuation region C and a stop-
ping region (or exercising region) D. When the time and DC account value pair (t, w) is in the
continuation region, it is optimal for the member to stay in the DC plan. When (t, w) is in the
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stopping region, it is optimal for the member to switch to the DB plan. The option to switch is ex-
ercised when (t, w) moves into the stopping region. Mathematically, the continuation and stopping
regions are defined as

• vh1 (t, w) > ve1(t, w)⇔ (t, w) ∈ C

• vh1 (t, w) ≤ ve1(t, w)⇔ (t, w) ∈ D

Proposition 2. There exists a function ϕ(t) such that

v1(t, w) =

{
ve1(t, w) if w ≥ ϕ(t)
vh1 (t, w) if w < ϕ(t)

The proof is shown in Appendix A.3. The function ϕ(t) is the exercise boundary that separates
continuation and exercise regions. Notice, it is possible, under certain parameters, that ϕ(t) = ∞
for some t < T , which means that it is not optimal to switch regardless of the DC account value.
The next proposition will specify the situations in which ϕ(t) <∞.

Proposition 3. The behavior of the exercise boundary ϕ(t) depends on the ratio
c

bä(T )e−rT
as

follows.

(i). If
c

bä(T )e−rT
< 1, then ϕ(t) <∞,∀t ∈ [0, T ]

(ii). If
c

bä(T )e−rT
≥ 1, there exists a t∗ ∈ [0, 1, · · · , T − 1], such that ϕ(t) = ∞, ∀t ≤ t∗, and

ϕ(t) <∞,∀t > t∗.

(iii). The value of t∗ is bt′c, where t′ satisfies

(t′ + 1)bLt′ ä(T )e
−r(T−t′) − t′bLt′−1ä(T )e−r(T−t

′) − cLt′ = 0

(iv). If c > bä(T )
((
1− e−µL

)
T + e−µL

)
e−r then t∗ = T − 1, which means ϕ(t) =∞, ∀t < T

(v). If
c

bä(T )e−rT
= 1 then t∗ = 0.

The proof is given in the Appendix A.4. This proposition demonstrates that the ratio between
the DC contribution rate and the accrual rate of the DB benefit will determine the shape of the
exercise boundary. In the extreme case, when the DC contribution rate is much higher than the DB
accrual rate, it is optimal for the employee to wait until the retirement date, and the Bermudan-DB
underpin option simplifies to a DB underpin plan.
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6 Bermudan DB underpin plan - Continuous Case

By extending the current model to incorporate a stochastic salary process, solving the value of the
option becomes a three dimensional problem. The optimal exercise boundary will depend on both
the salary and the DC account balance. In this section, we reconstruct the problem in a continuous
setting, with a stochastic salary.

The mathematical formulation replaces the summation sign with the integral sign, and extends the
admissible stopping time set to [t, T ]. By the Optional Sampling Theorem, we can define the value
function similarly to the discrete case.

v2(t, w, l) = sup
0≤τ≤T−t

EQ
t

[
e−rτ (Wt+τ −Kt+τ )

+

∣∣∣∣Wt = w,Lt = l

]
where

dWt = (rWt + cLt)dt+ σSWtdZ
Q
S (t)

Kt = b t ä(T )Lt e
−r(T−t)

Notice now that the value function also depends on the salary at time t. In the following sections
we show that although the value function is three dimensional, the optimal exercise boundary is
still only two dimensional, in the sense that the value function only depends on the wealth-salary
ratio process.

6.1 Definition of the Value Function

We define a new variable Yt = Wt

Lt
, which represents the DC wealth-salary ratio. Using Girsanov’s

theorem, we can show that the value function v2(t, w, l) = l v2(t, w/l), where v2(t, y) is defined as

v2(t, y) = sup
0≤τ≤T−t

EP̃
[(
Y t,y
t+τ − b(t+ τ)ä(T )e−r(T−t−τ)

)+ |Ft]
and the wealth-salary ratio follows

dYt = cdt+ σY YtdZ
P̃
Y (t)

where Z P̃
Y (t) is standard Brownian Motion under the measure P̃ . Details of the derivation can be

found in Appendix A.5.
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6.2 Properties of the Value Function and Exercise Frontier

Proposition 4. The value function v2(t, y) is a continuous, strictly positive, non-decreasing and
convex function of y, and a continuous and non-increasing function of time t.

The proof can be found in Appendix A.6.

As above, we denote the continuation region C = {(t, y) ∈ (0, T )× [0,∞) : v2(t, y) > ve2(t, y)}
and stopping region C = {(t, y) ∈ (0, T )× [0,∞) : v2(t, y) = ve2(t, y)}, and let ϕ(t) be the exer-
cise frontier which separates the two regions.

Proposition 5. There exists a function ϕ(t) such that

v2(t, y) =

{
ve2(t, y) if y ≥ ϕ(t)
vh2 (t, y) if y < ϕ(t)

The proof can be found in Appendix A.6.

For numerical solution, we formulate the problem as a free-boundary PDE problem.

∂v2
∂t

+ c
∂v2
∂y

+
σ2
Y y

2

2

∂2v2
∂y2

= 0 in C

v2(t, y) = ve2(t, y) in D

v2(t, y) > ve2(t, y) in C

v2(t, y) = ve2(t, y) for y = ϕ(t) or t = T

In appendix A.6 we illustrate the condition where ϕ(t) = ∞, and we prove that when the DC
contribution rate is very high, such that c > bäT (1 + rT ), then the option becomes the regular DB
underpin option. Figure 1 shows an example of the optimal exercise boundary.
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Figure 1: Example of Optimal Exercising Boundary, r = 0.06, σS = 0.15, σL = 0.04, c = 0.16,
b = 0.016 and aT = 14.75

6.3 Different Discount Rates for ABO Calculation

In practice, actuaries often use a discount rate higher than the observed market risk-free rate to
determine the ABO. Here we denote the γ as the discount rate for the ABO calculation, so the
ABO has the following form:

Kt = tbLtä(T )e
−γ(T−t)

It is not difficult to show that the new cost function can be expressed in the same form as equation
(1) through the Optional Sampling Theorem. Under our stochastic salary assumption, however,
the risk free rate r only appears in the ABO calculations, which means that γ and r are mathemat-
ically indistinguishable. Thus, we only include γ in our study of deterministic salary assumptions.
The new value function preserves similar properties (with slight modifications) as those stated in
Propositions (1), (2), (3) for the discrete case, and (4) and (5) in the continuous case. Notice
that using different discount rates for the ABO does not violate our market-consistent valuation
principle. Here we use v4 to denote the price with γ as discount rate for ABO:

v4(t, w) = sup
0≤τ≤T−t

EQ
[
e−rτ

(
W t,w
t+τ − b(t+ τ)Lt+τ ä(T )e

−γ(T−t−τ))+ |Ft]
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7 Numerical Examples

In this section we present numerical results for the values of the Bermudan DB Underpin plan.
For the continuous setting, we use the penalty method (see Forsyth and Vetzal (2002)) and for the
discrete case, we use the Least Square Method (see Longstaff and Schwartz (2001)). We compare
the Bermudan option with the DB underpin and with the Florida Second Election option. For the
DB underpin option, to be consistent with the valuation method for Bermudan DB underpin option,
we evaluate it using Monte Carlo simulation in the discrete setting and the Crank Nicolson finite
difference method in the continuous setting. For the second election option, we are able to derive
explicit solutions under both discrete and continuous settings (see Appendix A.7). Furthermore,
we include the Bermudan option with deterministic salary in the continuous setting (denoted by
v3) as an intermediate comparison with the discrete case.

7.1 Benchmark Scenario

The initial benchmark parameter set is as follows. Later we perform some sensitivity tests on each
of the parameters.

• µL = r = 0.04. We set µL to be the same as the risk free rate, to make consistent comparison
with the stochastic salary assumption (when salary is assumed to be hedgeable).

• ρ = 0, assumes no correlation between salary and investment return.

• σS = 0.15, b = 0.016, c = 0.125 and ä(T ) = 14.75.

• L0 = 1, t = 0, and W0 = 0, so that all values are given per unit of starting salary.

7.2 Cost

Table 1 shows the value of each pension plan in the continuous setting. The price for the Bermu-
dan DB-Underpin (BDBU), the Florida Second Election (FSE) and the DB underpin plans are
expressed as an additional cost on top of the base DB plan. We show values for the Bermudan
DB with stochastic salaries v2, and with deterministic salaries, v3. Table 2 shows the results in the
discrete setting.

Some observations can be made:

12



Time to Retirement DB DC FSE DB-Underpin BDBU BDBU
τ v2 v3

10yr 2.36 1.25 0 0.0023 0.0070 0.0062
15yr 3.54 1.87 0 0.0126 0.0354 0.0315
20yr 4.72 2.50 0.0203 0.0348 0.1010 0.0936
30yr 7.08 3.75 0.2179 0.1199 0.3492 0.3355
40yr 9.44 5.00 0.5837 0.2594 0.7380 0.7194

Table 1: Cost of each pension plan per unit of starting salary, continuous setting. FSE is the Florida
second election option; and BDBU v2 is the Bermudan DB underpin with stochastic salaries, and
BDBU v3 is the Bermudan DB underpin with deterministic salaries. Hybrid costs are additional to
the basic DB cost.

Time to Retirement DB DC FSE DB-Underpin BDBU
τ v1

10yr 2.2675 1.2500 0 0.0039 (0.0011) 0.0099 (0.0001)
15yr 3.4012 1.8750 0 0.0210 (0.0020) 0.0456 (0.0003)
20yr 4.5349 2.5000 0.0304 0.0458 (0.0029) 0.1190 (0.0006)
30yr 6.8024 3.7500 0.2476 0.1455 (0.0048) 0.3752 (0.0014)
40yr 9.0699 5.0000 0.6280 0.3115 (0.0069) 0.7726 (0.0025)

Table 2: Cost of each pension plan, discrete setting. FSE is the Florida second election option, and
BDBU is the Bermudan DB underpin. Hybrid costs are additional to the basic DB cost.

13



• BDBU v2 is greater than BDBU v3 which reflects the additional costs from stochastic salaries,
but the results are fairly close. We would expect that in the discrete case, a stochastic salary
would lead to a higher but close cost as in the deterministic salary assumption.

• When the expected retirement date is near, under the benchmark parameters, participants in
the Second Election plan should always be in the DB plan (t∗ = 0), so there will be no extra
cost required to fund the second election option.

• Although the Bermudan DB underpin option is greater than both the DB underpin and the
Second Election, none of the values in the benchmark scenario exceed 10% of the cost of a
DB plan. For horizons of 30 years or less, the extra cost from the DBDU option costs around
5% more than the basic DB plan.

• As T increases, the cost is increasing, at an increasing rate, for all three options. The under-
pin and election options become significantly more costly over 40 years compared with the
cost for 30 years.

• In the discrete case, the value of the options are generally greater than in the continuous case,
and we would expect a larger difference if stochastic salary is incorporated. However, the
observations made in the continuous case also apply in the discrete case.

7.3 Sensitivity Tests

In this section, we present the sensitivity tests over all parameters in the continuous setting. We
consider c, µL, r, σS , γ and b under the deterministic salary assumption and σL and ρ under the
stochastic salary assumption. We also fix the time horizon to be 30 years. Details are displayed in
Table 3.

We note the following points.

• All three plans share the same directional trends as the parameters change, but with some
very different sensitivities.

• The additional costs of the hybrid plans react in the opposite direction to the underlying DB
costs, for parameters which influence the DB cost. For example, increasing the risk free rate
r decreases the DB cost, but increases the additional hybrid costs. Increasing the accrual rate
b increases the DB costs, but decreases the additional hybrid costs. Hence, the sensitivity
of the total costs to the changing parameters is rather more muted than the sensitivity of the
additional costs shown in the table.

14



Factor Sensitivity Tests
r 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

DB 23.5064 17.414 12.9006 9.557 7.08 5.245 3.8856 2.8785 2.1325
vse 0 0 0 0.598 0.2179 0.4045 0.5786 0.7213 0.8276
v3 0.0174 0.0437 0.1018 0.2023 0.3355 0.451 0.6202 0.7398 0.8327
vU 0.0093 0.0198 0.039 0.0711 0.1199 0.1878 0.2741 0.374 0.4797
µL 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
DB 2.1325 2.8785 3.8856 5.245 7.08 9.557 12.9006 17.414 23.5064
vse 0.3448 0.2987 0.265 0.2389 0.2179 0.2005 0.1858 0.1732 0.1623
v3 0.5299 0.473 0.4217 0.3758 0.3355 0.3004 0.2703 0.2446 0.2229
vU 0.4797 0.374 0.2741 0.1878 0.1199 0.0711 0.039 0.0198 0.0093
c 0.085 0.095 0.105 0.115 0.125 0.135 0.145 0.155 0.165
vse 0.0163 0.0466 0.0909 0.1484 0.2179 0.2987 0.3902 0.4917 0.6026
v3 0.0759 0.1235 0.1831 0.2539 0.3355 0.4271 0.5282 0.6383 0.757
vU 0.0183 0.0325 0.0533 0.0821 0.1199 0.1679 0.2269 0.2975 0.3801
σS 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23
v3 0.2205 0.2314 0.2542 0.2893 0.3355 0.391 0.4538 0.5225 0.5954
vU 0.0012 0.0094 0.0311 0.0685 0.1199 0.183 0.2552 0.3341 0.418
b 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02

DB 5.31 5.7525 6.195 6.6375 7.08 7.5225 7.965 8.4075 8.85
vse 0.4665 0.3896 0.3235 0.2667 0.2179 0.17 0.1401 0.1096 0.0838
v3 0.5826 0.5075 0.4422 0.3853 0.3355 0.2918 0.2535 0.2199 0.1904
vU 0.2958 0.2342 0.1864 0.1491 0.1199 0.0969 0.0788 0.0643 0.0527
γ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
vse 0 0 0 0.067 0.2179 0.3792 0.5281 0.6591 0.7728
v3 0.1315 0.1492 0.1835 0.2442 0.3355 0.4513 0.5811 0.715 0.8463

Table 3: Sensitivity test over (c, µL, r, σS , γ and b), deterministic salary assumption; vse is the
additional FSE cost, v3 is the additional BDBU cost, and vU is the additional DB underpin cost.
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Value Sensitivity Tests
σL 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
v3 0.3363 0.3389 0.3432 0.3492 0.357 0.3665 0.3778 0.391 0.4058
vU 0.1209 0.1238 0.1286 0.1354 0.1443 0.1551 0.1681 0.183 0.2001
ρ -1 -0.9 -0.5 -0.1 0 0.1 0.5 0.9 1
v3 0.4538 0.4434 0.4015 0.3596 0.3492 0.3389 0.298 0.2623 0.2542
vU 0.2552 0.2432 0.195 0.1472 0.1354 0.1238 0.079 0.0396 0.0311

Table 4: Sensitivity Test over (σL and ρ), stochastic salary

• The risk-free rate has a significant impact on the Bermudan DB underpin option value, espe-
cially on the relative cost with respect to the DB plan. However, as shown by the sensitivity
test on γ, the impact mostly comes from the value of the ABO. Also, it is interesting to note
that when r is high, the cost of the FSE option is quite close to the Bermudan DB underpin
option.

• Decreases in the accrual rate b for the DB plan increase the relative value of the Bermudan
DB option. The extra cost reflects the fact that the funding of the DC plan is higher than
the DB plan. When b is high, the fast accumulation of the DB benefit would discourage
employees from entering into the DC account, and the option value will be reduced.

• In our model, the cost of the second election option is independent of the market volatility
σS .

Although the structure of Bermudan DB underpin plan provides more flexibility and protection to
the employee than both the second election option and the DB underpin plan, the additional cost
does not appear as large as one may expect. In most scenarios, the cost is less than 5% of the DB
plan. The relative cost is high when the risk-free rate increases, however, it is interesting to note
that the cost is very close to the second election option. Similarly, when the salary growth rate is
low, the cost is quite close to that of the DB underpin option. This demonstrates that a very large
cost comes either from the option which allows employees to switch to DC, or from the guarantee.

Table 4 displays the sensitivity test for the stochastic salary parameters. The risks involved in the
stochastic salary process have less impact overall. Larger volatility in the salary process, as well
as negative correlation between the salary and equity market, will increase the volatility of wealth-
salary ratio process, and thus, increases the option value. These two risks have same effect on the
DB underpin option, which has been previously observed by Chen and Hardy (2009). However,
under our assumptions, the value of second election option is immunized to these two risks.
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8 Conclusion and Future Work

In this paper, we discuss a new pension design, which combines Florida’s second election option
and the DB underpin option, to form a Bermudan-type DB underpin plan. We summarize some key
characteristics of the option, such as convexity and monotonicity. Also, we provide illustrations of
the behavior of the early exercise region, and specifically include the situation where the Bermudan
DB underpin simplifies to the DB underpin plan.

Our numerical illustrations demonstrate that, although the Bermudan-type DB underpin option
may end up costing more than both the DB underpin option and the second election option com-
bined, it does not cost more than 10% of the DB plan in general. In cases when the relative cost
of the option compared with the DB plan is very large, for example when risk-free rate is high or
salary growth rate is low, the actual cost of the Bermudan DB underpin plan is indeed smaller.

The Bermudan DB underpin plan shifts more risk and cost to the employer compared with a DB
plan, so it may not be an attractive option for pension sponsors, but the overall costs can be man-
aged to some extent by varying the DC contribution rate and the DB accrual rate. Furthermore,
it offers an attractive portable benefit for younger employees, which should help with attracting
new staff, and offers a substantial retention benefit for older employees, which should help with
reducing turnover of midcareer staff. It provides predictable income in retirement. In addition, we
have used the Bermudan DB underpin to connect the FSE plan design to the DB underpin.

There are many outstanding questions that we hope to address in future work.

• The assumption of a complete market may be too strong. It may also be interesting to
consider the situation when salary can only be partially hedged.

• The sensitivity of the option value of the risk-free rate indicates that the results might be
sensitive to stochastic interest rates.

• The annuity factor is highly sensitive to the choice of discount rate. However, as we assume
a constant annuity factor, we may underestimate the risk.

• It may also be interesting to explore the option from the employee’s perspective. For exam-
ple, evaluating the utility gains from the guarantee.
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A Appendix

A.1 Cost Function - Discrete Case

Here is the derivation of equation (1):

C(t, w) = sup
τ∈[0,1,··· ,T−t]

EQ

[
τ−1∑
u=0

e−rucLt+u + e−rτ
(
KT e

−r(T−τ−t) −Kt+τe
−r(T−t−τ))

+ e−τr
(
Kt+τe

−r(T−τ−t) −W t,w
τ+t

)+ ∣∣∣∣Ft
]

= sup
τ∈[0,1,··· ,T−t]

EQ

[
τ−1∑
u=0

e−rucLt+u + e−rτ
(
KT e

−r(T−τ−t) −Kt+τe
−r(T−t−τ))

+Kt+τe
−r(T−t) − e−rτW t,w

τ+t + e−rτ
(
W t,w
τ+t −Kt+τe

−r(T−t−τ))+ ∣∣∣∣Ft]
= sup

τ∈[0,1,··· ,T−t]
EQ

[
τ−1∑
u=0

e−rucLt+u +KT e
−r(T−t) − e−rτW t,w

τ+t + e−rτ
(
W t,w
τ −Kt+τe

−r(T−t−τ))+ ∣∣∣∣Ft
]

To further reduce our equation, we need the Optional Sampling Theorem. First, observe that

EQ
[
e−r(t−s)W s,w

t |Fs
]
= EQ

[
e−r(t−s)

(
w
St
Ss

+
t−1∑
u=s

St
Su
cLu

)∣∣∣∣Fs
]

= w + e−r(t−s)
t−1∑
u=s

er(t−u)cLu = w +
t−1∑
u=s

er(s−u)cLu

Define a new process Xt as

Xt = e−rtW 0,w
t −

(
w +

t−1∑
u=0

e−rucLu

)

= e−trw
St
S0

− w +
t−1∑
u=0

(
e−rt

St
Su
− e−ru

)
cLu
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It is easy to verify that Xt is a martingale:

EQ [Xt|Fs] = e−rtw
Ss
S0

er(t−s) − w +
s∑

u=0

(
e−rt

Ss
Su
er(t−s) − e−ru

)
cLu +

t−1∑
u=s+1

(
e−rter(t−u) − e−ru

)
cLu

= e−rsw
Ss
S0

− w +
s−1∑
u=0

(
e−rs

Ss
Su
− e−ru

)
cLu

= Xs

Let τ ∈ [0, 1, · · · , T − t] be any stopping time, by optional sampling theorem, we have

EQ [Xτ+t|Ft] = Xt

=⇒ EQ

e−r(τ+t)w
St+τ
S0

+
t+τ−1∑
u=0

e−r(t+τ)
St+τ
Su

cLu|Ft︸ ︷︷ ︸
=e−r(τ+t)W

t,Wt
t+τ

 = EQ

[
w +

t+τ−1∑
u=0

e−rucLu|Ft

]
+Xt

EQ
[
e−rτW t,Wt

t+τ |Ft
]
= EQ

[
τ−1∑
u=0

e−rucLu+t|Ft

]
+Wt

Substitute the last line into cost function, we have

C(t, w) = sup
τ∈[0,1,··· ,T−t]

{
EQ

[
τ−1∑
u=0

e−rucLt+u

]
− EQ

[
e−rτW t,w

τ+t|Ft
]
+ EQ

[
KT e

−r(T−t)]
+EQ

[
e−rτ

(
Wτ −Kt+τe

−r(T−t−τ))+]}
= EQ

[
KT e

−r(T−t)]︸ ︷︷ ︸
The ABO of DB plan at t

+ sup
τ∈[0,1,··· ,T−t]

EQ
[
e−rτ

(
W t,w
τ+t −Kt+τe

−r(T−t−τ))+ |Ft]︸ ︷︷ ︸
Price of the Option

−w

A.2 Characteristics of Value Function - Discrete Case

Here is the proof of Proposition (1)
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A.2.1 Value function is non-decreasing in w

For h > 0, we have (x− k)+ − (x+ h− k)+ ≤ 0, for all x, therefore,

v(t, w)− v(t, w + h)

≤ sup
τ∈[0,1,··· ,T−t]

EQ

[
e−rτ

{(
W t,w
t+τ −Kt+τe

−r(T−t−τ))+ − (W t,w
t+τ + h

St+τ
St
−Kt+τe

−r(T−t−τ)
)+
}]

≤ 0

since St+τ
St

is strictly positive a.s.. Notice, although the value function is increasing in the initial
DC balance, the cost function C(t, w) is the opposite.

C(t, w + h)− C(t, w)

≤ sup
τ∈[0,1,··· ,T−t]

EQ

[
e−rτ

{(
W t,w
t+τ + h

St+τ
St
−Kt+τe

−r(T−t−τ)
)+

−
(
W t,w
t+τ −Kt+τe

−r(T−t−τ))+}]− h
≤ sup

τ∈[0,1,··· ,T−t]
EQ

[
e−rτ

{
h
St+τ
St

+
(
W t,w
t+τ −Kt+τe

−r(T−t−τ))+ − (W t,w
t+τ −Kt+τe

−r(T−t−τ))+}]− h
= 0

A.2.2 vh(t, w) and ve(t, w) are non-decreasing in w

For x > y,

vh(t, x)− vh(t, y) = e−rEQ

[
v

(
t+ 1, (x+ cLt)

St+1

St

)
− v

(
t+ 1, (y + cLt)

St+1

St

)]
≥ 0

Thus, vh is increasing in the DC account balance. It is also easy to see that

ve(t, x)− ve(t, y) = (x−Kte
−r(T−t))+ − (y −Kte

−r(T−t))+

≥ 0
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A.2.3 Continuity of value function in w

For x > y, using the fact that sup[X]−sup[Y ] ≤ sup[X−Y ] and (x−k)+−(y−k)+ ≤ (x−y)+,
we have

|v(t, x)− v(t, y)|

≤

∣∣∣∣∣ sup
τ∈[0,1,··· ,T−t]

EQ

[
e−τr

(
x
St+τ
St

+
τ∑
u=0

cSt+τLu+t
Su+t

−Kt+τe
−r(T−τ−t)

)+

−e−τr
(
y
St+τ
St

+
τ∑
u=0

cSt+τLu+t
Su+t

−Kt+τe
−r(T−τ−t)

)+ ∣∣Ft]
∣∣∣∣∣

≤ sup
τ∈[0,1,··· ,T−t]

EQ

[
e−rτ

(
(x− y)St+τ

St

)]
≤ (x− y)

Thus, v is Lipschitz continuous in w and clearly for any ε > 0

v(t, w + ε) ≤ v(t, w) + ε (5)

The similar property for vh follows immediately, for any ε > 0

vh(t, w + ε) = EQ

[
e−rv

(
t+ 1, (w + ε+ cLt)

St+1

St

)]
≤ EQ

[
e−rv

(
t+ 1, (w + cLt)

St+1

St

)
+ e−rε

St+1

St

]
= vh(t, w) + ε

A.2.4 Convexity of the value function

We follow Ben-Ameur et al. (2002), and prove the convexity by induction. For any w1 > 0 and
w2 > 0, and 0 ≤ λ ≤ 1

vh(T − 1, λw1 + (1− λ)w2) = EQ

[
e−r
(
(λw1 + (1− λ)w2 + cLT−1)

ST
ST−1

− bLT−1T ä(T )
)+
]

≤ λvh(T − 1, w1) + (1− λ)vh(T − 1, w2)

Thus, vh is convex at time T-1, and similarly ve is convex at time T − 1. Since

v(T − 1, w) = max
(
ve(T − 1, w), vh(T − 1, w)

)
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v is also convex at time T − 1.

We now assume that result holds for time t+ 1, where 0 ≤ t ≤ T − 2, then the continuation value
at time t is

vh(t, λw1 + (1− λ)w2)

= EQ

[
e−rv

(
t+ 1, (λw1 + (1− λ)w2 + cLt)

St+1

St

)]
≤ EQ

[
e−r
(
λv

(
t+ 1, (w1 + cLt)

St+1

St

)
+ (1− λ)v

(
t+ 1, (w2 + cLt)

St+1

St

))]
= λEQ

[
e−rv

(
t+ 1, (w1 + cLt)

St+1

St

)]
+ (1− λ)EQ

[
e−rv

(
t+ 1, (w2 + cLt)

St+1

St

)]
= λvh(t, w1) + (1− λ)vh(t, w2)

Thus, vh is a convex function at time t. Since ve holds the convexity for all t, and v(t, w) =

max
(
ve(t, w), vh(t, w)

)
holds for all t, then v(t, w) is convex function at time t. Then, by induc-

tion, we have proved the convexity of v(t, w).

A.3 Properties of C and D - Discrete Case

Consider first the case when w < Kt at time t. We have ve(t, w) = (w −Kt)
+, so

w < Kt ⇒ ve(t, w) = 0

The value function, given in equation (2), is the expected value of a function bounded below by
zero, and which has a positive probability of being greater than zero, which means that the expected
value is strictly greater than zero. The continuation function is the expected discounted value of
the 1-year ahead value function (assuming the option is not exercised immediately), so it must be
strictly greater than 0.

So whenever w ∈ [0, Kt], we have vh(t, w) > 0 = ve(t, w). Thus if w ∈ [0, Kt], it cannot be
optimal to exercise. Therefore, in order to explore the exercise frontier, we need only consider
cases when w > Kt.

When w > Kt we have ve(t, w) = w −Kt and

(t, w) ∈ D =⇒ v(w, t) = ve(t, w) =⇒ v(w, t) = w −Kt

From Appendix A.2.3, v(t, w) + ε ≥ v(t, w + ε) and vh(t, w) + ε ≥ vh(t, w + ε) for any w ∈ R

and ε > 0.

23



First, assume that w > Kt and that (t, w) ∈ D,

(t, w) ∈ D =⇒ ve(t, w) ≥ vh(t, w)

=⇒ ∀ε > 0 ve(t, w + ε) = ve(t, w) + ε ≥ vh(t, w) + ε ≥ vh(t, w + ε)

=⇒ (t, w + h) ∈ D

Next, assume that w > Kt and that (t, w) ∈ C. Note that vh(t, w) + ε ≥ vh(t, w + ε) for all ε > 0

implies that vh(t, w − ε) ≥ vh(t, w)− ε

(t, w) ∈ C =⇒ vh(t, w) > ve(t, w)

=⇒ ∀ε > 0 vh(t, w − ε) ≥ vh(t, w)− ε > ve(t, w)− ε = ve(t, w − ε)
=⇒ (t, w − ε) ∈ C

These results show that it is optimal for the employee to switch to the DB plan only when his/her
DC account balance is above a certain threshold at each possible switching time.

A.4 Properties of ϕ(t) - Discrete Case

This section provides the proof of Proposition 3. First, notice that if ϕ(t) <∞, then for sufficiently
large w

v(t, w) = ve(t, w) ≥ vh(t, w) = E

[
e−rv

(
t+ 1, (w + cLt)

St+1

St

)]
≥ E

[
e−rve

(
t+ 1, (w + cLt)

St+1

St

)]
= (w + cLt)N (d1,t,w)− (t+ 1)bLtä(T )e

−r(T−t−1)e−rN(d2,t,w)

where

d1,t,w =
1

σS

[
ln

(
w + cLt

(t+ 1)Ltbä(T )e−(T−t−1)r

)
+

(
r +

σ2
S

2

)]
d2,t,w = d1,t,w − σS
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which is the Black-Scholes Formula, with initial stock price w + cLt and strike value
(t+1)bLtä(T )e

−r(T−t−1). Here we define

f(t) = lim
w→∞

ve(t, w)− E
[
e−rve

(
t+ 1, (w + cLt)

St+1

St

)]
= lim

w→∞
ve(t, w)−

(
(w + cLt)N (d1,t,w)− (t+ 1)bLtä(T )e

−r(T−t−1)e−rN(d2,t,w)
)

= lim
w→∞

w −
(
(w + cLt)N (d1,t,w)− (t+ 1)bLtä(T )e

−r(T−t)N(d2,t,w)
)
− tbLt−1ä(T )e−r(T−t)

= lim
w→∞

−
(
(t+ 1)bLtä(T )e

−r(T−t)N(−d2,t,w)− (w + cLt)N (−d1,t,w)
)

− cLt + (t+ 1)bLtä(T )e
−r(T−t) − tbLt−1ä(T )e−r(T−t)

= (t+ 1)bLtä(T )e
−r(T−t) − tbLt−1ä(T )e−r(T−t) − cLt

Clearly, whenever ϕ(t) <∞, we have f(t) ≥ 0.

If
c

bä(T )e−rT
< 1, we prove ϕ(t) <∞,∀t ∈ [0, T ] by induction.

At time T, ϕ(T ) = TbLT−1ä(T ) <∞.
At time t, assume ϕ(t + 1) < ∞. We observe that for sufficiently large w < ∞, we have
v(t+ 1, w) = ve(t+ 1, w). Next, we can show

lim
w→∞

vh(t, w)− E
[
e−rve

(
t+ 1, (w + cLt)

St+1

St

) ∣∣∣∣Ft]
= lim

w→∞
E

[
e−r
(
v

(
t+ 1, (w + cLt)

St+1

St

)
− ve

(
t+ 1, (w + cLt)

St+1

St

)) ∣∣∣∣Ft]
=0

The last line is due to the fact that if w ≥ ϕ(t+ 1)

v (t+ 1, w)− ve (t+ 1, w) = 0 < ϕ(t+ 1) <∞

and for w < ϕ(t+ 1)

v (t+ 1, w)− ve (t+ 1, w) ≤ ve (t+ 1, ϕ(t+ 1)) ≤ ϕ(t+ 1) <∞

since v(t+1, w) is an increasing function of w (Appendix A.2.1). Thus, the difference is bounded
by ϕ(t+ 1) <∞ and we are able to apply the Dominated Convergence Theorem. Next,

lim
w→∞

ve(t, w)− vh(t, w) = lim
w→∞

ve(t, w)− E
[
e−rve

(
(w + cLt)

St+1

St

)]
= (t+ 1)bLtä(T )e

−r(T−t) − tbä(T )e−r(T−t)Lt−1 − cLt
> (t+ 1)bLtä(T )e

−r(T−t) − tbä(T )e−r(T−t)Lt−1 − Ltbä(T )e−rT

> (t+ 1)bLtä(T )e
−r(T−t) − tbä(T )e−r(T−t)Lt − Ltbä(T )e−r(T−t)

= 0
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Which implies ϕ(t) <∞ (otherwise if ϕ(t) =∞, limw→∞ v
e(t, w)− vh(t, w) ≤ 0).

Thus ϕ(t) <∞,∀t ∈ [0, T ].

For
c

bä(T )e−rT
≥ 1, we split the proof into three parts.

(1) If c
bä(T )e−rT

> 1, we first prove that there exists a t∗ such that ϕ(t) =∞,∀t ≤ t∗, then prove
that ϕ(t) <∞,∀t > t∗ by induction from time T to t∗ + 1 as above.

We have f(0) < 0 so that

lim
w→∞

ve(0, w)− vh(0, w) ≤ f(0) < 0

and thus ϕ(0) =∞. Also, notice we can write f(t) in the form

f(t) = eµLt
(
te−r(T−t)bä(T )(1− e−µL) + bä(T )e−r(T−t) − c

)
= eµLth(t)

where h(t) is a strictly increasing function of time t, if both r and µL are non-negative, with
at least one of them being strictly positive. We have f(0) < 0 and

f

(
1

r
log

(
c

bä(T )e−rT

))
> 0

where
1

r
log

(
c

bä(T )e−rT

)
> 0 by assumption.

Then, we can find t′ such that

f(t) < 0 for t < t′

f(t) = 0 for t = t′

f(t) > 0 for t > t′

Here we set t∗ = bt′c, and we have

lim
w→∞

ve(t, w)− vh(t, w) ≤ f(t) < 0, ∀t < t∗

and for t = t∗, first notice that

f(t∗) ≤ 0 =⇒ c ≥ bä(T )e−rT
(
t∗ + 1− t∗e−µL

)
ert∗
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Next, for any finite w > t∗Lt∗−1bä(T )e
−r(T−t∗), we have

vh(t∗, w) = EQ

[
e−rv

(
t∗ + 1, (w + cLt∗)

St∗+1

St∗

)]
> EQ

[
e−rve

(
t∗ + 1, (w + cLt∗)

St∗+1

St∗

)]
= EQ

[
e−r
(
(w + cLt∗)

St∗+1

St∗
− (t∗ + 1)Lt∗bä(T )e

−r(T−t∗−1)
)+
]

≥ max
(
0, w + cLt∗ − (t∗ + 1)Lt∗bä(T )e

−r(T−t∗)
)

≥ max
(
0, w − t∗Lt∗−1bä(T )e−rT ert∗

)
= ve(t∗, w)

The third to fourth line follows from Jensen’s Inequality:

EQ

[
e−r
(
(w + cLt∗)

St∗+1

St∗
− (t∗ + 1)Ltbä(T )e

−r(T−t∗−1)
)+
]

≥ max

(
0, EQ

[
e−r
(
(w + cLt∗)

St∗+1

St∗
− (t∗ + 1)Ltbä(T )e

−r(T−t∗−1)
)])

= max
(
0, w + cLt∗ − (t∗ + 1)Ltbä(T )e

−r(T−t∗)
)

Thus, we have vh(t∗, w) > ve(t∗, w),∀w <∞, and

lim
t→∞

ve(t∗, w)− vh(t∗, w) ≤ f(t∗) ≤ 0

which implies ϕ(t∗) =∞.

Repeating the induction:

At time T, again we have ϕ(T ) <∞.
At time t > t∗, assume ϕ(t+ 1) <∞.

lim
w→∞

ve(t, w)− vh(t, w) = f(t) > 0, t > t∗

Thus ϕ(t) <∞,∀t > t∗.

(2) If c > bä(T ) ((1− e−µL)T + e−µL) e−r

c > bä(T )e−r
(
T − (T − 1)e−µL

)
> bä(T )e−r ≥ bä(T )e−rT
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Thus, we know there exists t∗ as defined previously, and for time T − 1,

lim
w→∞

ve(T − 1, w)− vh(T − 1, w)

= TbLT−1ä(T )e
−r − (T − 1)bLT−2ä(T )e

−r − cLT−1
< TbLT−1ä(T )e

−r − (T − 1)bLT−2ä(T )e
−r − bä(T )

((
1− e−µL

)
T + e−µL

)
e−rLT−1

= 0

Thus, ϕ(t) =∞, ∀t ≤ T − 1, and the option simplifies to the DB underpin option.

(3) When
c

bä(T )e−rT
= 1, we have f(0) = 0. Thus t∗ = t′ = 0, immediately we have

ϕ(0) =∞.

A.5 Formulation of Value Function - Continuous Case

Recall St, Lt represent the stock process and the salary process, and, Wt represents the wealth
accumulation process in the DC account. Their stochastic differential equation representations
are:

dSt = rStdt+ σSStdZ
Q
S (t)

dLt = rLtdt+ σLLtdZ
Q
L (t)

dWt = rWtdt+ cLtdt+ σSWtdZ
Q
S (t)

ρdt = dZQ
L (t)dZ

Q
S (t)

Here we denote Yt = Wt

Lt
, as the wealth-salary ratio process. We can rewrite our value function:

v(t, w, l) = sup
0≤τ≤T−t

EQ
[
e−rτ

(
W t,w
τ+t −Kt+τe

−r(T−t−τ))+ |Ft]
= sup

0≤τ≤T−t
EQ

[
e−rτLτ+t

(
w

Lτ+t

St+τ
St

+ c

∫ τ

0

Sτ+tLu
SuLt+τ

− b(t+ τ)äT e
−r(T−t−τ)

)+ ∣∣∣∣Ft
]

= sup
0≤τ≤T−t

EQ

[
e−rτLτ+t

(
Y
t,w/l
t+τ − b(t+ τ)äT e

−r(T−t−τ)
)+ ∣∣∣∣Ft]

sup
0≤τ≤T−t

EQ

[
e−rτ le

(
r−σ

2
L
2

)
τ+σL(Z

Q
L (t+τ)−ZQL (t))

(
Y
t,w/l
t+τ − b(t+ τ)äT e

−r(T−t−τ)
)+ ∣∣∣∣Ft

]
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We are able to eliminate the discounting term in the expectation through the change of measure
method. Let dP̃ = exp

(
σLZ

Q
L (t)− (σ2

L/2)t
)
dQ, by Girsanov Theorem, we have(

Z P̃
S (t)

Z P̃
L (t)

)
=

(
ZQ
S

ZQ
L

)
−
(

0
σL

)
t

as a two-dimensional standard Brownian motion under P̃ . Then, under the new measure, (St, Lt)
has the following SDE:(
dSt
dLt

)
=

(
rSt + σSσLρSt
rLt + σ2

LLt

)
dt+

(
σSSt

√
1− ρ2 σSStρ
0 σLLt

)(
dZ P̃

S (t)

dZ P̃
L (t)

)
and the SDE for the wealth process is

dWt = (rWt + σSσLρWt + cLt)dt+ σSWt

√
1− ρ2dZ P̃

S (t) + σSWtρdZ
P̃
L (t)

then our value function becomes

v(t, w, l) = sup
0≤τ≤T−t

EQ

[
e−rτ le

(
r−σ

2
L
2

)
τ+σL(Z

Q
L (t+τ)−ZQL (t))

(
Y
t,w/l
t+τ − b(t+ τ)äT e

−r(T−t−τ)
)+ ∣∣∣∣Ft

]

= sup
0≤τ≤T−t

EP̃

[
dQ

dP̃
le−

σ2L
2
τ+σL(Z

Q
L (t+τ)−ZQL (t))

(
Y
t,w/l
t+τ − b(t+ τ)äT e

−r(T−t−τ)
)+ ∣∣∣∣Ft]

=l sup
0≤τ≤T−t

EP̃

[(
Y
t,w/l
τ+t − b(τ + t)äT e

−r(T−t−τ)
)+ ∣∣∣∣Ft]

where Yt has the SDE as:

dYt =
1

Lt
dWt −

Wt

L2
t

dLt −
1

L2
t

dLtdWt +
Wt

L3
t

(dLt)
2

= (r + σSσLρ)Ytdt+ cdt+ σS
√
1− ρ2YtdZ P̃

S (t) + σSρYtdZ
P̃
L (t)

− Yt
(
(r + σ2

L)dt+ σLdZ
P̃
L (t)

)
− YtσLσSρdt+ Ytσ

2
Ldt

= cdt+ σS
√

1− ρ2YtdZ P̃
S (t) + Yt (σSρ− σL) dZ P̃

L (t)

= cdt+ YtσY dZ
P̃
Y (t)

where σY =
√
σ2
S + σ2

L − 2σSσLρ and Z P̃
Y (t) is a standard Brownian Motion. We can define a

new function (2-dimensional):

v(t, y) = sup
0≤τ≤T−t

EP̃

[(
Y t,y
t+τ − b(t+ τ)äT e

−(T−t−τ)r)+ ∣∣∣∣Ft]
Thus, v(t, w/l) = v(t, w, l)/l, which clearly suggests that the exercise rule depends on the wealth-
to-salary ratio.
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A.6 Characteristics of Value Function - Continuous Case

A.6.1 Non-decreasing in y

By writing value function explicitly

v(t, y) = sup
0≤τ≤T−t

EP̃

[(
y

S(t+ τ)

L(t+ τ)S(t)
+ c

∫ t+τ

t

S(t+ τ)L(u)

S(u)L(t+ τ)
du− b(t+ τ)äT e

−(T−t−τ)r
)+
]

we immediately see that y → v(t, y) is an increasing and convex function on [0,∞)

A.6.2 Continuity of value function in y

for x > y

|v(t, x)− v(t, y)|

≤

∣∣∣∣∣ sup
0≤τ≤T−t

EP̃

[(
Y t,x
t+τ − b(t+ τ)äT e

−(T−t−τ)r)+ − (Y t,y
t+τ − b(t+ τ)äT e

−(T−t−τ)r)+ ∣∣∣∣Ft]
∣∣∣∣∣

≤
∣∣∣∣ sup
0≤τ≤T−t

EP̃
[
Y t,x
t+τ − Y

t,y
t+τ

]∣∣∣∣
≤
∣∣∣∣ sup
0≤τ≤T−t

EP̃

[
x
LtSt+τ
Lt+τSt

− yLtSt+τ
Lt+τSt

]∣∣∣∣
≤
∣∣∣∣(x− y) sup

0≤τ≤T−t
EP̃

[
LtSt+τ
Lt+τSt

]∣∣∣∣
≤ (x− y)

A.6.3 Non-increasing in time t

Since Y t1,y
t1+t

law
= Y t2,y

t2+t, and the strike functionK(t) = tbe−(T−t)räT is an increasing function of time
t, immediately we have v(t, y) is non-increasing in t.
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A.6.4 Continuity of value function in t

For t2 > t1,

0 ≤v(t1, y)− EP̃
[
v(t2, Y

t1,y
t2 )

]
= sup

τ1≤T−t1
EP̃
[
1τ1<t2−t1v

e
(
t1 + τ1, Y

t1,y
t1+τ1

)
+ 1τ1≥t2−t1v

(
t2, Y

t1,y
t2

)]
− EP̃

[
v(t2, Y

t1,y
t2 )

]
≤ sup

τ1≤T−t1
EP̃
[
1τ1<t2−t1v

e
(
t1 + τ1, Y

t1,y
t1+τ1

)
+ 1τ1≥t2−t1v

(
t2, Y

t1,y
t2

)
− v(t2, Y t1,y

t2 )
]

= sup
τ1≤T−t1

EP̃
[
1τ1<t2−t1v

e(t1 + τ1, Y
t1,y
t1τ1 )− v(t2, Y

t1,y
t2 )

]
≤ sup

τ1≤T−t1
EP̃
[
1τ1<t2−t1v

e(t1 + τ1, Y
t1,y
t1τ1 )− v

e(t2, Y
t1,y
t2 )

]
≤ sup

τ1≤T−t1
EP̃
[
1τ1<t2−t1

(
Y t1,y
τ1+t1 − (t1 + τ1)bäT e

−(T−t1−τ1)r
)+ − (Y t1,y

t2 − t2bäT e−(T−t2)r
)+]

≤EP̃

[
sup

τ1∈[t1,t2]

∣∣Y t1,y
t1+τ1 − Y

t1,y
t2

∣∣+ sup
τ1∈[t1,t2]

∣∣t2bäT e−(T−t2)r − (t1 + τ1)bäT e
−(T−t1−τ1)r

∣∣]

≤EP̃

[
sup

τ1∈[t1,t2]

∣∣Y t1,y
t1+τ1 − Y

t1,y
t2

∣∣]+ (t2bäT e
−(T−t2)r − t1bäT e−(T−t1)r)

≤C1

√
t2 − t1

where the last line comes from Touzi (2013), Theorem 2.4, that there exists a constant C such that

EP̃

[
sup

τ1∈[t1,t2]

∣∣Y t1,y
t1+τ1 − Y

t1,y
t2

∣∣] ≤ C(1 + |y|)
√
t2 − t1

Next, we have

|v(t1, y)− v(t2, y)| ≤
∣∣∣v(t1, y)− EP̃

[
v(t2, Y

t1,y
t2 )

]∣∣∣+ ∣∣∣EP̃
[
v(t2, Y

t1,y
t2 )

]
− v(t2, y)

∣∣∣
≤ C1

√
t2 − t1 + EP̃

[∣∣v(t2, Y t1,y
t2 )− v(t2, y)

∣∣]
≤ C1

√
t2 − t1 + C2E

P̃
[∣∣Y t1,y

t2 − y
∣∣]

≤ C
√
t2 − t1

where the third line follows from the Lipschitz continuity of the value function in y. Thus, we have
proved that the value function is Hölder-Continuous in t.
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A.6.5 Exercise Region

Denote the continuation region C = {(t, y) ∈ (0, T )× [0,∞) : v(t, y) > ve(t, y)} and stopping
regions C = {(t, y) ∈ (0, T )× [0,∞) : v(t, y) = ve(t, y)}. Then, by standard arguments based
on the strong Markov Property (see Peskir and Shiryaev (2006) Corollary 2.9), the first hitting
time τD = inf {0 ≤ s ≤ T − t : (t+ s, Yt+s) ∈ D} is optimal, and the value function is C1,2 on C

and satisfies:

vt + LY v = 0 in C

If (t, y) ∈ D,

v(t, y + h) ≤ v(t, y) + h = ve(t, y) + h = ve(t, y + h)

thus (t, y + h) ∈ D.

If (t, y) ∈ C,

v(t, y − h) ≥ v(t, y)− h > ve(t, y)− h = ve(t, y − h), y − h > Kt

if y − h < Kt, v(t, y − h) > 0 = ve(t, y − h), thus (t, y − h) ∈ C

A.6.6 Conditions when ϕ(t) =∞

Define and substitute g(t, y) = (y − btäT e−r(T−t)) for y > Kt into the variational inequality, and
define

f(t) = −∂g
∂t
− c∂g

∂y
− σ2

Y y
2

2

∂2g

∂y2
= bäT e

−r(T−t) + rbtäT e
−r(T−t) − c

If f(t) < 0, then there is a contradiction with the variational inequality, which means v(t, y) 6=
g(t, y) for all y, and thus (t, y) ∈ C, ∀y. Since f(t) is an increasing function of t, there exists a
t∗ satisfying f(t∗) = 0. If t∗ ∈ [0, T ], then (t, y) ∈ C, ∀(t, y) ∈ [0, t∗] × R. In particular, if
c > bäT (1 + rT ) (when DC contribution rate is extremely high or horizon is short), the option is
equivalent to European Option.

A.7 Price of Second Election

Here we provide the pricing formulae for second election option under three scenarios.
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• Stochastic Salary in Continuous Setting:

Cs(t, Lt) =
(
Ltc(t

∗ − t)− t∗LtbäT e−r(T−t
∗)
)
+ TbäTLt

which we can find a t∗ = max(min(T, t
′
), t), that t′ satisfies

c− bäT e−r(T−t
′
) − rt′bäT e−r(T−t

′
) = 0

• Deterministic Salary in Continuous Setting:

Cs(t, Lt) =
cLt

µL − r
(
e(µ−r)(t

∗−t) − 1
)
− t∗bäTLte(µL−r)(t

∗−t)e−γ(T−t
∗) + TLte

(µL−r)(T−t)bäT

where t∗ = min(max(t, t
′
), T ) and t′ satisfies

c− bäT e−γ(T−t
′
) − t′(µL − r + γ)bäT e

−γ(T−t′ ) = 0

• Deterministic Salary in Discrete Setting:

Cs(t, Lt)

= max
t∗∈t,t+1,···T

Lt

(
c
1− e(µL−r)(t∗−t)

1− eµL−r
− t∗bäT eµL(t

∗−1−t)e−rt
∗
e−γ(T−t

∗) + TbäT e
µL(T−1)e−r(T−t)

)
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