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Abstract

Deformed sine-Gordon (DSG) models ∂ξ∂η w+ d
dw

V (w) = 0, with V (w) being the deformed potential,

are considered in the context of the Riccati-type pseudo-potential approach. A compatibility condition

of the deformed system of Riccati-type equations reproduces the equation of motion of the DSG models.

Then, we provide a pair of linear systems of equations for the DSG model and an associated infinite tower

of non-local conservation laws. Through a direct construction and supported by numerical simulations of

soliton scatterings, we show that the DSG models, which have recently been defined as quasi-integrable

in the anomalous zero-curvature approach [Ferreira-Zakrzewski, JHEP05(2011)130], possess new towers

of infinite number of quasi-conservation laws. We compute numerically the first sets of non-trivial and

independent charges (beyond energy and momentum) of the DSG model: the two third order conserved

charges and the two fifth order asymptotically conserved charges in the pseudo-potential approach, and

the first four anomalies of the new towers of charges, respectively. We consider kink-kink, kink-antikink

and breather configurations for the Bazeia et al. potential Vq(w) = 64

q2
tan2 w

2
(1 − | sin w

2
|q)2 (q ∈ IR),

which contains the usual SG potential V2(w) = 2[1− cos (2w)]. The numerical simulations are performed

using the 4th order Runge-Kutta method supplied with non-reflecting boundary conditions.

http://arxiv.org/abs/1801.00866v5


1 Introduction

While the soliton type solutions and the presence of infinite number of conserved charges are among the

remarkable properties of the integrable models, some non-linear field theory models with important physical

applications and solitary wave solutions are not integrable. Recently, it has been performed certain deforma-

tions of integrable models such that they exhibit soliton-type solutions with some properties resembling to

their counterparts of the truly integrable ones. In this context, it has been introduced the quasi-integrability

concept related to the anomalous zero-curvature approach to deformed integrable models [1, 2]. For earlier

results on some non-linear field theories with solitary waves and the study of their collisions, see e.g. [3] and

references therein.

Recently, in a series of papers, the quasi-integrability concept has been developed and certain deformations

of the sine-Gordon (SG), Toda, Bullough-Dodd, KdV and non-linear Schrödinger (NLS) models [1, 2, 4, 5, 6,

7] have been studied using their relevant anomalous zero-curvature representations. The main developments

have been focused on the construction of an infinite number of their quasi-conservation laws through the so

called abelianization procedure and the numerical simulations of two-soliton collisions, in order to examine

the behavior of the so-called ‘anomalies’ present in the in-homogeneous quasi-conservation laws for the

relevant currents. In this way, it has been shown that the quasi-integrable models possess an infinite number

of charges that are asymptotically conserved, i.e. conserved charges, such that their values vary during the

scattering of the two-solitons only. As a strong support for the quasi-integrability concept it has recently

been considered the relevant charges associated to three-soliton collisions of the various deformations of the

KdV model, and they have been shown to be also asymptotically conserved [7]; i.e. the quasi-conservation

laws exhibit certain anomaly terms which vanish when integrated on the space-time plane.

In [8], by two of us, strengthening the results of [1, 2], it has been shown the existence of several towers of

exactly conserved charges. In fact, it has been shown that the deformed SG models indeed possess a subset

of infinite number of exactly conserved charges for two-soliton field configurations being eigenstates of the

space-reflection parity symmetry [8]. Similar results were found for the deformed defocusing (focusing ) NLS

model with dark (bright) solitons [9, 10] for a variety of two-soliton configurations. These results have been

obtained by combining analytical and numerical methods.

Here, we provide, by direct construction, new types of two sets of dual towers of asymptotically conserved

charges with true anomalies. Through numerical simulations we verify the vanishing of the lowest order

anomalies with space-reflection odd parity. These novel charges turn out to be anomalous even for the

integrable sine-Gordon model. The only analytical explanation we have found, so far, for the unexpected

appearance of these anomalous charges are the space-time symmetry properties which the 2-soliton solutions

of the standard sine-Gordon model exhibit. It is expected that those types of charges will play an important

role in the study of soliton gases and formation of certain structures in (quasi-)integrable systems, such as

soliton turbulence, soliton gas dynamics and rogue waves [11, 12]. In addition, these new kind of charges are
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expected to appear in the other quasi-integrable theories considered in the literature.

Moreover, this work presents the first steps toward deformations of the sine-Gordon model following the

pseudo-potential approach. Our main goal is to uncover more specific integrability structures associated to

the deformed integrable models mentioned above. It starts by introducing a particular deformation of the

Riccati-type pseudo-potential equations related to the ordinary SG model [13, 14]. We introduce a deformed

sine-Gordon potential V into the Riccati-type system of equations and a new system of equations for a set

of auxiliary fields, such that the compatibility condition applied to the extended system gives rise to the

deformed sine-Gordon model (DSG) equation of motion. Then, we construct a first type of infinite number

of dual conservation laws, such that an infinite set of quasi-conserved charges, in the laboratory coordinates,

emerges as linear combinations of the relevant charges in the both dual formulations.

Then, by combining the analytical pseudo-potential and numerical methods, we provide explicitly the

first six conservation laws and the relevant four exactly and two asymptotically conserved charges, including

the energy and momentum charges, organized in powers of the spectral parameter, respectively. Remarkably,

we have shown that the so-called ‘anomaly’ terms, defined in the quasi-integrability approach, are indeed

immersed in the relevant higher order exact conservation laws, beyond energy and momentum conservation

laws. We show that the same holds for the third and fifth order quasi-conservation laws presented in [1]. In

fact, their ‘anomalies’ can be removed such that the inhomogeneous quasi-conservation laws become truly

conservation laws for the conveniently redefined new currents.

New pseudo-potential representations are introduced for the deformed sine-Gordon model. This is

achieved by performing certain transformations of the system of Riccati-type equations and writing them in

terms of convenient pseudo-potentials which carry the information of the deformed sine-Gordon potential.

In addition, in the framework of the pseudo-potential approach [13], we propose two sets of linear system

of equations whose compatibility condition gives rise to the DSG equation of motion. As an application of

the proposed linear system of equations and its pair of linear operators, we have obtained the energy and

momentum conservation laws of the DSG model, and an infinite set of non-local conservation laws. One

of the lowest order non-local conservation law hides a related quasi-conservation law obtained by a direct

construction.

In order to simulate the soliton collisions we used the 4th order Runge-Kutta method provided that the

non-reflecting boundary conditions, allowing the radiation to cross the boundary points x = ±L freely [15],

are assumed. Our simulations show that some radiation is produced by the soliton configurations and the

rate of loss of the energy depends on the initial conditions of the system.

The paper is organized as follows. In the next section we introduce the deformed sine-Gordon model

(DSG) and briefly discuss the anomalous conserved charges. In subsection 2.1 new towers of quasi-conservation

laws are obtained by direct construction. The section 3 presents our results on numerical simulations. In

subsection 3.1 we discuss the space-reflection symmetries of the associated charge densities. We numerically

simulate soliton collisions for kink-kink, kink-antikink and breather configurations of the DSG model and
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compute the energy, momentum and the two sets of third and fifth order conserved charges in subsections 3.2

and 3.3, respectively. In 3.4 we numerical simulate the lowest order anomalies of the second and third type

of towers. Next, in section 4, in the framework of the deformed Riccati-type pseudo-potential equations, we

construct a dual set of infinite towers of conservation laws. In section 5 new pseudo-potential representations

are introduced. In subsection 5.1 the Riccati-type pseudo-potential framework is used to construct a linear

system of equations associated to the DSG model. In 5.2 the non-local conservation laws are constructed. In

section 6 we present some conclusions and point out the future prospects of our formalism. The appendices

A, B,..., and F present the relevant quantities which have been used to construct the series of charges.

2 The model and quasi-conservation laws

Let us consider Lorentz invariant field theories in (1 + 1)-dimensions with equation of motion, in light-cone

coordinates (η, ξ), given by1

∂ξ∂η w + V (1)(w) = 0, (2.1)

where w is a real scalar field, V (w) is the scalar potential, ∂ξ and ∂η are partial derivatives and V (1)(w) ≡
d
dwV (w). The family of potentials V (w) will represent certain deformations of the usual SG model, and the

eq. (2.1) will be defined as a deformed sine-Gordon (DSG) model equation of motion. We would like to

study the properties of the theory using some modifications of the techniques of integrable field theories,

such as the deformations of the Riccati-type equations [13].

In [1] the authors have considered the so-called anomalous zero-curvature formulation and discussed the

quasi-integrability properties of the model (2.1), such as the asymptotically conserved charges associated

to certain anomalous conservation laws. Following this formalism, in a previous paper by two of us [8], it

has been introduced an infinite subset of exactly conserved charges associated to space-reflection symmetric

kink-antikink, antisymmetric kink-kink and symmetric breather configurations, respectively, of the model

(2.1). In this way, for this subset of anomalous conservation laws, the so-called ’anomaly’ terms of the quasi-

integrability formulation vanish. On the other hand, in recent papers by one of us and collaborators [9, 10], it

has been shown that the quasi-integrable modified (focusing and defocusing) non-linear Schrödinger models

supports a tower of infinite number of exactly conserved charges for two-soliton configurations (bright-bright

or dark-dark) possessing definite parity under space-reflection symmetry. Moreover, in the both type of

deformed NLS models it has been reported that for various two-soliton configurations without parity sym-

metry, the first nontrivial fourth order charge which presents an ‘anomalous’ term in the quasi-integrability

formulation, is exactly conserved, within numerical accuracy; i.e. its associated anomaly vanishes.

In the context of the anomalous zero-curvature formulation of deformed sine-Gordon models in [1, 2, 8]

the authors have introduced the set of quasi-conservation laws by defining the so-called anomalies β(2n+1),

1In the x and t laboratory coordinates: η = t+x
2

, ξ = t−x
2

, ∂η = ∂t + ∂x, ∂ξ = ∂t − ∂x, ∂η∂ξ = ∂2
t − ∂2

x
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such that

d

dt
q(2n+1)
a =

∫
dxβ(2n+1), n = 1, 2, 3, ... (2.2)

where the quantities q
(2n+1)
a define the so-called asymptotically conserved charges, provided that the time-

integrated ‘anomalies’
∫
dt
∫
dxβ(2n+1) vanish for some two-soliton configurations. This condition, when

combined with eq. (2.2), implies that the relationship q
(2n+1)
a (t → +∞) = q

(2n+1)
a (t → −∞) must hold,

realizing in this way the concept of asymptotically conserved charges.

It is a well known fact in (1 + 1)-dimensional Lorentz invariant integrable field theories to have dual

integrability conditions or Lax equations. So, as we will show below, there exist a dual formulation for each

equation as in (2.2) by interchanging ξ ↔ η in the procedure to obtain the relevant conservation laws. So,

one can get

d

dt
q̃(2n+1)
a =

∫
dx β̃(2n+1), n = 1, 2, 3, ... (2.3)

where the quantities q̃
(2n+1)
a define the dual asymptotically conserved charges, provided that the time-

integrated ‘anomalies’
∫
dt
∫
dx β̃(2n+1) vanish. This result implies q̃

(2n+1)
a (t→ +∞) = q̃

(2n+1)
a (t→ −∞).

The importance and the relevance of such a dual construction will become clear below when linear

combinations of relevant charges of the new dual towers of asymptotically conserved charges are in fact

exactly conserved for special two-soliton solutions, a result first obtained by two of us in [8], for a couple of

towers involving charges bearing the same form as the standard sine-Gordon model. These types of quasi-

conservation laws which reproduce the same polynomial form as the usual sine-Gordon charges will be called

as the first types of towers.

2.1 New towers of quasi-conservation laws

The above first types of dual towers of quasi-conservation laws (2.2) and (2.3) are characterized by the fact

that their r.h.s. terms provide the relevant anomalies; whereas the l.h.s. terms bear the same polynomial

form as the usual sine-Gordon charges. In [1, 2] the relevant anomalies were shown to vanish upon space-time

integration, then giving rise to asymptotically conserved charges, provided that the field w and the potential

V satisfy the symmetry

P : w → −w + const.; V (w) → V (w), (2.4)

under the space-time reflection around a given point (x∆, t∆)

P : (x̃, t̃) → (−x̃,−t̃), x̃ ≡ x− x∆, t̃ = t− t∆. (2.5)

In the formulation of [1, 2] the relevant anomalies possess odd parities under (2.4)-(2.5), so that they must

vanish upon space-time integration. Below we will construct new towers of quasi-conservation laws, such

that their anomaly terms also possess odd parities under (2.4)-(2.5).
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2.1.1 Second type of towers

Multiplying by (∂ξw)
N−1 on the both sides of the eq. (2.1) one can rewrite it as

∂η[
1

N
(∂ξw)

N ] + ∂ξ[V (∂ξw)
N−2] = (N − 2)(∂ξw)

N−3∂2ξwV, N = 3, 4, 5, ... (2.6)

This tower of infinite number of equations defines a family of anomalous conservation laws in the so-

called quasi-integrability approach to deformed integrable field theories. In fact, one can define the quasi-

conservation laws

d

dt
Q(N)

a = a(N), (2.7)

Q(N)
a ≡

∫
dx [

1

N
(∂ξw)

N + V (∂ξw)
N−2], a(N) ≡

∫
dx (N − 2)(∂ξw)

N−3∂2ξwV, N ≥ 3, (2.8)

where we have introduced the asymptotically conserved charges Q
(N)
a and the corresponding anomalies a(N).

The construction of the dual quasi-conservation laws is performed by multiplying by (∂ηw)
N−1 on the

both sides of the eq. (2.1). So one has

∂ξ[
1

N
(∂ηw)

N ] + ∂η[V (∂ηw)
N−2] = (N − 2)(∂ηw)

N−3∂2ηwV, N = 3, 4, 5, ... (2.9)

Similarly, this is another tower of infinite number of equations defining a set of anomalous conservation laws.

These eqs. allow us to define the quasi-conservation laws

d

dt
Q̃(N)

a = ã(N)
, (2.10)

Q̃(N)
a ≡

∫
dx [

1

N
(∂ηw)

N + V (∂ηw)
N−2], ã(N) ≡

∫
dx (N − 2)(∂ηw)

N−3∂2ηwV, N ≥ 3,(2.11)

where we have introduced the dual asymptotically conserved charges Q̃
(N)
a and the relevant anomalies ã(N).

The densities of the anomalies a(N) and ã(N) in (2.8) and (2.11), respectively, possess odd parities

under (2.4)-(2.5), so the quasi-conservation laws (2.6) and (2.9), respectively, allow the construction of

asymptotically conserved charges according to [1, 2].

2.1.2 Third type of towers

Multiplying by V N−1 on the both sides of the eq. (2.1) one can rewrite it as

∂η[
1

2
V N−1(∂ξw)

2] +
1

N
∂ξV

N =
1

2
(∂ξw)

2∂ηV
N−1, N = 2, 3, 4, 5, ... (2.12)

This tower of infinite number of equations define a new family of anomalous conservations laws. In fact, one

can define the quasi-conservation laws

d

dt
Q(N)

a = γ(N), (2.13)

Q(N)
a ≡

∫
dx [

1

2
V N−1(∂ξw)

2 +
1

N
V N ], γ(N) ≡

∫
dx

1

2
(∂ξw)

2∂ηV
N−1, N ≥ 2, (2.14)

5



where we have introduced the asymptotically conserved charges Q̂
(N)
a and the corresponding anomalies γ(N).

The interchange η ↔ ξ allows us to reproduce the dual quasi-conservation laws. So, one has

∂ξ[
1

2
V N−1(∂ηw)

2] +
1

N
∂ηV

N =
1

2
(∂ηw)

2∂ξV
N−1, N = 2, 3, 4, 5, ... (2.15)

These eqs. allow us to define the quasi-conservation laws

d

dt
Q̃(N)

a = γ̃(N), (2.16)

Q̃(N)
a ≡

∫
dx [

1

2
V N−1(∂ξw)

2 +
1

N
V N ], γ̃(N) ≡

∫
dx

1

2
(∂ηw)

2∂ξV
N−1, N ≥ 2, (2.17)

where we have defined the dual asymptotically conserved charges Q̃(N)
a and the anomalies γ̃(N).

Similarly, the densities of the anomalies γ(N) and γ̃(N) in (2.14) and (2.17), respectively, possess odd

parities under (2.4)-(2.5), so the quasi-conservation laws (2.12) and (2.15), respectively, allow the construction

of asymptotically conserved charges as in the previous cases.

The relevant anomalies of the lowest order asymptotically conserved charges of the above towers of

quasi-conservation laws will be simulated below for 2-soliton interactions.

The above charges turn out to be anomalous even for the integrable sine-Gordon model. In fact, the

relevant 2-soliton solutions have been constructed analytically [1, 2, 8] which possess a definite parity under

(2.4)-(2.5), such that the relevant anomaly densities, with odd parities, vanish upon space-time integration.

The only explanation we have found, so far, for the appearance of new towers of quasi-conserved charges in

the standard sine-Gordon model is the symmetry argument. The appearance of new towers of anomalous

charges in the (quasi-)integrable models such as KdV [12] is currently under investigation.

Let us briefly comment on some consequences and importance of that behavior for integrable systems.

The above type of integrals have been computed for two-soliton interactions which are thought to play

an important role in the study of soliton gases and formation of certain structures in integrable systems,

such as integrable turbulence and rogue waves. In the context of the integrable KdV model it has been

analyzed the behavior of the so-called statistical moments defined by the integrals of type (see e.g. [11])

Mn(t) =
∫ +∞
−∞ vn dx, n ≥ 1; where v is the KdV field. The cases M1,2 are exact conserved charges of

the model. It is remarkable that the 3rd and 4th moments, M3,4, respectively, in the interaction region

of two-solitons, exhibit a qualitatively similar behavior to the asymptotically conserved charges present in

quasi-integrable KdV models [7]. In fact, in the quasi-integrable KdV models the momentsM2,3 are actually

asymptotically conserved charges [7, 12]. So, since the two-soliton interaction behavior is thought to play an

important role in the formation of soliton turbulence and the dynamics of soliton gases, we may expect they

will also play an important role in the quasi-integrable counterparts. Certainly, in the present case of the

SG model and its related soliton ensemble, to our knowledge, it is needed a further theoretical development.
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3 Numerical simulations

In order to check our results we have performed several numerical simulations of the linear combinations of

the conserved charges: q
(3)
a ± q̃

(3)
a and q

(5)
a ± q̃

(5)
a , respectively, in (2.2) and (2.3), of the first type of towers

of quasi-conserved charges. In addition, we numerically simulate the linear combinations of the lowest order

anomalies of the second and third type of towers (2.7) and (2.10), and (2.13) and (2.16), respectively, of

quasi-conserved charges. We consider the Bazeia at. al. model, studying kink-antikink, kink-kink and a

system involving a kink and an antikink bound state (breather). We used various grid sizes and number

of points. The two-soliton (kink-antikink and kink-kink) simulations were performed on a lattice of 1200

points with spacing of ∆x = 0.025 (in the interval [−L,L] = [−15, 15]). The time step of our simulations was

∆t = 0.0005, and sometimes ∆t = 0.00025. The breather-like simulations were performed on a lattice of 2000

lattice points with lattice spacing of ∆x = 0.025 (in the interval [L,L] = [−25, 25]). The time evolution was

simulated by the fourth order Runge-Kuta method with non-reflecting (transparent) boundary conditions at

the both ends of the lattice grids [15, 8].

The third order conserved charges q
(3)
a±

q
(3)
a± ≡ q̃(3)a ± q(3)a , (3.1)

where the dual charges were defined in (4.32) and (4.77), respectively. Likewise, we will compute numerically

the fifth order conserved charges q
(5)
a±

q
(5)
a± ≡ q̃(5)a ± q(5)a , (3.2)

where the dual charges were defined in (4.48) and (4.93), respectively. Moreover, we will compute the lowest

order anomalies of the second and third types of towers of charges (2.7)-(2.11) and (2.13)-(2.17), respectively,

a± ≡ a(3) ± ã(3) (3.3)

γ± ≡ γ(2) ± γ̃(2). (3.4)

We will compute numerically the first six charges: the exactly conserved energy and momentum charges,

and the two sets of third order (exactly conserved) and fifth order (asymptotically conserved) charges,

respectively, for kink-kink, kink-antikink and breather configurations for the Bazeia et al. [18, 1] potential

V =
64

q2
tan2

w

2
(1− | sin w

2
|q)2. (3.5)

This potential is a one-parameter family of deformations of the sine-Gordon model. Notice that for q = 2 it

reduces to the usual SG potential (4.6). We have the following deformed SG equation of motion

∂2tw − ∂2xw + V ′(w) = 0, (3.6)

V ′(w) =
64 tan w

2

q2(1 + cosw)
{1− [(sin

w

2
)2]q/2}{2− [2 + q + q cosw][(sin

w

2
)2]q/2}.
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The kink and anti-kink solutions of the deformed sine-Gordon model (3.6) are the following [1, 18]

w(x, t) = 2 η2 arcsin {
[ e2

√
2 η1 γ(x−vt)

1 + e2
√
2η1γ(x−vt)

] 1
q }+ 2π l, γ ≡ 1√

1− v2
(3.7)

where ηi = ±1, i = 1, 2; l is any integer and v is the kink velocity given in units of the speed of light. The

topological charge of each solution is provided by the product η1η2.

The simulations of the kink-kink and kink-antikink system of the deformed SG model will consider, as

the initial condition, two analytical solitary wave solutions of type (3.7). In fact, in order to have a kink-

antikink system for t = 0 we consider a kink (η1 = 1, η2 = 1, l = 0) and an antikink ( η1 = 1, η2 = 1, l = 0),

according to the solution in (3.7), located some distance apart and stitched together at the middle point

x = 0. Similarly, in order to have a kink-kink system for t = 0 we consider two kinks ( η1 = 1, η2 = 1, l = 0)

from (3.7), located some distance apart and stitched together.

Breather solution of SG

Let us write the equation (2.1) with potential (4.6) such that one has the usual SG equation of motion

∂2tw − ∂2xw + 4 sin (2w) = 0. (3.8)

Since the general analytic breather solutions of the model (3.6) are not known, we will consider the breather

type solution of (3.8) as an initial condition for our simulations of the conserved charges. The SG breather

becomes

wbr(x, t) = 2 arctan
[√1− v2

v

sin
(
2
√
2 v t

)

cosh
(
2
√
2
√
1− v2 x

)
]
. (3.9)

Some properties of the breather-like configurations of the deformed sine-Gordon models have been studied

in the quasi-integrability formulation [1, 2, 8] through numerical simulations. Here, we follow the approach

of [8] in order to generate a long-lived breather, so the initial condition will be an analytical function of the

SG breather at rest (3.9).

As we will present below, the numerically simulated energy and momentum charges are very well con-

served in all soliton-soliton scatterings and similarly so for the evolution of the breather-like structures.

However, in order to simulate the higher order charges, such as q
(3)
a± and q

(5)
a±, and numerically approximate

the higher order space derivatives which appear in their relevant charge densities, one must discretize space

in some way, and this inevitably introduces fictitious discretization effects into the charge densities, which

one should seek to minimize. In order to minimize these effects we will consider the decomposition of the

relevant charges as presented in (4.32) and (4.77), and in (4.48) and (4.93), respectively. We will write below

the relevant components in laboratory coordinates and present the charges (3.1) and (3.2), respectively,

as summations of certain charge density terms which will exhibit special space-time symmetries and in a

manner that their densities present lower order space-time derivatives. This last idea was achieved in the

decomposition above by removing partial time-derivative terms out of the space integrals, by converting

the relevant terms in total time derivatives of the x−integrated densities. So, in the next sections we will

implement this program and make them to be more amenable to numerical simulations.
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3.1 Space-reflection symmetry of the densities of charges and anomalies

The behaviour of the charges q
(3)
a±, q

(5)
a± and anomalies a± and γ± defined above, for soliton collisions, would

depend upon the symmetry properties of the relevant field configurations. In order to check the results

of the numerical simulations of the densities and their x−integrations we will resort to the behavior of

them under the space-reflection symmetry. As we will discuss below, some field configurations, such as the

kink-kink, kink-antikink and breather solutions of the usual SG model possess definite parity eigenvalues

under the space-reflection symmetry transformation. Moreover, the numerically simulated analogous field

configurations of the deformed model will present qualitatively the same properties.

Let us consider the space-reflection transformation

Px : x↔ −x. (3.10)

The scalar field w for some soliton configurations is an eigenstate of the operator Px, so one has

Px : w → ̺ w, ̺ = ±1. (3.11)

In addition, in our discussions below we will consider an even potential V under Px

Px(V ) = V. (3.12)

Let us recall the space-reflection symmetries of special two-soliton configurations of the ordinary SG model

in the center of mass reference frame [8]. The kink-antikink solution possesses an even parity (ρ = +1) under

the space-reflection transformation (3.10)-(3.11). Whereas, the kink-kink solution possesses an odd parity

(ρ = −1) under the space-reflection transformation (3.10)- (3.11). These two-soliton configurations can

be regarded as the zeroth order solution of DSG model in the expansion parameter ǫ = q − 2. For those

two-soliton (kink-antikink and kink-kink) solutions in laboratory coordinates without space-reflection parity

symmetry one can recover the space-reflection symmetries by performing convenient Lorentz transformations

to the center of mass frame [8]. In addition, the breather solution (3.9) satisfies (3.11) with ρ = 1, and it

could also be used as the zeroth order solution of the deformed SG model in perturbation theory.

In our numerical simulations of soliton collisions and breather oscillation for the potential (3.5) one

notices the qualitative realization of the symmetry (3.11) for equal and opposite velocity kink-kink solution

(odd parity ρ = −1) in the Fig. 1 and kink-antikink solution (even parity ρ = +1) in the Fig. 4. Likewise,

for breather oscillation in Fig. 13 one notices the even parity behavior (ρ = +1) of its oscillation around

a symmetric vertical axis. On the other hand, the Figs. 7 and 10 show, respectively, kink-kink and kink-

antikink collisions with different velocities and asymmetric behavior.

3.2 Third order conserved charges

In our numerical computations we will consider directly the expressions of the asymptotically conserved

charges q
(3)
a±, instead of their anomalies as in the previous literature. The explicit form of the charges (3.1),

9



written in laboratory coordinates, become

q
(3)
a+ =

1

4

d2E

dt2
+

∫
dx

1

4

{
(w(0,1))4 + 4[V − 2][(w(1,0))2 + (w(0,1))2] + (w(1,0))4 + 6(w(0,1))2(w(1,0))2 −

4(w(1,1))2 − (w(0,2) + w(2,0))2
}

(3.13)

≡ 1

4

d2E

dt2
+Q

(3)
+ (3.14)

q
(3)
a− =

1

4

d2P

dt2
+

∫
dx
{
w(0,1)w(1,0)[2V − 4 + (w(0,1))2 + (w(1,0))2]− w(1,1)[w(0,2) + w(2,0)]

}
, (3.15)

≡ 1

4

d2P

dt2
+Q

(3)
− (3.16)

where the notation [w(q,p) ≡ ∂q+p

∂xq∂tpw(x, t)] has been used.

Notice that the charges q
(3)
a± have been decomposed as a sum of second order time derivatives of the

energy and momentum, respectively, plus the components Q
(3)
± , which we will numerically simulate below.

The decomposition of the charges will minimize the fictitious discretization effects into the soliton dynamics,

as mentioned above. In fact, in previous computations [8, 1], the asymptotic behavior of the charges q
(3)
a±

have been examined indirectly by performing the time integration of the anomalous conservation laws of

type (2.2). The second order time derivatives of E or P in the r.h.s. of (3.13)-(3.16) can be introduced as

partial time derivatives into their relevant x−integral expressions, then it can be traded by space derivatives

using the eqs. of motion. Then, they would be added to the charge densities of the full q
(3)
a± expressions;

so, this process would introduce higher order space derivatives into them, which amount to introduce more

fictitious discretization effects in the simulations of q
(3)
a±. So, our decomposition above have sought to reduce

these effects.

Another aspect which must be considered in order to check the results of our numerical simulations will

be the symmetries of the relevant charge densities above. In particular, the space reflection-symmetries of

soliton configurations will reflect on the space-reflection symmetry of each charge density in the integrals of

Q
(3)
± in (3.13)-(3.14) and (3.15)-(3.16), respectively, as we will verify numerically.

In fact, the densities of the charge components Q
(3)
± in (3.13) and (3.15) will be even and odd functions,

respectively, under the space-reflection transformation (3.10) for soliton configurations with definite parity ̺

(3.11) and for potentials satisfying (3.12). In particular, this observation holds for kink-kink, kink-antikink

and breather configurations.

Then, by symmetry arguments only, one expects the vanishing of the charge q
(3)
− for all soliton con-

figurations possessing definite parity under space-reflection transformations. The numerical results are in

accordance with this observation as we will see below.

The Fig. 1 shows the numerical simulation of kink-kink collision and the energy (E) and momentum (P)

charges for equal and opposite velocities v2 = −v1 = 0.15 and q = 2.01. The Figs. 2 and 3 show, respectively,

the charge densities and the conserved charge components Q
(3)
∓ for the kink-kink collision for v2 = −v1 = 0.7

and q = 2.1. Whereas, the Figs. 7, 8 and 9 show the same quantities for kink-kink collision with different

10
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Figure 1: (color online) Top Fig. shows kink-kink collision with velocities v2 = −v1 = 0.15 for

q = 2.01, with initial (green), collision (blue) and final (red) configurations. Bottom Fig. shows the

conserved energy (E) and momentum (P ) charges of the kink-kink configuration,respectively.

velocities v2 = 0.75, v1 = −0.5 and q = 1.9.

The Fig. 4 shows the numerical simulation of kink-antikink collision and the energy (E) and momentum

(P) charges for equal and opposite velocities v2 = −v1 = 0.15 and q = 2.01. The Figs. 5 and 6 show,

respectively, the charge densities and the conserved charge components Q
(3)
∓ for the kink-antikink collision

for v2 = −v1 = 0.7 and q = 1.9. Whereas, the Figs. 10, 11 and 12 show the same quantities for kink-antikink

collision with different velocities v2 = 0.4, v1 = −0.8 and q = 2.01.

The Fig. 13 shows the breather oscillation with period T = 3.87 for three successive times and q = 1.97,

and the plot of the energy versus time. Notice that the energy takes thousands of units of time to stabilize;

in fact, it achieves a constant value after t ≈ 5 × 104 of the time interval t = [0 , 6 × 104]. The Figs. 14

and 15 show, respectively, the charge densities for three successive times within a period and the conserved

charge components Q
(3)
± (t) for the breather configuration.

As expected from the symmetry property of the relevant charge density of Q
(3)
− in (3.15)-(3.16); i.e. it is

an odd function for definite parity field configurations, one notices the vanishing of the numerically simulated

charge component Q
(3)
− as presented in the Figs. 2, 5 and 15, corresponding to kink-kink, kink-antikink and

breather configurations, respectively. Of course, this implies the vanishing of the related charge q
(3)
a− in

(3.15). However, for asymmetric kink-kink (Fig. 7) and kink-antikink (Fig. 10) configurations one gets a

non vanishing constant charge component Q
(3)
− for kink-kink (Fig. 8) and for kink-antikink (Fig. 11) solitons,

respectively. These last results for Q
(3)
− arise from the dynamics of the system and they can not be foreseen

from the symmetry considerations discussed above.

11



-80
-60
-40
-20

 0
 20
 40
 60
 80

-20 -15 -10 -5  0  5  10  15  20

x

charge  density

ti
t
tf

-100

-50

 0

 50

 100

 0  5  10  15  20  25  30

t

charge Q-
(3)

 Q-
(3)(t)

Figure 2: (color online) Top Fig. shows the charge density of Q
(3)
− (t) vs x for the kink-kink collision

with equal and opposite velocities v2 = −v1 = 0.7 for q = 2.1, with initial (green), collision (blue)

and final (red) densities of the kink-kink scattering. Bottom Fig. shows the conserved charge Q
(3)
− (t)

of the kink-kink solution.
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Figure 3: (color online) Top Fig. shows the charge density of Q
(3)
+ (t) vs x for the kink-kink collision

with equal and opposite velocities v2 = −v1 = 0.7 for q = 2.1, with initial (green), collision (blue)

and final (red) densities of the kink-kink scattering. Bottom Fig. shows the conserved charge Q
(3)
+ (t)

of the kink-kink solution.
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Figure 4: (color online) Top Fig. shows kink-antikink collision with velocities v2 = −v1 = 0.15 for

q = 2.01, with initial (green), collision (blue) and final (red) time configurations. Bottom Fig. shows

the conserved energy (E) and momentum (P ) charges of the kink-antikink configuration.
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Figure 5: (color online) Top Fig. shows the charge density of Q
(3)
− (t) vs x for the kink-antikink

collision with equal and opposite velocities v2 = −v1 = 0.7 for q = 1.9, with initial (green), collision

(blue) and final (red) densities of the kink-antikink scattering. Bottom Fig. shows the conserved

charge Q
(3)
− (t) of the kink-antikink solution.
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Figure 6: (color online) Top Fig. shows the charge density of Q
(3)
+ (t) vs x for the kink-antikink

collision with equal and opposite velocities v2 = −v1 = 0.7 for q = 1.9, with initial (green), collision

(blue) and final (red) densities of the kink-antikink scattering. Bottom Fig. shows the conserved

charge Q
(3)
+ (t) of the kink-antikink solution.
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Figure 7: (color online) Top Fig. shows kink-kink collision with different velocities v2 = 0.75, v1 =

−0.5 for q = 1.9, with initial (green), collision (blue) and final (red) time configurations. Bottom

Fig. shows the conserved energy of the kink-kink.
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Figure 8: (color online) Top Fig. shows the charge density of Q
(3)
− (t) vs x for the kink-kink collision

with v2 = 0.75, v1 = −0.5 for q = 1.9, with initial (green), collision (blue) and final (red) time

densities of the kink-kink scattering. Bottom Fig. shows the conserved charge Q
(3)
− (t) of the kink-

kink solution.
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Figure 9: (color online) Top Fig. shows the charge density of Q
(3)
+ (t) vs x for the kink-kink collision

with v2 = 0.75, v1 = −0.5 for q = 1.9, with initial (green), collision (blue) and final (red) densities of

the kink-kink scattering. Bottom Fig. shows the conserved charge Q
(3)
+ (t) of the kink-kink solution.
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Figure 10: (color online) Top Fig. shows kink-antikink collision with different velocities v2 =

0.4, v1 = −0.8 for q = 2.01, with initial (green), collision (blue) and final (red) configurations.

Bottom Fig. shows the conserved energy of the kink-antikink.
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Figure 11: (color online) Top Fig. shows the charge density of Q
(3)
− (t) vs x for the kink-antikink

collision with v2 = 0.4, v1 = −0.8 for q = 2.01, with initial (green), collision (blue) and final

(red) densities of the kink-kink scattering. Bottom Fig. shows the conserved charge Q
(3)
− (t) of the

kink-antikink solution.
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Figure 12: (color online) Top Fig. shows the charge density of Q
(3)
+ vs x for the kink-antikink collision

with v2 = 0.4, v1 = −0.8 for q = 2.01, with initial (green), collision (blue) and final (red) densities

of the kink-kink scattering. Bottom Fig. shows the conserved charge Q
(3)
+ (t) of the kink-antikink

solution.
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Figure 13: (color online) Top Fig. shows the breather oscillation with period T = 3.87 for three

successive times and q = 1.97. Bottom Fig. shows the energy vs time. Notice that the energy takes

thousands of units of time to stabilize.
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Figure 14: (color online) Top Fig. shows the charge density vs x corresponding to Q
(3)
+ (t) and the

oscillating breather for three successive times with period T = 3.87 and q = 1.97. Bottom Fig.

shows the conserved charge Q
(3)
+ (t) of the breather in the interval t = [0 , 6× 104].
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Figure 15: (color online) Top Fig. shows the charge density vs x corresponding to Q
(3)
− (t) and the

oscillating breather for three successive times with period T = 3.87 and q = 1.97. Bottom Fig.

shows the conserved charge Q
(3)
− (t) of the breather in the interval t = [0 , 6× 104].
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Therefore, our numerical simulations show that the charges q
(3)
a± are exactly conserved, within numerical

accuracy, as shown in the Figs. 2-3, 5-6, 8-9, 11-12 and 14-15 for the various kink-kink, kink-antikink and

breather configurations, respectively, i.e. the anomaly term in (2.2) vanishes. In the previous literature

[1, 8], by simulating the behaviour of the time-integrated anomalies of type (2.2), i.e.
∫
dt
∫
dxβ(3), these

charges have been regarded as merely asymptotically conserved ones. Despite of this fact, here we have

established through numerical simulations the exact conservation of these charges associated to the various

soliton configurations. It seems to be that the earlier simulations in the literature have been plagued with

some numerical artifacts due to the discretization of the higher order derivatives present in the anomaly

density and the numerical errors introduced in the space-time (x, t) integration process.

However, more numerical tests (e.g. for multiple n−kinks (n > 2) and wobble-type solutions) and the

corresponding analytical results (a formulation of a proper conservation law) are needed in order to establish

definitely the exact conservation of the charges q
(3)
a±. Moreover, it would be a very interesting result if the

DSG theories supported wobble-type solutions (configurations of a breather and a kink) as suggested in [1],

with associated higher order conserved charges.

3.3 Fifth order conserved charges

Following similar reasoning in the simulation of the third order charges above, in order to minimize the

fictitious discretization effects into the charge densities, we will make relevant decomposition of the fifth

order charges as an addition of certain components. The explicit form of the charges q
(5)
a± (3.2) and their

components, written in laboratory coordinates, become

q
(5)
a+ = q

(5;0)
a+ +

d

dt
q
(5;1)
a+ +

d2

dt2
q
(5;2)
a+ (3.17)

q
(5;0)
a+ ≡ 1

8

∫
dx
{
− 12[(w(0,1))4 + 6(w(0,1))2(w(1,0))2 + (w(1,0))4] + [(w(0,1))2 + (w(1,0))2]×

[(w(0,1))4 + 14(w(0,1))2(w(1,0))2 + (w(1,0))4] + 12[4(w(1,1))2 + (w(0,2) + w(2,0))2]− (3.18)

5
[
8w(0,1)w(1,0)w(1,1)(w(0,2) + w(2,0)) + (w(0,1))2[4(w(1,1))2 + (w(0,2) + w(2,0))2] +

(w(1,0))2[4(w(1,1))2 + (w(0,2) + w(2,0))2]
]
+

2V
[
3(w(0,1))4 + 18(w(0,1))2(w(1,0))2 + 3(w(1,0))4 + 4(w(1,1))2 + (w(0,2) + w(2,0))2 +

4w(0,1)(w(0,3) + 3w(2,1)) + 4w(1,0)(3w(1,2) + w(3,0))
]
+

1

2
[(w(0,3) + 3w(2,1))2 + (3w(1,2) + w(3,0))2]− V (1)(w(0,4) + 6w(2,2) + w(4,0))

}

q
(5;1)
a+ ≡ 1

8

∫
dx
{
− 4V [2w(1,0)w(1,1) + w(0,1)(w(0,2) + w(2,0))] + V (1)(3w(2,1) + w(0,3))

}
(3.19)

q
(5;2)
a+ ≡ 1

2

∫
dx
[
(w(0,1))2 + (w(1,0))2

]
(3.20)

and

q
(5)
a− = q

(5;0)
a− +

d

dt
q
(5;1)
a− +

d2

dt2
q
(5;2)
a− (3.21)
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q
(5;0)
a− ≡ 1

8

∫
dx
{
48w(0,1)w(1,0)[(w(0,1))2 + (w(1,0))2]− 2w(0,1)w(1,0)[3(w(0,1))2 + (w(1,0))2]×

[(w(0,1))2 + 3(w(1,0))2]− 48w(1,1)(w(0,2) + w(2,0)) +

10[2w(1,0)w(1,1) + w(0,1)(w(0,2) + w(2,0))][2w(0,1)w(1,1) + w(1,0)(w(0,2) + w(2,0))]−

8V
[
3(w(0,1))3w(1,0) + w(1,1)(w(0,2) + w(2,0)) + w(1,0)(w(0,3) + 3w(2,1)) + (3.22)

w(0,1)(3((w(1,0))3 + w(1,2)) + w(3,0))
]
− (w(0,3) + 3w(2,1))(3w(1,2) + w(3,0)) +

4V (1)[w(1,3) + w(3,1)]
}

q
(5;1)
a− ≡ 1

8

∫
dx
{
4V [2w(0,1)w(1,1) + w(1,0)(w(0,2) + w(2,0))]− V (1)(3w(1,2) + w(3,0))

}
(3.23)

q
(5;2)
a− ≡ −1

2

∫
dxw(0,1)w(1,0) (3.24)

= −1

2
P

where the notation (w(a,b) ≡ ∂a+b

∂xa∂tb
w(x, t)) has been used. Notice that the charges q

(5)
a± have been decom-

posed as an addition, with successively increasing time-derivatives, of the charge components q
(5;a)
a± , a =

0, 1, 2.

These components exhibit some remarkable properties. The densities of the components exhibit definite

parities provided that the field w and the potential V exhibit the symmetry (3.10)-(3.12). In fact, for soliton

configurations with space-reflection symmetry each charge density in the integrands of q
(5;a)
a+ , a = 0, 1, 2 in

(3.17)-(3.20) will be even, whereas the integrands of q
(5;a)
a− , a = 0, 1, 2 in (3.21)-(3.24) will be odd functions.

So, we will compute numerically the relevant components q
(5;a)
± (a = 0, 1, 2, 3, 4) and sum them up in

order to compute the fifth order charges (3.2). As in the third order case above, by symmetry arguments

only, one expects the vanishing of the charge q
(5)
− for all soliton configurations possessing definite parity

under space-reflection. This will also be verified through our numerical simulations.

In the next Figs. 16-19 we present the simulations of the charges q
(5)
± (t), their relevant components and

densities, respectively, for the kink-kink collision. We consider the charges for definite parity (kink-kink with

odd parity) in Figs. 16-17, and the charges for asymmetric kink-kink configuration, in Figs. 18-19.

Similarly, in the Figs. 20-23 we present the simulations of the charges q
(5)
± (t), their relevant components

and densities, respectively, for the kink-antikink collision. We consider the charges for definite parity (kink-

antikink with even parity) in Figs. 20-21, and the charges for asymmetric kink-antikink configuration, in

Figs. 22-23.

In the Figs. 24-25 we present the simulations of the charge densities f
(5,a)
+ , a = 0, 1, 2 vs x for the breather

with period T = 4.967 and q = 2.025, for three successive times ti(green), t(blue) and tf (red), as well as the

conserved charge components q
(5,a)
+ (t), a = 0, 1, 2 and the total charge q

(
+5)(t) of the deformed SG breather.

Therefore, our numerical simulations show the exact conservation of the charge q
(5)
− , within numerical

accuracy, for the kink-antikink (kink-kink) with even (odd) parity (see Figs. 17, 21) and for the breather con-

figurations (Fig. 25). Our simulations of the charges q
(5)
± for the kink-kink and kink-antikink configurations
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Figure 16: Left Figs. show the charge densities f
(5,a)
+ , a = 0, 1, 2 vs x for the kink-kink collision with

v2 = v1 = −0.5 for q = 1.97, with initial (green), collision (blue) and final (red) densities of the kink-kink

scattering. Right Figs. show the conserved charge componensts q
(5,a)
+ (t), a = 0, 1, 2 and the total charge

q
(
+5)(t) of the kink-kink solution.

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

f(5
,0

)
−

1e3
ti
t
tf

−20 −15 −10 −5 0 5 10 15 20
−5

0

5

f(5
,1

)
−

1e2
ti
t
tf

−20 −15 −10 −5 0 5 10 15 20
x

−5

0

5

f(5
,2

)
−

1e2
ti
t
tf

 Density 

0 10 20 30 40 50
t

−1.0

−0.5

0.0

0.5

1.0 1e2
q(5, 0)
−

q(5, 1)
−

q(5, 2)
−

0 10 20 30 40 50
−1.0

−0.5

0.0

0.5

1.0 1e2
q5
−≈0.0638

q5
−

Figure 17: Left Figs. show the charge densities f
(5,a)
− , a = 0, 1, 2 vs x for the kink-kink collision with

v2 = v1 = −0.5 for q = 1.97, with initial (green), collision (blue) and final (red) densities of the kink-kink

scattering. Right Figs. show the conserved charge components q
(5,a)
− (t), a = 0, 1, 2 and the total charge

q
(
−5)(t) of the kink-kink solution.
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Figure 18: Left Figs. show the charge densities f
(5,a)
+ , a = 0, 1, 2 vs x for the kink-kink collision with

v2 = 0.35, v1 = −0.5 for q = 1.97, with initial (green), collision (blue) and final (red) densities of the kink-

kink scattering. Right Figs. show the conserved charge components q
(5,a)
+ (t), a = 0, 1, 2 and the total charge

q
(
+5)(t) of the kink-kink solution.
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Figure 19: Left Figs. show the charge densities f
(5,a)
− , a = 0, 1, 2 vs x for the kink-kink collision with

v2 = 0.35, v1 = −0.5 for q = 1.97, with initial (green), collision (blue) and final (red) densities of the kink-

kink scattering. Right Figs. show the conserved charge componensts q
(5,a)
− (t), a = 0, 1, 2 and the total charge

q
(
−5)(t) of the kink-kink solution.
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Figure 20: Left Figs. show the charge densities f
(5,a)
+ , a = 0, 1, 2 vs x for the kink-antikink collision with

v2 = v1 = −0.5 for q = 2.01, with initial (green), collision (blue) and final (red) densities of the kink-

antikink scattering. Right Figs. show the conserved charge components q
(5,a)
− (t), a = 0, 1, 2 and the total

charge q
(
−5)(t) of the kink-antikink solution.
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Figure 21: Left Figs. show the charge densities f
(5,a)
− , a = 0, 1, 2 vs x for the kink-antikink collision with

v2 = v1 = −0.5 for q = 2.01, with initial (green), collision (blue) and final (red) densities of the kink-

antikink scattering. Right Figs. show the conserved charge components q
(5,a)
− (t), a = 0, 1, 2 and the total

charge q
(
−5)(t) of the kink-antikink solution.
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Figure 22: Left Figs. show the charge densities f
(5,a)
+ , a = 0, 1, 2 vs x for the kink-antikink collision with

v2 = 0.33, v1 = −0.55 for q = 2.015, with initial (green), collision (blue) and final (red) densities of the

kink-antikink scattering. Right Figs. show the conserved charge components q
(5,a)
+ (t), a = 0, 1, 2 and the

total charge q
(
+5)(t) of the kink-antikink solution.
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Figure 23: Left Figs. show the charge densities f
(5,a)
− , a = 0, 1, 2 vs x for the kink-antikink collision with

v2 = 0.33, v1 = −0.55 for q = 2.015, with initial (green), collision (blue) and final (red) densities of the

kink-antikink scattering. Right Figs. show the conserved charge components q
(5,a)
− (t), a = 0, 1, 2 and the

total charge q
(
−5)(t) of the kink-antikink solution.
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Figure 24: Left Figs. show the charge densities f
(5,a)
+ , a = 0, 1, 2 vs x for the breather with period T = 4.967

and q = 2.025, for three successive times ti(green), t(blue) and tf (red). Right Figs. show the conserved

charge components q
(5,a)
+ (t), a = 0, 1, 2 and the total charge q

(
+5)(t) of the breather.
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Figure 25: Left Figs. show the charge densities f
(5,a)
− , a = 0, 1, 2 vs x for the breather with period T = 4.967

and q = 2.025, for three successive times ti(green), t(blue) and tf (red). Right Figs. show the conserved

charge components q
(5,a)
− (t), a = 0, 1, 2 and the total charge q

(
−5)(t) of the breather.
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merely show a behaviour similar to an asymptotically conserved charge. In fact, in the regions of soliton

collision the charge q
(5)
+ varies considerably, then it returns to its initial value after collision. In addition,

for the breather, one has that the charge q
(5)
+ oscillates periodically. This behavior is in contradistinction to

the third order charge q
(3)
+ , which vanishes for the breather. These results were obtained in the conventional

discretization in which the x−derivatives were represented by the symmetric differences of the fields and the

potential evaluated uniformly on each lattice point.

Our results above show that for definite parity configurations the q
(5)
− charge is exactly conserved, within

numerical accuracy. In fact, this charge, as well as the momentum, vanishes for these type of configurations.

This behavior is in accordance with the expectations due to the odd parity symmetries exhibited by their

relevant charge densities under space reflection for the various soliton configurations. Whereas, the charge

density of q
(5)
+ exhibits even parity under symmetry transformation, it is not possible to infer its value

based solely on symmetry arguments. So, the question then arises as to whether our numerical results are

‘robust’ with respect to another discretisation scheme, and if the results might have been contaminated by

some numerical artifacts during the soliton collision process and when the breather oscillation approaches

periodically the instantaneous vanishing value. This might be a consequence of discretising the higher

order space-time derivatives present in the charge density components q
(5;a)
+ , a = 0, 1, 2 in (3.17)-(3.20).

For example, in order to assure that the kinks behave much as they do in the continuum and reduce

certain numerical artifacts, such as the Peierls-Nabarro (PN) barrier, it has been considered a topological

discretisation scheme [19]. We believe that these issues deserve careful consideration in order to compute

the charge q
(5)
+ for the configurations mentioned above.

3.4 Second and third types of towers and lowest order anomalies

In order to numerically simulate the behavior of the first two anomalies of the second type of towers (2.7)-(2.8)

and (2.10)-(2.11), let us consider

a+ =

∫
dx 2[∂2tw + ∂2xw]V (3.25)

a− =

∫
dx 4[∂t∂xw]V, (3.26)

where the anomalies a± were defined in (3.3).

Similarly, for the first two anomalies of the third type of towers (2.13)-(2.14) and (2.16)-(2.17), let us

write

γ+ =

∫
dx [(∂tw)

2 − (∂xw)
2]∂tV (3.27)

γ− = −
∫
dx [(∂tw)

2 − (∂xw)
2]∂xV, (3.28)

where the anomalies γ± were defined in (3.4).
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Moreover, under the space-reflection transformation (3.10)-(3.12), the densities of the above anomalies

a
(3)
± and γ

(2)
± , respectively, present definite parities, such that some of them vanish upon space integration.

Therefore, in such cases one can have exact conserved charges. These results will be verified for certain

solutions as we will see below in the numerical simulations of the anomalies a
(3)
± and γ

(2)
± for the kink-kink

and kink-antikink configurations.
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Figure 26: Top Figs. show the anomaly densities of (3.25)-(3.26), respectively, plotted in x−coordinate for

three successive times ti(green), t(blue) and tf (red). Bottom Figs. show the relevant anomalies a± vs t, for

kink-antikink collision shown in Fig. 4.
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Figure 27: Top Figs. show the anomaly densities of (3.27)-(3.28), respectively, plotted in x−coordinate for

three successive times ti(green), t(blue) and tf (red). Bottom Figs. show the relevant anomalies γ± vs t, for

kink-antikink collision shown in Fig. 4.
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Figure 28: Top Figs. show the anomaly densities of (3.25)-(3.26), respectively, plotted in x−coordinate for

three successive times ti(green), t(blue) and tf (red). Bottom Figs. show the relevant anomalies a± vs t, for

kink-kink collision shown in Fig. 1.
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Figure 29: Top Figs. show the anomaly densities of (3.27)-(3.28), respectively, plotted in x−coordinate for

three successive times ti(green), t(blue) and tf (red). Bottom Figs. show the relevant anomalies γ± vs t, for

kink-kink collision shown in Fig. 1.
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Our numerical simulations in the Figs. 26-29 show the anomalies a± and γ± and their relevant densities.

Notice that the anomalies a− and γ− vanish for symmetric kink-antikink collision (see Fig. 4), within

numerical accuracy, since their densities possess odd parity under space reflection. Similarly, for anti-

symmetric kink-kink collision (see Fig. 1) the anomalies a+ and γ− vanish, since their densities possess odd

parity.

These developments strongly suggest that the quasi-integrable models set forward in the literature [1, 2,

5, 9, 10, 4, 7], and in particular the model (2.1), would possess more specific integrability structures, such as

an infinite set of exactly conserved charges, and some type of Lax pairs (or linear formulations) for certain

deformed potentials. So, in the next section we will tackle the problem of extending the Riccati-type pseudo-

potential formalin, which has been used for a variety of well known integrable systems, to the deformed

sine-Gordon model (2.1). Then, in the next subsections we formulate the dual Riccati-type representations

and then we discuss the conservation laws associated to the equation of motion (2.1).

4 Riccati-type pseudo-potential and conservation laws

In [13] it has been generated the both Lax equations and Backlund transformations for well-known non-

linear evolution equations using the concept of pseudo-potentials and the related properties of the Riccati

equation. These applications have been done in the context of a variety of integrable systems (sine-Gordon,

KdV, NLS, etc), and allow the Lax pair formulation, the construction of conservation laws and the Backlund

transformations for them [13, 14].

So, in the next steps we consider a convenient deformation of the usual pseudo-potential approach to

integrable field theories. Let us consider the system of Riccati-type equations

∂ξu = −2λ−1 u+ ∂ξw + ∂ξw u2, (4.1)

∂ηu = −2λ (V − 2)u− 1

2
λV (1) +

1

2
λV (1) u2 + r − us, (4.2)

where V (w) is the deformed sine-Gordon potential with V (1) ≡ d
dwV (w) and λ is the spectral parameter.

We consider the following equations for the auxiliary fields r(ξ, η) and s(ξ, η)

∂ξr = −2λ−1 r + ∂ξw(u r + s) + λX, (4.3)

∂ξs = ∂ξw(u s− r) + λXu, (4.4)

X ≡ ∂ξw

(
V (2)

2
+ 2V − 4

)
, V (2) ≡ d2

dw2
V (w). (4.5)

So, one has a set of two deformed Riccati-type equations for the pseudo-potential u (4.1)-(4.2) and a system

of equations (4.3)-(4.4) for the auxiliary fields r and s.

Notice that, for the integrable SG model potential

V = −2 cos (2w) + 2, (4.6)
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one has that X = 0, and so the auxiliary system of eqs. (4.3)-(4.4) possesses the trivial solution r = s = 0.

Inserting this trivial solution into the system (4.1)-(4.2) and considering the potential (4.6), one has a set

of two Riccati equations for the usual SG model and they play an important role in order to study the

properties of the integrable SG model, such as the derivation of the infinite number of conserved charges

and the Backlund transformations, relating the field w with another solution w̄ [14].

Note that only the η−component ∂ηu of the Riccati equation associated to the ordinary sine-Gordon

equation has been deformed away from the SG potential (4.6), and it carries all the information regarding

the deformation of the model which are encoded in the potential V (w) and the auxiliary fields r(ξ, η) and

s(ξ, η). The form of the ξ−component ∂ξu remains the same as the usual Riccati equation associated to the

SG model.

We have computed the compatibility condition [∂η∂ξu− ∂ξ∂ηu] = 0 for the Riccati-type equations (4.1)-

(4.2), taking into account the auxiliary system of equations (4.3)-(4.4) and then rederived the eq. of motion

of the deformed sine-Gordon model (2.1).

Let us emphasize that for the usual SG model we have the trivial solution of the system (4.3)-(4.4), i.e.

X = 0 → r = s = 0, and the existence of the Lax pair of de usual SG model reflects in its equivalent

Riccati-type representation, provided by the system (4.1)-(4.2) with the well known potential (4.6) [13, 14].

Next, let us discuss the relevant conservation laws in the context of the Riccati-type system (4.1)-(4.2)

and the auxiliary equations (4.3)-(4.4). So, substituting the expression for u2 from (4.1) into (4.2) and

considering (4.4), one gets the following relationship2

∂η (u ∂ξw) + ∂ξ

[
λ (V − 2)− 1

2
λu V (1)

]
= −∂ξs. (4.7)

This equation will be used to uncover an infinite tower of conservation laws associated to the modified

SG model (2.1). A truly conservation law character of this equation remains to be clarified. In fact, if

the function s(ξ, η) in the r.h.s. of (4.7) possessed non-local expressions containing terms such as
∫
dξ(...),

the conservation law property of the equation would be spoiled. In fact, this would give rise to certain

‘anomalies’, as in the context of the anomalous zero-curvature formulation associated to a deformed Lax

pair and its quasi-conservation laws [1]. We will show below that the r.h.s. of (4.7) can be written in general

as [−∂ξs] ≡ ∂ξS + ∂ηR, with S and R being certain local functions of w and its ξ and η−derivatives; i.e.

there exists a local expression for ∂ξs, such that the eq. (4.7) provides a proper local conservation law.

Next, let us consider the expansions

u =

∞∑

n=1

un λ
n, s =

∞∑

n=0

sn λ
n+2, r =

∞∑

n=0

rn λ
n+2. (4.8)

The coefficients un of the expansion above can be determined order by order in powers of λ from the Riccati

equation (4.1). In appendix A we provide the recursion relation for the un
′s and the expressions for the

2In fact, there are different expressions of this type, we follow below the construction such that the non-homogeneous r.h.s.

terms must contain the deformation variables {s, r}, such that for r = s = 0 one must recover in the l.h.s., order by order in λ,

the polynomial conservation laws of the standard SG model.
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first un. Likewise, using the results for the un
′s we get the relevant expressions for the rn

′s and sn
′s from

(4.3)-(4.4). The recursive relationships for sn and rn provided in the appendix B allow us to find the explicit

expressions of these fields, order by order in powers of the spectral parameter λ.

Then, making use of the un components of the expansion of u provided in (A.1) or (A.3)-(A.4), one can

find the conservation laws, order by order in powers of λ. So, by inserting those expansions into the eq. (4.7)

one has that the coefficient of the n′th order term becomes

∂ηa
(n)
ξ + ∂ξa

(n)
η = −∂ξsn−2, n = 1, 2, 3, ....; s−1 ≡ 0 (4.9)

a
(n)
ξ ≡ un∂ξw, a(n)η ≡ (V − 2)δ1,n − 1

2
un−1V

(1), u0 ≡ 0. (4.10)

So, the first order O(λ1) term provides

∂η

(
1

2
(∂ξw)

2

)
+ ∂ξ (V − 2) = 0. (4.11)

Notice that the r.h.s. of (4.9) vanishes at this order, i.e. by definition one has s−1 ≡ 0. In fact, the

conservation law (4.11) provides the first conserved charge

q(1) =

∫
dx
[1
2
(∂ξw)

2 + (V − 2)
]
. (4.12)

The equations (4.11)-(4.12), together with their duals and the relevant charge q̃(1) =
∫
dx [ 12 (∂ηw)

2+(V −2)]

which will be provided below, give rise to the usual energy and momentum charges written in laboratory

coordinates (x, t) as

E =
1

2

[
q(1) + q̃(1)

]
(4.13)

=

∫
dx
[1
2
(∂xw)

2 +
1

2
(∂tw)

2 + (V − 2)
]

(4.14)

and

P =
1

2

[
q̃(1) − q(1)

]
(4.15)

=

∫
dx[∂xw∂tw]. (4.16)

The next order term O(λ2) becomes

1

4
∂ξ

[
∂η

(
1

2
(∂ξw)

2

)
+ ∂ξ (V − 2)

]
= 0. (4.17)

Since from (B.3) one has ∂ξs0 = 0 one notices that the r.h.s. of (4.9) also vanishes at this order. As usual,

we can define the charge

q(2) =

∫
dx

1

4

(
∂2ξw∂ξw + ∂ξwV

(1)
)

(4.18)

=
1

4

d

dt
(E − P ) . (4.19)
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So, the eq. (4.17) does not provide an independent new charge in laboratory coordinates (x, t). So, there

is no an independent new charge at this order. Notice that also the usual SG model does not possess an

independent charge at this order [16].

From this point forward and for the higher order charges the term encoding the deformation away from

the usual SG model, i.e. the r.h.s. of (4.9), will play an important role in the construction of the conservation

laws. So, the third order O(λ3) term provides

∂η

[1
8
∂ξw

(
(∂ξw)

3 + ∂3ξw
) ]

+ ∂ξ

(
1

8
∂2ξwV

(1)

)
= −∂ξs1. (4.20)

Remarkably, the r.h.s. of (4.20) can be written as

−∂ξs1 =
1

4
X∂2ξw − 1

4
∂ξw ∂ξX (4.21)

= ∂ηR1 + ∂ξS1 (4.22)

R1 ≡ −1

8
[∂2ξw]

2 +
1

8
[∂ξw]

4, S1 ≡ −1

8
[∂ξw]

2V (2). (4.23)

In order to write (4.22) starting from (4.21) we have used the explicit expression for X in (4.5) and the

deformed sine-Gordon eq. of motion (2.1) and its derived expressions such as ∂η∂
2
ξ w + V (2)(w)∂ξw = 0.

Therefore, the conservation law (4.20) turns out to be

1

8
∂2ξ

[
∂η

(
1

2
(∂ξw)

2

)
+ ∂ξ (V − 2)

]
= 0. (4.24)

Notice that this form of the third order conservation law holds strictly for deformed SG models, i.e. for

models such that X 6= 0. In the usual SG model the eq. (4.20) with vanishing r.h.s., since in that case

X ≡ 0, provides the relevant conservation law at this order.

Next, the charge which follows from the above conservation law (4.24) becomes

q(3) =
1

8

d2

dt2
(E − P ) . (4.25)

Therefore, in this formulation and at this order, in contradistinction to the ordinary SG model, there is

not an independent conserved charge for the deformed SG model (2.1).

However, one can show that the third order charge and anomaly of [1, 2, 8] presented in (2.2) can be

rewritten in our notation, respectively, in the form

q(3)a =

∫
dx[

1

8
(∂ξw)

4 +
1

8
∂ξw∂

3
ξw +

1

8
∂2ξwV

(1) +
1

4
X∂ξw] (4.26)

and

β(3) ≡ 1

2
∂2ξwX = ∂ξS1 + ∂ηR1 +

1

4
∂ξ (∂ξwX) , (4.27)

with R1, S1 given in (4.23).

In view of the form that β(3) takes in (4.27), the x−integrated ‘anomaly’ term on the r.h.s. of (2.2)

(written for n = 1) can be promoted to the l.h.s. of that equation by adding some terms to the relevant

32



charge q
(3)
a . So, the quasi-conservation law (2.2), in the case n = 1, can be rewritten as an exact conservation

law

d

dt

{
q(3)a −

∫
dxS1 −

∫
dxR1 −

∫
dx(∂ξwX)

}
= 0. (4.28)

In fact, a close examination reveals that the eq. (2.15), for n = 1, of ref. [1], turns out be the same as our

conservation law (4.24), except for an overall constant factor. So, the above results show that the third order

anomaly term, which appears on the r.h.s. of an inhomogeneous quasi-conservation law, has been removed

and incorporated into the components of a new redefined current which satisfies an exact conservation law.

Moreover, in the recent paper [8] by two of us it has been shown, through numerical simulation and

analytical method, that the ‘anomaly’ β(3), once linearly combined with its dual β̃(3), gives rise to the

both anomalies β
(3)
± , such that the x−integrated “anomaly” α

(3)
+ ≡

∫
dxβ

(3)
+ vanishes when evaluated on

some two-soliton configurations (kink-kink, kink-antikink and breather solitons with definite parity under

space-reflection symmetry ), and if the deformed potential, evaluated on such a solution, is even under the

parity. In fact, it has been shown analytically that the β
(2n+1)
+ anomalies vanish for those special two-soliton

configurations, rendering the exact conservation of their associated charges q
(2n+1)
a+ ≡ q(2n+1) + q̃(2n+1)

[8]. For two-soliton configurations the space-time integration of the anomalies β
(2n+1)
− vanish, allowing the

existence of the so-called asymptotically conserved charges [1].

In order to see more closely the relationship between the charge q
(3)
a , its ‘anomaly’ β(3) and the exactly

conserved charge q(3) one can write the next relationship from (4.20) or (4.24)

d

dt
q(3)a − d

dt
q(3) =

∫
dxβ(3) (4.29)

=
d

dt

∫
dx
[
S1 +R1 +

1

4
∂ξwX

]
, (4.30)

where the form of β(3) provided in (4.27) has been used. Therefore, upon integration in t the expression

(4.30) the charge q
(3)
a can be written as

q(3)a = q(3) +

∫
dx
[
S1 +R1 +

1

4
∂ξwX

]
, (4.31)

=
1

8

d2

dt2
[E − P ] +

∫
dx
[1
8
(∂ξw)

4 − 1

8
(∂2ξw)

2 +
1

2
(∂ξw)

2[V − 2]
]
, (4.32)

where the expression of q(3) in (4.25) and the expressions of R1 and S1 given in (4.23) have been used. So,

in view of the relationships (4.28) and (4.31) one can argue that the asymptotically conserved charge q
(3)
a

becomes embedded into the third order conservation law (4.24) provided that the ‘anomaly’ term β(3) is

considered in the form (4.27). So, as discussed above, this ‘anomaly’ term turns out to be removed and

incorporated into the conservation law (4.24) once the expression (4.27) is taken into account.

Even though the conservation of the charge q
(3)
a has been reported before [8], it is not guaranteed to

happen a priori in the present formulation, and in order to check this property we have computed above

(see sec. 3.2) this charge by numerical simulations of a variety of two-soliton collisions and the breather
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oscillations for a particular deformation of the SG model. From the analytical point of view, in sections 3.1

and 3.2 above, we discussed the exact conservation of the charge q
(3)
a for some soliton configurations with

definite parities under space-reflection transformations.

The next order O(λ4) conservation law becomes

∂η

(
5

16
∂2ξw(∂ξw)

3 +
1

16
∂ξw∂

4
ξw

)
+ ∂ξ

(
1

16
V (1)[(∂ξw)

3 + ∂3ξw]

)
= −∂ξs2. (4.33)

The r.h.s. of this equation turns out to be

∂ξs2 =
1

8
X∂3ξw − 1

8
∂ξw∂

2
ξX (4.34)

=
1

8
∂ξ[∂

2
ξwX − ∂ξw∂ξX ] (4.35)

Therefore one has the conservation law

∂η

(
5

16
∂2ξw(∂ξw)

3 +
1

16
∂ξw∂

4
ξw

)
+ ∂ξ

(
1

16
[(∂ξw)

3 + ∂3ξw]V
(1) − 1

8
[∂2ξwX − ∂ξw∂ξX ]

)
= 0 (4.36)

Similarly, from (4.36) one can define the charge

q(4) =

∫
dx
{ 5

16
∂2ξw(∂ξw)

3 +
1

16
∂ξw∂

4
ξw +

1

16
[(∂ξw)

3 + ∂3ξw]V
(1) − 1

8
[∂2ξwX − ∂ξw∂ξX ]

}
, (4.37)

≡ 0. (4.38)

So, it has been shown that this charge vanishes identically for suitable boundary conditions.

The term of order O(λ5) provides the next conservation law

∂η

(
11

32
(∂2ξw)

2(∂ξw)
2 +

7

32
∂3ξw(∂ξw)

3 +
1

16
(∂ξw)

6 +
1

32
∂ξw∂

5
ξw

)
− ∂ξ

[1
2
V (1)u4

]
= −∂ξs3 (4.39)

−∂ξs3 = − 3

16
(∂ξw)

3∂ξX +
1

16

(
∂4ξw + ∂ξ[(∂ξw)

3]
)
X − 1

16
∂ξw∂

3
ξX. (4.40)

A remarkable fact is that the r.h.s. of the last eq. can be written as

−∂ξs3 = ∂ηR3 + ∂ξS3 (4.41)

where R3 and S3 are defined in (E.1)-(E.2). Then, a lenghty calculation allow us to write the eq. (4.39) as

the fifth order conservation law

1

32
∂4ξ

{1
2
∂η(∂ξw)

2 + ∂ξ(V − 2)
}
= 0. (4.42)

From the above conservation law it follows the fifth order conserved charge

q(5) ≡ 1

32

d4

dt4

∫
dx
[1
2
(∂ξw)

2 + (V − 2)
]
, (4.43)

≡ 1

32

d4

dt4
(E − P ) . (4.44)
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So, the fifth order charge q(5) in (4.43) is not an independent charge of the deformed sine-Gordon model

(2.1) even though it emerges from a truly conservation law in the Riccati-type formulation, beyond energy

and momentum.

We will define below a related embedded charge q
(5)
a and its relevant anomaly term β(5). This charge

has been computed above (see sec. 3.3) by numerical simulations of two-soliton collisions for a particular

deformation of the SG model.

Notice that the ‘anomaly’ term β(5) introduced in [1] can be written, in our notation, as a term of the

r.h.s. of (4.39). So, one can define into (4.40) the relevant anomaly term as

−24∂ξs3 = 2β(5) − ∂ξ[3(∂ξw)
3X + ∂3ξwX − ∂2ξw∂ξX + ∂ξw∂

2
ξX ] (4.45)

β(5) ≡ 1

16
[∂4ξw + 6(∂ξw)

2∂2ξw]X. (4.46)

Therefore, the additional terms ∂ξ[. . .] appearing in the expression of (−24∂ξs3) and provided in (4.45)

can be incorporated into the l.h.s. of the conservation law (4.39). So, we have rederived the fifth-order

quasi-conservation law of [1] by incorporating the terms ∂ξ[3(∂ξw)
3X+∂3ξwX−∂2ξw∂ξX+∂ξw∂

2
ξX ] into the

l.h.s. of (4.39), while leaving the anomaly term β(5) in the r.h.s. of the same equation. Since the anomaly

β(5) can be written in the form ∂η[. . .] + ∂ξ[. . .], one can define the asymptotically conserved charge q
(5)
a as

d

dt
q(5)a = 2

∫
dxβ(5) (4.47)

=
1

8

d

dt

∫
dx
{1
2
(∂ξw)

6 +
1

4
(∂3ξw)

2 − 5

2
(∂2ξw)

2(∂ξw)
2 − 6(∂ξw)

4 + 6(∂2ξw)
2 − 1

2
∂4ξwV

(1) +

2[2∂ξw∂
3
ξw +

1

2
(∂2ξw)

2 +
3

2
(∂ξw)

4]V
}
+

1

8

d2

dt2

∫
dx
{1
2
∂3ξwV

(1) − 2∂ξw∂
2
ξwV

}
− 1

2

d3

dt3

∫
dx

1

2
(∂ξw)

2. (4.48)

Finally, the fifth-order quasi-conservation law of [1] can also be written as an exact conservation law provided

the form (4.41) is used in order to write an exact conservation law. The outcome will be the conservation

law (4.42).

The conservation law of order O(λ6) becomes

∂η (u6∂ξw)− ∂ξ

(
1

2
u5V

(1)

)
= −∂ξs4 (4.49)

∂η (u6∂ξw) − ∂ξ

{1
2
u5V

(1) +
1

16

[
3(∂ξw)

3∂ξX − 5

2
(∂ξw)

2∂2ξwX +
1

2
∂ξw∂

3
ξX − 1

2
∂2ξw∂

2
ξX −

1

2
∂4ξwX

]}
= 0 (4.50)

where the relevant expression for ∂ξs4 has been incorporated in (4.49) to get the conservation law (4.50).

In this way the r.h.s.’s [−∂ξsn (n = 1, 2, 3, 4)] of the relevant conservation laws have been written as

∂ηRn + ∂ξSn. We will show below that this property holds in general for each term [(−∂ξsn), n ≥ 1], of this

tower of conservation laws. Therefore, the conservation laws (4.9) in general can be written as

∂η[a
(n)
ξ −Rn−2] + ∂ξ[a

(n)
η − Sn−2] = 0, n = 1, 2, 3, ...(Sk = Rk ≡ 0, k = −1, 0). (4.51)
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Then, the construction above provides an infinite tower of conservation laws (4.51).

As a byproduct of our construction, we have shown that the third order asymptotically conserved charge

defined in [1] becomes embedded into the relevant conserved charge above (4.31)-(4.32). The concept of

quasi-integrability and its asymptotically conserved charges, as introduced in [1] and further extended in

[8, 9, 10] by introducing subsets of exactly conserved charges, depend on the particular field configurations

one applies it to, such as the kink-kink, kink-antikink and breather configurations of the deformed model.

This is in contradistinction to the usual integrability concept in which the conserved charges are defined for

all fields of the model.

Moreover, we have shown through symmetry property arguments and numerical simulations in sections

3.1 and 3.2 above, the exact conservation property of the charge q
(3)
a . Remember that this charge has been

shown to be embedded into the dependent charge q(3) (4.25), as presented in the expressions (4.28) and

(4.31)-(4.32). The charge q
(3)
a has been regarded simply as an asymptotically conserved one in [1, 8].

The presence of an infinite number of conservation laws is among the most important features of integrable

models, since they impose strong constraints on their dynamics, and allow the existence of soliton-type

solutions. As we have discussed above, in the context of deformed SG models, the set of conservation laws

can be constructed directly from some structures such as the deformed Riccati-type equations of the system

or the abelianization procedure in the anomalous Lax pair formulation [1]. However, the rigorous proof of

the mutual independence and non-triviality of the charges associated to the conservation laws (4.51) is often

a non-trivial task. So, in the Riccaty-type pseudo-potential formulation above the charges do not match

these criteria and one has to examine order by order their non-trivialities and mutual independences.

4.1 Riccati-type pseudo-potential and dual conservation laws

We present below a new formulation of the deformed SG model (2.1) in the context of the Riccati-type

pseudo-potential approach. This will constitute a dual formulation to the model presented above and play

and important role, when combined with the previous constructions, in order to study the infinite towers of

conserved charges expressed in laboratory coordinates (x, t).

Since the deformed SG model (2.1) is invariant under the transformation η ↔ ξ there will be naturally

another Riccati-type formulation dual to the system (4.1)-(4.4) presented above. So, let us consider the next

system of equations for the new pseudo-potential ũ

∂ηũ = −2λ ũ+ ∂ηw + ∂ηw ũ2, (4.52)

∂ξũ = − 2

λ
(V − 2) ũ− 1

2λ
V ′ +

1

2λ
V ′ ũ2 + r̃ − ũ s̃. (4.53)

Notice that we have performed the changes λ→ λ−1 and ξ ↔ η in the linear system (4.1)-(4.2) and relabelled

the pseudo-potential and the auxiliary fields, while maintaining the field w and the deformed sine-Gordon

potential V (w) unchanged.
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Next, we consider the following equations for the auxiliary fields r̃(ξ, η) and s̃(ξ, η)

∂η r̃ = −2λ r̃ + ∂ηw(ũ r̃ + s̃) + λ−1X̃, (4.54)

∂η s̃ = ∂ηw(ũ s̃− r̃) + λ−1X̃ũ, (4.55)

X̃ ≡ ∂ηw

(
V (2)

2
+ 2V − 4

)
, V (2) ≡ d2

dw2
V (w). (4.56)

So, one has a set of two deformed Riccati-type equations for the pseudo-potential ũ (4.52)-(4.53) and a system

of equations (4.54)-(4.55) for the auxiliary fields r̃ and s̃. Likewise, for the particular potential (4.6) one

has that X̃ vanishes identically, and the linear system (4.52)-(4.53) will describe the ordinary sine-Gordon

integrable model, provided that s̃ = r̃ = 0 in (4.53).

Similarly, as in the previous subsection, substituting the expression for ũ2 from (4.54) into (4.55) one can

get the following relationship

∂ξ (ũ ∂ηw) + ∂η

(
λ−1 (V − 2)− 1

2
λ−1 ũ V (1)

)
= −∂ηs̃. (4.57)

This equation can be used to uncover an infinite number of new conservation laws associated to the

modified SG model (2.1). So, let us consider the expansions

ũ =

∞∑

n=1

ũn λ
−n, s̃ =

∞∑

n=0

s̃n λ
−(n+2), r̃ =

∞∑

n=0

r̃n λ
−(n+2). (4.58)

The components ũn can be determined recursively by substituting the above expression into (4.52). Whereas,

the components s̃n and r̃n can be obtained from the system of eqs. (4.54)-(4.55). In appendices C and D

we provide the expressions for the first ũn, s̃n, r̃n. Then, making use of these components, one can find the

conservation laws, order by order in powers of λ−1, by inserting those expansions into the eq. (4.57). So the

(−n)′th order conservation law becomes

∂ξã
(n)
η + ∂ηã

(n)
ξ = −∂ηs̃n−2, n = 1, 2, 3, ....; s̃−1 ≡ 0 (4.59)

ã(n)η ≡ ũn∂ηw, ã
(n)
ξ ≡ (V − 2)δ1,n − 1

2
ũn−1V

(1), ũ0 ≡ 0. (4.60)

So, the first order O(λ−1) term provides

∂ξ

(
1

2
(∂ηw)

2

)
+ ∂η (V − 2) = 0. (4.61)

The last equation furnishes the conserved charge

q̃(1) =

∫
dx [

1

2
(∂ηw)

2 + (V − 2)]. (4.62)

This charge combined to its dual in the last subsection has been used to write the energy and momentum

charges as in eqs. (4.13)-(4.16).

The next order term O(λ−2) becomes

∂ξ

(
1

4
∂2ηw∂ηw

)
+ ∂η

(
1

4
∂ηwV

(1)

)
= 0. (4.63)
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Notice that the r.h.s. vanishes since ∂ηs̃0 = 0. As usual, we define the charge

q̃(2) =

∫
dx

1

4

(
∂2ηw∂ηw + ∂ηwV

(1)
)

(4.64)

=
1

4

d

dt
(E + P ) . (4.65)

So, the eq. (4.63) does not provide an independent new charge. So, as in the dual case of last subsection,

there is no an independent new charge at this order.

As in the construction of preceding subsection, from this point forward and for the higher order charges

the terms encoding the deformation away from the usual SG model, i.e. (−∂ηs̃n−2) in the r.h.s. of (4.59),

will play an important role.

The third order O(λ−3) term provides

∂ξ

[1
8
∂ηw

(
(∂ηw)

3 + ∂3ηw
) ]

+ ∂η

(
1

8
∂2ηwV

(1)

)
= −∂ηs̃1, (4.66)

The r.h.s. of (4.66) can be written as

−∂η s̃1 =
1

4
X̃∂2ηw − 1

4
∂ηw ∂ηX̃ (4.67)

= ∂ξR̃1 + ∂ηS̃1 (4.68)

R̃1 ≡ −1

8
[∂2ηw]

2 +
1

8
[∂ηw]

4, S̃1 ≡ −1

8
[∂ηw]

2V (2). (4.69)

In order to write (4.68) starting from (4.67) we have used the explicit expression for X̃ in (4.56) and the

deformed sine-Gordon eq. of motion (2.1). Therefore, the conservation law (4.66) turns out to be

∂ξ

[1
8
∂ηw∂

3
ηw +

1

8
[∂2ηw]

2
]
+ ∂η

[1
8
∂2ηwV

(1) +
1

8
[∂ηw]

2V (2)
]
= 0. (4.70)

Notice that this form of the third order conservation law holds strictly for deformed SG models, i.e. for

models such that X̃ 6= 0. In the usual SG model the eq. (4.66) furnishes a conservation law at this order,

provided that the r.h.s. is set to zero, since in that case X̃ ≡ 0. So, the charge which follows from the above

conservation law (4.70) becomes

q̃(3) =

∫
dx
[1
8
∂ηw∂

3
ηw +

1

8
[∂2ηw]

2 +
1

8
∂2ηwV

(1) +
1

8
[∂ηw]

2V (2)
]

(4.71)

=
1

8

d2

dt2
(E + P ) . (4.72)

Therefore, also in this dual formulation and at this order, in contradistinction to the ordinary SG model,

there is not an independent conserved charge for the deformed SG model (2.1).

Moreover, as in (2.3) one can show that the third order charge and anomaly in [1, 2, 8], in our notation,

can be rewritten, respectively, in the form

q̃(3)a =

∫
dx[

1

8
(∂ηw)

4 +
1

8
∂ηw∂

3
ηw +

1

8
∂2ηwV

(1) +
1

4
X̃∂ηw] (4.73)
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and

β̃(3) ≡ 1

2
∂2ηwX̃ = ∂ηS̃1 + ∂ξR̃1 +

1

4
∂η

(
∂ηw X̃

)
, (4.74)

with R̃1, S̃1 given in (4.69). In view of the form that β̃(3) takes in (4.74) this ‘anomaly’ term on the r.h.s. of

(2.3) can be promoted to the l.h.s. of that equation such that the quasi-conservation law (see eq. (2.31) of

[1] for n = 1) can be rewritten as a proper conservation law

d

dt

{
q̃(3)a −

∫
dxS̃1 −

∫
dxR̃1 −

∫
dx(∂ηwX̃)

}
= 0. (4.75)

In fact, a close examination reveals that the eq. (2.31), for n = 1, of ref. [1], turns out be the same as our

conservation law (4.70), except for an overall constant factor.

It is possible to write a relationship between the charge q̃
(3)
a , its ‘anomaly’ β̃(3) and the exactly conserved

charge q̃(3), so from (4.66) or (4.70) one has

q̃(3)a = q̃(3) +

∫
dx
[
S̃1 + R̃1 +

1

4
∂ηwX̃

]
, (4.76)

=
1

8

d2

dt2
[E + P ] +

∫
dx
[1
8
(∂ηw)

4 − 1

8
(∂2ηw)

2 +
1

2
(∂ηw)

2[V − 2]
]
. (4.77)

The charge q̃
(3)
a , conveniently combined with its dual q

(3)
a in (4.31)-(4.32), has been computed above (see

sec. 3.2) by numerical simulations of two-soliton collisions for a deformed SG model.

The next order term O(λ−4) becomes

∂ξ

(
5

16
∂2ηw(∂ηw)

3 +
1

16
∂ηw∂

4
ηw

)
+ ∂η

(
1

16
V (1)[(∂ηw)

3 + ∂3ηw]

)
= ∂η s̃2. (4.78)

The r.h.s. of this equation can be written as

∂η s̃2 =
1

8
X̃∂3ηw − 1

8
∂ηw∂

2
ηX̃ (4.79)

=
1

8
∂η[∂

2
ηwX̃ − ∂ηw∂ηX̃]. (4.80)

Therefore one has the conservation law

∂ξ

(
5

16
∂2ηw(∂ηw)

3 +
1

16
∂ηw∂

4
ηw

)
+ ∂η

(
1

16
[(∂ηw)

3 + ∂3ηw]V
(1) − 1

8
[∂2ηwX̃ − ∂ηw∂ηX̃ ]

)
= 0. (4.81)

From (4.81) one can define the charge

q̃(4) =

∫
dx
{ 5

16
∂2ηw(∂ηw)

3 +
1

16
∂ηw∂

4
ηw +

1

16
[(∂ηw)

3 + ∂3ηw]V
(1) − 1

8
[∂2ηwX̃ − ∂ηw∂ηX̃]

}
, (4.82)

≡ 0. (4.83)

So, it has been shown that the charge at this order also vanishes identically for suitable boundary conditions.

The term of order O(λ−5) provides the next quasi-conservation law

∂ξ

(
11

32
(∂2ηw)

2(∂ηw)
2 +

7

32
∂3ηw(∂ηw)

3 +
1

16
(∂ηw)

6 +
1

32
∂ηw∂

5
ηw

)
− ∂η

[1
2
V (1)ũ4

]
= −∂ηs̃3 (4.84)
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−∂η s̃3 = − 3

16
(∂ηw)

3∂ηX̃ +
1

16

(
∂4ηw + ∂η[(∂ηw)

3]
)
X̃ − 1

16
∂ηw∂

3
ηX̃. (4.85)

The r.h.s. of the last eq. can be written as

−∂ηs̃3 = ∂ξR̃3 + ∂ηS̃3 (4.86)

where R̃3 and S̃3 are provided in (F.1)-(F.2). Then, a lenghty calculation allow us to write the eq. (4.84) as

the fifth order conservation law

1

32
∂4η

{1
2
∂ξ(∂ηw)

2 + ∂η(V − 2)
}
= 0. (4.87)

From the above conservation law it follows the fifth order conserved charge

q̃(5) ≡ 1

32

d4

dt4

∫
dx
[1
2
(∂ηw)

2 + (V − 2)
]
, (4.88)

≡ 1

32

d4

dt4
(E + P ) . (4.89)

So, the fifth order dual charge q̃(5) in (4.88) is not an independent charge of the deformed sine-Gordon model

(2.1) even though it emerges from a truly conservation law in the Riccati-type dual formulation, beyond

energy and momentum.

We will define below a related embedded charge q̃
(5)
a and its relevant anomaly term β̃(5). This charge

has been computed above (see sec. 3.3) by numerical simulations of two-soliton collisions for a particular

deformation of the SG model.

Notice that the ‘anomaly’ term β̃(5) introduced in [1] can be written, in our notation, as a term of the

r.h.s. of (4.84). So, one can define in (4.84) the relevant anomaly term as

−24∂η s̃3 = 2β̃(5) − ∂η[3(∂ηw)
3X̃ + ∂3ηwX̃ − ∂2ηw∂ηX̃ + ∂ηw∂

2
ηX̃ ] (4.90)

β̃(5) ≡ 1

16
[∂4ηw + 6(∂ηw)

2∂2ηw] X̃. (4.91)

Therefore, the additional terms inside ∂η[. . .] appearing in the expression of (−24∂ηs3) and provided in

(4.90) can be incorporated into the l.h.s. of the conservation law (4.84). So, we have rederived the fifth-order

quasi-conservation law of [1] by incorporating the terms ∂η[3(∂ηw)
3X̃+∂3ηwX̃−∂2ηw∂ηX̃+∂ηw∂

2
ηX̃] into the

l.h.s. of (4.84), while leaving the anomaly term β̃(5) in the r.h.s. of the same equation. Since the anomaly

β̃(5) can be written in the form ∂η[. . .] + ∂ξ[. . .], one can define the asymptotically conserved charge q̃
(5)
a as

d

dt
q̃(5)a = 2

∫
dx β̃(5) (4.92)

=
1

8

d

dt

∫
dx
{1
2
(∂ηw)

6 +
1

4
(∂3ηw)

2 − 5

2
(∂2ηw)

2(∂ηw)
2 − 6(∂ηw)

4 + 6(∂2ηw)
2 − 1

2
∂4ηwV

(1) +

2[2∂ηw∂
3
ηw +

1

2
(∂2ηw)

2 +
3

2
(∂ηw)

4]V
}
+

1

8

d2

dt2

∫
dx
{1
2
∂3ηwV

(1) − 2∂ηw∂
2
ηwV

}
− 1

2

d3

dt3

∫
dx

1

2
(∂ηw)

2. (4.93)
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We have computed in sec. 3.3 this charge q̃
(5)
a , combined with its dual (4.48), by numerical simulations

of two-soliton collisions for a particular deformation of the SG model.

Finally, the fifth-order dual quasi-conservation law of [1] can also be written as an exact conservation

law provided the form (4.86) is used in order to write an exact conservation law. The outcome will be the

conservation law (4.87).

For completeness we provide the next conservation law of order O(λ−6)

∂ξ (u6∂ηw)− ∂η

(
1

2
ũ5V

(1)

)
= −∂ηs̃4 (4.94)

∂ξ (ũ6∂ηw)− ∂η

{1
2
ũ5V

(1) +
1

16

[
3(∂ηw)

3∂ηX̃ − 5

2
(∂ηw)

2∂2ηwX̃ +
1

2
∂ηw∂

3
ηX̃ − 1

2
∂2ηw∂

2
ηX̃ −

1

2
∂4ηwX̃

]}
= 0 (4.95)

where the relevant expression for ∂η s̃4 has been incorporated in (4.94) in order to get (4.95).

In this way, the r.h.s.’s [−∂η s̃n (n = 1, 2, 3, 4)] of the relevant dual conservation laws have been written

as ∂ξR̃n + ∂ηS̃n. Therefore, the conservation laws (4.59) can be written as

∂ξ[ã
(n)
η − R̃n−2] + ∂η[ã

(n)
ξ − S̃n−2] = 0, n = 1, 2, 3, ...(S̃k = R̃k ≡ 0, k = −1, 0). (4.96)

So, beyond the energy-momentum charges, the above towers of higher order asymptotically conserved

charges share the same form as the usual sine-Gordon charges, even though the dynamics governing their

behaviour is related to the deformed sine-Gordon with potential V (w) supporting solitary waves.

5 New pseudo-potentials and non-local conservation laws

In this section we provide new towers of conservation laws by considering other pseudo-potential represen-

tations of the deformed SG equation. The procedures will carefully take into account the structures of the

deformation encoded in the variable X in (4.5) and the auxiliary fields r and s of (4.3)-(4.4), as well as

encoded in the dual expressions X̃ in (4.56) and the fields r̃ and s̃ in (4.54)-(4.55).

Let us define ψ ≡ r − us and write the Riccati-type eq. (4.2) as

∂ηu = −2λ (V − 2)u− 1

2
λV (1) +

1

2
λV (1) u2 + ψ. (5.1)

Therefore, imposing the compatibility condition to the pair of eqs. (4.1) and (5.1), and taking into

account the auxiliary system of equations (4.3)-(4.4), one gets a linear first order equation for ψ

∂ξψ + 2λ−1ψ − 2u∂ξwψ = (2λ− 2u− λ∂ξu)Y, (5.2)

Y ≡ 1

2
V (2)(w) + 2V (w) − 4. (5.3)

This is a non-homogeneous ordinary differential equation for ψ in the variable ξ, which can be integrated

by quadratures. Its general solution becomes

ψ(ξ, η) = C e
− 2

λ

∫
ξ [1−λu(ξ′,η) ∂w(ξ′,η)

∂ξ′
]dξ′ − e

− 2
λ

∫
ξ [1−λu(ξ′,η) ∂w(ξ′,η)

∂ξ′
]dξ′
∫ ξ

e
2
λ

∫
ξ′′ [1−λu(ξ′,η) ∂w(ξ′,η)

∂ξ′
]dξ′ ×
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Y (ξ′′, η)
{
2u(ξ′′, η) + λ

[∂u(ξ′′, η)
∂ξ′′

− 2
∂w(ξ′′, η)

∂ξ′′

]}
dξ′′. (5.4)

Imposing the condition ψ = 0 for Y = 0 to this solution, as it must hold for the usual SG model, one must

set C = 0. In fact, this condition removes the contribution of the homogeneous sector of the differential

equation (5.2) to the general solution in (5.4) . So, one has

ψ(ξ, η) = −e−
2
λ

∫
ξ [1−λu(ξ′,η) ∂w(ξ′,η)

∂ξ′
]dξ′
∫ ξ

e
2
λ

∫
ξ′′ [1−λu(ξ′,η) ∂w(ξ′,η)

∂ξ′
]dξ′ ×

Y (ξ′′, η)
{
2u(ξ′′, η) + λ

[∂u(ξ′′, η)
∂ξ′′

− 2
∂w(ξ′′, η)

∂ξ′′

]}
dξ′′. (5.5)

The expression for ψ in (5.5) is highly non-local and, once inserted into (5.1), the new system of eqs. (4.1)

and (5.1) will provide a new non-local Riccati-type representation for the DSG model (2.1).

However, we are interested in obtaining a new set of local conservation laws associated to the system of

Riccati-type equations (4.1) and (5.1); so, let us define a new pseudo-potential as

Ψ ≡ −∂ξs (5.6)

= −λXu+ ∂ξwψ, (5.7)

where the eq. (4.4) has been used in order to trade ∂ξs for ψ, i.e. ∂ξs = λXu− ∂ξwψ. So, the r.h.s. of the

conservation law (4.7) can be written as

∂η (u ∂ξw) + ∂ξ

(
λ (V − 2)− 1

2
λu V (1)

)
= Ψ. (5.8)

The quantity Ψ satisfies a linear ordinary differential equation in the independent variable ξ

∂ξΨ =
[
− 2λ−1 + 2u ∂ξw +

∂2ξw

∂ξw

]
Ψ− λu ∂ξw ∂ξY. (5.9)

When the components un of the quantity u (4.8) are taken into account from the appendix A, the equation

(5.9) can be solved for Ψ by expanding it as a power series in the spectral parameter λ

Ψ =
∞∑

n=1

λ2+nΨn. (5.10)

The first set of components Ψn are provided in the appendix E.

The conservation law (5.8), taking into account the series expansion for Ψ and its components provided

in (E.4), reproduces the set of conservation laws presented in section 4.

An important observation is that from (5.9) one can write the Riccati-type pseudo-potential u in terms

of the quantity Ψ and the field w as

u =
λΨ∂2ξw − ∂ξw(2Ψ + λ∂ξΨ)

λ2(∂ξw)3Y (1) − 2λ(∂ξw)2Ψ
. (5.11)

Notice that by introducing (5.11) into the l.h.s. of equation (5.8) one can get for Ψ an expression of the form

Ψ ≡ ∂ηR+ ∂ξS, (5.12)
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where R and S can be defined as some functionals of the field w and its derivatives, once the expressions for

Ψ and its components Ψn from (E.4) are substituted into the l.h.s. of (5.8). The identity (5.12) shows that

in general one must have Ψn−2 ≡ ∂ηRn−2 + ∂ξSn−2[= (−∂ξsn), n ≥ 3]. This property has been verified,

order by order in powers of λ, in the construction of the first set of conservation laws and their associated

charges q(n), n = 1, 2, ..., 6, in sec. 4.

Likewise, in order to write a dual set of local conservation laws associated to the system of Riccati-type

equations (4.52) and (4.53), one can define the quantity

Ψ̃ ≡ −∂ηs̃ (5.13)

= −λ−1X̃ ũ+ ∂ηw ψ̃, (5.14)

where the eq. (4.55) has been used in order to trade ∂ηs̃ for ψ̃, i.e. ∂η s̃ = λ−1X̃ ũ− ∂ηw ψ̃. So, the r.h.s. of

the conservation law (4.57) can be written as

∂ξ (ũ ∂ηw) + ∂η

(
λ−1 (V − 2)− 1

2
λ−1 ũ V (1)

)
= Ψ̃, (5.15)

where the pseudo-potential Ψ̃ satisfies a linear ordinary differential equation in the independent variable η

∂ηΨ̃ =
[
− 2λ+ 2ũ ∂ηw +

∂2ηw

∂ηw

]
Ψ̃− λ−1ũ ∂ηw ∂ηY. (5.16)

The equation (5.16) can be solved for Ψ by expanding it as a power series in the spectral parameter λ

Ψ̃ =

∞∑

n=1

λ−(2+n)Ψ̃n. (5.17)

The first set of components Ψ̃n are provided in the appendix F.

One can verify that the conservation law (5.15), taking into account the series expansion of Ψ̃ and its

components provided in the appendix F, reproduces the set of dual conservation laws presented in subsection

4.1.

5.1 Pseudo-potentials and a linear system associated to DSG

In this section we tackle the problem of writing a linear system of equations associated to the DSG model.

We will proceed by performing some transformations to the Riccati eq. (4.1) and to the conservation law

(4.7), as well as to the eq. (5.9) written for the the auxiliary field s. So, let us consider the transformation

u = − 1

∂ξw
∂ξ (logφ) . (5.18)

Inserting (5.18) into (4.1) one gets the equation

∂2ξφ+ (∂ξw)
2φ+ 2λ−1∂ξφ− ∂

∂ξ
[log (∂ξw)] ∂ξφ ≡ L1φ = 0. (5.19)
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Similarly, inserting (5.18) into (4.7) and performing a ξ−integration once, one gets

∂ηφ− λ[V (w) − 2]φ− 1

2
λ
V ′(w)

∂ξw
∂ξφ− s φ ≡ L2φ = 0. (5.20)

In addition, combining (5.18) and (5.9), and taking into account the expression Ψ = −∂ξs defined in

(5.6), one gets the next equation for the quantity s

∂2ξ s =
[
− 2λ−1 − 2

∂ξφ

φ
+
∂2ξw

∂ξw

]
∂ξs− λ

∂ξφ

φ
∂ξY. (5.21)

From (5.19)-(5.20) one can show that the compatibility condition is satisfied, ∂η(∂
2
ξφ)−∂2ξ (∂ηφ) = 0, provided

that s satisfies the second order differential equation (5.21) and w the deformed sine-Gordon equation of

motion (2.1). In addition, from (5.20) and (5.21) one can write the relevant expressions for ∂η logφ and

∂ξ logφ, such that their compatibility condition reproduces the conservation law (5.8).

Notice that the pseudo-potential approach has been used in [13] in order to obtain the Lax pair of the

usual SG model. In fact, in the limit V → VSG one has that Y = 0 (SG limit) and Ψ = 0 implying s = 0 and

the set of operators {L1 , L2} in (5.19)-(5.20) turn out to be the Lax representation of the usual SG model,

provided that the potential V takes the form (4.6).

On the other hand, the so-called non-homogeneous nonlinear Lax pair associated to an integrable system

has been discussed in [17] starting from a known Lax pair and the Darboux transformation of the model.

Along the same lines, since the system of equations (5.19)-(5.20) satisfy the compatibility condition, as dis-

cussed above, the system (5.19)-(5.20) can be regarded as a non-local and non-linear Lax pair representation

of the deformed SG model (2.1).

Therefore, following the results above and the same general lines suggested in [17], it is worth to pursue

a linear formulation of the DSG model. Next, we will undertake this goal by seeking a linear and a first

order in ξ−derivative (η−derivative) differential equation for the pseudo-potential φ as

∂ξφ = Aξφ (5.22)

∂ηφ = Aηφ, (5.23)

such that the compatibility condition for the system above defines the equation of motion

∂ηAξ − ∂ξAη = 0. (5.24)

Therefore, substituting the above Ansatz (5.22) into (5.19) one gets a Riccati equation for the quantity Aξ

∂ξAξ = −2a1 +

(
1

2
∂ξ log a1 −

2

λ

)
Aξ −A2

ξ, a1 ≡ 1

2
(∂ξw)

2. (5.25)

Notice that the linear system (5.22)-(5.23), as well as the equation of motion (5.24) are defined up to a gauge

transformation

φ → eΛφ (5.26)

Aξ → Aξ + ∂ξΛ, Aη → Aη + ∂ηΛ, (5.27)
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for an arbitrary function Λ.

Taking into account (5.22)-(5.23) from (5.20) one can get an expression for the quantity s

s = Aη − λ(V − 2)− 1

2
λ
V (1)

∂ξw
Aξ. (5.28)

Since s in (5.28) depends on the connection (Aξ , Aη), defined in the linear system (5.22)-(5.23), and the

quantities V, V (1) and ∂ξw, one can argue that s depends only on the field w of the model and its derivatives.

The above results and the careful inspection of the terms ∂ξφ and ∂ηφ appearing in (5.19)-(5.21), as well

as the system (5.22)-(5.23), suggest that the model might possess a linear formulation. In the following,

taking into account the gauge freedom (5.26)-(5.27) and a certain amount of guesswork, we will determine

the simplest expressions for the quantities Aη and Aξ of the linear system (5.22)-(5.23). In this way, we

propose the following system of equations as a linear formulation of the deformed SG model3

L1Φ = 0, (5.29)

L1 ≡ ∂ξ −Aξ (5.30)

Aξ ≡ λ

2
(∂ξw)

2 − 2
(∂ξw)

3

∂2ξw
(5.31)

L2Φ = 0, (5.32)

L2 ≡ ∂η −Aη (5.33)

Aη ≡ −2λ− λV + ζ (5.34)

where the auxiliary non-local field ζ is defined as

ζ =

∫ ξ

dξ′
[
6V (1) (∂ξ′w)

2

∂2ξ′w
− 2V (2) (∂ξ′w)

4

(∂2ξ′w)
2

]
. (5.35)

In fact, taking into account the expression for the auxiliary field ζ, the compatibility condition of the linear

problem defined by the system of eqs. (5.29) and (5.32) provides the equation

∆(ξ, η)λ − 6
∂ξw

∂2ξw
∆(ξ, η) + 2

(∂ξw)
2

(∂2ξw)
2
∂ξ∆(ξ, η) = 0, (5.36)

∆(ξ, η) ≡ ∂ξ∂ηw + V (1)(w). (5.37)

The first term in the above equation is linear in the spectral parameter λ, and then the quantity ∆(ξ, η)

must vanish, furnishing in this way the deformed SG equation of motion (2.1). The remaining terms in

(5.36) must also vanish once ∆(ξ, η) = 0 is imposed. So, the operators L1 and L2 constitute a pair of linear

operators related to the deformed SG model (2.1).

The linear systems (5.22)-(5.23) with connection (Aξ , Aη) and (5.29)-(5.34) with connection (Aξ , Aη),

respectively, are related by the gauge transformation of the type (5.26)-(5.27). So, one has

φ = e−ΛΦ (5.38)

3We will provide below a gauge transformation between the systems (5.29)-(5.34) and (5.22)-(5.23).
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Aξ = Aξ + ∂ξΛ (5.39)

Aη = Aη + ∂ηΛ, (5.40)

where the quantity Ω ≡ ∂ξΛ satisfies the Riccati equation

∂ξΩ =
2

λ
a0 + a20 + 8a1 + 2λa0a1 + λ2a21 − 4λ

a21
a0

+ ∂ξa0 −
(
2

λ
+ 2a0 + 2λa1 + 4

a1

a0

)
Ω+ Ω2,(5.41)

a0 ≡ −2
(∂ξw)

3

∂2ξw
, b1 ≡ −2− V, (5.42)

which is obtained from (5.25) and (5.39).

Next, as a first application of the linear problem above, let us construct the energy and momentum

charges. Let us write the linear system (5.29)-(5.34) as

∂ξΦ = AξΦ; (5.43)

∂ηΦ = AηΦ (5.44)

Aξ ≡ a0 + λa1; Aη ≡ b0 + λ b1, (5.45)

a0 ≡ −2
(∂ξw)

3

∂2ξw
; b0 ≡ ζ =

∫ ξ

dξ′
[
6V (1) (∂ξ′w)

2

∂2ξ′w
− 2V (2) (∂ξ′w)

4

(∂2ξ′w)
2

]
; (5.46)

a1 ≡ 1

2
(∂ξw)

2; b1 ≡ −2− V (5.47)

So, consider the identify ∂η(
∂ξΦ
Φ ) − ∂ξ(

∂ηΦ
Φ ) = 0, which taking into account the linear system (5.43)-(5.44)

becomes

∂ηAξ − ∂ξAη = 0. (5.48)

So, using (5.45) one can write

∂ηa0 − ∂ξb0 = 0 (5.49)

∂ηa1 − ∂ξb1 = 0 (5.50)

In fact, these eqs. define two conservation laws. Then considering the expresions of a0 and b0 in (5.46) the

eq. (5.49) defines a non-local conservation law. However, the eq. (5.49) can be written conveniently as

∂η[
1

3
(∂ξw)

3] + ∂ξ[V ∂ξw] = V ∂2ξw. (5.51)

This is just the eq. (2.6) for N = 3, i.e. the rational non-local conservation law (5.49) hides a quasi-

conservation law.

Whereas, the second eq. (5.50) together with the expressions for a1 and b1 in (5.47) provides the

energy-momentum conservation law ∂η[
1
2 (∂ξw)

2] + ∂ξ[V − 2] = 0, which has already been discussed in the

pseudo-potential approach (4.11).
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For the fields and potentials satisfying the symmetry (2.4) one can get another linear system. So, from

(5.43)-(5.47), performing the transformation (2.4)-(2.5), one gets

∂ξχ = Ãξχ; (5.52)

∂ηχ = Ãηχ (5.53)

Ãξ ≡ a0 − λa1; Ãη ≡ b0 − λ b1. (5.54)

The new potentials Ãξ and Ãη can be obtained by making l → −l in the potentials of (5.45). The system

(5.52)-(5.54) reproduces the same eq. of motion (2.1) and the conservation laws (5.49)-(5.50).

In addition, taking into account the system of eqs. (4.52) and (5.15), as well as the eq. (5.16), of the dual

Riccati-type representation, one can introduce a new pseudo-potential φ̃ through a transformation analogous

to the one in (5.18). Then, following similar steps as above, one can define a dual linear system of eqs. for

the new quantity Φ̃ and associate to it the new pair of operators {L̃1, L̃2}. So, this construction will provide

the dual linear representation of the DSG model.

5.2 Non-local conservation laws

For non-linear equations, not necessarily integrable, which can be derived from compatibility conditions of

an associated linear system possessing a spectral parameter, a technique for obtaining explicit expressions

of local and non-local currents have been developed in the literature (see e.g. [23]). In certain models the

non-local conserved charges, as in the non-linear σ−model, imply absence of particle production and the first

non-trivial one alone fixes almost completely the on-shell dynamics of the model (see e.g. [24, 25]). These

charges may be constructed through an iterative procedure introduced by Brézin, et.al. [26]. We follow

this method to construct a set of infinite number of non-local conservation laws for the system (5.43)-(5.44).

In fact, this system satisfies the properties: i) (Aξ, Aη) is a “pure gauge”; i.e. Aµ = ∂µΦΦ
−1, µ = ξ, η;

ii) Jµ = (Aξ, Aη) is a conserved current satisfying (5.48). So, we can construct an infinite set of non-local

conserved currents through an inductive procedure. Let us define the currents

J (n)
µ = ∂µχ

(n), µ ≡ ξ, η; n = 0, 1, 2, ... (5.55)

dχ(1) = Aξdξ +Aηdη, (5.56)

≡ dI0(ξ, η) + l dI1(ξ, η); (5.57)

J (n+1)
µ = ∂µχ

(n) −Aµχ
(n); χ(0) = 1, (5.58)

where

dI0(ξ, η) ≡ a0(ξ, η)dξ + b0(ξ, η)dη, dI1(ξ, η) ≡ a1(ξ, η)dξ + b1(ξ, η)dη. (5.59)

Then one can show by an inductive procedure that the (non-local) currents J
(n)
µ are conserved

∂µJ
(n)µ = 0, n = 1, 2, 3, ... (5.60)
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The first non-trivial current conservation law ∂µJ
(1)µ = 0 reduces to the eq. (5.48), and then provides the

first two conservation laws (5.49)-(5.50). The next conservation law ∂µJ
(2)µ = 0 becomes

∂η

[
Aξ − a0I0 − (a0I1 + a1I0)l − a1I1l2

]
− ∂ξ

[
Aη − b0I0 − (b0I1 + b1I0)l − b1I1l2

]
= 0, (5.61)

where I0 and I1 are defined in (5.59). From (5.61), in addition to the conservation laws (5.48) or (5.49)-(5.50),

one can get the new non-local conservations laws order by order in powers of λ

∂η(a0I0)− ∂ξ(b0I0) = 0, (5.62)

∂η(a0I1 + a1I0)− ∂ξ(b0I1 + b1I0) = 0, (5.63)

∂η(a1I1)− ∂ξ(b1I1) = 0. (5.64)

Notice that the linear systems (5.43)-(5.44) and (5.52)-(5.53) have been obtained by deforming the po-

tential V (w) away from sine-Gordon. The construction of analogous linear systems may be relevant for the

deformations of the well known integrable models related to the eq. of motion (2.1), such as the Boullogh-

Dodd model [4]. In addition, it would be interesting to uncover the classical Yangian as a Poisson-Hopf

type algebra underlying those set of non-local currents and charges [27] for the deformations of the inte-

grable models such as the sine-Gordon, sinh-Gordon, Boullogh-Dodd and Liouville. We will postpone those

important issues and some relevant applications for a future work.

6 Conclusions and future prospects

In this paper, we have made the first steps toward deformations of the pseudo-potential approach to the

sine-Gordon integrable model and applied, as an example, to the models of Bazeia et. al. [18]. We showed

that when the Riccati-type pseudo-potential equations are deformed, away from the sine-Gordon model,

one can construct infinite towers of quasi-conservation laws associated to the deformed sine-Gordon models

of type (2.1). The first order set of conserved charges are related to the usual energy and momentum

charges. In addition, a related linear system of equations allowed us to construct an infinite tower of

non-local conservation laws. Moreover, by direct construction, we have obtained additional towers of quasi-

conservation laws.

Then, we have shown analytically that the second, third and fifth order set of exactly conserved charges

becomes the first, second and fourth order time-derivatives of the energy (E) and momentum (P) charges,

respectively. In this way, they are trivially conserved. It is also shown that the fourth order conservation law

is a trivial identity. The redefined third and fifth order asymptotically conserved charges, which are embedded

into the relevant conservation laws, have been decomposed as a summation of x−integrals of certain densities,

such that each density exhibits space-reflection symmetries for definite parity soliton configurations.

It has been verified, up to the fifth order and through numerical simulation, that there exist embedded

into the relevant third and fifth order conservation laws, a pair of independent exactly conserved charges q
(3)
a±
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(3.13)-(3.16) and a pair of asymptotically conserved charges q
(5)
a± (3.17)-(3.24), within numerical accuracy.

The pair of exactly conserved charges q
(3)
a± have been regarded as simply asymptotically conserved ones in

the quasi-integrability approach [1, 8]. In general, in the pseudo-potential approach for the DSG models

we have shown the absence of the so-called ‘anomalies’ which are present in the quasi-conservation laws of

[1]. We were not able to trace the relation between our numerical results for conserved charges q
(3)
a± and the

corresponding analytical construction of their associated exact conservation laws.

We have checked through numerical simulations of soliton collisions (kink-kink, kink-antikink and breather

configurations) the conservation properties of the first two sets of higher order charges: the two third and

two fifth order ones. We have used, as a particular example, the models of Bazeia et. al., which depend on

a deformation parameter q (such that for q = 2 it reduces to the ordinary sine-Gordon model) and have one

kink solutions (for any q ∈ IR) and no other analytic solutions of these models (when q 6= 2) are known yet.

We have studied these models numerically and computed their first six nontrivial charges E, P , q
(3)
a± and q

(5)
±

for various two-soliton and breather configurations. Our numerical simulations allow us to argue that for

general two-soliton configurations the charges q
(3)
a± are exactly conserved, within numerical accuracy; whereas

the charges q
(5)
a± can be considered, in general, as asymptotically conserved ones. In addition, the charge

q
(5)
a− becomes exactly conserved for soliton configurations possessing definite parities. Similarly, for definite

parities of kink-kink and kink-antikink solutions, the lowest order anomalies of the new quasi-conservation

laws presented in sec. 3 vanish.

Moreover, in sec. 2.1 we have found new towers of quasi-conservation laws with true anomalies. We

discussed some of their properties and simulated their relevant anomalies in sec. 3.4. It is remarkable that

the anomalies a− and γ− vanish for symmetric kink-antikink collision (see Fig. 4). Similarly, for anti-

symmetric kink-kink collision (see Fig. 1) the anomalies a+ and γ− vanish. These kind of anomalous charges

also appear in the standard sine-Gordon model, and they are expected to appear in the other integrable

systems and their quasi-integrable deformations [11, 12].

In the framework of the Riccati-type pseudo-potential approach we have constructed a pair of linear

system of equations, (5.43)-(5.47) and (5.52)-(5.54), respectively, whose relevant compatibility conditions

furnish the DSG model (2.1). The study of the properties of these linear systems, as well as their dual

constructions, deserves a carefull consideration. In particular, the relation of their associated non-local

currents with the so-called classical Yangians [27].

In view of our results above, one can ask if the quasi-integrable systems studied in the literature, such as

the deformations of the non-linear Schrödinger, Bullough-Dodd, Toda, SUSY sine-Gordon and KdV systems

[5, 9, 10, 4, 6, 20, 7], might possess more specific integrable structures, such as an infinite number of (non-

local) conservation laws. So, they deserve careful considerations in the lines discussed above.

Finally, following the work of Krasil’shchik and Vinogradov [21] about non-local trends in the geometry

of differential equations, in which the partial differential equations (PDEs) have been regarded as infinite-

dimensional manifolds, it has been introduced the so-called differential coverings, which have been used to
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study some of the PDEs properties including the constructions like Lax pairs and Backlund transformations

(see e.g. [22]). Moreover, it has been shown that all kinds of Lax pairs, zero-curvature representations

and Bäcklund transformations in soliton theory are special types of coverings [21]. In particular, an auto-

Bäcklund transformation is associated to an automorphism of the covering. Then, it would be interesting to

study the properties of the system (4.1)-(4.2) and (4.3)-(4.4) as some types of differential coverings of the

DSG model (2.1).
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A The u
′
ns of the first set of charges

The u′ns can be determined recursively by substituting the expansion (4.8) into (4.1). Then the first quantities

become

u1 =
1

2
∂ξw

u2 = −1

2
∂ξu1

= − 1

22
∂2ξw

u3 =
1

2

(
u21∂ξw − ∂ξu2

)

=
1

23
(
(∂ξw)

3 + ∂3ξw
)

u4 =
1

2
[(u1u2 + u2u1)∂ξw − ∂ξu3]

= − 1

23
(∂ξw)

2∂2ξw − 1

24
∂ξ
(
(∂ξw)

3 + ∂3ξw
)

(A.1)

u5 =
1

2
[(u22 + 2u1u3)∂ξw − ∂ξu4]

=
11

32
(∂2ξw)

2(∂ξw) +
7

32
∂3ξw(∂ξw)

2 +
1

16
(∂ξw)

5 +
1

32
∂5ξw

u6 =
1

2
[(2u2u3 + 2u1u4)∂ξw − ∂ξu5]

u7 =
1

2
[(u23 + 2u1u5 + 2u2u4)∂ξw − ∂ξu5] (A.2)

......

The above expressions can be written recursively for the un’s

un =
1

2
[(

∑

p+q=n−1

upuq)∂ξw − ∂ξun−1], n = 2, 3, 4, ... (A.3)
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u1 =
1

2
∂ξw; u0 = 0. (A.4)

B The r
′
ns and s

′
ns of the first set of charges

Substituting the expansions (4.8) into the system of eqs. (4.3)-(4.4) the components rn’s and sn’s can be

written recursively as

rm = −1

2

(
∂ξrm−1 − sm−1∂ξw − ∂ξw

m−1∑

k=1

rm−k−1uk

)
, m = 1, 2, 3, ...; r0 =

1

2
X, (B.1)

∂ξsm = Xum+1 − rm∂ξw + ∂ξw

m∑

k=1

sm−kuk, m = 0, 1, 2, ... (B.2)

Next, making use of the expressions for the u′ns presented in the appendix A and the recursion relations

above we list the first components ∂ξsn for n = 0, 1, 2, 3, 4, 5

∂ξs0 = 0, (B.3)

∂ξs1 = − 1

22
X∂2ξw +

1

22
∂ξw∂ξX, (B.4)

∂ξs2 =
1

23
X∂3ξw − 1

23
∂ξw∂

2
ξX, (B.5)

∂ξs3 = − 1

24
X∂4ξw +

1

24
∂ξw

[
3(∂ξw)

2∂ξX − 3X∂ξw∂
2
ξw + ∂3ξX

]
, (B.6)

∂ξs4 =
1

25
X∂5ξw − 1

25
∂ξw

[
5(∂ξw)

2∂2ξX − 10X(∂2ξw)
2 + 5∂ξw

(
2∂ξX∂

2
ξw −X∂3ξw

)
+ ∂4ξX

]
, (B.7)

∂ξs5 = − 1

26
X∂6ξw +

1

26
∂ξw

[
11(∂2ξw)

2∂ξX − 36X∂2ξw∂
3
ξw + ∂5ξX

]
+ (B.8)

1

26
(∂ξw)

2
[
22∂2ξw∂

2
ξX + 14∂ξX∂

3
ξw − 7X∂4ξw

]
+ (B.9)

1

26

[
10(∂ξw)

5∂ξX − 10X(∂ξw)
4∂2ξw − 11X(∂2ξw)

3 + 7(∂ξw)
3∂3ξX

]
, (B.10)

..... (B.11)

C The ũ
′
ns of the second set of charges

Similarly, the ũ′ns can be determined recursively by substituting the expansion (4.58) into (4.52). The first

quantities become

ũ1 =
1

2
∂ηw

ũ2 = −1

2
∂ηũ1

= − 1

22
∂2ηw

ũ3 =
1

2

(
ũ21∂ηw − ∂ηũ2

)

=
1

23
(
(∂ηw)

3 + ∂3ηw
)
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ũ4 =
1

2
[(ũ1ũ2 + ũ2ũ1)∂ηw − ∂ηũ3]

= − 1

23
(∂ηw)

2∂2ηw − 1

24
∂η
(
(∂ηw)

3 + ∂3ηw
)

(C.1)

ũ5 =
1

2
[(ũ22 + 2ũ1ũ3)∂ηw − ∂ηũ4]

=
1

25
∂ηw(∂

2
ηw)

2 +
1

24
(
(∂ηw)

3 + ∂3ηw
)
(∂ηw)

2

+
1

24
∂η

(
(∂ηw)

2∂2ηw +
3

2
(∂ηw)

2∂2ηw +
1

2
∂4ηw

)

ũ6 =
1

2
[(2ũ2ũ3 + 2ũ1ũ4)∂ηw − ∂ηũ5]

......

The recursion relation for the ũn’s becomes

ũn =
1

2
[(

∑

p+q=n−1

ũpũq)∂ηw − ∂ηũn−1], n = 2, 3, 4, ... (C.2)

ũ1 =
1

2
∂ηw; ũ0 = 0. (C.3)

D The r̃
′
ns and s̃

′
ns of the second set of charges

Substituting the expansions (4.58) into the system of eqs. (4.54)-(4.55) the components r̃n’s and s̃n’s can be

written recursively as

r̃m = −1

2

(
∂η r̃m−1 − s̃m−1∂ηw − ∂ηw

m−1∑

k=1

r̃m−k−1ũk

)
, m = 1, 2, 3, ...; r̃0 =

1

2
X̃, (D.1)

∂η s̃m = X̃ũm+1 − r̃m∂ηw + ∂ηw

m∑

k=1

s̃m−kũk, m = 0, 1, 2, ... (D.2)

Next, we list the first components ∂η s̃n, n = 0, 1, 2, 3, 4, 5

∂ηs̃0 = 0, (D.3)

∂ηs̃1 = − 1

22
X̃∂2ηw +

1

22
∂ηw∂ηX̃, (D.4)

∂ηs̃2 =
1

23
X̃∂3ηw − 1

23
∂ηw∂

2
ηX̃, (D.5)

∂ηs̃3 = − 1

24
X̃∂4ηw +

1

24
∂ηw

[
3(∂ηw)

2∂ηX̃ − 3X̃∂ηw∂
2
ηw + ∂3ηX̃

]
, (D.6)

∂ηs̃4 =
1

25
X̃∂5ηw − 1

25
∂ηw

[
5(∂ηw)

2∂2ηX̃ − 10X̃(∂2ηw)
2 + 5∂ηw

(
2∂ηX̃∂

2
ηw − X̃∂3ηw

)
+ ∂4ηX̃

]
, (D.7)

∂ηs̃5 = − 1

26
X̃∂6ηw +

1

26
∂ηw

[
11(∂2ηw)

2∂ηX̃ − 36X̃∂2ηw∂
3
ηw + ∂5ηX̃

]
+ (D.8)

1

26
(∂ηw)

2
[
22∂2ηw∂

2
ηX̃ + 14∂ηX̃∂

3
ηw − 7X̃∂4ηw

]
+ (D.9)

1

26

[
10(∂ηw)

5∂ηX̃ − 10X̃(∂ηw)
4∂2ηw − 11X̃(∂2ηw)

3 + 7(∂ηw)
3∂3ηX̃

]
, (D.10)

..... (D.11)
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E The Ψ
′
ns of the first set of charges

Next, we provide the first components of the pseudo-potential Ψ. Substituting the expansion (5.10) into the

eq. (5.9) and taking into account of the components un provided in the appendix A one can get

Ψ1 = −1

4
Y (1)(∂ξw)

3

= −1

8
∂ξ

[
(∂ξw)

2V (2)
]
− 1

8
∂η

[
(∂2ξw)

2 − (∂ξw)
4
]

Ψ2 = −1

2
∂ξΨ1 +

1

2

∂2ξw

∂ξw
Ψ1 +

1

8
Y (1)(∂ξw)

2∂2ξw

= −1

2
∂ξΨ1

Ψ3 = −1

2
∂ξΨ2 +

1

2

∂2ξw

∂ξw
Ψ2 + u1∂ξwΨ1 −

1

16
Y (1)

[
(∂ξw)

5 + (∂ξw)
2∂3ξw

]
.

= ∂ηR3 + ∂ξS3,

Ψ4 = −1

2
∂ξΨ3 +

1

2

∂2ξw

∂ξw
Ψ3 + u1∂ξwΨ2 + u2∂ξwΨ1 −

1

2
(∂ξw)

2 u4 Y
(1).

Ψ5 = −1

2
∂ξΨ4 +

1

2

∂2ξw

∂ξw
Ψ4 + u1∂ξwΨ3 + u2∂ξwΨ2 + u3∂ξwΨ1 −

1

2
(∂ξw)

2 u5 Y
(1).

Ψ6 = −1

2
∂ξΨ5 +

1

2

∂2ξw

∂ξw
Ψ5 + u1∂ξwΨ4 + u2∂ξwΨ3 + u3∂ξwΨ2 + u4∂ξwΨ1 −

1

2
(∂ξw)

2 u6 Y
(1),

......

where R3, S3 in the expression for Ψ3 are defined as

R3 ≡ 1

32
(∂3ξw)

2 +
1

16
(∂ξw)

6 − 5

16
(∂2ξw∂ξw)

2, (E.1)

S3 ≡ − 1

16
∂ξ[(∂ξw)

3Y (1)] +
1

16
∂2ξw(∂ξw)

2Y (1) − 1

8
∂3ξw∂ξwY +

1

16
(∂2ξw)

2Y − 1

2
∂3ξw∂ξw +

1

4
(∂2ξw)

2 +

1

4
∂3ξw∂ξwV − 1

4
∂2ξw(∂ξw)

2V (1) − 1

8
(∂2ξw)

2V +
1

16
∂3ξw∂ξwV

(2) − 3

32
(∂ξw)

4V (2). (E.2)

Y ≡ 1

2
V (2) + 2V − 4; Y (1) ≡ d

dw
Y. (E.3)

The recursion relation for the components Ψn becomes

Ψn = −1

2
∂ξΨn−1 +

1

2

∂2ξw

∂ξw
Ψn−1 + ∂ξw

n−2∑

k=1

ukΨn−k−1 −
1

2
(∂ξw)

2 un Y
′. (E.4)

F The Ψ̃
′
ns of the second set of charges

Finally, we provide the first components of the pseudo-potential Ψ̃. Substituting the expansion (5.17) into

the eq. (5.16) and taking into account of the components ũn provided in the appendix C one can get

Ψ̃1 = −1

4
Y (1)(∂ηw)

3

= −1

8
∂η

[
(∂ηw)

2V (2)
]
− 1

8
∂η

[
(∂2ηw)

2 − (∂ηw)
4
]
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Ψ̃2 = −1

2
∂ηΨ̃1 +

1

2

∂2ηw

∂ηw
Ψ̃1 +

1

8
Y (1)(∂ηw)

2∂2ηw

= −1

2
∂ηΨ̃1

Ψ̃3 = −1

2
∂ηΨ̃2 +

1

2

∂2ηw

∂ηw
Ψ̃2 + ũ1∂ηwΨ̃1 −

1

16
Y (1)

[
(∂ηw)

5 + (∂ηw)
2∂3ηw

]
.

= ∂ξR̃3 + ∂ηS̃3,

Ψ̃4 = −1

2
∂ηΨ̃3 +

1

2

∂2ηw

∂ηw
Ψ̃3 + ũ1∂ηwΨ̃2 + ũ2∂ηwΨ̃1 −

1

2
(∂ηw)

2 ũ4 Y
(1).

Ψ̃5 = −1

2
∂ηΨ̃4 +

1

2

∂2ηw

∂ηw
Ψ̃4 + ũ1∂ηwΨ̃3 + ũ2∂ηwΨ̃2 + ũ3∂ηwΨ̃1 −

1

2
(∂ηw)

2 ũ5 Y
(1).

Ψ̃6 = −1

2
∂ηΨ̃5 +

1

2

∂2ηw

∂ηw
Ψ̃5 + ũ1∂ηwΨ̃4 + ũ2∂ηwΨ̃3 + ũ3∂ηwΨ̃2 + ũ4∂ηwΨ̃1 −

1

2
(∂ηw)

2 ũ6 Y
(1).

......

where R̃3, S̃3 in the expression for Ψ̃3 are defined as

R̃3 ≡ 1

32
(∂3ηw)

2 +
1

16
(∂ηw)

6 − 5

16
(∂2ηw∂ηw)

2, (F.1)

S̃3 ≡ − 1

16
∂η[(∂ηw)

3Y (1)] +
1

16
∂2ηw(∂ηw)

2Y (1) − 1

8
∂3ηw∂ηwY +

1

16
(∂2ηw)

2Y − 1

2
∂3ηw∂ηw +

1

4
(∂2ηw)

2 +

1

4
∂3ηw∂ηwV − 1

4
∂2ηw(∂ηw)

2V (1) − 1

8
(∂2ηw)

2V +
1

16
∂3ηw∂ηwV

(2) − 3

32
(∂ηw)

4V (2). (F.2)

The recursion relation for the components Ψ̃n becomes

Ψ̃n = −1

2
∂ηΨ̃n−1 +

1

2

∂2ηw

∂ηw
Ψ̃n−1 + ∂ηw

n−2∑

k=1

ũkΨ̃n−k−1 −
1

2
(∂ηw)

2 ũn Y
′. (F.3)
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