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Abstract

We study the elliptic genera of 6d strings based on their modular properties. They are
weak Jacobi forms of weight 0, whose indices are determined from the 2d chiral anoma-
lies. We propose the ansatz for the elliptic genera which reflects the analytic structure of
instanton partition functions. Given a finite amount of initial BPS data, we completely
determine the elliptic genera of 6d strings in various 6d SCFTs. We also apply our ansatz
to study N = (2,0) and (1,1) little strings as well as N' = (1,0) heterotic little strings, for
which T-duality of little string theories supplies a sufficient number of initial BPS data.
The anomaly polynomials of 6d little strings are worked out, which is needed for the elliptic
genera bootstrap. In some little string theories, the elliptic genera must have the extra
contributions from the Coulomb branch, which correspond to the additional zero modes

for the full strings. The modified ansatze for such elliptic genera are also discussed.
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1 Introduction

Non-critical strings play an important role in understanding the physics of 6d superconformal field
theories (SCFTs) and little string theories (LSTs) [1,2]. In this paper, we study the supersymmetric
partition functions on Omega-deformed R* x T2 for various 6d SCFTs and LSTs. They are Witten
indices which capture the bound states of winding and momentum modes, coming from multiple
numbers of 6d BPS strings on 72. In 6d gauge theories, these observables are 6d uplifts of the instanton
partition functions [3l|4], which were first introduced to derive the Seiberg-Witten prepotentials of 4d

N = 2 gauge theories [5].

The R* x T? partition function is a tensor branch observable. Recall that 6d superconformal and
little string theories are equipped with A/ = (1,0) tensor multiplets, consisting of a 2-form potential
By whose field strength Hj is subject to the self-duality condition H3 = xHj3, a real scalar ¢, and a

superpartner fermion M. It is the VEV of the scalar ¢ which parametrizes the tensor branch moduli



space of vacua and determines a tension of the 6d string, the source of the tensor multiplet. The 6d
string acquires a non-zero tension at a generic point of the tensor branch, such that the string number
fugacity n = exp (—vol(T?) - (¢)) becomes a sensible expansion parameter of the R* x T? partition
function. One can write the partition function as the weighted sum over the 6d string elliptic genera

with different numbers of strings. More precisely, the R* x T2 partition function is given as
Zea=To- (1+ 3 ,n*-Ip). (1.1)

The overall factor Zy is the Witten index for pure momentum states decoupled from winding modes.
The coefficient Z;, captures the BPS spectrum of an infinite tower of momentum modes and k winding
modes, corresponding to the elliptic genus of k strings. It turns out to be strongly constrained by the

modular and symmetry properties.

The 6d string elliptic genus Z; depends on the complex modulus 7 of the 72 and various chemical
potentials for the U(1) charges in the maximal tori of the 6d symmetry group. We collectively denote

all chemical potentials by z. The elliptic genus Zj, is a weak Jacobi form of weight 0 and index i(z),

transforming under the modular transformation 7 — g:jfg, z = g with (¢ b) € SL(2,Z) as follows:

ar +b z
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cr+d er+d

ct +d

I(r,z) — I< ) =¢e(a,b,c,d) exp( > Z(r,2) (1.2)
where the index i(z) is completely determined by the worldsheet chiral anomaly of 6d strings [6,7].
Combined with a separate observation on the pole structure of the elliptic genus, induced from the zero
modes that parametrize the moduli space of 6d strings, nearly solves the elliptic genus 7 in an
appropriate ring of weak Jacobi forms up to finite numerical coefficients [8-14]. The problem of finding
the 6d string elliptic genus has been reduced to determining the coefficients through comparison with
an initially given set of the BPS data. In this way, the elliptic genera were successfully bootstrapped

out for the instanton strings in minimal SCFTs |13] and also for the chains of E- and M-strings [14].

In this paper, we apply this approach to broader classes of 6d SCFTs. Specifically we are interested
in various self-dual string theories, which are defined as IR limit of 2d gauge theories. The initial BPS
data are obtained from the gauge theory side. Obviously this is just one convenient way of obtaining the
BPS data and the bootstrapping procedure can equally be applied to the cases where the gauge theory
description is not available. Also we make a technical improvement over [13]. When the 6d string
theories have global symmetry, we can consider the elliptic genus with the corresponding chemical
potentials. The elliptic genus of the 6d string theories should be described by suitable Weyl-invariant

Jacobi forms. We explicitly work out such Weyl-invariant Jacobi forms wherever needed.

In addition, we also focus on circle compactified LSTs, bootstrapping their R* x T2 partition
functions. A characteristic feature of the LST is T-duality that identifies two apparently distinct LSTs
on S, at different circle radii R’ = o/ /R, by exchanging the winding and momentum modes. As the
supersymmetric partition function is protected and insensitive to the circle radius, T-duality implies
the equivalence of the R* x T? partition functions for a dual pair of LSTs. This has been confirmed
for several examples, such as (2,0) and (1,1) LSTs of A-type [15] and their orbifold variations [164/17]



which are engineered from type ITA and IIB NS5-branes on transverse R* and R*/T"sp backgrounds.
Assuming the general equivalence of the BPS spectra for all T-dual pairs of circle compactified LSTs,
a sufficient amount of the initial BPS data will be given such that the R* x T2 partition function
can be constructed through the iterated bootstrap of the 6d string elliptic genus. For example, it can
reproduce the R* x T? partition functions of A-type (2,0) and (1,1) LSTs which were first obtained
in [15] using the worldsheet gauge theories of little strings. Since the bootstrap approach to the LST
partition functions does not use the gauge theory description of little strings, it is also applicable to any
general LSTs whose T-duality relations have been established. In this work, we will consider D-type
(2,0) and (1,1) LSTs as well as SO(32) and Eg x Eg heterotic LSTs, which arise as the worldvolume
theory of type II and heterotic NS5-branes in the decoupling limit g — 0 [18].

For the full strings which completely wrap the transverse circle to the NS5-branes, the bootstrap
computation shows that the conjectured form of the pole structure, which is generally expected for
the 6d BPS partition function [19], does not always hold in their elliptic genera. It is because the
2d superconformal field theories of little strings has the target space with a tubelike region, where
strings escape from NS5-branes [20-22]. This is reflected in the elliptic genera as the additional poles
which indicate the presence of the extra bosonic zero modes parametrizing the run-away motions
[23,24]. Based on the modified ansatze which include the additional zero modes, one can bootstrap
the elliptic genera of the full winding modes. We also remark that the ADHM gauge theories for N =
(1,1) SO(2n) instantons and N' = (1,0) Sp(n) instantons with 1 antisymmetric and 16 fundamental
hypermultiplets analogously develop the extra poles in their elliptic genera. To obtain the proper 6d
spectrum, one still has to separately remove the extra states’ contribution from the partition function.
See also [25,26] for removal of the extra contributions in the instanton partition functions of 5d SYMs,
obtained from their suitable S! reductions. On the contrary, the fractional strings which partially wrap
the transverse circle must end on a pair of NS5-branes, not escaping to the bulk. Using the BPS data
coming from T-duality relation between circle compactified LSTs, we find the elliptic genera of various
string chains in D-type (2,0) LSTs and Eg x Eg heterotic LSTs. These fractional string chains include
what appear in their relative 6d SCFTs, i.e., D-type (2,0) SCFTs and E-string SCFTs [14}27, 28],

while many of them are unique to LSTs.

The rest of this paper is organized as follows. Section [2| reviews the modular bootstrap of the
6d string elliptic genera [13], refining the conjectured form of the elliptic genera. Along with it, we
clarify the relation between the 2d chiral anomaly of the 6d string theories and modular properties
of their elliptic genera. In Section [3| we study the anomaly polynomial of little strings in maximally
supersymmetric LSTs and heterotic LSTs. In Section 4, we construct the R* x T? partition functions
of LSTs by the iterated bootstrap of the elliptic genera, based on the T-duality relations. Section

concludes with brief discussions.

Note added: As this work is being finished, the paper [29] appears on arXiv which partially overlaps

with the current work.



2 Elliptic genera of 6d strings

In this section, we will study the strings of 6d SCFTs and LSTs on R* x T2 in the tensor branch. They
are the BPS string configurations which preserve at least 2d NV = (0,4) supersymmetry. They have
non-zero tension proportional to the VEV of a tensor multiplet scalar. Wrapping the 72, they preserve
SO(4)r = SU(2); x SU(2), symmetry that rotates the R* space. The 6d R-symmetry SU(2)g, the
6d gauge symmetry G, the 6d flavor symmetry F' are also visible in the (0,4) SCFT of the strings.

The elliptic genus of the 6d strings is the supersymmetric partition function on 7% = S} x S! with

the periodic boundary condition, defined as

T, = Trrp (_1)F627ri(THL—‘T'HR) 627Tie+(Jr+JR)e2m'e_Jle27riz~Jz ) (21>
The complex structure 7 of the torus 77 is conjugate to the left-moving Hamiltonian Hy = #.
With (0,4) supersymmetry, the right-moving Hamiltonian Hg = % can be written in terms of the

supercharges Q%4 where a, &, A respectively denote the doublet indices of SU(2);, SU(2),, SU(2)g.
For Q = Q12 and QT = —Qél, Hr ~ {Q,Q"} such that the elliptic genus is independent of 7, if one
introduces the chemical potentials to generate the mass gap, lifting all the zero modes. The Cartan
generators of SU(2);, SU(2),, SU(2)r are denoted by J;, J., Jg. Only two of three combinations
Jy and (J, + Jgr) commute with the supercharges @ and Qf. We introduce their conjugate chemical
potentials as 2we_ and 2me, respectively. They uplift the zero modes for the center-of-mass motion
of the strings on R* C Mg [3,|4]. We will collectively denote by .J, and 27z the Cartan generators
and the chemical potentials introduced for the 6d gauge symmetry G and the 6d flavor symmetry F.

2.1 High temperature free energy

Let us study the high temperature free energy of the elliptic genus Zj to derive its modular property.
The elliptic genus Zj, is the supersymmetric partition function on the Euclidean torus 72 = S} x S1,

which has the periodicity (t,z) ~ (t,z + 27) ~ (t + 27 Im7, x + 27 Re7). The torus metric is given by

ds? = (1 + ) (dat + 19 Ty e (2.2)
SuTa 1+2) "1l '

with 7 = %(u + ). Insertion of 2™ introduces the U(1) background gauge field as

A, = 27;fdt . (2.3)

where the normalization of the generator J, is captured by d, = tr (J,J,).

We reduce the elliptic genus along S} to reach the high temperature limit 3 < 1. For the Kaluza-
Klein reduction, we recast the metric (2.2)) and the background gauge field A, into

ds? = e*(dt + a)* + gda? A, =@, (dt +a)+ A.dz. (2.4)



This identifies the dilaton e2?, the graviphoton a, the 1d gauge field A,, the 1d scalar field ®, as

pdz 2z pdx 21z
P A, =——- - P, =—-J.. 2.5
L p2’ : B 14+p 77 z z (2.5)

e =(1+p%), a=

We now apply the analysis of [30-32] to the reduced 1d system on S.. After the S} reduction, there
are the massless degrees of freedom whose determinants appear in the 1d effective action as non-local
terms. These non-local terms are real-valued since all the background fields in the Euclidean quantum
mechanics have been chosen to be real. On the other hand, the imaginary part of the effective action
can be obtained from local terms, such as the Euclidean Chern-Simons term, which can be fixed by
the 2d chiral anomaly [30-33]. Let us split the imaginary terms into the gauge invariant and non-
invariant ones. The gauge invariant action generally takes the form of i [ af(®,¢) and i [ d¢ g(®, ¢).
It must produce the anomalous factor exp ( '(cp — CL)) under the transformation a — a+ %, which
corresponds to the 2d global diffeomorphism (¢,z) — (t 4+ 2%

21

x). Matching the global anomaly fixes

the gauge invariant action S to be [31]

ﬂ (cr — ¢ (mod 12))

6 B

s = /S At O() (2.6)

where (cg — cp) is the 2d gravitational anomaly. Similarly, the gauge non-invariant action S @) must
match the 2d chiral anomaly under the U(1) gauge transformation, i.e., §¢®, = 0 and 0.4, = de,.
Recall that the 2d chiral anomaly A is encoded in the 4-form anomaly polynomial I by the descent

formalism, such that

N, Ny
A= Z /thr (de, A,) +— Iy= Zztr}f (2.7)

z

where the sum is taken over all background U(1) gauge fields. Dimensionally reducing it on S},

Ald_zw 1tz / tr (de, @) (2.8)

This must be reproduced by the gauge non-invariant action S under the U (1) gauge transformation,

implying that S has to be

Z“’)”Z /S r (A, ) + O(3). (2.9)

We evaluate the imaginary part of the high temperature free energy f, by inserting the background
values (2.5) into the effective action S + S, It is given by

o2 CR—C d 12
tm fulT) = =571 f/ﬂ( : Lﬁ(mo - Zdznz'22>

z

z




On the other hand, the Casimir energy Fj of the elliptic genus, defined by Zp, = ¢%° (1 + >0 | ¢"jk.n)

with ¢ = €™, makes a dominant contribution to the low temperature free energy fi, i.e.,

fi(r) =2mitEy + O(t 627”7). (2.11)

Since the modular transformation 7 — —% and z — Z inverts the temperature, in the 7 — i0™" limit,
the free energies f;(—1) with f;(7) must be identified up to an anomalous factor i(z). We find that
the Casimir energy Ey and the anomalous factor i(z) are given by

Ey= """ (mod 1), i(z)=-Y den,- 2" (2.12)

12

at+b
cT+d?

with (¢ %) € SL(2,Z) as a weak Jacobi form of weight 0 and index — Y d.n. - 22, i.e., [6l/7]

z
cT+d

z —

We conclude that the elliptic genus Z; behaves under the modular transformation 7 —

cr+d er+d ct+d

) .
1, (‘”* 2 ) — (ab,e.d) eXp< mic -Zdznzz2> Tu(r, 2) (2.13)

where £(a, b, ¢, d) is a phase factor.

The above derivation clearly shows that the 2d chiral anomaly of the 6d string theory determines
the index of weak Jacobi forms of the corresponding elliptic genus. Note that the above argument is

quite general so that we need not the gauge theory description of the 6d string theory.

2.2 Analytic properties

We expect the elliptic genus of the 6d strings to have the following structure: [13]

Ty (1, 2) = n(T)"™ -

(2.14)

The overall factor n(7)™ has been introduced to absorb the Casimir energy Ej given in ([2.12]), while
the numerator N (7, z) and denominator D(r, z) are Jacobi forms whose g-expansion starts at ¢° order.

This means that the exponent ng of the Dedekind eta function is given by
ng = 24FEy = —2(cr — cr) (mod 24). (2.15)

We will always assume that the Casimir energy Ejy of the elliptic genus is non-positive and |Ep| < 1,

which hold true for all 6d theories studied throughout the paper.

2.2.1 Pole structure

The elliptic genus (2.1)) develops various poles at certain values of chemical potentials, which lift the

bosonic zero modes that parameterize the moduli space of the 6d strings. We will predict the location



of poles by inspecting these zero modes, making a conjecture on the denominator D(r, z) in (2.14)).

As the 6d strings wrapping on T2 can freely move along the R* plane, there exist the zero modes for
their center-of-mass motion. Had there not been the chemical potentials €; = e, +¢e_ and €2 = €4 —e_,
the elliptic genus would have suffered from these infrared divergences. Since the center-of-mass zero
modes have been lifted by €; and eg, the elliptic genus must have two poles at ¢, = 0 and e5 = 0.

Precisely speaking, we expect the 6d single particle index on R* x T2, defined by

foa(7,2) = PE [Zga(7,2)] with PE[f(r,2)] =exp (2, - fomp2)),  (216)

to have a simple pole at €e; = 0 and ez = 0 [19]. This causes the k string elliptic genus Zj to have the

following factor in the denominator D(, z) [13}/14].

k
~com th (mel) th (m€2)
Dy (r,z) = [ ] " o (2.17)
m=1
For the chain of {ki, ko, - , ky,} strings, the above factor is generalized as follows.
- - ki@(me)@(me)
Mcom ~Hcom 1 1) V1 2
Dis(rz) =[P 2) =TT 11 7 B (2.18)
i=1 i=1m=1

We notice that the g-expansion of (2.17) and (2.18)) starts from ¢° as required in (2.14).

The 6d strings are also the Yang-Mills instanton solitons in the 6d gauge theories. As the trans-
lational zero modes along R?* have already been taken care of, here we focus on the bosonic zero
modes that span the reduced instanton moduli space. We first consider the elliptic genus of k SU(2)
instanton strings. Taking the ¢ — 0 limit, it is reduced to the Witten index of k instantons in the 5d
SU(2) gauge theory whose denominators are known from the 5d partition functions [34]. The poles

are located at

ae; +bea +a(a) =0

for positive integers (a, b) such that ab < k (2.19)
aer + bea — a(a) =0

where a(a) is the gauge holonomy for a positive root o € Ay = {e; — ez}, e.g., a(a) = a1 — az. The
entire denominator D(7, z) in the elliptic genus of k& SU(2) instanton strings is a product of (2.17)) and

~ SU(2 01(ae; + bea + a(a)) 01 (ae; + bea — a(a))

T g . (2.20)
ab<k
a,b>0

whose g-expansion starts at the ¢° order as required in (2.14)).

We recall that non-Abelian G instantons can be constructed by embedding SU(2) BPST instantons
into G [35,36]. For embedding SU(2), we choose 3 generators of G satisfying the SU(2) algebra. All
possible choices of embedding are labeled by positive roots of G. Denoting 3 generators by T¢ with



a=1,2,3, for a given positive root o € Ay, the trace between them takes the form of
tr (Tng) = cad®. (2.21)

The constant ¢, is normalized to be 1 for every long root a. Under such normalization, the constant

¢ for a short root o becomes

ca=2 if G=Sp(N), SO@N +1), F} (2.22)
ca=3 if G=Gos. (2.23)

Starting from the SU(2) BPST solution carrying an instanton charge kgrr(2), one can construct the G
instanton solution by embedding it to a € A" of G. It carries an instanton charge kg = c, ksu(2)- So
the short root embedding can only produce the G instanton solutions with kg > ¢,. Such embedding
structure must be reflected in the denominator of the elliptic genus of G instanton strings. In fact,
the denominator D(7, z) of the k string elliptic genus Zj, is a product of and

~ ~SU(2 ~SU(2
D¢(r,2)= [[ D% (r,2)- ] D} /g;m(m), (2.24)
aEA; aEAg

where ZNDZZ(Z) (7, 2) is the SU(2) denominator (2.20) after replacing e; — e3 with a given root a of G.
More generally, for the chain of {ki, -, k,} strings in the G = G; ® --- ® G, quiver gauge theory,
the denominator D(7, z) is generalized as a product of (2.18]) and

Diiy(m2) = 1Pk (7 2) (2.25)

where ﬁf (1,2) is understood as 1. We checked D™ (7, 2) - DS (7, 2) in the ¢ — 0 limit agrees with the
denominator of the Witten index for 5d k£ G instantons in the following cases: (1) G = SO(6), k = 3,
(2) G=FEgr8, k=1,(3) G=50(5), k=3, (4) G=5p(2), k=4, (5) G=Gs, k=23 [26,37{39]. In

summary, we propose?]

D(r,2) = 25?%‘3 (1,2) - 258%}(7', z). (2.26)

2.2.2 Weyl invariant Jacobi forms

The 6d string elliptic genus Zy, is strongly constrained by the modular property and the Weyl
invariance of the global symmetry of 6d strings. As the denominator ([2.26] itself is a weak Jacobi
form of certain weight wy and index i4, the numerator N'(7, z) has to be a weak Jacobi form of weight
(wq — %) and index i +1i4 to match the modularity of the entire elliptic genus Zy. Similarly, as
the denominator is invariant under the Weyl reflections of SU(2);, SU(2)4 C SU(2), x SU(2)r,
the 6d gauge group G, the 6d flavor group F', the numerator should also manifest the Weyl invariance.

#As discussed in Section [4f this ansatz should be modified when the ellipic genus has additional contributions from
the Coulomb branches.



One way to guarantee the Weyl invariance is to express the numerator N (7, z) as the Weyl in-
variant Jacobi forms of SU(2);, SU(2)4, G, and F [13,]14]. For a simple Lie algebra R, the Weyl
invariant Jacobi forms of R depend on the complex structure 7 of 72 and the chemical potentials
m = (my,ma,- - ,m|R‘) conjugate to the Cartan generators of R. They are characterized by two

integers w and m > 0 and have the following properties [40-42]:

e Weyl invariance

Cwm (T, Wr(M)) = @y m (7, m) for all wr € Weyl[R) (2.27)
e Modular property
ar+b m w mime
Pw,m <C7'+d7 CT—Fd) = (CT + d) exp <CT T d m- m> (Pw,m(Tv m) (2'28)

e Quasi-periodicity

Ywm(T,m+a+7b) = e~ mim(Tb-b+2m-b) Ow,m(T, m) (2.29)
e Fourier expansion
o0
pum (rm) =D Te(n, ) - SOTH (2.30)
n=0 p

The weight and index of @y, (7,m) are w and —% (m - m), respectively. We also note that a Weyl
invariant Jacobi form ¢y, (7,m) of R can be constructed as a linear combination of level-m theta
functions of the affine Lie algebra R, defined as follows [43,[44].

Oam(T,m) = Z exp (mit(a + A/m)? + 2mi(ma + A) - m) (2.31)

acadjp

It implies that the number of independent Weyl invariant Jacobi forms of index — (m-m) is the same

as the number of level-m fundamental representations of the affine Lie algebra R [41,44]. Furthermore,

the algebra of Weyl invariant Jacobi forms of R over the algebra of modular forms C[Ey, Eg] with an

integer-valued m is freely generated by the following rank(R) generators [41]
©—w;m; for j€{0,1,--- rank(R)} (2.32)

except the case of R = Eg. Here {w;} and {m;} collect the order of independent Casimirs and the

level of fundamental representations of R, respectively.
The explicit forms of the generators (2.32)) are written in many literatures such as [41H44]. For
R = A,, and B,, all the (n + 1) generators

SUM+1): ©o1,P—2,1,9-31,""" ,P-n—-1,1 (2.33)
SO(QTL + 1) CP01L,P-21,¥P-41," ", P-2n,1 (234)



can be constructed from the generating functions found in [43]. Among the C,, generators,

Sp(n) : ©o,1,9—2,1, P—4,1, P—6,2, P—8,2:" "+ » P—2n,2, (2.35)

all index-2 generators are identical to the B,, generators, i.e., cp(_jgl g = golj 51 43| Also for R = Dy,

SO(2n) © Q01,0215 P—4,1, P—n,1, P62, P—8,2, " * » P—2n+2,2, (2.36)

all index-2 generators are identical to the B, generators, i.e., gp? Yo = 90?31,1 [43]. The remaining
index-1 generators for C,, and D,, can be constructed from the level-1 fundamental theta functions.

For example, the D,, generators ¢g 1, ¥—2.1, Y—4,1, P—n,1 can be written as follows.

HZ‘L:1 01(ai) 1 (H:LI 03(ai) H:‘L:1 04(ai) H?:l 02(%))

Py =T 0= - —~ (2.37)

773n n 93(0)n—4 94(0)11—4 92(0)n—4

_ (93(0)477+ 04(0)) <H?1 Os(a;) _ [lizi 0aai) | 2]y 92(%’))

93(0)71—4 94(0>n—4 02(0)n—4
302(0)* (TTi, O3(ai) | [T, Oaas)

B < 00y o0y )

R <H?:1 O3(ai) _ [ 17 04(ai) - [ 92(“2‘))

712\ 05(0)n 12 04(0)n 12 0,(0)—12 )

wo,1 =

For R = E,, all the (n+1) generators are explicitly constructed in [42,44]. The F and G2 generators
are obtained from the Ay and Dy generators [41,43], e.g.,

2
G A G A G A
Yol =%l P31 =¢h $len = (90_%,,1) : (2.38)

All the Weyl invariant Jacobi forms used in this paper will be explicitly displayed in Appendix [A] One
typically finds more than one combinations of weak Jacobi forms of weight (wg— ") and index (i—ig).
Each of them is a product of the generators of Weyl invariant Jacobi forms for SU(2);, SU(2)4, G,
and F. Denoting them as {®1(7,2), ®o(7,2), -+, ®(7,2)}, the numerator N (7,z) can be generally

written as their linear combination, i.e., N'(7,2) = 22:1 ¢; (7, 2). A finite number of the numerical
coefficients {cj, ca,- -+, ¢} will be determined through comparison with the finite amount of the BPS

spectral data in a given 6d theory [13,|14].

2.3 Test against known examples

The conjectured formula (2.14) may reduce the problem of obtaining the 6d string elliptic genus down
to the problem of determining a finite number of numerical coefficients. We will test if (2.14)) holds
for several known elliptic genera in 6d superconformal field theories. All of the examples we consider

have an alternative gauge theory description.

The anomaly polynomial of k self-dual strings in N' = (1,0) SCFTs is given by [45],46]

_ 2
E(91072) - 1002 = 25 () - 20a) — 2020 + gea()) + B (D) - alr) (239

10



where () is the Dirac pairing of self-dual strings. The field strength F; of a Lie algebra g is normalized
such that a chiral fermion in a representation p contributes A(T3) tr,(¢**¥) to the anomaly polynomial.
Following [47], we use the normalized trace ‘Tr’ defined by traqj(F7) = hy Tr(FZ) where h) is the dual

Coxeter number of g. The conversion factor s, between trfnd(]'-QQ) = ngr(]:g) is given by
SSU(n) = %7350(11) = 1755'p(n) = %,SF4 = 3, SE¢ = 3, SE;, = 6, SEy = 30, SFy = 3, SGy = 1. (2.40)

The 2nd Chern class c2(g) of the SU(2) bundle g can be written as ca2(g) = %Tr(}'g) using the normal-
ized trace. hY and Tr(Fy) are understood as 1 and 0. The anomaly polynomial determines the
index i(z) of the elliptic genus based on (2.12). The denominator D(r,z) and the zero point energy
Ey of the elliptic genus have been discussed in Section We summarize Ey, (i +iq), and (wg — %)

of various elliptic genera in the following table.

G F k| Eo no wa—"2 |i+ig |
@ SUR2) 1] 0 0 —2 mi + €2
SU@2) SUM4) 1] 0 0 —4 | 2a} +43 + 300 mim;
@ so(16) 1| -1 -12 4 I8 m?
Sp(1)  SO(20) 1| -1 —12 2 3a} +3¢2 + 33210, m?
SU@B3) o 1| -1 —-12 -2 | 3(a?+ad+aia) + 122
Go Sp(1) 1| -3 -12 ~2 m3 + 3(a? + a3 + araz) + 112

We denote by a; and m; the chemical potentials for G and F, respectively, which may be subject to
the traceless condition ) ; a; = 0 and/or Z:il m; =0 if G = SU(n) and/or F = SU(n/).

Let us determine the numerator N'(7,z) in an appropriate ring of Weyl invariant Jacobi forms.
For brevity, we denote the SU(2); and SU(2)q C SU(2), x SU(2)r Weyl invariant Jacobi forms by

£ = 0P (r ), L0 =gy PHren), o = B2 (r,e4), Ro =0t Pi(riey),  (241)

and also the Weyl invariant Jacobi forms of G and F' by gy m = ‘Pgw,m(ﬂ a;) and fum = ¢€w7m(7, m;j).
In some particular cases, e.g., k = 1 strings in non-Higgsable gauge theories, the numerators N (7, 2)

are in the reduced ring of SU(2); and G Weyl invariant Jacobi forms, generated by [13]
- SU(2 - SU(2
To = 71 (2e4), Fo = 961 7 (260), Gum = 9C, (7). (242)

We now determine the coefficients in N (7, z) using the initially given BPS data from [28|45]48-52].

M-string (G = @, FF = SU(2), k =1) The numerator has 2 coefficients which can be determined
through comparison with the initial BPS data at ¢° order. It turns out to be

N = l—giﬁofz,l - ﬁﬂ%fo,l =15 (m £ ep), (2.43)

reproducing the M-string elliptic genus in [48].
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SU(2) string (G = SU(2), F =SU(4), k =1) The numerator has 34 coefficients. 33 of them are
fixed using the initially given BPS data at ¢ order. The remaining 1 coefficient is determined by the
BPS data at ¢! order. The numerator is given by

_ 1
- 21135

— 9Ff2100,192,19R5 — 32E4E6f4,19%,19%§9%0 —~ 16 E4E6f4.190,102.10R5 — 2E4f4,1£l%,19%l + 3E4f2,19%,19%29%8

— 16E4f4,190,102,1R2RG — 12E454,105 1 R3RG — 108E40,195 1 R3RG — 3E4f2,1001R5R0 + 72E4f0,180,182,1%R5R0
+ 36 Exfo,190,1 R — 64E¢5f4,105 15 — 16E6ta,195 1 ReRG + 12E§2195 1 RN — 48 F6f4,100,182,1R59R5

— 16E6}4,195 1R5R0 — 96 E6f0,195.1R5R0 — 8Esf2,180,1021R5R0 — 4E6f2195 175 + 96 E6fo,180,10219R5

+ 2§4.195 180 + 120,105 16 + F2.190,102,1R0 — F2,190 1 ReRG + 24F0,180,1 021 PR — 36?&&3,1”%3)-

N (54E§’f4,19§,19‘*3 — 36E714,105 1 R3NG + 9E 2105 150 — 48E7 4,100,102, R5R0 — 6541051975

We checked that this agrees with the previously known result [49] up to ¢* order.

E-string (G = @, F = SO(16), k = 1) There are five terms in the numerator, given as

1
N = 27*33( — fs,1 55 + 484,15 — T2f0.1 B4 + 5,1 Eg + 12f2,1 Eg).

Four coefficients are determined by the BPS data at ¢~/2 order. The last one is fixed at ¢'/2 order.
We checked its agreement with the known E-string elliptic genus [8,28,/50,51] up to ¢*/? order.

Sp(1) string (G = Sp(1), F = SO(20), k = 1) The numerator has 91 coefficients. We use the
initial BPS data at ¢=1/2, ¢1/2, ¢3/2 orders to fix 63, 27, 1 of those coefficients, respectively. After all,

1
= 91739

+ 3F10,105 1801 R0 E] + 3%F10,1021R200 1 R E] — 2°3°f4103 193001 B + 2°3'F10,1 B0 1R300, B

+ 3'101R500 1 R0 ES + 2°3%54.105 | RIR0EL + 223" 10,1 Fegs 1 R5R0ES + 59 Fr01 E5 05 1 RS ES

— 203%14 1R300 5 + 2' 10,1 Fe R0 1 B + 20874105 1 ROES + 20,1 Eeg3 1RO ES — Fr0.100 1 R0 ES

— 2'3%2 1921300 1 B + 2'3%F2,105 1 RoRGES + 203%4195 | Rag01RGES + 2'3%F10,1 Ess 1 Rago 1RO

— 2°3%0.103 1R300, B + 2°3%0,105 1 R5R0ET — 203419219505 1 R0 5 + 2'3%F10,1 Feg2,1 R385 1 Ro 5
+2°3%5019500 1 BT — 2°3%50.105 1 ROET — 2°3%f4102.105 1 RGBS + 27372103 100130 B

— 3101 E§ 0219500 1 BT — 2°3°7' 4,1 Bo02,1 9505 1 B + 2°3%14,19R000 185 BT — 3°10,1 5 03,1 R RS EY

+ 2032741 Esgs 1 RoR EF — 2°3%0,105 1 Rag0,1RGET — 2375 2,1 Eegi 1R300, EF — 2137218300 1 Ro B
+ 2732521 Eeg3 1 R5R0EG + 2°3%0,1021R500 1 R0 B — 3%f101 Eg 03,1 M500,1R0 7 — 27321 EeR3gl | F
+2°3%51 Esgs 1RO Ea + 2°3%0,102,196 1 R0 Ea — 31101 E6 95 180, 1RG Ea + 2°3%4.1 Esg3 1 80,1970 B

+2°337 o 1 Egg2,1 308 1 B4 — 2°3%f0,10008 | REEL — 3%10,1 E302,1M005 1R B — 2°3%7 o 1 Eogh 1 Mo R By
+2°3%f5,1 Fe g5 1 Ra001RG s — 223101 B 05 1R500,1 Es — 273% 141 E§ g3 1 M3 00,1 B4 — 3'F10,1 EGR305 1 R0 Fy
— 203%4 1 EgR300 1 RoFs — 2°3' 101 B 03 1 M5 R0 Ey + 273%f41 B g3 1 R5R0 Es — 2°3%21 Esg2,1M500 1 Ro Ea

N (= 310105 1 RIES + 3%F10,1021R505 1 E5 + 3%F10,105 1 RoRGES + 3°F10,105 1R500,1R0E
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— 2°f101 B 0515 — 2'f101 BeR300,1 — 2°3%f41 E5R300,1 — 2'Fr01 B 05 1 RG + 203741 B a3 Ry

+ fr01 Eg a6 1 R0 — 2%3%2,1 Esg2,105 190 — 2°3%f0,1 E6g51801R0 — 2°3%52,1 EG921R505 1 + 2%3%f2,1 EsRagl 1 RG
+2°3%f2,1 Eg 95 1 RoMG — 2'3%10,1 B 05 1 R2001RG + 23,1 B 05 1 R2001R5 + 2°3%0,1 B 05 1R500.1
+2°3%0,1 EgR300 1 R0 — 2°3%0 1 EG g 1 R5M0 — 2'3%F10,1 ¢ 921505 1 R0 — 2°3°54.1 FG 9217505 1Ro) -

We checked that it agrees the known Sp(1) string elliptic genus [28] up to ¢7/? order.

SU(3) string (G = SU(3), F =@, k=1) The numerator has 21 coefficients. One can fix 20 and
1 of those coefficients using the BPS data at ¢ /2 and ¢'/2 orders, respectively. We checked that

N (— 24E3M302,105, + 24E7RoMG 02,105 1 + 3ER3R0gs ; — 288 E7R5R0g0,103 1

~ 91234
263 2 267 2 3 2 23 3 23 2

+ 36E£5R500,102,1 + 24 B4 EsR5R002,105 1 — 96 L4 E6NR500,195 1 + E1Rpgs 1 — 96 E4R500,103 1

— 36 E4MoMRG 00,105 1 — 432ER3R005 1921 + 1728 4R35 | + 32E3R3g2103 1 + 8E6Rig2103,

+4EsRoR305 | — 288F6MoMR300,103 1 — ST6 LR35 1921 — 144R3g5 192,1 — 1728R.R3g; 1 ).

agrees with the known SU(3) string elliptic genus [45] up to ¢7/2 order.

G2 string (G = Go, F = Sp(1), k = 1) The 6d theory has the G2 gauge symmetry with 1
hypermultiplet in 7. Upon the Higgsing, it gives rise to the minimal SU(3) SCFT. The numerator has
232 coefficients. For simplicity, we take the e, — 0 limit which cuts the number of independent Weyl
invariant Jacobi forms to 9. All of them can be determined through comparison with the initially

given BPS data at ¢—'/2 order as follows.

1
N :28732( — 9696,280,1 Esf2,1 — 9696,280,1 Efo.1 + 892,186,2F1F2,1 — 495 1 Esfa1 (2.44)

+ g5 1 Eafo,1 + 892,186.2F6fo.1 — 5184g( 1f21 — 14492195 101 + 849%,190,1E4f2,1>

We checked its agreement with [39] until ¢°/? order. If we instead keep e, and turn off the G5 gauge
holonomy, the numerator has 30 coefficients. 21 and 9 of those coefficients are fixed using the initial

BPS data at ¢1/2 and ¢'/2 orders, respectively. We checked that the numerator

N =22171310< — B E3o 1My + 2231 Ef Egfa RS + 35301 Re — 3+ 22 B3 EZf01 M8 + 3° Efa 1 MRy
+ 3 - B3 201080080 — 219 B3R0fo 19810 + 5 - 2132 B3 EsMofo 1 ML° + 3 - 210 B30 1 R2RY
+ 2132 B3 Bof 1 R2R) — 31 - 3E{RZf0.1M5 — 3 - 2E4 E2M%0 1Y + 3 E1f2 1 RORS — 33 - 26 E2M G501 977
+ 87 - 2B, E2fo 1 MM — 123 - 22 E2 BeR350.1985 + 3 - 61'12° B2 Egfa 1 RART — 22 - 32EIRGf0.19RY
+ 238 - 32E3 o 1RGNS + 21 26E3f5 1RGNS — 105 - 22 By EgRGf01 RS + 7 - 2132 B4 Egfo 1 RERS
— TI4E3RGf019R5 + 66 E7fo 1R0R3 — 2'32 EMT o1 M5 + 3 - 23 Egfa 1RGNS — 3E,9:570.19%5
+ 31E4f 1 RINZ — RI0f0 1Ry — 3f2,19%51> (2.45)
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agrees with the known Gy string elliptic genus [39] up to ¢°/? order.

3 Anomaly polynomial of little strings

In the previous section, we study various 6d SCFTs and work out their BPS spectrum. We naturally
expect that the same can be worked out for little string theories. Here we initiate our study on LSTs
by exploring their 6d/2d anomaly polynomials, which are necessary to bootstrap the 6d string elliptic
genera and the R* x T2 partition functions. They are the worldvolume theories of n NS5-branes in
the decoupling limit gs — 0. The corresponding anomaly polynomials will be worked out using the

anomaly inflow arguments starting from 10-dimensional string theory.

Any consistent string theory background should be free from gravitational and gauge anomalies,
which are encoded in the 10d anomaly polynomial I;5. It is the characteric polynomial made of the
Pontryagin class p;(T1p) of the 10d tangent bundle T} and the Chern class ¢;(g) of the gauge bundle
g. The anomaly polynomial I vanishes for type ITA and IIB string theories, i.e., 113 = 0. For type I
and SO(32) heterotic string theories,

(3.1)

Ty — ( _2m (Tlo)L;F Tr(]:Q)) A (STY(]:4) + 2Te(F?)py (ng; — 4p2(Tho) + 3p1(T10)2>

where F is the field strength of the SO(32) gauge symmetry. For Fg x Eg heterotic string theory,

oo (_Qpl(Tm) + Tr(F2) +Tr(F22)> N (2 (Te(F2))* +2 (Tr(F2))? — 2Te(F2) Te(F2)
2 1 192
n 2p1(Tho) (Tr(F7) 4+ Tr(F3)) — 4pa(Tio) + 3p1 (T10)2>

192 (3.2)
where F; and JF» are the field strengths for the first and second Eg gauge symmetries, respectively.
The normalized trace ‘Tr’ has been explained in Section [2.3] We note that these anomaly polynomials
are factorized into I;o = Yy A Yg. The Green-Schwarz mechanism cancels the above 1-loop anomaly
by introducing the counter term ASjy = — [ By A Ys and modifying the Bianchi identity of the Kalb-
Ramond 2-form By to be dH3 = Yy, where Hs denotes the 3-form field strength of By. The equation
of motion for By accordingly changes to d(xHs) = Ys.

In the remaining part of the section, we will denote by Ts/T5 the 6d/2d tangent bundles on the
worldvolume of NS5-branes/little strings, respectively. The 10d tangent bundle 77y can be decomposed
into Ty9 = Ts @ N where N is the SO(4)y = SU(2)r x SU(2) g normal bundle. The 6d tangent bundle
T can be further divided into Tg = T & Ty where Ty denotes the SO(4)r = SU(2); x SU(2), bundle.

The Pontryagin classes of T19 and Tg can be written as

p1(Tho) = p1(T6) + p1(N), p2(T10) = p2(Ts) + p2(IN) + p1(T6) p1(N), (3.3)
p1(Ts) = p1(T2) + p1(Th), p2(Ts) = p2(T2) + p2(T4) + p1(T2) p1(Ty).
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For SO(4) bundles, the Pontryagin and Euler classes are written in the Chern classes of SU(2) bundles.

p1(Ty) = —2¢2(1) — 2¢2(r), p2(Ty) = xa(Th)?, x4(Ty) = ca(l) — ca(r) (3.4)
P1(N) = —2c2(F) — 2c2(R), p2(N) = xa(N)?, Xa(N) = co(F) — ca(R).

3.1 Anomaly on NS5-branes

The 10d effective action usually includes — f Bs A'Yg, for which the Bianchi identity of By becomes

0 for type II theories
dH3 = (3.5)

Y, for heterotic and type I theories.

Introduction of n NS5-branes adds the delta function source n HZ:(). d(y®)dy® on the right-hand side
of the Bianchi identity. The 6d inflow anomaly from the bulk action — [ By A Y3 becomes —n [ YG(D
where Y6(1) is obtained from Yg by the descent formalism [53,54]. Following the prescription of [53}[54],

the delta function source can be smoothed as

9
H d(y*)dy® = %d(peg). (3.6)
a=6
p(r) is a smooth function of the radial coordinate 7 for the transverse R* plane, such that p(r) = —1

at sufficiently small 7 and p(r) = 0 at sufficiently large 7. The global S angular form e3 is normalized
to be [¢s €3 = 2. e3 can be written as [54]

]. 1 ~\a ~ AN C A~ ]‘ Qa ~\C A
— 5z €abed | (DY) (DY) (DY) 5" — S F* (DY) (3.7)

= 3 2

where §% = y®/|y|. The SO(4) covariant derivative (D$)® and curvature F% are written as
(D) = dj* — 0")°, F® =de* — e Ao (3.8)

using the global SO(4) connection ©%. Tt was shown in [54,/55] that the angular form es is related to
the Euler class x4(N) of the SO(4)y normal bundle N by 3des = —x4(N).

The 6d anomaly polynomial Ig is the sum of the 1-loop anomaly polynomial IE®", the inflow
anomaly polynomial —nYg, and the possibly existing Green-Schwarz anomaly polynomial Igs [56L57].
Since a possible 6d counter term generally takes the form of [ By A X4 with an exact 4-form Xy, for

consistency, the anomaly polynomial Ig has to be factorized as follows.

Iy = P Y 4 168 — nxa(N) A Xy for type II theories (3.9)
— (Ya —nxa(N)) AN X4 for heterotic and type I theories.

Let us check if such factorization holds true for type II and heterotic NS5-branes.
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e In type IIA theory, the 1-loop effective action [58,59] induces

n

—nYg = ~192 (p1(T10)* — 4p2(Tho)) - (3.10)

Vs °r is the 1-loop anomaly polynomial for n Abelian ' = (2,0) tensor multiplets. I, SGS denotes

the Green-Schwarz anomaly polynomial [60)].

Ié)ert _ % p2(N) _ p2(T6) + 1 (pl(T6) _pl(N))2:| , Igs = ’I’L(n2 — 1)

p2(N)
1 .

24

(3.11)

The total anomaly Iy is factorized as (3.9)) and removable by the following counter term [61].

2
Is = nxa(N) A (24X4(N)> (3.12)

e The type IIB NS5-branes does not have the inflow anomaly and Green-Schwarz anomaly [58].

The total anomaly polynomial Ig only comes from the perturbative contribution of N' = (1,0)

vector and adjoint hypermultiplet, factorized as follows:

npa(Te) = npr (V) Tr(fémﬂ) |

(3.13)

Is = I3 = nxs(N) A ( = :

F SU(n) is the curvature of 6d gauge bundle G = SU(n). In general, for a 6d gauge symmetry G,

de p1(Ts) — p1(N) Tr(./'-AQ)
v G
Is = hixa(N) A <_hé 18 i . (3.14)
e The inflow anomaly to n SO(32) 5-branes is given by
Tr(F4) 4+ 2Te(F?)p1 (Tho) — 4p2(T1o) + T1o)?
nYs N (8 r(F*) r(F*)p1( 113; p2(Tho) + 3p1(Tho) ) 7 (3.15)

while Ig’s = 0. The 1-loop polynomial Igert receives the contribution from a Sp(n) vector

multiplet, an antisymmetric hypermultiplet, and 16 fundamental hypermultiplets |20].

2 24 4

n (3p1(Tho)? — 4pa(Tho)) (3Tr(.7:“§p(n)) + npy (Tg)) Tr(F?) + 2nTr(F?)
+ 192 + 48

Igert - <—7”LX4(N) _ 1(TlO)) A <_ np1(Ts) — np1(N) B Tr(ﬁSP(N))2>

(3.16)

Summing them up, we find that the total anomaly Ig is in the factorized form (3.9)) as [62]

Is = —<Y4 - nx4(N)> . <”p1(Tﬁ) — () Tr(ﬁs”(”))2>. (3.17)

24 4
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e The inflow anomaly to n Eg x Eg 5-branes is given by

—nYg = —g¢ (Tr(]:lg)2 + Tr(F2)% - Tr(flz)Tr(]:QZ))
— g5 (P1(Tho) (Te(F7) + Te(F3))) — 105 (—4p2(T10) + 3p1 (T10)?) - (3.18)

The 1-loop contribution I} " comes from N = (1,0) tensor and hypermultiplets.

n 1
= = [P2(N) = p2(T6) + 5 (n1(To) — pl(N))ﬂ (3.19)
The Green-Schwarz anomaly IS can be found from the tensor branch anomaly matching [63,64].
n 2
1 P1 (TIO) Tr .F2
g5 =) "~ ! — $)xa(V 3.20
£ =g (P T O ) (3.20)

Combining them all, the total anomaly Ig can be factorized like (3.9) as required [65].

(3.21)

Ty Fi — nTrF3 T 2xa(N
=~ (Vi = () o (2L ) ),

24 6

3.2 Anomaly on little strings

The anomaly polynomial I4 of strings in 6d superconformal field theories was studied in [45|46] based
on the anomaly inflow mechanism. The self-dual string is the source of the 2-form potential C%, whose
field strength G3 satisfies the 6d self-duality g = *Gg and the Bianchi identity dG% = Ji. The index
i =1, .-, n labels all tensor multiplets and self-dual strings in a given 6d SCFT. The right-hand
side of the Bianchi identify constitutes the Green-Schwarz term I$S = %QijJiJZ of the 6d anomaly
polynomial Ig, where 2;; denotes the Dirac pairing between i-th and j-th self-dual strings. Introducing
(k' k2,--- k™) strings adds the source term k’ H2:2 0(y*)dy® to the Bianchi identity, such that

5
dGh = Ji+ & [ [ 6(y*)dy". (3.22)

a=2

We again smooth the delta function source as in (3.6) using the SO(4) angular form es3 satisfying
des = —2x4(T4) [53,/54]. The 6d effective action ;; [ %Gg A *Gé + Qij [ CE A JZ induces the inflow

anomaly on the string worldsheet, which can be encoded into the following 4-form polynomial [45.|46]

Q ki kI
2

Zy = Xa(Ty) + QiikL TS (3.23)

A little string theory can be viewed as an affine extension of 6d superconformal field theories |66]

by the background 2-form potential and the massive string m ~ o/~1/2

, which we call the full winding
string. They are inherited from the ten-dimensional 2-form tensor By and the fundamental string [18].

The worldsheet coupling of k full strings to the bulk 2-form By is given by k [ Bs. Since the Bianchi
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identity of By has been modified by n NS5-branes,

9 .
nl_.d(y*)dy® for type II theories
aH, :{ [Tz 0(y*)dy yD (3.24)

Yi+n HZ:G 0(y*)dy®  for heterotic and type I theories,

the worldvolume coupling k [ Bs contributes to Iy by k(Ys —nx4(N)). Combining with (3.23)), we find

_ O, kK —
I, = k‘(n - nx4(N)) + J2 X4(T4) + Qijk‘ Ji (325)
as the entire 2d anomaly polynomial of (k!,--- , k™) strings and k full strings in a general 6d LST. For

later discussions in Section 4l let us explicitly write I, for LSTs on type II and heterotic NS5-branes.

(2,0) LST A parallel stack of type ITA n NS5-branes engineers N’ = (2,0) LST of A, _1 type, for
which Yy = 0, €5 is the A,_; Cartan matrix, and Ji = —p' x4(N) with the A,,_; Weyl vector p’. We

/2

separate the NS5-branes along the transverse circle of radius ~ gsa’*/#, which sets the length scale

of the LST. Let us denote the worldvolume coordinates of the NS5-branes and the circle coordinate

012345 and 29, respectively. All strings are realized as D2-branes along the z°! and z® directions,

by x
suspended between a pair of NS5-branes. One can view a long string as a composition of short strings
which interconnect adjacent pairs of NS5-branes. Especially the full strings are those which completely
wind the % circle, consisting of n different types of fractional short strings. For (k!,--- k") strings
and k full strings, illustated in Figure[lal, it is often more convenient to express the anomaly polynomial

I, in terms of the numbers of fractional short strings, k" = k and k' = k' + k for i < n, such that

Li=), Q“l;kj (ca(l) = ca(r)) + S K (ea(R) — ea(F)), (3.26)
=1

ij=1

(1)

where Qij is the Cartan matrix of affine fln_l Lie algebra.

To engineer N' = (2,0) LST of D,, type, for which p’ and 2;; are replaced with the D,, Weyl
vector and Cartan matrix, we introduce two ON~ planes [67}68] parallel to n NS5-branes. They are
orbifold planes which change the transverse 2° circle to be S'/Zy and sit at both ends of the S'/Zy
segment. The total NS5-brane charge is (2n — 2) since an ON™ plane carries a negative unit. One can
regard a long string as a composition of short strings suspended between adjacent pairs of NS5-branes.
The full k little strings (or equivalently, 2k half strings stuck on the orbifold planes) are therefore the
collection of r different types of fractional short strings, where r is the rank of the affine 157(11) algebra.
For (k',--- , k™) fractional strings and k full strings, illustrated in Figure the numbers of fractional

short strings are given by

n=2: ki=k+Fk fori=1,23, K=k (3.27)
n>2: K=k+k fori=1,22n kK =k'+2k fori=3,---,2n-1), K"t =k

Then the anomaly polynomial I; becomes (3.26) in which Qij means the affine f)ﬁf) Cartan matrix.
We expect that (3.26)) also holds for (2,0) E,, LST by replacing Qij with the affine Eq(zl) Cartan matrix.

18



| k' strings‘ k® strings‘ k  strings P k' strings k’ strings k" strings
' NS5 NS5 NS5 K strings ' O'N_ k* strings NS5 K strings ON-
(a) Type A, (b) Type D,,

Figure 1: Fractional and full strings in N' = (2,0) LSTs

(1,1) LST The worldvolume theory of type IIB n NS5-branes is the maximally supersymmetric
U(n) Yang-Mills theory, in which Y; = 0. It has only one type of strings with zero Dirac self-pairing,
which couples to the background 2-form tensor Bs. This is the instanton string of 6d maximal SYM.

The anomaly polynomial of k strings is given by
I4 = /%hv (CQ(R) — CQ(F)) . (3.28)

where we replace the NS5-brane charge n by h" = n, the dual Coexter number of A4,_1.

By suitably introducing an orbifold 5-plane, one can engineer (1,1) LSTs of By, C’n, ﬁn-type,
whose 5-brane charges are respectively (2n — 1), (2n + 2), and (2n — 2). The dual Coexter numbers
of By, Cyp, D, Lie algebras are given by

hY =2n—1 for B,, W =n+1 for C,, hY =2n—2 for D,. (3.29)

We find that gives the anomaly polynomial of k strings in B, Cy, D,, LSTs. Here k must be
understood as the number of half strings stuck on the ON™ plane that engineers C,, LST. We expect
that holds true for an other (1,1) LST with an exceptional gauge symmetry G, by replacing h"
with the dual Coexter number of Lie algebra G.

SO(32) LST A stack of n NS5-branes in SO(32) heterotic string theory engineers N' = (1,0) LST
with Sp(n) gauge symmetry and SO(32) flavor symmetry. It allows only one type of strings with zero
Dirac self-pairing which is the instanton string of Sp(n) gauge theory. Denoting the 2-form curvature
of the SO(32) bundle by F, the anomaly polynomial I of k strings is given by

I = k(Y1 — nxa(V)) = k<c2<l> Fesr) — (n— VeaF) + (n + Des(r) - 22T 2). (3.30)

EgxEg LST The worldvolume theory of n Egx Eg heterotic NS5-branes is the rank-n (1,0) LST with
Es x Eg flavor symmetry which contains n dynamical tensor multiplets. After S-duality transformation,
we obtain the configuration of IIA NS5-branes probing the S!'/Zs orbifold parametrized by the %
coordinate. All strings are realized by D2-branes filling the %! and 2% directions, suspended between
a pair of NS5-branes. Regarding a long BPS string as a combination of short strings which connects
adjacent NS5-branes, the k half strings stuck on the orbifold fixed plane will be equivalent to the

composition of (n 4 1) different types of short strings. All Dirac pairings between the short strings

19



Es _ _, . Es
k' strings k” strings k' strings I

Estrings

Figure 2: Fractional and full strings in N' = (1,0) Eg x Fg heterotic LSTs

are recorded in the (n + 1) x (n + 1) matrix entries as follows [66].

+1 i=j=1lor?2

Q5 = forn=1 (3.31)
1 i=j4lori=j—1
+1 i=j=1or (n+1)

Qij=4+2 i=j=2,---,n forn > 1
1 i=j+lori=j—1

Computing the inflow from the 6d Green-Schwarz term [63}|64], for (k!,--- , k™) short strings alone,

n—1 ,7 T 7. n—1
7, = (Z W + kj) xa(Ty) + Z(/_ﬁ — kit1) (pl(T10)4+ L — (= §)X4(N)>
i=1

+ R, <_p1(T10)4+ TrFf —(n— §)X4(N)> ) (3.32)

Introduction of the k long strings contributes to the anomaly polynomial I, by

- 2p1 (T TeF? + TrFs
where F; and Fo denote the curvature 2-forms of two Fg gauge bundles. If we rewrite the anomaly
polynomial I, using the numbers of short strings, k"' =k and k' = k' + k fori=1,--- ,n,
QY k;k; To) + TrF2 co(l) + eafr
1= "5 () - ) 4 (PR 20200 L om) ea

+ Z ki (ca(R) — c2(F)) + kpt1 (_p1 (TQ)I TPy + 10 ; ca(r) + c2(R)>
i=2

which follows the general form of (3.25)). See Figure [2| for the illustration.

4 BPS spectra from T-duality

In this section, we will study the R* x T2 partition function of circle compactified LSTs, based on
their T-duality relation and the modular bootstrap of the little string elliptic genera. It is defined as

a grand canonical partition function that displays the BPS spectrum for an infinite number of strings,
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counting the bound states between winding and/or momentum modes. More precisely, [3,/4]

Zoa = Tngd (_1)F62m'(‘rHLf‘T'HR) 627Ti6+(JT+JR)62m'e_JleZm’z-JZ H?:l nfi| (41)

where the trace is taken over the entire 6d BPS Hilbert space Hgy. The integral charge k; is conjugate
to the winding fugacity n;, counting the number of the i-th strings coupled to the i-th tensor multiplet.
All other chemical potentials and conjugate charges have been introduced in Section 2l We will also
frequently use the fugacity variables

q= 6271'1"1'7 t = e27rie+’ u = 627'l'i6_

, W n, =e

where (®;) and agi) denote the scalar VEV of the i-th tensor multiplet and the i-th gauge holonomy;,

respectively. In particular, the non-zero gauge holonomy allows the fractional circle momentum mode,
leading us to interpret ¢ and wj(z)
R* x T? partition function will be expanded mainly in the winding fugacities ny, - -- ,n, such that

as the momentum fugacities. As the tensor branch observable, the

Zea = To - (1 + g M 'I{kl,---,kn}> : (4.3)

We remark that the individual coefficient Zyy, .. 1} corresponds to the elliptic genus of {k1,-  kn}
strings, satisfying the modular property . The overall dressing factor Zy is the BPS partition
function for the pure momentum sector, capturing all the multi-trace letter operators [69] made of the
elementary fields and the gauge covariant derivatives. All of them are given as closed-form expressions

(@)

in the momentum fugacities made of ¢ and wji .

T-duality is a distinctive feature of the LST that identifies two apparently different LSTs on S*, at
different circle radii R’ = o/ /R, by exchanging the winding and momentum modes [18]. Since the BPS
spectrum is insensitive to the circle radius, it will be incarnated as the equivalence between the dual
R* x T? partition functions after suitably mapping the winding/momentum fugacities on one side to
the momentum /winding fugacities on the other side. This has been confirmed in several examples, i.e.,
the maximally supersymmetric LSTs of A-type [15] and their orbifold variations [16,(17], engineered
from type ITA and IIB NS5-branes probing the R* and R*/I'ap backgrounds. For these theories,
the underlying 2d gauge theory description is known. Thus one can completely determine the elliptic
genus of little strings in type ITA and IIB NS5-branes separately, thereby showing the T-duality of type
ITA and IIB 5-branes. However we will turn the logic around and will assume the equivalence of the
BPS spectra for T-dual pairs of S' compactified LSTs. Since the BPS partition function Zo/Ziky oo o)
for a given winding sector captures an arbitrary number of momentum modes, it provides the BPS
data with a given momentum unit for all individual winding sectors in the T-dual version of the LST.
We will start from Zy for the pure momentum sector which can be easily obtained by counting the
BPS letters. Recall that the modular bootstrap based on and has reduced the problem
of obtaining the 6d string elliptic genera down to the problem of finding the sufficient amount of BPS
coefficients [8-14]. Knowing the BPS data for zero momentum modes would be sufficient to bootstrap
some elliptic genera with low winding numbers, so that Zy could determine those elliptic genera in the

T-dual LST. The newly found elliptic genera will be closed-form expressions in the dual momentum
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fugacities, providing the additional BPS data with certain momentum modes for all winding sectors in
the original LST. Using these coefficients, one could find the elliptic genera for some winding sectors
which will yield again the BPS data with higher momentum modes in the T-dual description of the
LST. Repeating this procedure, we would obtain the infinite tower of the 6d string elliptic genera
composing the R* x T? partition function of the LST. This approach is quite effective for the theories

which do not have the gauge theory realization.

For the iterated bootstrap of the 6d string elliptic genera, it is necessary to know the precise map
between the winding/momentum fugacities on one side to the momentum/winding fugacities on the
other side. We will particularly focus on the maximally supersymmetric LSTs of AD-types as well as
the N/ = (1,0) heterotic LSTs with SO(32) and Eg x Eg global symmetries.

e (2,0) LST of A, _1 type contains n different types of fractional strings, illustrated in Figure
and an integral unit of the circle momentum. As we denote by ny,--- ,n, the fractional winding
fugacities, the combination nyns - - -n, corresponds to the full winding mode. On the contrary,
(1,1) LST of A,_; type has n different units of fractional momentum, due to the SU(n) gauge
holonomy, and only one type of full winding modes carrying the Yang-Mills instanton charge.

The fractional momentum fugacities are labeled by the simple roots of the affine Anq algebra,

/ / 1,0 n
w w qw .
I 1 ;o 2 /o n !
G =— Go=—, , (h="— with ||wi—1, (4.4)
We wsy w] Pty

where all variables in (1,1) LST are primed for distinction. T-duality implies the fugacity map
qg=nn, n = qia Ty Np—1 = Q;pr n, = qzl (45)

e The fugacity map between (2,0) and (1,1) LSTs of D,, type can be derived in an analogous way.
The (2,0) LST has r = rank(D,,) different kinds of fractional strings, as depicted in Figure
whose Dirac pairings are given by the Cartan matrix of affine D,, algebra. Denoting the fractional
winding fugacities by ny, - - - , n,, the full winding fugacity is the combination ninsn,_in, H::_?? n?.
The (1,1) LST has r = rank(D,,) different units of fractional momentum due to the SO(2n)

gauge holonomy. Their conjugate fugacities are labeled by the simple roots of the D, algebra.

’ /0 /
w qw q
. /o 1 /I 2 VA B | /I
D, : Q=7 Qo= —7F q3=wWWy, 4y = —F (4.6)
Wy 1 Wy Wy
4
/ / / 1o
w w w qw
. r_ 1 /o 2 /3 r 4 . ’
Ds : Q=77 2= B="57 4= 5 with Hwi_
Wy ws Wy wy -1
/ / / / /
D Lo W r 9 Wy ;o Wp_o ;o Wp_g Py /
n>4: ({1 = U’ qa = W7 q3 = Ua Tty ldp1 = ra Qn = — 5 Qpy1 = Wy W,
2 1%2 3 n—1 n

T-duality imposes the following map between winding and momentum fugacities

qg=n, ny = qiv Ty Ny, = q;w Npt1 = Q;l+1' (47>
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e The rank-n Eg x Eg heterotic LST has (n + 1) different types of fractional strings, illustrated in
Figure[2] and an integral unit of the circle momentum. The Dirac pairings between those strings
are noted in the matrix (3.31]). Denoting the fractional winding fugacities by ny,ng, -+ ,nyy1,
the combination H?:Jrll ng is conjugate to the full string that wraps the transverse circle. In
contrast, the rank-n SO(32) heterotic LST has (n + 1) different units of fractional momentum,
due to the Sp(n) gauge holonomy, and only one type of full strings carrying the instanton charge.
The fractional momentum fugacities are labeled by the simple roots of the affine C, algebra, i.e.,

Wy,

/ / 1 / / 2
1 w/12? 2 w/27 ’ n w% ’ n+1 n ( )

The circle compactified Eg x Eg and SO(32) heterotic LSTs are identified by T-duality which
requires the Wilson lines along S C T? breaking the flavor symmetry to SO(16) x SO(16):

RAEO(?,Q) _ (08’ %8)’ RAESXES — (07’ 1’077 1)‘ (4.9)

These background Wilson lines produce shifts in the left-moving momentum Hj, and the flavor

charges f,, depending on the winding number(s) k; [70].

Eg x Eg : Hp = 2Hp, + (k1 + kns1) — 2(fs + fi6), fs = fs — ki, fi6 = fie — k2. (4.10)
SO(32):  Hyp=2Hp +2k— Y fa, fo=fo— 3%k (for all 9 < a < 16).

The new momentum and flavor charges are distinguished from the original ones by the tilde. To
establish T-duality, we express the R* x T2 partition functions in the new fugacities conjugate

to the shifted charges. The relation between the original and new variables can be derived from
7716 fa — ~H ~k; 7716 ~fa
g"e TTme® T1S, yie = e T TS, ade, (4.11)

where the right-hand side should appear in the definition of the R* x T2 partition functions with
the SO(16) x SO(16) Wilson line. Combining (4.10)) and (4.11]), we find that

Eg x By : N =n1qys, Nyl = Ni1qY16, Ja = Yaq (@ =8,16), §=+/q (4.12)
S0(32): W =0'¢ %0, Jo=yuv/d (@29), §=d.

Especially the momentum and winding fugacities of both LSTs are identified as

/
%’2’ R — (4.13)
For the rest of this section, we will study the R* x T partition functions of the above LSTs through
the iterated bootstrap of the 6d string elliptic genera. Here we briefly summarize the results. First, we
successfully construct the R* x T2 partition functions of several A-type (2,0) and (1,1) LSTs based
on and . They agree with the results of [15] which obtain the little string elliptic genera
using the worldsheet gauge theories of type ITA and IIB little strings. Second, we show the existence
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of additional bosonic zero modes in the 2d SCFTs of full strings in maximally supersymmetric LSTs
of ﬁn24—type as well as heterotic LSTs. The extra zero modes correspond to the string motion
moving away from the NS5-branes, developing the tubelike region in the target space. They are lifted
by the chemical potentials —e; + m where m has been introduced for SU(2)r C SO(4)n of these
LSTs. Here SO(4)y is the R* rotation of the transverse directions to NS5-branes. The conjectured
form of the denominator D(7, 2) in must be appropriately modified by additional factors, e.g.,
01(—e4 £m), for successful bootstrapping of the elliptic genera. We propose the modified denominator
by considering the ¢ — 0 limit of those elliptic genera. Third, we construct the R* x T2 partition
functions of Dy,>4-type (2,0) and (1,1) LSTs and heterotic LSTs based on (2.13) and (2.14) with the

modified denominators. These 6d partition functions include the novel elliptic genera of fractional

strings, some of which also appear in D-type (2,0) SCFTs, lacking the 2d gauge theory descriptions.

4.1 (2,0) and (1,1) LSTs of A,_;-type

Bootstrapping the R* x T? partition function starts from the index Zy of the pure momentum sector,
decoupled from stringy excitations. It can be easily obtained by counting the multi-trace BPS letter
operators made of the elementary fields and the gauge covariant derivatives [69]. As the multi-letter

partition function is the Plethystic exponential of the single-letter partition function fo(7, z), i.e., [71]

To(t,2) = PE[fo(T,2)] = exp (Z;il % . fg(pT,pz)) , (4.14)

)

we compute fo = tr [(—1)FqHL tIr IRy iy r T w

denote the Cartan generators of the SU(2)p flavor and gauge symmetries, respectively, whose conju-

Gl} over the single BPS letters. Jp and G1,--- ,Gy,

gate fugacities are v = €™ and w; = ¢*™%. The SU(N) gauge fugacities are subject to the traceless

condition []?_; w; = 1. The trace over the (1,0) supermultiplet and its derivatives takes the form of

w4 ut
e T —tiu;l - tl—l) (™)’ (4.15)
-1
vector :  — a —tt(qj)—flt— t)u_l) (Xadj (wi) Do qn)+
tlv+ov1)

(xr (i) 00 o q")"

hyper : +

yp (1 —tu)(1—tu?)
where the + superscript in the parenthesis indicates that all non-positive momentum states have been
discarded. xR is the irreducible character for a gauge representation R of a given supermultiplet. For
the SU(n) adjoint representation, the irreducible character xaqj is given by xaqj(w;) = Z? =1 % —1.

For the stack of n ITA NS5-branes, engineering A, _1-type (2,0) LST plus a free (2, 0) tensor multiplet,

-t(v+v71—u—u*1) q
(1—tu)(1—tut) 1-—gq]

n
T, = PE (4.16)
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For the stack of n IIB NS5-branes, engineering A,,_;-type (1,1) LST and a free (1,1) vector multiplet,

v4vt —t—t_l) w; qw; , 1
i 4.17
1 —tu)(l —tul) (ng—i_z w —i—nq)l_q,] (1D

/
i<j i>5 ]

, t
I, =PE

(
(
:PE[t((fj:;(l_f;;;) (iﬁq;ﬁZ( f[ q;@-]]_[qi) +nq’> 1_1q/}

i<j k=i J<i k=itl =1
where ¢ =[]}, ¢;. We prime the fugacity variables of the (1,1) LST for distinction.

The indices Zyp and Z|, display the infinite towers of the pure momentum states. According to the
relation between the dual fugacity variables, they supply the BPS data with zero momentum
for all distinct winding sectors in the T-dual descriptions. For example, the BPS data from Z is
sufficient to determine the elliptic genus of {ki, k2, -+ ,k,} string chain if all k; < 1. For maximally
supersymmetric LSTs, the Casimir energy of the elliptic genera must be always zero, i.e., ng = 0. We
summarize the index i(z), the denominator D(7, z), and the numerator N (7, z) of the elliptic genera

for various string chains in Table

As the elliptic genera of (2,0) string chains capture the infinite tower of momentum modes, they
supply the BPS data with given momentum modes for all winding sectors in (1,1) LSTs. One can
completely determine the elliptic genus of one instanton string based on the provided BPS data. We
summarize the index i(z), the denominator D(7, z), the numerator N (7, z) of the elliptic genera for
single SU(2), SU(3), SU(4) instanton strings in Table [2 To keep the expressions simpler, we have
turned off e, = 0 for SU(3) and SU(4) instanton strings. See Appendix [A|for the explicit expressions

for all Weyl invariant Jacobi forms used in this paper.

One can further iterate the procedure to obtain the elliptic genera for higher winding sectors. For
instance, we determine the elliptic genera of {2,0} and {2, 1} string chains in (2,0) LST of Aq-type,
using the initial data supplied by the BPS index of the pure momentum sector and the elliptic
genus of the SU(2) single instanton string expressed in Table 2 We summarize them in Table|3| Such
iteration enables us to find out the infinite tower of the 6d string elliptic genera which constitute the
R* x T? partition function of the maximally supersymmetric LST of A,_;-type. All of these results
precisely match the results of [15] which were computed from the worldsheet UV gauge theories of
type ITA and IIB little strings |21,49]. Furthermore, the iterated bootstrap requires no more inputs
than the modular/analytic properties of the elliptic genera as well as the T-duality relation, so that
it can be applied to a broader class of theories for which the worldsheet gauge theory description is

unknown. We will focus on two such examples: (2,0) LSTs of ﬁn24-type and Fg x Fg heterotic LSTs.

4.2 (2,0) and (1,1) LSTs of D,-type

To initiate the modular bootstrap of the R* x T2 partition functions, we first study the BPS indices
Ty and Zj) of the pure momentum states in (2,0) and (1,1) LSTs. They are the multi-trace indices
which can be obtained from the single-letter partition functions fo(7, z) using . The contribution
to the single-letter partition function from each (1,0) supermultiplet has been summarized in .
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String chain

Index i(z)

Denominator D(7, )

Numerator N (7, 2)

@

1 %01 (e £e-)

7001 (m £ cy)

@9

n201(er £e)?

1201 (m £ e_)?

o2m? — 63_ — 2

n~201(er £e)?

n 1201 (m e )0 (mEe )

@ 3m? — 3e2 71801 (ey e )3 1801 (m £ e, )3
@@—@ 3m? — 2e2 — €2 N80y (ey e )3 N80 (m £ e )0 (mE e )?
@909 -4 1720, (e, £ e )" 17240, (e, + e )"

Table 1: Elliptic genera of (2,0) string chains determined from Z

@ D(1,2) 17 1201(e; £ €_)01(2e, +2¢) i(z)  2m?* 426 —4e?
N(r.2) 2713767120, (m £ ey )01 (m £ e_) x (2TERS — A5 EZRINE — 24E, E¢R3Ro
) 2m4 2026 3m3 6
D(1,z) 17 801(e; +€_)%01(2e, £+ 2¢) i(z)  3m?—2e2 — €2
—271337T 7120, (m £ €)% x (SAE3LIN3NRofo1 + 2TEFL3MIfo1 — BLEFLoL2M3f0.1 — 18EZL390M o

—36E7L3R2Nf01 — 18ETL0LININofo,1 + HAETLELRINRofo,1 + IEZLELoRfo1 + IETLIRF21
—24 B4 Eg L3R3R%f0 1 — 24 B4 Es L3R3R0f0.1 + 24 B4 Ee Lo L3R3NR0f21 + 24F, Es L2 LR 1

N(T, Z) —3E423m fol - 3E42022§Réf2 1— 18E4£0£2£R22R fO 1+ 6E4£2229‘{29fi f2 1+ 12E4239‘i29%3f2 1

+6ELL3R3NR0fo.1 — 64EZLIR3NR0fa 1 — 32EZ2L3R30.1 + 96 E2 L0 L3R 521 + 12F6 £2L2R3NR0f0.1
—20Fs L3RR 30,1 — 12F6L0L3MaMfo 1 — 36 E6LoL3RIN2f0,1 + 36 E6 L3 LaMINLf2 1 — L30MAfa 1
+20E6 £3R3R0fo1 + 4E6L3MAo.1 + 3L2LaMEfo1 — 2E5RM3fo01 — 4E6 L3R 1)

Table 3: Elliptic genera of (2,0) string chains determined from Z|, and Table

(2,0) LST of D,, type has r = rank(D,,) free (2,0) tensor multiplets, which gives

t(v—HJ_l—u—u_l) q
(1—tu)(l—tul) 1-—¢q]

Ty = PE [T (4.18)

(1,1) LST of D,, type has a (1,1) vector multiplet in the SO(2n) adjoint representation, which gives

n

t(v+v~ —t—tl
( H ww —|—w2/w —l—q/w /»+q'w;/wg+rq')
1<J

I/—PE

?q/ . (4-19)

Here we recall that the fractional momentum fugacities are identified in (4.6)) as combinations of the

SO(2n) gauge fugacities w), and the full momentum fugacity ¢'.

The above indices Zy and Z|, capture the BPS spectra of the pure momentum sectors decoupled
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D(r,z)

1201 (e £+ €_)01 (26, £ (a1 — a2)) i(z)  2m?—2e%

N(r,2)

2773747501 (m £ 1) ( — 9ET2,102,1R3 — 3Eaf2,102,1R2RG — 9E4f2,100,1933%R0
—3E4f0,100,1R5 — 12E6f2,1921R3%R0 — 8F6f2,180,1R3 — 4Esf0,102,1R3 + 2,180,195
0,182,198 + 3f0,180,1R2R3 — 3E40,192,1R3%R0)

Ay

D(r,z2)

n~240, (£e ) HK] 01(£(a; — aj)) i(z)  3m?—3e2 — 3m?

N(t,2)

2713747501 (m)* (2E6f5 105 1 + 5 E5To.72.105,1 — 36473 100,103 1 + 18EFT3 100,103, — 288E673 105103 1
—432E4fo.1f2100103,1 — 3E173,103,1051 + 155413 103105 1 + 16E873 1031031 + 24E1Eofo,172,103 103 1
+1728f3,193,19%,1 + 288E6f(2),190,193,19%,1 - 768E4E6f%,150,19§,19%,1 - QSBEZfO,lf2,150,19§,19§,1 + 31104f0,1f2,193,19%,1
+A48ELEoff 103,105 1 + 48ETEof3 103105 1 + 96 550,172,103 103 1 — 4320E473 105 103,105, + 4320E373 1051031051
—3456 Egfo,1f2,105,103 105 1 + 12441675 103 1021 — 1152375 160,103 1921 — 1152E3f3 100,105 102,1

—2304E4 Egfo,1f2,190,10% 182,1 + 13824E6f3 195 103 1 92,1 + 41472E4f0,1§2,108 193 1021 — 64E373 105 1 + 6483 1051
+64E2f%,193,1 - 64E4E§f§,1gg,1 + 6912E6f%,19%,19§,1 + 6912E4E6f§,19%,19§,1 + 13824E3f0,1f2,1gg,19§,1
+18662475 14 1031 — 103680413 1951031

D(r,2)

n~4201 (£e_) HK] 01(E(a; — aj)) i(z)  4m?—4et — 4m?

N(t,2)

2’"3"’u"’9\(w:w)(m,f%,hvﬂ%-2‘32E.Jmi§mmsh*2‘3"E\i%,hman + 213 Eof 104103 1 — 2'3' EST 100100 1 — 2'3' EaEofof3 100108 1 + 2232 B 121940031 + 2'3 o3 103 1081 —
~2BfG 1031081 + 5 2B 08 105, + 28 Eulofon 13108081 — BTG el 108 + 25 ERTG 0 108 — 11
VE;E,,y“mng“u».ﬂ 3 Eziuxinnnm-\m"\ 253 E(,i”,i 5,
?E3 Egfo i3, 0103, — 2% BTG d200% 003y + 278 EGTG  faad 10 + 280 Ef 100, g
Ei13190197 1031 + 28 B Esfoaf3 180.107,10 1+‘ F:f«uizmnmuﬂn 28 immmnuu%’”& i+ 1 Poff 112100103101003,1 + 7 215 T 0 00104
—28 Egfonf3 108100105, — 2°3 Euff 2165, - 0195 i ,+2’3254En(,mm,mus b+ 28Nl agh el
28 B 105105, + 2 BTS00, 08, — 2'5° B m.n; 051+ 25 B aghaohy + 5 2“3‘1‘44‘?“54 1031 +2“3‘bb a0}10%1 218 B3R 10105, — 29 278 BLEofS 1,081 — 17 2°8 Edfonf 011020 + 2°8° BuBifo 3101108
218 B 100101103, + 28 '3 ELEGTS 100.10%105. + 19 2“’31E4fu,rnmmuuu+2“’3‘Effu 31901011031+ 2153 EaLoft 1fa100.10%,103, + 2187 EAT 108,108 108 4 5 2°8" Bl 3.08,168 103 — 2°3" BTG o 08,168 100
+2E ,smu%mz’, - 28 8 BBl 05 10100, — 11 21 3100 Eoff 112103101103, — 25 2°8' BulEofg 103108103, 2/ B3 103,107,105, + 19 203" EVETS 103101105 — 2°8) ELEefo 100 1011031
3 S L i(‘uu.musﬁx —5 293 Bl 108 1gang + 2”‘3‘Emufz|35muui\ 21032 Eof 160,105 104,193 1 + 5 2 l‘E‘ihmnﬂnsamu 2“"E(Jz’|3uvuum.m}“x
2%} et ‘E‘Eoiml'uﬂn 5 2031 454 g} 01 — “5‘5254‘11‘41921*1' 3'Eifo, ﬂul‘n’z B Egfoafd 0,031 — 218! Bfg
- beumumus 1 21001041031 a 1+ 2% B Egfo, ‘Eif?ufzmum?m -7 ”52 o1 00,107 T ;+77”52F4Fthmnu ]
+25 2”321‘44?«“7;‘9»‘5“521f2“3‘1»5?3‘6:mms“nuﬂ 2“3‘bum.numusu ~1 2“3‘bifusmm.mr 17 22338 o 1010 — 2“3‘b4bduxr“nu.n“suf”"S‘b%mmmn“su729? E15103.08 1081
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Table 2: Elliptic genera of (1,1) little strings determined from Zyy, .. 1,1 with all k; <1

27



G a D(1,2) 7 2401(ef £ )* ﬁ ° D(1,2) 773901 (ef £ )d

G i(z)  4m? —3e% — €2 G i(z)  5m?—4et — €
@ N(1,2) 07201 (m=Eey )0 (mEe )3 @ N(1,2) —n73% 1 (m £ e, )0 (m+e )?

Table 4: Elliptic genera of (2,0) string chains determined from Z

from stringy excitations. Using the fugacity relation imposed by T-duality, they provide the
BPS data with zero momentum for all winding sectors in the dual descriptions. One can particularly
determine the elliptic genus of {k1, k2, ,knt1} string chain for all k; < 1 using the BPS index Zj.
For instance, those elliptic genera for connected string chains with &; < 1 in (2,0) LST of Dy-type
are summarized in Table [1] and [4f As a next step towards the entire R* x T2 partition function, we
attempt to bootstrap the elliptic genus of the single SO(2n) instanton string, utilizing the BPS data
given by Zy and the elliptic genera of (2,0) string chains. For the specific cases of Dy = A2 Dy = A4

instantons, the single string elliptic genera have already been constructed in Section ie.,

D27, ) = NE2) L M) (4.20)
! T DAY(T, 2) DAL(T, 2) '
’ 2a1—a1—asg ) 2a1—a1+as
NA3(7, 2
IPs(r,2) = 2o 0)
D 3(7_7 Z) 2a1—a1+a2—a3, 2a2—a1—az2+a3, 2a3——ai1+a2+a3

For the generic case of ﬁn24 instantons, we report that the conjectured form (2.14)) of the 6d string
elliptic genus is not compatible with T-duality of the LST. Let us illustrate this point in detail.

Applying the moduli space approximation, the low energy dynamics of instanton strings are de-
scribed by the supersymmetric non-linear sigma model onto the instanton moduli space. Classically
the instanton moduli space has a singular point called the small instanton singularity, which will be re-
placed by a semi-infinite tube at a quantum level. As one moves down the tube, the strings gets ejected
from NSbH-branes as dynamical objects. This can be viewed as passing from the Higgs branch to the
Coulomb branch in the ADHM gauge theory, whose Higgs branch realizes the instanton moduli space
and whose Coulomb branch corresponds to the strings runaway from NS5-branes. Although the two
branches are infinitely far away [21], the presence of the semi-infinite tube in the quantum Higgs branch
develops the continuum in the spectrum of the Higgs branch CFT [23[24]. For instance, some ‘throat’
states propagating in the tube were identified as supergravity particles [24]. We generally expect such
throat states to be captured in the elliptic genera (2.1)), defined with the SO(4)y = SU(2)r x SU(2) g
chemical potentials gapping the continuum states. For the A, instantons, the throat continuum can
be removed by turning on the SU(2), triplet of FI term ¢123 and the theta angle 6, deforming the
Higgs branch to be detached from the Coulomb branch. Such deformation is what the Ansatz
implicitly do. One has to suitably extend for the general cases where the Higgs branch cannot
be deformed.

For the Dy and Ds instantons, the throat states’ contribution can be isolated by comparing (4.20)
with the elliptic genera of the ADHM gauge theory for maximally supersymmetric SO(2n) instantons.

28



We consider N' = (4,4) Sp(k) gauge theory with the following matter contents:

an Sp(k) symmetric vector multiplet A Qaas /\ﬁd, A\&a
an Sp(k) antisymmetric hypermultiplet Qo> Mo \aa (4.21)
an Sp(k) x SO(2n) bifundamental hypermultiplet g¢q, A, P

where k is the instanton number. Its elliptic genus can be obtained via localizing the gauge theory

path integral, following the formalism of [6,|7]. The single string elliptic genus is given by

j‘Dn _ Ql(m + 6_)
! 201(ex te_)

n 01(46+ — 2a;)61 (264 — 2ai) H?;éz Ql(m + (6+ — ai) + aj) . -
z; {( 01(m £ (3ex — 2a;)) H;;Z 01(a; £ a;)01(2¢; — a; + a;) + (a; — az))}

- { 24: 01(m — 3e; )01 (m — e) [T, (275 + a;)
= 200(2m)01(2m — 264) [[1y 0p ("5 + ay)

+ (m — —m)}] o (4.22)

We observe that the difference between (4.20)) and (4.22)) only arise in the full momentum sector, being
independent of the SO(4) and SO(6) holonomies. Taking the limit ¢’ — 0 which truncates the tower

of momentum modes, the difference between two indices are

Po+vt—u—ut) 2w+vi—u—ut)
1—tu) (14 tot) (1 — tut)
v+ t—u—ul) tw+ovt—u—ul)
1—tu®)(1+toF) (1 — tu®)

P -1 (4.23)

(

(

2

IPs — 7P t (<

The first term captures the single-letter operators with a unit momentum for 11d gravity multiplet in
RYM x (R* x S1)/Zy x S', which can be dualized to type IIB ON5~ plane engineering D, LSTs [25].

The denominator of the throat states’ index is sinh(“5%=) cosh(=4™), which will be promoted to

O1(e4 £e_)01(—2e4 £2m)

Dbulk — )
(7:2) 7’ 01(—€+ £m)

(4.24)

The BPS indices for the throat states must share the same modularity (2.13) with (4.20)) and (4.22)).
Here we attempt to recast them into the form of (2.14) with the new denominator DPk(7, 2).

_ 1 Oi(imzte_)0i(—er £m)
P2 P2 — QTESR25S | — 18E2R252 12, — 24E2RRof3
1 1 91135 0, (6+ i 6_)(91(—26+ ¥ 2m) ( 4 2f2,1 4 2f2,1f0,1 4~ 2f2,1f0,1
— 16E4EsR33 1§01 — 8EaEsRoRaf 1 — EsR3fo 1 — SEsRoRaf2 fi) — 6E4RGf5 1151
— 32E§R5f5 1 — 8EsR3faafo1 — 24E6RoMef3 1151 — 8EsRG 1fo1 + Rofo — 3EIRGF1)-

_’zDS _ I/Dg — 1 91 (m + 6_)01<—€+ + m)

— 15E4§3 1§01 — 32E§f5,1 — 40Eef3 1701 +10.1) (4.25)

(27E375,1 — 45E312,1 151 — 24B4Esf3 1o

Starting from Dy instantons, it is not possible to separate the throat states’ contribution from (4.22]).
If that were possible, one could bootstrap the BPS index for the throat states based on (2.14)) with
the new denominator D"k (7, 2), satisfying the modularity (2.13) with index i = (2n — 2)(m? — €2).

As the denominator DPUK(7, 2) is a weak Jacobi form of weight —2 and index iy = 3m? + 4e + €2,
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the numerator N (7, z) would be a weak Jacobi form of index i +iz = €2 + (1 + 2n)m? + (6 — 2n)el.
This cannot exist for n > 4, although the Sp(1) elliptic genus still includes the first term in (4.23))

counting the throat states. We conclude that the throat states’ contribution cannot be isolated out.
( 2e+:t2m)
01(—ertm)

in the denominator. It would be desirable if one could precisely distinguish the bulk states from the

Accordingly, the elliptic genera of the SO(2n) instanton strings involve the extra factor

6d LST spectrum. For now, we continue to bootstrap the elliptic genus of the single SO(2n) instanton

string for n > 4 with the modified denominator

01 (—2¢4 + 2m)

pbulk -D _ '

(4.26)

As the bootstrapped elliptic genus IiD ™ share the same modular and analytic properties with
and has to display the same BPS data for fractional momentum modes, it must inevitably agree with
the Sp(1) elliptic genus . We determined the coefficients in n = 4 case up to ¢' order and
found the agreement (after turning off e+ = 0). To move on to the next, we extract the BPS data for
fractional momentum modes from and study the elliptic genera of fractional string chains in
(2,0) LST, which are summarized in Table (3} I and |5 I One can study the higher winding sector by the

iterated bootstrap. For k strings, the elliptic genus can be bootstrapped with the denominator

k
—2ne, £ 2nm)
(7, D(r,2) 1;[ 01(—ney +nm) (4.27)

which must reproduce the Sp(k) elliptic genus of the ADHM gauge theory (4.21). Utilizing the BPS
data with fractional momentum modes in the Sp(2) elliptic genus, we obtain the elliptic genera of
higher winding modes displayed in Table [6] These novel indices are expected to be a useful probe to

find the UV gauge theory for DE-type (2,0) string chains generalizing [49].

4.3 Heterotic little strings

To construct the R* x T2 partition functions of heterotic LSTs, let us first consider the BPS indices
of their pure momentum sectors. They are the multi-letter BPS indices, which can be computed by

taking the Plethystic exponential on the single-letter indices
fo(r, 2) = tr [ (=1)F ¢fIr ¢/rTTRy 1y IF Hw H yle| . (4.28)
=1

G; and f, are the Cartan generators of the Sp(n) gauge symmetry and the SO(32) or Eg x Eg flavor
symmetry. Each (1,0) supermultiplet contributes to the single-letter partition function by

u+ul
tensor :  — i —tffu)—i(_l — t)ul) (e q”)+ (4.29)
-1
vector :  — 1 —tt(z)tlt— zul) (Xadj (wi) Dont oo qn)+
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Table 5: Elliptic genera of (2,0) string chains determined from Zj) and 7,
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Table 6: Elliptic genera of (2,0) string chains determined from Z}), Z, Zo
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where xr denotes the irreducible character for a flavor representation F of a given %—hypermultiplet.

The stack of n heterotic NS5-branes in Eg X Fg string theory engineers the rank-n heterotic LST
with Eg x Fg flavor symmetry. It has n tensor multiplets and n free hypermultiplets. These elementary

fields and their derivatives lead to the following multi-letter index:

nt-(u+ul) ¢ nt-(v+vl) ¢

To =PE| —
0 (1—tut) 1—¢q (1—tut) 1-—g¢q

(4.30)

On the other hand, the SO(32) heterotic LST of rank-n has a vector multiplet in the Sp(n) adjoint
representation, a half-hypermultiplet in the Sp(n) antisymmetric representation, and a hypermultiplet

in the Sp(n) x SO(32) bifundamental representation. The corresponding multi-trace partition function

is given by
SO(32 S — S — S
7! = PE E Xowa X\ " ottt xsgn \* + b W+ o) (Xami \ (4.31)
0 (1—tut) \1—-¢ (1—tu®) \1—¢ (1—tu*) \1-¢
where the irreducible characters for Sp(n) and SO(32) representations are
Sp(n) 3 1w W Sp(n) - )
n 3 n —
o)) =3 (Wi + — 4 ek ) —n, P = Y (i) (432)
L whw'!,  wh o w! ;
i<j L) J g =1
s - 1 wl W) SO(32 O
X w) = 3 (wheh + —— S b g D) = YWt (433)
i<j wywy Wy W a=1

Here we recall that the fractional momentum fugacities have been identified in (4.8]) using the full
momentum fugacity ¢’ and the Sp(n) gauge fugacities w}. All gauge and flavor fugacity variables in
SO(32) LST are primed for distinction.

As the T-duality between the two LSTs involves the Wilson lines preserving the SO(16) x
SO(16) flavor symmetry, it is more convenient to express the indices and in terms of the
SO(16) x SO(16) flavor fugacities. Recall that the background Wilson line RA, shuffles the momentum
Hyp, the flavor charges f,, the winding number(s) k; [70]. The new fugacity variables conjugate to the
shifted charges are identified in . By replacing the original variables with the new ones, then

dropping out the tildes for simplicity, the indices Zy and Z{, for the pure momentum sectors become

nt-(u+ut—v—ov7l) ¢
T, = PE| — 4.34
’ [ (1 —tu) 1—¢? (434
SO(16 S0(16
2 pp|  Xma () S (0 ) |t Xaa (09, 16) i (4] + o w)
0= +
(1 — tu®) 1—q? (1 — tu®) 1—¢?
Lttt Siej (Wil 4 ¢ Jwiw’y) + 377 (wi/w) + ¢ [wi) + ng'
(1= tu) 1—q?
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Table 7: Elliptic genera of string chains in Fg x FEg heterotic LST

te (v 4ot i (wiw] + ql2/wgw9 + wi/w) + q’2w;/wg) + ng'?
(1 — tut) 1—q?

(4.35)

The indices Zy and Z{, capture the infinite towers of the pure momentum states. Based on the
T-duality relation , the BPS data supplied by Zy and Z{, are used to determine the numerical
coefficients in the elliptic genera of various winding sectors. We should first replace the chemical
potentials in the ansatz following , expand it in the momentum fugacities, then compare
it with the BPS data from Zj and Z|, to determine the numerical coefficients. The zero point energy

of the elliptic genus matches with

—12(k1 + kpt+1) for {ki, ko, -+ ,knt1} Es X Eg string chains
ng = (4.36)

—24k for k SO(32) heterotic strings.

In particular, the BPS data from (4.34)) are sufficient to determine the elliptic genus of {k1, ko, - - , kpi1}
string chain if k; < 1 for all ¢ and H?ill k; = 0. The index i(z), the denominator D(r, z), the numerator

N (7, 2) of the elliptic genera for some of such string chains are summarized in Table [7] [141[27.[28].

Here we comment about the elliptic genera of the full string chains where k1 = -+ = k11 =k > 0.
Once we attempt to write their elliptic genera based on , the whole elliptic genus would be a weak
Jacobi form of weight 0 and index i = k (—€% — (n + 2)e2 + (n — 1)m?). Moreover, its denominator
D(r, z) would have weight —2k(n + 1) and index iz = (nH)'k(kl’;l)(zkH) (€2 + €2). For the k =1 case,

this implies that the numerator N'(z,7) must be a weak Jacobi form of weight (—2n + 4) and index

i, = (n—1)m? + (%51)ex — (“+2)e which does not exist. We interpret it as an inevitable appearance
of the throat states, for which one has to conjecture the new denominator D""¥(7, 2) associated to the
extra bosonic zero modes. The throat states correspond to the strings runaway from NS5-branes. But

their contribution to the elliptic genus cannot be separated from the states localized on NS5-branes.

We make the similar observation for the elliptic genera of SO(32) heterotic little strings. One may
continue the iterated bootstrap to study the elliptic genera of SO(32) heterotic little strings, using the
ansatz (2.14) and the BPS data from Zy, 1, ... k., of fractional strings with k; < 1 and H?;Lll k; = 0.
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However, the conjectured form of the elliptic genus is not compatible with T-duality, because
the overdetermined set of equations for numerical coefficients, provided by T-duality relation ,
is inconsistent. We again interpret it as an unavoidable presence of the throat states corresponding
to the strings escaping from NS5-branes. Let us take the 5d limit ¢’ — 0 to find the new denominator
DPuk (7 %) including the extra bosonic zero modes. What remains is 5d N = 1 Sp(n) gauge theory
with 1 antisymmetric and 8 fundamental hypermultiplets. [26] computed its Omega-deformed R* x S!

partition function. In particular, the Sp(n) neutral states contributes to the partition function by [26]

pp|_ PU+tD@ru roroT) w2 P0G V) 1] e
2(1 — tu®)(1 — tv¥) 1—n? (1 —tu®)(1 — tv*) 1—n2]"

The first term is the single-letter index for the 11d gravity multiplet on R%® x S' x R*. The second
term comes from the single-letter operators of the 10d Eg gauge theory with the Eg — SO(16)
Wilson line. The 6d partition function should also contain these bulk states having denominator
I, sinh(%) sinh(ﬂ). Reflecting this observation, we propose the new denominator
DPUk (7 2) of the k string elliptic genus to be

€4 +nm)

0 (4.38)

k
bulk _ 01(—n
D (7-7 Z) - D(Ta Z) : H
n=1

The bootstrapped elliptic genus Zj, shares the same modular and analytic properties with the elliptic

genus of NV = (0,4) O(k) gauge theory having the following field contents:

an O(k) adjoint vector multiplet Ay, M

an O(k) symmetric hypermultiplet Ao \Ae

an O(k) symmetric twisted hypermultiplet Pad, A

an O(k) antisymmetric Fermi multiplet G (4.39)
an O(k) x Sp(N) bifundamental hypermultiplet g4, ¥

an O(k) x Sp(N) bifundamental Fermi multiplet 9%

an O(k) x SO(16) bifundamental Fermi multiplet ¥;

This is the 2d ADHM gauge theory of k£ F1 and n NS5-branes in SO(32) heterotic string theory [72].

In k =1 case, by localizing the gauge theory path integral, one can write the elliptic genus as follows.

1

- Hi(m:l:aj) Ql(ml)
jl;[l o )H o— (4.40)

2 4
I/ — 77
1720, (e4 £ e)01(—€y £m)

i=1 e+ a5)

For example, if n = 1, one can see that its denominator agrees with using [T7_, 0:(2) = 7°61(22).
It also captures the correct BPS data of all fractional winding modes in the dual theory, such as Table[7]
It would be desirable if one could precisely distinguish the bulk states from the 6d LST spectrum in
the elliptic genera. One can still continue to study the elliptic genera of fractional string chains in
Es x Eg little string theory, based on the BPS data provided by Zj. This procedure can be iterated

up to as high winding numbers as we want.
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5 Concluding remarks

In this work, we studied the elliptic genera of 6d strings using their modular properties. They are
weak Jacobi forms of weight 0 and index i(z) which can be derived from the anomaly polynomial of 6d
strings |13}/14]. The conjectured form of the 6d string elliptic genera respects the analytic structure of
the R*x T2 instanton partition function [13]. Given a finite amount of initial BPS data, we constructed
the elliptic genera of 6d strings in various 6d SCFTs [13,/14].

We also applied the general ansatz for the 6d string elliptic genera to study the little string theories.
T-duality of little string theories is an equivalence between two circle compactified LSTs, interchanging
the winding and momentum modes, when their circle radii R and R are related as R = o/ /R [18]. The
R* x T? partition functions for T-dual LSTs should agree with each other, after imposing a fugacity
relation which identifies the winding/momentum fugacities on one side with the momentum/winding
fugacities on the other side [15H17]. Once we know the elliptic genus at a given winding number, it can
supply the BPS data for the dual elliptic genera at any winding number but a given circle momentum.
We summarized the fugacity maps for N/ = (2,0) and (1,1) LSTs of A, and D, types as well as
N = (1,0) Eg x Eg and SO(32) heterotic LSTs. We also worked out the anomaly polynomials of
strings in those LSTs, to derive the modular properties of the little string elliptic genera. Collecting
these pieces of information, the elliptic genera of various winding modes in LSTs can be constructed.
We initially prepare the BPS indices for the pure momentum sectors, then utilize their BPS data to
fix all numerical coefficients in the dual elliptic genera. Then the obtained elliptic genera yields more
BPS data to fix the dual elliptic genera with higher winding numbers. One can gain more BPS data
for each iteration. In principle, the entire LST partition functions on R* x T2 can be constructed from
the iterated bootstrap. We successfully bootstrapped the elliptic genera of various fractional string
chains in N = (2,0) LSTs of A, and D,, types and N = (1,0) Es x Eg heterotic LST.

For some little string theories, the full string elliptic genera may include an additional contribution
that comes from the bulk bound states unrelated to the 6d physics. These states are localized in the
throat continuum of the target space, which is a quantum resolution of the point-like singularity in
the classical moduli space of 6d strings [23/[24]. Unless we suppress the emergence of the throat region
by Fayet-Iliopoulos deformation, just as we did in N' = (2,0) and (1,1) LSTs of A, and 15273 types,
the full strings may escape from NS5-branes by moving down the throat region. For (1,1) LSTs of
D, types and SO(32) heterotic LSTs, we proposed the new ansatz for the full string elliptic genera to
include the extra bosonic zero modes parameterizing the string movement transverse to NS5-branes.
With the new ansatz, the bootstrapped elliptic genera agree with those of the ADHM gauge theories.
It would be desirable to separate out the throat states from the bound states localized on NS5-branes.
To achieve this, one might examine the T2 partition function of the ADHM gauge theories with NS-NS
boundary condition [73]. Each term in the partition function may have an interpretation as a gauge
invariant operator, while it uniquely maps to a term in the ADHM elliptic genus. This analysis would
be helpful to distinguish the throat states in the full string elliptic genus, identifying the entire BPS

spectrum of the little string theory on R* x T2. We hope to solve this problem in a near future.
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A Weyl invariant Jacobi forms

In this Appendix, we collect the explicit expressions for the generators of the Weyl invariant Jacobi
forms used in the paper. We refer to the literatures such as [41-44] for the detailed explanations.
For SU(N + 1) and SO(2N + 1) Weyl groups, (N + 1) generators of Weyl invariant Jacobi forms are

obtained from the following generating functions [43]:

> a;=0 <

N ) 2N N
SO@N +1): et ‘91 (Zai o) _ (9177(:)> Zp@z Ve-ziala)  (A2)
1=1

N
0. (
UN+1): [ 1(@i +v)
=1 T]

> Z@Z 2 ()i (as) (A1)

where a; denote the SU(N +1)/SO(2N + 1) chemical potentials. p(~2)(v) must be understood as 1.
The Weierstrass p function is a weak Jacobi form of weight 2 and index 0 which can be expressed
using Jacobi theta functions as follows:

2 2 2 2

The following identities are useful for writing the explicit expressions for the generators [43].

1 o) o) o NI ()
et 1 60(71) p’(.cu) e @(N_.Q)(al)
[ 7 01(ai —v) _ 1 1 plan-1) ¢'lany-1) - "N (an-1) (A4)
[T 6i(a)fiw)  2Y2(N =D 1 glar)  ¢lar) - oW I (a) '
det : : :
1 plan-1) ¢'(an—1) -+ P I(ay_1)
1 op() @) - PN (v)
et 1 p(?l) @”(.al) e N2 (ay)
[, 00 (Ha +v) 1 1 play) ¢"(an) - 9PN (an) (A5)
1Y, 01(a:)201(v)2  22N72(2N —1)! 1 p(a) ¢"(ar) -+ PN (ar) .
det | : : : :
1 plan) ¢"(an) -+ o (ay)



We particularly consider the generators of SU(2), SU(3), SU(4) Weyl invariant Jacobi forms used
in Section Imposing a; + az = 0 for SU(2), we obtain

01(a1)? 126;(a1)?
1(7761)7 800,1—;](61)@(@1)- (A.6)

p—21=

For SU(3), imposing the traceless condition a; 4+ as + az = 0, the generators can be written as

 L(p(ar) ¢ (a2) — p(az) @' (a1)) T O(as)

70Ty o (az) — (1) H I (A7)
1 () — ¢ (a2) T 01(ar) 1y ila)

ro T p(ai)—p(a;) 11 1773 ’ 9073’1_51—[ 1773

(A.8)

(p ) :
P T Y s 9lan) (9/(ay) — ¢(az) LT
1 e 9002) (9(y) = ¢"(a2)) 1461 (a1) 1 ()
7T D (a,z) 9(az) (¢ (ay) — ' (az)) 11 A 11 U

i=1

where (z,vy, z) runs over {(1,2,3),(2,3,1),(3,1,2)}. Based on the SU(3) generators and (2.38]), one
can write the generators of the Gy Weyl invariant Jacobi forms [41,43]. We also found the expressions
(2.37) for the generators of the D,, Weyl invariant Jacobi forms, by generalizing the SO(8) generators

given in [43]. Finally, all the generators of the E,, Weyl invariant Jacobi forms are given in [42,44].
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