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The observation of neutron stars with masses greater than one solar mass places severe demands
on any exotic neutron decay mode that could explain the discrepancy between beam and bottle
measurements of the neutron lifetime. If the neutron can decay to a stable, feebly-interacting dark
fermion, the maximum possible mass of a neutron star is 0.7M�, while all well-measured neutron star
masses exceed one M�. The existence of 2M� neutron stars further indicates that any explanation
beyond the Standard Model for the neutron lifetime puzzle requires dark matter to be part of a
multi-particle dark sector with highly constrained interactions. Beyond the neutron lifetime puzzle,
our results indicate that neutron stars provide unique and useful probes of GeV-scale dark sectors
coupled to the Standard Model via baryon-number-violating interactions.

The neutron lifetime anomaly, the discrepancy in the
beam [1, 2] vs. bottle [3–9] measurements of the life-
time of the neutron, is a long-standing puzzle [10, 11].
Briefly, the bottle technique, an inclusive measurement
of the neutron lifetime, yields τbottle = 879.6 ± 0.6 s,
which is discrepant at the 4σ level with the exclusive
measurement of the neutron lifetime via beam experi-
ments, τbeam = 888.0 ± 2.0 s [12]. In a recent paper
Fornal and Grinstein [13] made the intriguing suggestion
that new decay channels of the neutron, n, in particular

n→ χ+ γ, n→ χ+ e+e−, n→ χ+ φ, (1)

where χ is a dark matter fermion, φ is a dark matter bo-
son, and γ is a photon, could explain the shorter lifetime
in the bottle experiments. The amplitude for these pro-
cesses must be sufficiently large to allow a rate, Γ ∼ 10−5

s−1, to explain the bottle-beam anomaly.1

With this suggestion in mind we show that neutron
stars are powerful laboratories to test proposed dark
decays of baryons. The conversion of baryons to dark
fermions through processes of the form in Eq. (1) lead,
in the absence of strong self-interactions of the dark
fermions, χ, to a maximum neutron star mass much
smaller than observed masses. Thus the existence of neu-
tron stars with masses up to 2M� [16–18] allows us to
draw broad and generic conclusions about the type of
baryon number-violating dark interactions of the neu-
tron required for a Beyond the Standard Model (BSM)
explanation of the neutron lifetime puzzle.

The processes of Eq. (1) would convert a fraction of
the neutrons present into χs during the formation of a
neutron star. The χs would sit in the gravitational po-

1 This resolution to the neutron decay puzzle faces a number of
challenges. The n → χ + γ decay mode has been tested in a
recent experiment [14] that excluded all branching ratios that
could account for the lifetime anomaly. In addition, Ref. [15]
argues that recent measurements of the axial renormalization
constant, gA, likely point to a shorter Standard Model (SM)
lifetime of the neutron, more in line with the bottle results.

tential well of the neutron star, in thermodynamic equi-
librium with the normal neutron star matter,2 and form
a non-interacting Fermi gas, similar to a non-interacting
neutron gas. The basic physics is that, except near nu-
clear matter density, the interactions of neutrons with
the neutron star medium are effectively repulsive, and
thus the conversion of a neutron into a weakly interact-
ing dark matter particle is generally highly energetically
favored. Figure 1 shows the baryon chemical potential,
µb, vs. the baryon density, nb, in units of n0, the nuclear
matter saturation density, ' 0.16 fm−3, for the modern
quark-hadron crossover [QHC18(0.8,1.5)] neutron star
matter equation of state [20], for the ’stiffer’ Akmal-
Pandharipande-Ravenhall (APR) equation of state [21],
and for free neutrons.3 For given nb, the conversion of
neutrons to free fermions of equal mass would generally
gain of order hundreds of MeV per neutron.

The interactions (1) are phrased in terms of the neu-
tron instead of the quarks comprising the neutron. Thus
to describe the effects of these interactions on neutron
stars it is simplest to use the language of neutron de-
grees of freedom, although the calculations we present
are valid for more general baryon and quark degrees of
freedom. We calculate neutron star models in the pres-

2 The 105 s time scale for n→ χ+Y needed to resolve the neutron
lifetime puzzle is very short compared to inferred neutron star
ages, which range from hundreds to billions of years [19].

3 The QHC18 equations of state take quark degrees of freedom
in the interior into account consistently and allow 2M� neutron
stars. They are in striking agreement with the equation of state
constraints deduced by LIGO from the recent binary neutron
star merger [22]. The ingredients of these equations of state are
effectively: i) the APR equation of state for nuclear matter in
beta equilibrium, up to baryon density ' 2n0; ii) above baryon
density ∼ 5n0 a quark matter equation of state with a repulsive
contact interaction between the quarks with coupling constant
gv , equal here to 0.8G, and an effective BCS pairing interaction
between quarks with coupling constant H, equal here to 1.5G,
where G is the Nambu–Jona-Lasinio quark-quark coupling con-
stant; and iii) between the two extremes a smooth interpolation
of P vs. µb.
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ence of a generic interaction n → χ + Y , where Y is a
possibly multi-particle final state with zero net chemical
potential, µY = 0. Such interactions include the highly
pertinent SM final states Y = γ, e+e− as well as a broad
range of BSM possibilities such as a dark photon. We
assume for simplicity that the χ have spin 1/2.
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FIG. 1: Baryon (or neutron) chemical potential (including rest
mass) in MeV vs. the baryon density in units of nuclear matter
density, n0 = 0.16 fm−3, for the quark-hadron crossover equation
of state, QHC18(0.8,1.5) [20], for the stiffer APR equation of state
[21] and for non-interacting (free) neutrons. This figure shows how
much more expensive it would be for a baryon to remain at high
densities instead of turning into a weakly interacting dark matter
particle with mχ < µb.

In a neutron star with non-interacting χs, a sea of
neutrons, with Fermi momentum kb and density nb ≡
k3b/3π

2, would be in equilibrium with a sea of χ’s with
Fermi momentum kχ, density nχ = k3χ/3π

2, and chem-

ical potential µ2
χ =

√
m2
χ + k2χ. In equilibrium the χ’s

must have the same chemical potential, µb as that of the
baryons. To calculate the relative population of baryons
and χ we write kχ = ykb where y is itself a function
of kb. Although we use relativistic kinematics in the
numerical results presented below, we provide here the
non-relativistic limits to illustrate the physics most sim-
ply. Non-relativistically, chemical equilibrium leads to

y2 =
mχ (µb −mχ)

mn (µ0
n −mn)

, µb ≥ mχ. (2)

where µ0
n is the chemical potential of a free neutron gas

at density k3b/3π
2. We take for simplicity mχ = mn in

addressing the Fornal and Grinstein proposition. Given
that µb > mn at high densities we also show results for
a range of mχ > mn.

The total density of fermions is nF = nb+nχ = nb(1+
y3). For mχ = mn, we find that at total fermion density
nF ' n0 (nuclear matter saturation density), about 40%
of the fermions are χs, while at nF ' 4n0 the number of
χ and normal baryons are approximately equal, and at
nF = 10n0, ∼ 70% of the fermions are χs (see Fig. 2). If
the baryon chemical potential is below mχ, no χ can be
present and y ≡ 0.
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FIG. 2: Number density of dark matter fermions χ in chemical
equilibrium as a function of the total number of fermions, nF =
nb + nχ, in units of nuclear matter density, n0, for the QHC18
neutron star equation of state and for different dark matter fermion
masses: mχ = mn, mχ = 1.2mn, mχ = 1.5mn, and mχ = 2mn.
(The small flattening in the mχ = mn curve reflects the onset of
pion condensation in the APR equation of state [21].)

The χs contribute only their rest mass and kinetic en-
ergy to the total energy density, ε, of the matter; again
non-relativistically for illustration

ε = εb(nb) +mχnby
3 +

k5b
10π2mχ

y5, (3)

while the total pressure is

P = Pb(nb) +
k5b

15π2mχ
y5, (4)

where εb is the energy density and Pb the pressure of
normal matter. The χs increase the energy density more
than the pressure, and thus at high densities soften the
equation of state, and lower the maximum neutron star
mass.

Figure 3 shows the pressure, P (ε), calculated numer-
ically for baryons and χ’s in chemical equilibrium, for
normal matter described by both the QHC18 and APR
equations of state, as well as for these two equations of
state without χ, and for free neutrons. The pressure of
the equilibrium baryon-χ mixture does not depend no-
ticeably on the baryon equation of state here. At high
densities, where the pressure is lowered to essentially that
of a free neutron gas, the matter is dominated by χs,
while at densities below 2n0, the QHC18 and APR equa-
tions of state are identical by construction. We show in
Fig. 4, the dependence of the total pressure of the coupled
system for different mχ; the pressure follows the normal
equation of state up to energy densities where χ’s are
first allowed kinematically and then flattens.

The resulting neutron star masses, found by integrat-
ing the Tolman-Oppenheimer-Volkov equation [23, 24],
are shown in Fig. 5 as a function of the central energy
density for QHC18 as well as for APR in equilibrium
with χs for mχ = mn (again the results are indistin-
guishable at the resolution of the figure), for APR and
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FIG. 3: The equation of state for baryons coupled to χs, with
mχ = mn, and for the QHC18(0.8,1.5), APR and free neutron
equations of state. As explained in the text, at the resolution of
this graph, the corresponding curves for baryons with the QHC18
and APR equations of state in equilibrium with χs are indistin-
guishable. Even though the APR equation of state is stiffer at
higher densities than QHC18, in chemical equilibrium the core of
the star would contain primarily dark fermions in either case. At
nuclear matter density, ε ' 150 MeV/fm3.
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FIG. 4: The QHC18(0.8,1.5) equation of state in chemical equi-
librium with dark matter fermions of different masses: mχ = mn,
mχ = 1.2mn, mχ = 1.5mn, and mχ = 2mn. One sees here the
dramatic softening induced by coupling to χs. For larger mχ, the
onset of the softening is pushed to higher ε where it becomes ener-
getically favorable for a baryon to be converted to a χ.

QHC18 alone, and for free neutrons. The maximum neu-
tron star mass for the coupled matter is reduced from
∼ 2M� to ∼ 0.7M�, even below that for free neutrons;
this reduction is a consequence of the QHC18 equation
of state at low densities being softer than that of free
neutrons (Fig. 3). In Fig. 6 we show, for QHC18 cou-
pled to χ’s, neutron star masses for a range of mχ; in
Fig. 7, we show the mass-radius relations for the same
range of mχ. As mχ increases to 2mn, the impact on the
neutron star composition is negligible: there exist rela-
tively few χ’s and only at high densities. We conclude
that the assumed coupling of baryons to non-interacting
dark matter lowers the maximum neutron star mass to
well below that observed, and thus the proposed exotic
neutron decay mode is physically untenable unless the

dark matter equation of state satisfies very demanding
conditions, which we now discuss.
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FIG. 5: Neutron star masses vs. central density for baryons
with the QHC18(0.8,1.5) equation of state in chemical equilibrium
with χs having mχ = mn, and for the QHC18(0.8,1.5), APR, and
free neutron equations of state. This figure shows how coupling of
baryons to weakly interacting dark matter precludes explanation
of the existence of neutron stars from 1-2M�. At the resolution of
this graph, the corresponding curves for baryons with the QHC18
and APR equations of state in equilibrium with χs are indistin-
guishable.
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FIG. 6: Neutron star mass as a function of the central en-
ergy density with baryons in chemical equilibrium with dark mat-
ter fermions for different masses: mχ = mn, mχ = 1.2mn, and
mχ = 1.5mn. At larger mχ, conversion of baryons to dark mat-
ter is kinematically forbidden at lower densities, as shown in Fig.
2. Therefore, the neutron star mass shown here is independent
of the dark matter mass for sufficiently low central density. For
mχ = 2mn, the neutron star mass is essentially unaffected by the
small number of χs present for this range of central densities.

In order to increase the mass of neutron stars with
normal matter coupled to dark matter, the dark matter
fermions would not only have to be strongly interact-
ing among themselves, but the self-interactions would be
strongly constrained. Sizeable short-range dark matter
self-interactions are not impossible; the most stringent
astrophysical constraint comes from the Bullet Cluster,
which allows cross-sections σχ . (66/GeV)2 ∼ 10−24cm2

– on the scale of low energy baryonic cross sections – for
a particle with the mass of a neutron [25]. As a first
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FIG. 7: Neutron star mass as a function of the neutron star
radius for baryons with the QHC18 equation of state in chemical
equilibrium with χs of mass mχ = mn, mχ = 1.2mn, and mχ =
1.5mn. Again, the QHC18 curves with no dark matter and for
mχ = 2mn are essentially indistinguishable for this range of central
energy densities.

scenario one might imagine that dark matter fermions
exactly mirror normal matter. Then the energy den-
sity and pressure in a neutron star in equilibrium with
dark matter, with total fermion density, 2nF , would be
just twice that of the normal matter alone at density
nF , leading to a reduction in the maximum neutron star
mass by

√
2 (see Appendix A of Ref. [20]), that is, a

maximum mass of order 1.4M�, below observations. A
second possibility could be that the dark matter has suf-
ficiently repulsive interactions to overcome the softening
of the equation of state due to adding a second species,
thus accommodating 2M� neutron stars. Such a sce-
nario makes very specific demands on the dark matter
self-interaction strength as a function of the dark mat-
ter fermion density. Construction of models that would
yield the requisite self-interacting dark matter is left as
a problem for the future.

If the neutron decays to multiple dark states, e.g.,
n → χ + φ, where φ is a dark boson, our results hold
when the φ do not carry a conserved charge and thus their
chemical potential, µφ must vanish; if φ is a dark photon
γD, for instance, obtaining 2M� neutron stars would still
require χs to have strong repulsive self-interactions. Re-
quiring the dark states to carry a conserved charge, and
thus be part of a multi-particle dark sector, would allow
µφ 6= 0 and possibly permit a resolution of the neutron
lifetime puzzle as well as the construction of dark mat-
ter equations of state consistent with 2M� neutron stars.
Such a scenario, an alternative to the dark matter sector
having strong repulsive interactions, would also require
some non-minimal multi-state dark sector.

Beyond the immediate motivation provided by the neu-
tron lifetime puzzle, the present study demonstrates that
neutron stars are powerful probes of baryon-violating n-
χ couplings for χs as heavy as 2 GeV. We stress that the
present analysis considers only baryon number violating
couplings, in contrast to analyses of dark matter cap-
ture by neutron stars which focus on elastic scattering of
dark matter on baryons [26–38]. The class of interactions
we consider here can easily have elastic baryon-χ cross-
sections orders of magnitude below what can be tested
with gravitational capture; in the regime mχ . mn rele-
vant for the neutron lifetime puzzle the bottle measure-
ments stringently constrain the relevant coupling (im-
plying σnχ ∼ 10−54 cm2). Indeed, our results apply
for all couplings large enough for baryon-χ conversion
to reach equilibrium within the neutron star; even con-
version times of years, many orders of magnitude longer
than that required to address the neutron lifetime puzzle,
would lead to equilibrium.

Non-zero strangeness in the quark matter phase in the
interior of neutron stars would also allow analogous tests
of a baryon-number-violating coupling of χ to hyperons.
As strange baryons are far less abundant in nature than
neutrons, a χ-hyperon coupling would be far more chal-
lenging to test in the lab, making neutron stars even more
valuable probes.

As we have shown, neutron stars can be used to con-
strain dark matter models in ways that are simply inac-
cessible to other probes, whether cosmological or terres-
trial, and thus provide a vital new window onto GeV-
scale dark sectors.

Note added. Since this paper was initially posted, several
related works have appeared. Notably, Refs. [39, 40]
reach very similar conclusions to our own, while Ref. [41]
describes a search for neutron decays into χ + e+e−,
with negative results; and Ref. [42] builds an equation of
state for self-interacting dark matter within a neutron
star.
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