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Abstract

We consider two non-canonical scalar fields (tachyon and DBI) with E-model type of the potential.
We study cosmological inflation in these models to find possible a-attractors. We show that similar to
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index in small o limit which is just a function of the e-folds number. However, the value of ns in DBI
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1 Introduction

It is now accepted that the physics of the early universe can be explained by a testable paradigm named
cosmological inflation. The simplest realization of the inflation is a model with a canonically-normalized
single scalar field which its nearly flat potential dominates the energy density of the universe. In this model,
the dominant mode of the primordial density perturbations (seeded by the quantum fluctuations of the
scalar field during the inflation era) is predicted to be almost adiabatic and scale invariant and has Gaussian
distribution [Il 2] B, [, 5, 6] [7, 8, O]. However, there is a possibility that inflation may be driven by a
single field with non-canonical kinetic energy. Usually, the non-canonical inflation models are referred to as
“k-inflation”. These models predict that the primordial density perturbations are somehow scale dependent
(which is mildly supported by the Planck2015 released data [I0] [11]) and have non-Gaussian distribution.
Among the k-inflation models, we can mention the DBI and Tachyonic models. In the DBI (Dirac-Born-
Infeld) model, the D3 brane moves in a (usually AdSs) throat region of a warped compactified space and
its radial coordinate identifies the inflaton field [12] [I3]. In this model the action involves a non-canonical
kinetic term. Also there is a function of the scalar field besides the potential in the action. This function
is related to the local geometry of the compact manifold through it the D3 brane traverses. Tachyon field
also, is associated to the D-branes in string theory [I4} [I5] [I6]. This field can be responsible for early time
inflation in the history of the Universe, as well as, the late time accelerating expansion. Authors have studied
some aspects of the tachyon and DBI models in Refs. [17, [I8] 19, 20} 2T], 22, 23], 24] 25| 26} 27]

The “cosmological attractor” in inflation models is the idea which has attracted much attention recently.
There are several models incorporating the idea of cosmological attractors which among them we refer to
conformal attractors [28] 29] and a-attractors models [30 B1], B2 [33]. In [34] 35} 36, 37, B8] [39] 40] 41] one
can find more details on the issue of a-attractors. The important issue in the conformal attractor model
is that in the large e-folds number (N), it has the universal prediction as ny = 1 — % and r = 33. The
a-attractor models have two types called E-model and T-model according to the adopted potentials. The
potential characterizing the E-model is given by

2K2 (120
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and the potential characterizing the T-model is defined as
V = Vj tanh2" (“—d)) , 2)
V6o

with Vj, n and « being some free parameters. It is shown that a canonical single field a-attractor model, in
the small « limit predicts ng = 1— % and r = 1}\2,—‘2’ As we see, in small « and large N limit, the prediction of
the scalar spectral index in the a-attractor models is the same as the prediction in the conformal attractor
models. In this limit, the tensor-to-scalar ratio in a-attractor models is a function of «, whereas, it is
independent of « in the conformal attractor models.

In the study of cosmological inflation, the reheating process after the end of inflation is an important
issue. The universe inflates as long as the potential is sufficiently flat and the slow-roll conditions n,e < 1
are satisfied. The inflaton rolls into the minimum of its potential, then as soon as the slow-roll conditions
break down and inflation ends it starts to oscillate about the minimum. According to the simple canonical
reheating scenario, when inflaton oscillates, it loses energy and by passing the processes which include
the physics of particle creation and non-equilibrium phenomena, decays into the plasma of the relativistic
particles corresponding to the radiation-dominated Universe [42] 43 [44]. Nevertheless, some authors have
proposed other complicated scenarios of reheating including the non-perturbative processes. The instant
preheating [45], the parametric resonance decay [46], 47, 48] and tachyonic instability [49] (0L 5T 62 (3] 54] are
the examples among the non-perturbative reheating scenarios. Some important parameters, characterizing
the reheating epoch, are the e-folds number during reheating (N,;) and the reheating temperature (7T).1,).
Exploring these parameters during inflation models helps us to find some more constraints on the models



parameters [55] [56] 57, 58] 59, [60]. Another useful parameter to study the reheating phase is the effective
equation of state parameter during reheating (weyrs). The value of the effective equation of state parameter
for a massive inflaton can be —1 (if the potential dominates the energy density) and +1 (if the kinetic term
dominates the energy density). Regarding to this fact that the value of wess at the end of the inflation

epoch is —% and its value at the beginning of the radiation dominated universe is %, it seems logical to

assume the effective equation of state parameter during the reheating epoch in the r;fnge —% S wepp < %
The frequency of the oscillations of the massive inflaton is very larger than the expansion rate at the initial
epoch of the reheating, leading to the vanishing averaged effective pressure. In this respect, at the beginning
of the reheating epoch the effective equation of state parameter can be considered to be zero, effectively
corresponding to the equation of state parameter of the dust matter. After that, when the inflaton oscillates
and decays into other particles, the value of wers increases with time and reaches %, when the radiation
dominated era begins. In this regard, this parameter also gives some constraints on the model’s parameters.
See also Ref. [61] for a review on reheating.

v

Figure 1: Evolution of the E-model type of potential with n =1 (cyan) and n = 2 (green). For all values of a, the
potential at large positive values of ¢ is nearly flat.

In this paper we consider two inflation models with non-canonical kinetic term: the Tachyon and DBI
models. As is clarified in Ref. [I3], f(¢) in DBI model is the warp factor of the AdS throat which for AdSs
throat it is equal to ¢—A4 Also, if we consider the AdSs; x X geometry, the potential of a DBI field would be
quartic. For an approximate AdS throat, there would be a massive scalar field with quadratic potential. On
the other hand, in Ref. [62] it has been shown that with f ~ e*? and V ~ e~*¢ (with A to be a constant)
we can get the Lagrangian of the DBI model. Also, the authors of Ref. [63] have obtained the mentioned
functions in the DBI inflation model. In Ref. [I6] it has been demonstrated that potential of the tachyon
model is proportional to e™#?, where 3 is a constant. Also, some authors have studied tachyon cosmology
with power law potential (for instance [20, 2T}, [64]) and inverse power law potential [65]. Our motivation
in this work was two-folds: firstly we have tried to combine, two successful ingredients of inflationary
model-building, that is, non-canonical kinetic terms that facilitate the slow-roll inflation and alpha-attractor
potentials that provide robust predictions with the hope to shed more light on these issues. Secondly, this
model provides a framework that some of the previous studies are special subclass of the solutions presented
here. In this regard, by adopting an E-model potential in both the tachyon and DBI model (and also E-
model f~!(¢) in the DBI model), we are able to cover the mentioned types of the potentials. For instance,
in large « limit, we have power law inflation. In small o limit (but not e — 0) we get the inverse exponential
potential. We have similar situation for f(¢). In large o limit, we have f=1(¢) ~ ¢*". In small « limit



we reach an exponential type of f(¢). In this regard, to study cosmological dynamics of tachyon and DBI
models we adopt E-model type of potential with n =1 and n = 2. As figure 1 shows, this potential at large
positive values of the scalar field is nearly flat. By assuming this potential, in section II we obtain the slow
roll parameters, the scalar spectral index and the tensor-to-scalar ratio in both non-canonical models. We
show that the tachyon inflation model, at large IV and small «, predicts the same scalar spectral index and
tensor-to-scalar ratio as the ones predicted in the canonical single field inflation. However, the DBI model
predicts the scalar spectral index somewhat different. We also study the evolution of the tensor-to-scalar
ratio versus the scalar spectral index in the background of Planck2015 TT, TE, EE+lowP data. As we shall
see, the DBI model with E-model potential and for both n = 1 and n = 2, does not lie within the 95%
confidence region of the ns — r plane. In section III, we study the reheating phase in the tachyon and DBI
models. We obtain the e-folds number, temperature and effective equation of state during reheating. By
comparing with observational data, we constraint the model’s parameters.

2 Inflation

The general action for an inflation model driven by an arbitrary single scalar field is given by

/d4x\/7

S+ P(X, ¢)] (3)

where, R is the Ricci scalar and the kinetic energy of the scalar field (¢) is defined as X = —%8,,(1) 0" ¢. To
study the cosmological dynamics, the term P (X, ¢) should be specified. This term for the tachyon (tch) and
DBI models is defined as

Ptch(Xa ¢) = _V(¢) v1-— 2X7 (4)

Ppp1(X, ) = )1 —2f(¢ (5)

respectively. To proceed, we consider each model separately and Study its dynamics.

and

2.1 Inflation in the tachyon model with E-model potential

In a spatially flat FRW metric, the action with P(X, ¢) defined in leads to the following Friedmann
equation
H? = A

3 /17&27

where a dot denotes cosmic time derivative of the parameter. By varying the action , by P(X, ¢) defined
in , with respect to the scalar field, the following equation of motion is obtained

(6)

¢ v
17¢2+3H¢+7 0, (7)

where a prime shows derivative with respect to the tachyon field. To have inflation phase, the slow roll
parameters, defined as € = —% and n = _FE7 should satisfy the conditions ¢ < 1 and 7 < 1 (meaning

that ¢? < 1 and ¢ < 3H¢) In this regard we obtain

1 V/Z
and
1 V// 1 V/2
=2 {v - 21/3] ’



which in the inflationary era are much smaller than unity and when one of them reaches unity the inflation
ends. By using the definition of the e-folds number during inflation as

te
N= / Hat, (10)
the

with ¢, and t. being the time of the horizon crossing and end of inflation respectively, we get the following
expression

¢e _K/2V2
Ng/q5 o (11)
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To obtain the perturbation parameters (the scalar spectral index and tensor-to-scalar ratio), we use the
power spectrum defined as

H2
s = 59 3 12
A, 82 W3 (12)
where .
v
Ws = ¢ (13)

co=1\/1—¢2. (14)

The parameters A, and W; are evaluated at the horizon crossing time. The scalar spectral index is obtained
by using the power spectrum as follows

and the sound speed is given by

dln A
"=k R (15)
which gives
ns =1—6e+2n. (16)
Also, the tensor-to-scalar ratio in this setup is given by
r = 16¢4€. (17)

To see more details about obtaining equations — see Refs. [20] 66}, 67, 68].
Now, we study the tachyon model with E-model potential defined in . First, we seek for the scalar
spectral index and tensor-to-scalar ratio in the large N and small « limit. In this limit, we can rewrite the
E-model potential as
V=T1p[1-2 2
- fi- s (/2]

With this potential, the slow-roll parameter e takes the following form

2
e_g\/%d)
4 2

e=gn a . (19)

3
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The value of e at horizon crossing is obtained by setting ¢ = ¢p., where ¢p. is found from equation (L1
(in which we assume ¢. < ¢p.). By substituting the obtained ¢p. and considering that the expression
NG
3

(18)

2
e =% in the considered limit is very small, we obtain

3«



The above equation by using the definition leads to

12c
re, (21)
which is exactly the same as the predicted tensor-to-scalar ratio in the large N and small « limit obtained
in the canonical single field inflation. Similarly, for the scalar spectral index, by using ¢p. and equation
we find

6« 2
ng=1-— . pape i PR (22)
N (1-5%) N(O-3%)
The above expression, in the large N and small « limit becomes
2
s=1——. 23
na=1- = (23

In this limit, the scalar spectral index in tachyon model is also the same as the one predicted in the canonical
scalar field model.
On the other hand, if we consider o — oo, the E-model potential tends to ¢>" leading to

2n?
€ = m 5 (24)
and
n(2n+1)

To numerical study of the perturbation parameters » and ns and comparing them with observational data,
we use equations (|17)) (where € is given by equation with potential ) and . The results are shown in
figure 2. As this figure shows, for both n = 1 and n = 2 cases, the scalar spectral index and tensor-to-scalar
ratio in & — 0 limit, tend to ns = 0.96 and r = 0 (for N = 50) and ns = 0.966 and r = 0 (for N = 60). In
large « limit, the model reaches the tachyon inflation with power law potential. For n = 1, in the large «
limit, we get ¢? tachyon inflation and for n = 2, we get ¢* tachyon inflation. Note that, the tachyon model
with E-model potential (and with both n = 1,2 and N = 50,60) for all values of « is consistent with the
Planck2015 TT, TE, EE4lowP data.

2.2 Inflation in the DBI model with E-model potential

Now, we study inflation in the DBI model. The action with P(X,¢) defined in , gives the following
Friedmann equation

H2”2lfl+v (26)

A RVARE

Varying the action , by P(X, ¢) defined in , with respect to ¢ leads to the following equation of motion

¢ 3O I 38 -2
ﬂ—ww+u—m%+v_f4M—M%l 0

Inflation occurs when the conditions € < 1 and n < 1 (corresponding to f¢2 < 1 and qb < 3H (;5) are
satisfied, where
2V/2 V/ / /2
€= / 2~ / 7 T / 2 (28)
262 (Vf+1) RVI+1) 2f2k2(Vf+1)
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Figure 2: Tensor-to-scalar ratio versus the scalar spectral index for a tachyon model with the E-model potential.
The smaller blue stars are corresponding to the tachyon inflation with ¢>™ potential and N = 50 and the larger blue
stars are corresponding to the tachyon inflation with ¢>™ potential and N = 60.

and )
n__ o f" r_f
n:_K—Q (2V 2f2)_(v fz) (29)
(V41 V+h )
The e-folds number during inflation in DBI model is given by
e m(V A f7)
N ~ ———=do. 30
o VAT .
The power spectrum in this model is given by equation with new definition of W and c¢; as
12
Ws = ¢ (31)

2 (1 - f¢'>2>3/2H2 7

s =1\/1—f¢2. (32)

The scalar spectral index and the tensor-to-scalar ratio are given by equations and with the slow-roll

parameters defined in and .
Similar to the tachyon model, we study the DBI model with E-model potential defined in and

and

27'%2(;3)] —2n '

f=tolt—ewp (/5 (33)

To explore the scalar spectral index and tensor-to-scalar ratio in large N and small « limit, we use the
potential and

2
F=f [1+2nexp(— %qs)}, (34)



which is written in this limit. With this potential, the slow-roll parameter ¢ in DBI model is given by the
following expression

4 1 5 _26s9 _4 Yoro VLT _2 V6ro 1 V6ro
e—goz ne 3 va |[4e 3 Va n~4+8e Ve n®+4+8ne 3 va +4+4ne 3 va 41| X
-2
_1V6rg _2 V6o
{(1+2ne 3R )(2716 3R 1)} . (35)

By obtaining ¢p. from equation 7 substituting in equation and considering that the expression
AL

_2
3

e Ve is very small, we get
3 «
€ = ZW 5 (36)
which by using equation gives
12a
r=m (37)

We see that, in large N and small « limit, the tensor-to-scalar ratio in DBI model is also the same as the
expression predicted for 7 in the canonical single scalar field model. The scalar spectral index in DBI model
takes the following form

-2
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where we have assumed f;° ! = V; for simplicity. We note that although the functions V(¢) and f(¢) are
independent, however, both functions are E-model (actually, the inverse of f(¢) is E-model). In the E-model
potential, the coefficient V; is an arbitrary constant. So, when we adopt the E-model for the inverse of f(¢),
the coefficient fj also would be an arbitrary parameter. In this regard, for simplicity, we adopt two constant
as fy 1 = V}. The above scalar spectral index in the large N and small o limit becomes

4

Here we see that in this limit, the scalar spectral index in DBI model is somewhat different from the tachyon
4

and canonical single field models in the sense that the second term is 5 (whereas in tachyon and canonical
single field model is ). In the a — 0 limit, € tends to zero and deviation of n, from the scale invariance
comes from the value of 1 in this limit (see equation ) In a tachyon model (and also canonical scalar
field) 1 is expressed in terms of the potential V(¢). However, in DBI model, n is function of both V(¢)
and f(¢) (see Eq. (29)) and both these functions contribute in deviation of the scalar spectral index from
unity. Considering that these two functions in @ — 0 limit are in the same order, the deviation would be
twice. The expression ny = 1 — = has been obtained by the authors of Ref. [64] in a different manner. By a
field redefinition and adopting the quartic potential, they obtained this expression for ¢? < 1. However, in
the current work, we don’t imply ¢? < 1 limit. We obtain ny = 1 — % by adopting E-model functions and
considering o — 0 limit.

Note that in o — oo limit, the E-model potential tends to $?" and we have

8n?

ot op "

€ =



and
48 n? 8n
2 242
w2 (2241) 62 " ¢

ng=1-— (41)

We have performed a numerical study on the perturbation parameters r and n, and the results are shown
in figure 3. In this regard, we have used equations and with the slow-roll parameters defined in
equations and . As figure shows, the DBI model with E-model potential in @ — oo limit tends to the
DBI model with ¢?" potential. In a — 0 limit we have (ns = 0.92,r = 0) for N = 50 and (ns = 0.933,7 = 0)
for N = 60. The DBI model with E-model potential for both n = 1 and n = 2, typically does not lie within
the 95% confidence region of the Planck2015 TT, TE, EE+lowP r —ng result. Nevertheless, the values of the
scalar spectral index in the DBI model with n = 1 and N = 60, in large « limit, are in n, = 0.9652 4+ 0.0047
range (this range is released by Planck2015 TT, TE, EE+ lowP data).

-+ ¢ +n=1, N=§0 — n=1_ N=50 — — n=2, N=60
—:=n=2, N=50

Figure 3: Tensor-to-scalar ratio versus the spectral index for a DBI model with the E-model potential. The smaller
blue star is corresponding to DBI inflation with ¢ potential and N = 50 while the larger blue star is corresponding
to DBI inflation with ¢*" potential and N = 60.

3 Reheating

When the inflation phase terminates, the process of reheating take places to reheat the universe for subsequent
evolution. By studying this process in the aforementioned models, we can find some additional constraints
on the model’s parameter space. To this end, we obtain some expressions for N, and T, (where subscript
rh stands for reheating) in terms of the scalar spectral index based on the strategy presented in Refs. [55]

(56, 57, 58] 59]. The following expression

Nj. = In < Qe > , (42)

Ghe

defines the e-folds number between the time of the horizon crossing of the physical scales and the end of the
inflationary expansion. In this definition, a. is the scale factor at the end of the inflation and ay, is the value
of the scale factor at the horizon crossing. During the reheating epoch we have the relation p ~ a=3(1+wess)
for the energy density, in which weyy is the effective equation of state of the dominant energy density in the



universe. In this respect, the e-folds number of the reheating era in terms of the energy density and effective
equation of state is written as

(793 1 Prh
N,, =In =————  In , 43
" ( Qe > 3(1 4 wery) ( Pe ) )
By setting the value of k& at horizon crossing by kj., we can write
khc ) < Qe Grp Ao khc )
0=1In =In — |, 44
(athhc Ghe Qe Grh GoHpe ( )

where ag is the current value of the scale factor. From equations , and we obtain

k
Nm—!—Nm—!—ln( he )+1n<a0>:0. (45)
aoHpe Qrh

In the next step, it is useful to obtain an expression for “ in terms of temperature and density. In this
regard, we use the following expression
7r2.grh
30
which gives the relation between energy density and temperature in reheating era [57, [59]. The parameter
grp in equation represents the effective number of the relativistic species at the reheating epoch. On
the other hand, from the conservation of the entropy we have [57, [59]

ao :< 43 )‘én% (47)

Qrp, 11g,p T’

Prh = Tfh ’ (46)

where Ty denotes the current temperature of the universe. By using equation and we obtain the

following expression
43 \7F 20,0\
3
0 _ ! Tgrh . (18)
Qrh 11g.p 30prh

To proceed further and to obtain some explicit expressions for N,, and T,,, we should specify the
model under consideration. In this sense, in what follows we study non-canonical tachyon and DBI models
separately.

3.1 Reheating in the tachyon model
In a tachyon model, we can write the energy density in the following form

\%
p=—. (49)
1—%6

The energy density at the end of inflation era is obtained by setting € = 1 as follows
Pe = \/§Ve . (50)
Now, by using equations and we obtain

Prh = V3V, exp [—Bth(l—i—weff)] (51)

10



From equations and we get

ag 1 43 1 T2Grn 1 3
1 — () -Z1 —InTp+ -1 — 2N (1 . P
“(am) 3 “(11%) 1 n<30pm nTh+ 31n (VBVL) = TNon(1+ wyy) (52)

By using equation , we can find Hy.. Then, from equations , and , we obtain the following
expression for the e-folds number during reheating

4 1 4 1 11
th:l_th_ln(khc)_ln(O)_m( arn)

1-— 3weff aplh 4 7T29rh 3 43

+% In (87T2ASWSC§) —~In (\f V) (53)

The temperature during reheating is obtained from equations , and as follows

Trh—< 30 )i[\/ﬁ%rexp{—i rh(1+weff):|~ (54)

T=Grh
To perform a numerical study, we should ﬁrstly rewrite equations (53)) and (54]) in terms of the scalar spectral
index. In this regard, we use equation (1) to rewrite equations (53] ) and (54)) in terms of the value of the

scalar field at horizon crossing (¢p.)- Then7 by considering that ¢p. is related to ns (look at equations ,
, @D and )7 we can write N, and T,., in terms of ng and then study the reheating phase numerically.
The results are shown in figures 4, 5 and 6. In figure 4, we have plotted the ranges of N,;, and wer¢ which
lead to the observationally viable values of the scalar spectral index. We have considered both n = 1 and
n = 2 cases for & = 0.1 and o« — oco. As figure 4 shows, in all considered cases and with all assumed values
of wery, the instantaneous reheating (corresponding to N, = 0, the point in which all curves converge) is
favored by Planck2015 observational data, except for n = 2 and o — oo. The situation is illustrated in
figure 5 more explicitly. In this figure we have plotted the e-folds number during reheating versus the scalar
spectral index for some sample values of the effective equation of state. Figure 6 shows the temperature
during reheating versus the scalar spectral index.

We note that, in an inflation model with a canonical scalar field, the e-folds number and temperature
during reheating are defined as equations and . However, the definitions of some parameters such
as Npp, As and W are different in the Canonical and non-canonical models. In the tachyon model, these
parameters are glven by equatlons , and . These parameters in a canonical model are defined

as N ~ — ¢: Ydo, A, = 87r2W and Wy = 59. These definitions cause the different dependence of N,

and Ty, to ¢ (or d)hc) and therefore to ng. For mbtance, we have the following expression in the canonical
model [59]

3a 252 212 2K2
Npe = —— g0 be FabPhe _ Il 55
e =~ [ ‘ 2 (6o b1 >] 65)

The corresponding parameter in the tachyon model is obtained as (see equation )

3k? 3a 3 I E I P I
Nhe = == Vo\/ 5.3 (fe — Pne) — 3 Voo <e R A
9 x2 x2 3 2 2
+1V0a (e_ e _ oV ES ¢hc> _ ZVOQ (e e _ oV ET ‘bhc) ) (56)

As we can see, in the canonical model there are terms which are linear and exponential in ¢. However, in
the tachyon model, there are also some terms which contain the inverse exponential of ¢. Such expressions
make the numerical results of two model different. Let’s consider the case with n = 1 and o = 0.1. With

11



these choices and by adopting wers = —%, the observational constraint on N, for the canonical model is as
N, < 4 (see [59]), while, the corresponding constraint for the tachyon model is as N,; < 26. By adopting
werf = 0, we have NV, < 8 for the canonical model (9], and N, < 52 for the tachyon model. These mean
that, in the non-canonical tachyon model, the reheating phase can last longer than the reheating in the
canonical model. We can also compare the temperature during reheating in two models. For wyf = —% in
the canonical model, we have log, (&) > 14.3 [59] and in the tachyon model we have log;, (£2-) > 0.9.
If we consider the case with wess = 0, for the canonical model we have logy, ( gg’{,) > 12.8 [59] and for the
tachyon model there is no constraint on the temperature and for any temperature we get the observationally
viable ng. Here also, we see that in a non canonical tachyon model the larger range of the temperature is
corresponding to the observational viable values of n.
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Figure 4: The ranges of the parameters N, and wess to have observationally viable values of the scalar spectral
index for a tachyon model with E-model potential. The left panel corresponds to @ =0.1 and the right one is for
a — oo. Note that in the left panel, the yellow region is bounded by solid lines and the red region is bounded by
the dashed lines. The orange overlap region is the range in which both n = 1 and n = 2 cases are consistent with
observational data. In the right panel, the magenta region is bounded by solid lines and the green region is bounded
with dashed lines and is actually the overlap region in this case.
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Figure 5: E-folds number during reheating epoch versus the scalar spectral index in a tachyon model with E-model
potential. The dashed lines correspond to wefs = —3, the dashed-dotted lines correspond to wess = 0 and the solid
lines correspond to wers = 1. The green region shows the values of n, released by Planck2015 experiment.
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Figure 6: Temperature during reheating epoch versus the scalar spectral index in a tachyon model with E-model
potential. The dashed lines correspond to weff = —3, the dashed-dotted lines correspond to weysy = 0 and the solid
lines correspond to wefy = 1. The orange region demonstrates the temperatures below the electroweak scale, T' < 100

GeV and the red region shows the temperatures below the big bang nucleosynthesis scale, T' < 10 MeV.

3.2 Reheating in the DBI model

The energy density in the DBI model can be written as follows

—1y/—1
p=11+ IV V.
L+ 2e(1+ fV)

By setting € = 1, we obtain

—lv—l
pe:<1+ f've )
1+ 2(1+ fVe)

The energy density during reheating era is obtained from equations and as

feve!

€

Prh = (1 +
L+ 2(1+ £ V0)

Now, equations and give

1 4 1 2 1 “ty ot
1H<a0>:—§11’1<113 )—Zln(goﬁ>—lnTo+Zln <1+ fe ‘/e )‘/e
Qrh 9rh Prh 14+ %(1+feVe)

3
~2 rn(1+ wepr) -

) V. X exp [— 3N,x(1 —i—weff)].

From equations , and we obtain

4 kney 1./ 40 1 lgyy | 1 )
Non = | = Noe = In (22 ) = S (5 —) = 5l (=22) + S In (8724,
g 1—3%”[ he =W\ aoTy/) ~ 4 n(wzgm> gl g ) Tl (B AW

(L))
4 1+ 2(1+ f.V2)
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Also, from equations ([43), and we get

30 \7 -1y 3
T, — (2) <1 n fe Ve ) Vo| xexp [— ZNTh(l +werf)| - (62)
T grh L4+ 2(1+ feVe)

By rewriting the equations and in terms of the scalar spectral index (similar to what we have
done in the tachyon model), we can perform numerical analysis in this model. Note that since the DBI model
with E-model potential for n = 2 is not consistent with the observational data, we don’t study reheating in
this case. However, in the n = 1 case, the scalar spectral index is consistent with observation (although r is
not), so we explore reheating in this case. Actually, the observationally viable values of the scalar spectral
index can set some constraints on the reheating parameters in DBI model. We remember, for instance,
that in a two-field inflation model, one field is responsible for inflation and reheating and the other one is
important in perturbations. If we consider DBI as a field responsible for inflation and reheating and not
for perturbations in a two-field model, the value of the tensor-to-scalar ratio no matters. In this regard,
we think it makes sense to explore the reheating phase for DBI model to see its cosmological consequences.
The results are shown in figures 7, 8 and 9. In figure 7 we have plotted the region of the e-folds number
during reheating and the effective equation of state for which the scalar spectral index in a DBI model with
E-model potential (for n = 1) is consistent with Planck2015 observational data. As this figure shows, with
a = 0.1 and n = 1, the instantaneous reheating is disfavored by Planck2015 data for all values of weyys
(between —1 and +1). However, with @ — oo and n = 1, for all values of the effective equation of state
parameter (varying between —1 and +1) the instantaneous reheating is favored by observational data. In
fact, these results confirm the ones obtained in section in the sense that the scalar spectral index (and
therefore the e-folds number and temperature during reheating) in large « limit is observationally viable.
These situations are clarified also in figure 8. In figure 9 we have plotted the temperature during reheating
versus the scalar spectral index.

n, = 0.9652 + 0.0047
el ]

n, = 0.9652

L¥00°0 +TE96°0 — "M

Il —— — ——— —— e ]

T
-1 =03 U 0.3 1

[CJro=1.e=0.10n=1.c = m|

Figure 7: The ranges of the parameters N,, and w, ff which lead to the observationally viable values of the scalar
spectral index for a DBI model with E-model potential.

Note that, with wefr = —%, by repeating the analysis performed to obtain equations , ,
and we cannot obtain analytical closed expressions for number of e-folds and temperature. However, a
vertical line in the plots can be a curve for wefy = —% which crosses the instantaneous reheating point [56} [57].
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Figure 8: E-folds number during reheating versus the scalar spectral index in a DBI model with E-model potential.
The dashed lines correspond to weyy = —3, the dashed-dotted lines correspond to wess = 0 and the solid lines
correspond to wesy = 1. The green region shows the values of ns released by the Planck2015 dataset.

4 Summary and Discussion

In this paper, we have considered two non-canonical scalar field models: tachyon and DBI models. Motivated
by the a-attractor models, we have adopted the E-model potential to seek for a-attractor in these models.
We have calculated the slow-roll parameters, scalar spectral index and tensor-to-scalar ratio in both models.
The tachyon model with E-model potential in large N and small « limit predicts the value of the scalar
spectral index and tensor-to scalar ratio as ny = 1 — % and r = 11\2,—? These predicted parameters are exactly
the same as the ones predicted in the canonical single field model with E-model potential. In o — oo limit,
the tachyon model with E-model potential reaches the model with ¢ potential. We have also analyzed the
tachyon model numerically and compared the results with the Planck2015 TT, TE, EE+lowP observational
data. We have found that the tachyon model with E-model potential and with both N = 50 and N = 60
for all values of « is consistent with the observational data. The r — ng trajectories with a given value
of the e-folds number, for both n = 1 and n = 2 reaches a fixed point. This means that for « — 0 the
values of the scalar spectral index and tensor-to-scalar ratio are independent of n. The value of the scalar
spectral index and tensor-to-scalar ratio in small « limit, predicted by DBI model, are as ng =1 — % and
r = 1]\2,3‘ In DBI model, the calculated r is the same as the one predicted in tachyon and canonical scalar
field models. However, n, is somewhat different in the sense that the second term is %, a factor of 2 different
with the corresponding term in tachyon case. Numerical analysis of the DBI model and comparing with the
observational data shows that the DBI model with E-model potential does not lie within the 95% confidence
region of the ns — r plane released by Planck2015. But, in large « limit, the value of the scalar spectral
index is consistent with observation, though the value of the tensor-to-scalar ratio is not. For N = 50, the
value of ns in the DBI model with o — oo is consistent with Planck2015 TT, TE, EE4+lowP observational
data. For N = 60, the value of n, in the DBI model with o > 10% is consistent with the observational data.

The reheating era after inflation epoch also has been studied in this paper. For both treated models,
we have obtained some expressions for the e-folds number and temperature during the reheating era which
give some additional constraints on the model’s parameters space. We have studied the parameters N,
T,n and we s numerically and the results have been shown in figures. By considering the values of the scalar
spectral index, allowed by Planck2015 TT, TE, EE+lowP data, we have plotted the regions of NV, and wesy
which are observationally viable. For tachyon model, we have adopted both n = 1 and n = 2 with both
a = 0.1 and & — co. Our numerical analysis shows that, for n = 1 with both & = 0.1 and o« — oo and for
n = 2 with o = 0.1, the instantaneous reheating is favored by Planck2015 data. For n = 2 and a@ — o0,
the instantaneous reheating is disfavored by the observational data. We have obtained some constraints
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Figure 9: Temperature during reheating versus the scalar spectral index in a DBI model with E-model potential.
The dashed lines correspond to weyy = —3, the dashed-dotted lines correspond to wess = 0 and the solid lines
correspond to wefs = 1. The orange region demonstrates the temperatures below the electroweak scale, ' < 100
GeV and the red region shows the temperatures below the big bang nucleosynthesis scale, T' < 10 MeV.

by adopting these sample values of the parameters. The constraints on the tachyon model’s parameters,
obtained by studying N, and ng are summarized in table 1.

Studying the temperature during reheating era gives some more constraints. The constraints, which are
based on the observationally viable values of the scalar spectral index, are presented in table 1.

Regarding that the DBI model with E-model potential and with n = 2 is not consistent with the
observational data, we have performed the numerical analysis on the reheating issue with n = 1. The
numerical study shows that in this model with n = 1 and « = 0.1, the instantaneous reheating is disfavored
by Planck2015 data (note that, the scalar spectral index also in the case with n = 1 and o = 0.1 is disfavored
by observational data). However, with n = 1 and o — oo the instantaneous reheating is favored by the
observation. Studying N, and T, gives also some more constraints based on the viable values of ng, which
are summarized in table 2.

For the case with n = 1 and a = 0.1, there is no constraint on the reheating temperature.

It seems that if we consider a non-canonical scalar field with the E-model type of potential, the tachyon
model is more consistent with observational data than the DBI model. In the tachyon model, the values
of the scalar spectral index and tensor-to-scalar ratio for all values of o are consistent with Planck2015
data. Also, there is an attractor point in this model which its scalar spectral index is observationally viable.
Exploring the reheating era in this model shows also that this model is observationally viable.

Finally, we note that it would be interesting to think about if one consider some kinetic driven models,
like k-inflation [69], and consider the nonminimal coupling term and potential to be E-model. In this case
also, we probably get similar attractors. This is because the E-model function and potential in the small «
limit tend to a constant and so we probably get some attractors in this limit.
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