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A new leading contribution to neutrinoless double-beta decay
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Within the framework of chiral effective field theory we discuss the leading contributions to the
neutrinoless double-beta decay transition operator induced by light Majorana neutrinos. Based
on renormalization arguments in both dimensional regularization with minimal subtraction and a
coordinate-space cutoff scheme, we show the need to introduce a leading-order short-range operator,
missing in all current calculations. We discuss strategies to determine the finite part of the short-
range coupling by matching to lattice QCD or by relating it via chiral symmetry to isospin-breaking
observables in the two-nucleon sector. Finally, we speculate on the impact of this new contribution
on nuclear matrix elements of relevance to experiment.

Introduction: Neutrinoless double-beta decay
(0νββ) is the most sensitive laboratory probe of lepton
number violation (LNV). In 0νββ L is violated by two
units when two neutrons in a nucleus turn into two pro-
tons, with the emission of two electrons and no neutri-
nos. The observation of 0νββ would demonstrate that
neutrinos are Majorana fermions [1], shed light on the
mechanism of neutrino mass generation [2–4], and give
insight into leptogenesis scenarios for the generation of
the matter-antimatter asymmetry in the universe [5].

0νββ is actively being searched for in a number of
even-even nuclei for which single-β decay is energeti-
cally forbidden. Current experimental limits [6–15] on
the half-lives are at the level of T1/2 > 5.3 × 1025 y
for 76Ge [12] and T1/2 > 1.07 × 1026 y for 136Xe [10],
with next-generation ton-scale experiments aiming at im-
provements in sensitivity by two orders of magnitude.

0νββ can be generated by a variety of dynamical LNV
mechanisms, which in an effective field theory (EFT) ap-
proach to new physics are parametrized by ∆L = 2 oper-
ators of odd dimension greater than four [16–22]. If the
mass scale associated with LNV is much higher than the
electroweak scale, the only low-energy manifestation of
this new physics is a Majorana mass for light neutrinos,
encoded in a single gauge-invariant dimension-five oper-
ator [16], which induces 0νββ through light Majorana-
neutrino exchange [23, 24]. To interpret positive or null
0νββ results in this minimal scenario it is crucial to
have good control over the relevant hadronic and nu-
clear matrix elements. Current knowledge of these is
not satisfactory [25], as various many-body approaches
lead to estimates that differ by a factor of two to three
and most calculations are not based on a modern EFT
analysis. In Ref. [26] a first step was presented to-
wards the analysis of 0νββ induced by a light Majo-
rana neutrino in the chiral EFT framework [27–29], which
provides a systematic expansion of hadronic amplitudes

in p/Λχ, where p ∼ mπ ∼ kF ∼ O(100 MeV) and
Λχ ∼ 4πFπ ∼ mN ∼ O(1 GeV). The 0νββ transition op-
erators were derived up to next-to-next-to-leading order
(N2LO) in Weinberg’s power-counting scheme [30, 31].

In this letter we demonstrate that Weinberg’s scheme
for 0νββ assumed in Ref. [26] breaks down and any
consistent power counting requires a leading-order (LO)
short-range ∆L = 2 operator, whose effect is missing
in all current calculations. Our argument is based on
renormalization. Using two different schemes (dimen-
sional regularization with minimal subtraction and a
coordinate-space cutoff) we show that once the strong
nucleon-nucleon scattering amplitude is made finite and
independent of the ultraviolet regulator, an additional
∆L = 2 contact operator with coupling gNNν has to be
introduced to make the nn→ ppee amplitude finite and
regulator-independent. The finite part of gNNν , which
encodes hard-neutrino exchange, can be determined by
(i) matching the chiral EFT nn → ppee amplitude to
future lattice QCD calculations; (ii) relating it via chi-
ral symmetry to electromagnetic low-energy constants
(LECs) that control isospin-breaking in the two-nucleon
sector. A combination of couplings involving gNNν can
be fit to nucleon-nucleon charge-independence-breaking
(CIB) observables, confirming the LO scaling of this cou-
pling. Based on this, we speculate on the impact of gNNν
on nuclear matrix elements of relevance to experiments.

The need for an LO short-range ∆L = 2 interac-
tion: We consider a scenario in which LNV at low energy
is dominated by the electron-neutrino Majorana mass

L∆L=2 = −mββ

2
νTeLCνeL, (1)

where C = iγ2γ0 denotes the charge conjugation matrix.

The nuclear effective Hamiltonian can be written as

Heff = Hstrong + 2G2
FV

2
ud mββ ēLCē

T
L Vν , (2)
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in terms of the Fermi constant GF and the Vud element
of the CKM matrix [32, 33]. The neutrino potential Vν
can be obtained from two-nucleon irreducible diagrams
mediating nn → ppee to a given order in p/Λχ. Within
Weinberg’s power counting the only LO contribution [26]
comes from the exchange of potential neutrinos, with
q0 � |q|,

Vν,0(q) = τ (1)+τ (2)+ 1

q2

{
1− g2

Aσ
(1) · σ(2)

+ g2
A σ(1) · qσ(2) · q 2m2

π + q2

(q2 +m2
π)2

}
, (3)

where gA ' 1.27 is the nucleon axial coupling, mπ the
pion mass, and q the momentum transfer. N2LO terms
arise from corrections to the single nucleon weak currents,
irreducible one-loop diagrams, and contact interactions
mediating ππ → ee, n→ pπ+ee, and nn→ ppee. In par-
ticular, the short-range potential includes a two-nucleon
term [26]

Vν,CT = −2gNNν τ (1)+τ (2)+ , (4)

where the LEC gNNν is O((4πFπ)−2) in Weinberg’s count-
ing and Fπ = 92.2 MeV is the pion decay constant.
However, it is known that Weinberg’s power counting
leads to inconsistent results in nucleon-nucleon scatter-
ing [34–37] and nuclear processes mediated by external
currents [38], due to a conflict between naive dimensional
analysis and nonperturbative renormalization. We there-
fore investigate the scaling of gNNν by studying the ampli-
tude A(nn → ppee) ≡ A∆L=2 with strong interactions,
Hstrong, included nonperturbatively.

We work at LO in chiral EFT, and focus on the scat-
tering of two neutrons to two protons in the 1S0 wave,
where Hstrong has short-range and Yukawa components,

V0(q) = C̃ + Vπ(q) , Vπ(q) = − g2
A

4F 2
π

m2
π

q2 +m2
π

, (5)

with C̃ ∼ O(F−2
π ,m2

πF
−4
π ) [31, 34, 35]. We have checked

that transitions involving higher partial waves such as
3P0,1 → 3P0,1 are correctly renormalized and do not re-
quire enhanced ∆L = 2 counterterms.

The contributions to A∆L=2 from the exchange of a

light neutrino (A(ν)
∆L=2) are shown in Fig. 1. The blue el-

lipse denotes the iteration of the Yukawa potential Vπ(q).
The diagrams in the second and third rows include an
infinite number of bubbles, dressed with iterations of
Vπ. Without loss of generality for our arguments, we
use the kinematics n(p) n(−p) → p(p′) p(−p′) e(pe1 =
0) e(pe2 = 0), with |p| = 1 MeV and correspondingly
|p′| = 38 MeV.

A(ν)
∆L=2 can be expressed in terms of the Yukawa “in”

and “out” wavefunctions χ±p (r) and the propagators

=

 ...+ +

 ...

 ...+

 ...+

+

+

+ +

FIG. 1. Diagrammatic representation of LO contributions to
nn → ppee. Double, dashed, and plain lines denote nucle-
ons, pions, and leptons, respectively. Gray circles denote the
nucleon axial and vector currents, and the black square an
insertion of mββ . The blue ellipse represents iteration of Vπ.
In the counterterm amplitude (fourth line) the black square
represents gNNν . The · · · in the second to fourth lines denote
diagrams with arbitrary numbers of bubble insertions.

G±E(r, r′) = 〈r′|(E − T − Vπ ± i0+)−1|r〉 [34, 37]. Ob-
serving that the bubble diagrams in Fig. 1 are related
to G+

E(0,0), while the triangles dressed by Yukawas are
related to χ+

p (0) and χ−p′(0)∗ = χ+
p′(0) [34], the LO am-

plitude reads

A(ν)
∆L=2 = AA +KE′ AB + ĀBKE +KE′ AC KE ,

KE =
χ+
p (0) C̃

1− C̃G+
E(0,0)

, (6)

where AA, AB , and AC denote the first diagram in the
first, second, and third rows of Fig. 1, respectively (with-
out the wavefunctions at 0, in the case of AB and AC).
ĀB is similar to AB and not shown in Fig. 1.

To study the renormalization of the ∆L = 2 amplitude,

we now discuss the divergence structure ofA(ν)
∆L=2. χ+

p (0)

is finite and the divergence in G+
E(0,0) is absorbed by

C̃−1, so that KE is finite and scheme-independent [34].
We note that:

(i) All diagrams in AA are finite. The tree level is
finite and each Vπ iteration improves the convergence by
bringing in a factor of d3k/(k2)2, where one k2 comes
from the pion propagator and the other from the two-
nucleon propagator.

(ii) All the diagrams in AB and ĀB are finite. The
first loop goes as d3k/(k2)2, while Vπ insertions further
improve the convergence.

(iii) The first two-loop diagram inAC has a logarithmic
divergence, which stems from an insertion of the most
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singular component of the neutrino potential, namely

Ṽν(q) = τ (1)+τ (2)+ 1

q2

(
1− 2

3
g2
Aσ

(1) · σ(2)

)
. (7)

The two-loop diagram with insertion of Vν,0 − Ṽν and
higher-loop diagrams are convergent.

We focus on AC and write AC = A(div)
C + δAC . In

dimensional regularization,

A(div)
C = −

(mN

4π

)2 (
1 + 2g2

A

) [
∆ + Lp,p′(µ)

]
, (8)

Lp,p′(µ) =
1

2

(
log

µ2

−(|p|+ |p′|)2 + i0+
+ 1

)
,

where ∆ ≡ (1/(4− d)− γ + log 4π) /2. The divergence
for d → 4 can be removed by introducing gNNν at LO.
The counterterm amplitude, shown in the fourth line of
Fig. 1, reads

A(NN)
∆L=2 = KE′

2gNNν
C̃2

KE , (9)

and we can renormalize A∆L=2 by replacing AC → AC+
2gNNν /C̃2 in Eq. (6). In the MS scheme,

AC → δAC +
(mN

4π

)2 [
2g̃NNν (µ)−

(
1 + 2g2

A

)
Lp,p′(µ)

]
(10)

after defining the dimensionless coupling

g̃NNν =

(
4π

mN C̃

)2

gNNν . (11)

This coupling obeys the renormalization-group equation
(RGE)

µ
dg̃NNν
dµ

=
1

2

(
1 + 2g2

A

)
, (12)

confirming that g̃NNν ∼ O(1). Since C̃(µ = mπ) ≈
−0.9/F 2

π , we find that gNNν ∼ O
(
F−2
π

)
instead of

O
(
(4πFπ)−2

)
. A similar enhancement also occurs in

four-nucleon couplings induced by higher-dimensional
LNV operators. Treating Vπ as a subleading correc-
tion [35, 39] is equivalent to working to LO in pionless
EFT, and does not affect our conclusions about the im-
portance of gNNν [26]. Details on how to obtain δAC will
be provided in future work [40].
A∆L=2 in a cutoff scheme: The need for an LO

counterterm can be demonstrated also in a coordinate-
space scheme that makes no direct reference to Feynman
diagrams. In this approach we regulate the short-range
part of V0 with a smeared δ-function,

C̃ δ(3)(r)→ C̃(RS)

(
√
πRS)3

exp

(
− r2

R2
S

)
≡ C̃(RS) δ

(3)
RS

(r) ,

(13)
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Δ
L
=
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|
(M
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-
2
)

1/μ (fm)

AΔL=2
(ν) (RS)
AΔL=2(RS)

AΔL=2
(ν) (μ)

AΔL=2(μ)

FIG. 2. Matrix element A(ν)
∆L=2 for |p| = 1 MeV and |p′| = 38

MeV, as a function of RS . The dashed line shows a fit to
a+b logRS , which captures the small RS behavior. The solid
line corresponds to a fit that includes O(RS , RS logRS) power

corrections. The dash-dotted line shows A(ν)
∆L=2 in MS as a

function of 1/µ. The horizontal bands represent the total
amplitude A∆L=2 with gNNν = (C1 + C2)/2, as discussed in
the main text.

and obtain ψ−p′(r) and ψ+
p (r) by solving the Schrödinger

equation. We determine C̃(RS) by requiring that the
1S0 scattering length be reproduced (C̃ ≈ −0.4/F 2

π at
RS = 0.8 fm). We find that 1/C̃(RS) has linear (1/RS)
and logarithmic divergences [35] and that the 1S0 phase
shifts at nonzero momentum are indeed RS-independent.

We then compute

A(ν)
∆L=2 = −

∫
d3r ψ−p′(r)∗ Vν,0(r) ψ+

p (r) , (14)

where Vν,0(r) is obtained by Fourier-transforming the
1S0 projection of Eq. (3). In Fig. 2 we plot A(ν)

∆L=2 as
a function of RS . The plot displays a logarithmic de-
pendence on RS (analogous to the logµ dependence in
Eq. (10)) as well as milder power-like behavior. There-
fore, to obtain a physical, regulator-independent ampli-
tude one needs to include an LO counterterm, given in

r-space by Vν,CT (r) = −2 gNNν (RS)δ
(3)
RS

(r). The corre-
sponding amplitude,

A(NN)
∆L=2 = −

∫
d3r ψ−p′(r)∗ Vν,CT (r) ψ+

p (r) , (15)

is also regulator-dependent. As expected from Eq. (9),
we find its leading divergent behavior to be well re-
produced by 1/C̃(RS)2. We can then make A∆L=2 =

A(ν)
∆L=2 +A(NN)

∆L=2 finite for RS → 0 and RS-independent
by choosing g̃NNν (RS) = −(a/2)(1 + 2g2

A) logRS + b +
cRS + · · · , with the coefficient of the logarithm quite
close to the MS expectation a = 1.

Relating gNNν to electromagnetic isospin viola-
tion: The finite part of gNNν can be obtained by matching
the chiral EFT amplitude to a lattice QCD calculation
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performed at the same kinematic point, as it is done in
the strong-interacting sector [41]. First lattice results re-
lated to double-beta decay are starting to appear [42, 43].

We now discuss a complementary estimate based on
the fact that the short-range operators and associated
LECs arising in 0νββ and electromagnetic processes are
closely related [26]. In the electromagnetic case, the
short-range hadronic operators arise from amplitudes in
the underlying theory involving two insertions of the elec-
tromagnetic current with exchange of hard virtual pho-
tons [44, 45]. In the ∆L = 2 case, up to a proportionality
factor, the same operators are generated by the inser-
tion of two weak currents with exchange of hard neu-
trinos. This comes about because the neutrino prop-
agator and weak vertices combine to give a massless
gauge-boson propagator in Feynman gauge, multiplied
by 8G2

FV
2
udmββ ēLe

c
L [26]. The LECs needed for 0νββ are

therefore related to the LECs associated with the isospin
I = 2 component of the product of two electromagnetic
currents, which belongs to the 5L× 1R irreducible repre-
sentation of chiral SU(2)L × SU(2)R.

Only two independent four-nucleon operators that
transform as I = 2 objects exist:

O1 = N̄QLN N̄QLN −
Tr[Q2

L]

6
N̄τN · N̄τN + {L↔ R} ,

O2 = 2

(
N̄QLNN̄QRN −

Tr[QLQR]

6
N̄τN · N̄τN

)
,(16)

where QL = u†QLu, QR = uQRu
†, u = exp(iτ ·

π/(2Fπ)), and QL,R are “spurions” transforming under
the chiral group as QL → LQLL

†, QR → RQRR
†. In the

electromagnetic case QL = QR = τ3/2, while in 0νββ
QL = τ+, QR = 0. In our conventions O1 enters the
∆L = 2 Lagrangian with coefficient 2G2

FV
2
udmββg

NN
ν .

Defining the electromagnetic LECs multiplying O1,2 as
e2C1,2/4, chiral symmetry dictates gNNν = C1.

In the electromagnetic case, O1 and O2 only differ at
the multipion level, and an isospin-breaking two-nucleon
observable, such as the I = 2 combination of scattering
lengths aCIB = (ann + app)/2 − anp, only constrains the
sum C1 + C2. Extracting this combination from data
provides a rough estimate of gNNν under the assumption
C1 ∼ C2. As in the ∆L = 2 case, we introduce the dimen-
sionless couplings C̃i ≡ [4π/(mN C̃)]2Ci and compute the
scattering lengths app,nn,np including the leading sources
of isospin breaking – the Coulomb potential and pion
mass splitting – and C̃1 + C̃2. Similarly to the ∆L = 2
case, we find that C̃1 + C̃2 needs to be promoted to LO
and obeys the RGE

µ
d

dµ

C̃1 + C̃2

2
=

1

2

(
1 + g2

A

m2
π+ −m2

π0

e2F 2
π

)
, (17)

while, of course, C̃1 has the same RGE as g̃NNν . By fitting
to aCIB using anp = −23.7 fm, ann = −18.9 fm, and

app = −7.8 fm, we find (C̃1 + C̃2)/2 ≈ 2.5 at µ = mπ in

the MS scheme. Using instead the RS scheme, we find
(C̃1 + C̃2)/2 ≈ 2.0 at RS = 0.5 fm. 1 This estimate,
based on data and chiral symmetry, again confirms that
gNNν ∼ O(F−2

π ).
Numerical impact: To roughly estimate the impact

of the contact term, we assume for concreteness C1 = C2

and hence gNNν = (C1 +C2)/2 at some R̄S or µ̄−1 in the
range 0.002 − 0.8 fm. The total two-nucleon amplitude

A∆L=2 = A(ν)
∆L=2 +A(NN)

∆L=2 then becomes independent of
the regulator, as illustrated in Fig. 2, where the widths of
the horizontal bands reflect the ambiguity in the choice of
the point R̄S or µ̄ where C1 = C2 is assumed. (They do
not account for the uncontrolled error of the assumption
itself.) The relative size of the two components depends

on RS , with A(NN)
∆L=2/A

(ν)
∆L=2 ∼ 30% at RS ∼ 0.1 fm,

decreasing to ∼ 10% at RS ∼ 0.6 fm. More insight can
be obtained by plotting the matrix-element densities ρν
and ρNN defined as

A(ν)
∆L=2 =

∫
dr ρν(r) , A(NN)

∆L=2 =

∫
dr ρNN (r) . (18)

Figure 3 (top panel) shows that ρNN (r) is concentrated
at smaller distances than ρν(r), and its contribution to
the amplitude is thus partially diluted.

We have performed a similar analysis for A = 6, 12
nuclei, using Variational Monte Carlo nuclear wavefunc-
tions [51] based on the AV18 two-nucleon [50] and IL7
three-nucleon [52] interactions. The mismatch between
the short-range behaviors of existing strong-interaction
potentials and our 0νββ interaction introduces additional
model dependence, which we mitigate by: (i) Considering
an alternative extraction of (C1 +C2)/2 from the phase-
shift analysis of Refs. [47, 48] 2, which employs the same
regulator (13) with RS ' 0.6−0.8 fm, approximately the
range of AV18’s short-range part. (ii) Simply replacing
our Vν,CT (r) with AV18’s short-range CIB potential.

For ∆I = 0 transitions such as the 6He → 6Be shown
in Fig. 3 (middle panel), we find A(NN)

∆L=2/A
(ν)
∆L=2 ∼ 10%,

similarly to the nn→ ppee case. In realistic 0νββ transi-
tions, however, the total nuclear isospin changes by two
units, ∆I = 2. This implies the presence of a node in
ρν(r) due to the orthogonality of the initial and final
spatial wavefunctions. The resulting partial cancellation
between the regions with r <∼ 2 fm and r >∼ 2 fm [51] leads
to a relative enhancement of the short-range contribu-
tion, as illustrated in Fig. 3 (bottom panel) for 12Be →
12C. Numerically we findA(NN)

∆L=2/A
(ν)
∆L=2 ∼ 25% (our fit),

1 Our result is consistent with analyses based on chiral [46–49] and
phenomenological potentials such as AV18 [50], which also find
that, except at very low energies, long- and short-range compo-
nents of the CIB interaction induce effects of similar size.

2 C1 + C2 is related to the CIB coefficient CIT0 of Refs. [47, 48]
by (C1 + C2)/2 = −6CIT0 /e2.
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-
1
)

6He →6Be
|ρν |

|ρNN | (RS∈[0.6, 0.8] fm)

|ρNN
(χ)

| (RS∈[0.6, 0.8] fm)

1

2

3

4

ρ
(r
)

(M
eV

-
1
)

nn → pp
|ρν | - (RS=0.8 fm)
|ρν | - (RS=0.3 fm)
|ρNN | - (RS=0.8 fm)
|ρNN | - (RS=0.3 fm)

FIG. 3. ρν(r) and ρNN (r) for the nn → ppee process (top),
and for nuclear transitions with A = 6 (middle) and A = 12
(bottom). In the middle and bottom panels the green (ρNN )

and red (ρ
(χ)
NN ) bands correspond to gNNν = (C1 + C2)/2 ex-

tracted from our analysis and from Refs. [47, 48], respectively.

∼ 55% (fit from Refs. [47, 48]), and ∼ 60% (AV18 repre-
sentation of the short-range CIB potential). Because the
node in the density is a robust feature of ∆I = 2 tran-
sition [53, 54], we expect the effects in 12Be → 12C and
experimentally relevant transitions to be of comparable
size.

Conclusion: The above arguments suggest that the
new short-range ∆L = 2 potential identified in this work
can significantly impact 0νββ phenomenology and its im-
plications for Majorana neutrino masses. We hope this
will stimulate work towards a more controlled determi-
nation of gNNν from lattice QCD and an assessment of
the impact of the short-range potential in nuclei of ex-
perimental interest.
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