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Abstract

The problem of time remains an unresolved issue in all known

physical descriptions of the Universe. One aspect of this problem

is the conspicuous absence of time in the Wheeler-Dewitt equation,

which is the analogue of the Schrodinger equation for the Universal

wavefunction. Page and Wootters famously addressed this problem

by providing a mechanism for effectively introducing time evolution

into this timeless cosmological picture. Their method, which is some-

times called the conditional probability interpretation (CPI), requires

the identification of an internal clock system that is meant to keep

time for the remainder of the Universe. Most investigations into this

idea employ the idealized limit of a non-interacting clock system, the

so-called ideal clock. However, by allowing for interactions, we have

found the counter-intuitive result that a non-interacting clock is not

necessarily the optimal choice, even if it is ideal. In particular, the

uncertainty that is associated with the physical measurement of an

atomic clock is found to decrease monotonically as the interactions

grow stronger. This observation, which is reinforced by a previous

study using a semi-classical clock, paves the way to an independent

argument that is based on the energy conservation of any isolated

system. Our conclusion is that ideal clocks must be prohibited from

the CPI when recovering cosmological time evolution. Interactions

are necessary for describing time evolution as a strict matter of prin-
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ciple. Lastly, we also consider the implications of this result for the

experience of time in the evolution of the Universe.
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1 Introduction

1.1 Background and Motivations

The ‘problem of time’ and its various components have been described ad

nauseum within the vast collection of literature on the subject. As the sec-

ond law of thermodynamics is a rare physical principle providing a direction

from the past to the future, it is usually the first facet of such discussions

but is closely followed by a second. This would be the lack of not only a

direction but a common description of time in the two fundamental theories

— quantum theory and general relativity — which respectively view time

as an external parameter and an abstract spacetime dimension. This is an

important disagreement to settle before one even contemplates broaching the

daunting subject of quantum gravity. But, even with these issues aside, a

subtle point is often excluded from such discussions: There is a distinction

between the usual parametrizations of time as it appears in mathematical

expressions and the emergent phenomenon of time evolution as it is under-

stood through our life-long experiences. Most of our trouble in describing

time actually lies within the purview of the latter. Whether it is the absolute

time of the quantum world or the abstract dimension of classical relativity,

our restricted movement in time remains an unresolved puzzle.

This lack of an explanation for our passage through time is brought to

the fore by a third facet of the problem: the timelessness of the Universe.

Wheeler and De Witt introduced this notion in the form of a mathematical

statement [1], since named after them,

Ĥ |ψ〉 = 0 . (1)
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Here, Ĥ represents a quantum analogue of the Hamiltonian constraint of

general relativity (although the equation should really be viewed as semi-

classical) and |ψ〉 represents the total state of the Universe. This somewhat

ad hoc but generally accepted equation enforces a total energy of zero for

the Universe and, as a consequence, imposes an entirely static description

on |ψ〉. Yet, even if the mathematics is sound, the imposed timelessness on

the state of the Universe is at odds with our experiences from within. The

question is then the same as before, only more so: Why do we experience a

directed evolution in time?

This paradoxical situation was taken up by Page and Wootters, who

managed to resolve it into a workable theory which is indeed capable of

describing evolution [2] (see also [3]). The premise is to divide the entire state

|ψ〉 into two strongly entangled subsystems: a ‘clock’ C and the remainder of

the Universe R. (The entanglement is necessarily quantum.) The evolution

of R is then to be described in terms of a measurement of one of the clock’s

variables. To further clarify, at no point is time measured directly, as there

is no appearance of time in the conventional sense. Rather, an eigenvalue

of C, such as the location of its center of mass ~xCM , is used to provide an

effective time variable. The evolution of ~xCM would then be accessible to R

because of its mutual entanglement with C. A more detailed description is

provided in Appendix A.

The Page–Wootters’ approach has met with some amount of resistance;

most notably, Kuchar’s concerns that their clock could not describe a succes-

sion of time measurements and, therefore, no description of evolution would

be possible [4]. These concerns have since been been countered by Dolby [5]
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(and independently by Giovannetti et al. [6], also see [7, 8]), who furthered

the the Page–Wootters’ treatment while renaming it as the conditional prob-

ability interpretation (CPI). 1 Dolby showed that the CPI is consistent by

adopting an integration variable to ‘sync’ C and R and thus play the role of

an abstract time parameter. This integration is basically the same as tracing

out the clock system, a procedure which is favored by many others.

There is, however, another concern which presents a stumbling block for

the CPI; the so-called clock ambiguity [10]. To elaborate, along with the

requisite condition of strong entanglement, a ‘good’ clock in the CPI should

satisfy two other requirements (see, e.g., [11]). The first is that the clock

should be able to serve as an effective measuring device, meaning that it can

access a sufficient amount of distinguishable states. The second is that the

clock C be weakly interacting with the remainder R, as interactions would

naturally threaten the degree of their entanglement and also blur the delin-

eation of the two systems. The latter condition for the clock is often extended

to the limit of zero interactions, leading to the notion of an ‘ideal’ clock sys-

tem. The essence of the clock ambiguity problem is then the existence of a

large (and possibly infinite) number of choices for good clocks, so that any

such description of R’s dynamics is somewhat arbitrary.

Not too long ago, Marletto and Vedral resolved this ambiguity by argu-

ing that it is natural to limit considerations to ideal clocks and any choice of

ideal clock is related to any other by a unitary transformation [11]. On the

other hand, one might argue — as we recently did [12] — that interactions

are an inevitable consequence of a realistic Universe and, as such, cannot be

1For a contrary opinion regarding Dolby‘s resolution, see [9].
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dismissed out of hand or even taken to zero as a limiting case. Our previous

investigation in [12] considered a semi-classical clock; the coherent-state de-

scription of a damped harmonic oscillator. 2 Following a procedure that was

motivated in part by [14], we found that the ideal-clock limit was not the

optimal choice as far as it concerns minimizing uncertainty in the clock read-

ings. As it happens, this uncertainty decreasesmonotonically as the damping

grows stronger. And so, given the previously discussed importance of having

relatively weak interactions, the optimal choice for a damping parameter is

small but finite, and it depends inversely on the running time of the clock.

It is implicit in this conclusion that the clock can only run efficiently for a

finite duration before a ‘resetting’ is required. 3 Otherwise, one could sim-

ply impose the double scaling limit of infinitesimally weak damping and an

infinitely long running time. This time limit is important in what follows.

In order to advance our investigation into the use of interacting clocks,

we sought out a system with a truly quantum description. Atomic clocks, as

first suggested in practice by Rabi [15], fit quite naturally into this picture

given that they are subjected to decohering interactions. As will be made

clear later in the paper, decohering atomic clocks are not much different than

damped, coherent oscillators with regard to large uncertainties in the clock

readings being correlated with weak interactions. What is different, however,

is the option of an infinitely long running time. This choice is ruled out by

fiat in the current scenario, meaning that the double scaling limit is no longer

2Our working assumption in both [12] and the current analysis is that the size of the

clock system is small enough in comparison to its complement R for the interactions to

have a negligible effect on the latter. For a different approach, see [13].
3 See Subsection 1.2 for our actual meaning of ‘resetting’.
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in play.

In spite of the small sample size for clock systems, we will further as-

sert that the incorporation of interactions is a generic requirement for the

CPI. This argument is based upon exposing the properties of completely

isolated systems. In a similar manner to the above treatment of |ψ〉, the

conserved total energy of an isolated system would restrict any description

of its time evolution to the absolute time parameter which is prescribed by

the Schrödinger equation. So that, in spite of previous claims to the contrary,

ideal clocks can only provide a static, non-evolving description which is as

timeless as the Universe in the Wheeler–De Witt equation.

1.2 ‘Disclaimer’

Before proceeding, let us briefly comment on the perspective of the current

paper and its authors. As will be argued in an upcoming discourse [16],

it is ‘the problem with time’ that is the real problem and not time itself.

Nevertheless, we would argue that, irrespective of any problem with time,

the basic premise of the Wheeler–DeWitt equation — that the Universe is

inherently timeless — must be correct even though the equation itself may

well be flawed. This stands to reason given that the Universe is a closed

system; meaning that, as it is employed here, the Wheeler–DeWitt equation

(as well as the CPI by extension), should be regarded as a metaphorical or

toy-model description of a more realistic and intricate picture. As such, we

would then also argue that the subsequent discussion is relevant regardless

of one’s personal stand on either the alleged problem or the equation in

question. With this as our current mindset, any discussion regarding the
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interpretation of time and the problems thereof will be kept to a minimum

(however, see [16]).

It should be further noted that the notion of a ‘resetting’ time, which

was introduced in [12] and motivated in analogy to ordinary timepieces, is

not meant to imply that some outside agent is needed to formally reinitiate

the timing procedure. The time of resetting rather means that for which the

perturbative formalism breaks down and, then, either the clock can no longer

effectively serve its purpose or a more sophisticated treatment is required.

And, because of the above viewpoint, we are in no way suggesting that tem-

poral evolution would, at this point, come to a crashing halt in the physical

Universe. Nonetheless, a finite duration for the Universe, if it is isolated,

is not unreasonable insofar as it would eventually have to stop evolving on

account of the second law of thermodynamics or its accelerated expansion

(or both).

It is important to keep in mind that the time t of the atomic clock is

not, itself, the time which is “seen” by the remainder of the Universe. This

t plays the same role as, for example, Dolby’s aforementioned abstract time

[5] or, in other words, it is simply an integration variable. In this version

of the Page–Wootters method, the actual time parameter would rather be

the value of some observable property of the clock system. Provided that

the clock system C and its complement, the remainder R, are maximally

entangled, the states of R would necessarily be correlated to the eigenstates

of the relevant operator and, thus, with its eigenvalues as well. Meaning that

the clock operator in question need not be the Wheeler–DeWitt Hamiltonian

(with the R states traced out) as it is in more standard versions of the
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Page–Wootters framework. See Appendix A for further clarification on this

methodology. For the case of an atomic clock, in particular, R’s perceived

time would be related to the inverse of the clock’s resonant frequency. Note,

though, that our current interest is with the efficiency of the clock rather

than the actual clock readings.

One final comment: For the discussion on isolated systems in Section 4,

the arguments apply just as well to classical (sub)systems as they do to

quantum ones.

1.3 Contents

The remainder of the paper is laid out as follows. The next section briefly de-

scribes the atomic-clock procedure and its applicability to the CPI. Section 3

reports on the effects of decoherence and identifies the optimal atomic clock

from the CPI perspective. Section 4 presents a general argument for our

claim that interactions are a necessary feature in any consistent description

of time evolution. Section 5 provides a brief summary, and some additional

details about the maths are included in four appendices.

2 The atomic clock

In 1945, Rabi presented the first practical approach for obtaining a time

measurement using atomic frequencies [15]. (See, e.g., [17] for a textbook

account.) The method provides a time measurement by counting the cycles

of an electromagnetic oscillator and dividing by the oscillator frequency ω.

A standardized unit of time can be defined by setting the frequency ω to the
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transition frequency of an electron in a particular atom. We will adopt the

notation ω21 = E2 − E1 for the transition frequency, where E1,2 are the

ground and excited state respectively and ~ has been set to unity here and

throughout. In order to ensure that ω is as close to the desired transition

frequency as possible, the atoms in question are set in the ground state

and then exposed to the oscillator. By modulating ω, one will change the

probability of finding the exposed electrons in the excited state and can then

plot this probability Pex versus ω. The maximum value for Pex corresponds

to the resonant frequency, θ ≡ ω − ω21 = 0 , and the full width at half

maximum (FWHM) of the plot measures δω, the uncertainty in ω (and,

consequently, that of the time measurements). One finds that δω ∝ λ ,

where λ is the amplitude of the oscillating wave.

Improvements to the Rabi method were later made by Ramsey [18]. That

author showed that exposing the atoms to the oscillator for two short times

(or pulses) τ , separated by a longer non-interaction time T , would reduce

the uncertainty of the measurements [18]. When the value of the frequency

is sufficiently close to resonance, θ ≪ λ , its uncertainty rather goes as

δω = π
T

, where T has become known as the Ramsey time. This suggests

that taking the limit T → ∞ would minimize the uncertainty. However, T

must indeed be finite as the Ramsey process still requires a period of exposure

τ to take place immediately after T .

The atomic clock could, of course, be made arbitrarily accurate by setting

the system to the resonance case. Assuming, for the sake of argument, that

such accuracy could be achieved at least as a matter of principle, one ends

up with a description of time that cannot be distinguished from the absolute

10



time parameter already appearing in the Schrödinger equation. Ultimately,

we will claim that the limiting case of a non-interacting clock leads to a time

description which is similarly indistinguishable from absolute time, as the

CPI then fails to account for our passage through time. To prove this, the

atomic clock will be allowed to interact with the rest of the Universe through

the inclusion of decoherence effects.

3 The decohering atomic clock

In order to analyze the effects of decoherence on the atomic clock, we will be

incorporating the dynamics of the Linblad equation [20]. The basic idea is

to allow the clock system to decohere during the Ramsey interval T , as the

time τ of the oscillator pulse is taken to be small enough to ignore the effects

of decoherence during these brief periods of exposure. A significant portion

of our method follows an approach that was sketched out by Weinberg [19].

As outlined in Appendix B, the first step is to derive the evolution oper-

ator for the Ramsey setup when decoherence is included. The next step is

to use this operator to calculate the probability of finding the system in the

excited state Pex(t) after both pulses and the Ramsey time have transpired.

As explained in Appendix C, this process leads to

Pex(2τ + T ) =
4λ2

Ω2
sin2(Ωτ)

[

2 cos(Ωτ) +
θ2

2Ω2
sin2(Ωτ)

+ e−αT
(

2 cos2(Ωτ) cos((θ − β)T )

−
θ

2Ω2
sin2(Ωτ) cos((θ − β)T )

−
2θ

4Ω
sin(2Ωτ) sin((θ − β)T )

)]

,

(2)
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where α and β are the real and imaginary parts of the ‘decoherence factor’

γ (i.e., γ is one of the eigenvalues of the non-unitary portion of the Linblad

equation) and Ω =
√

λ2 + θ2

4
is known as the Rabi frequency.

Following Ramsey, we will fix the pulse time τ by maximizing the prob-

ability for the idealized case of θ = T = 0 [18]. Making this choice and

setting Pex(2τ+T ) = 1 , one finds that τ = π
4λ

. Then, with the substitution

of τ and the assumption that θ ≪ λ (i.e., the system is close to resonance),

eq. (2) reduces down to

Pex(2τ + T ) =
1

2

[

1− e−αT cos((θ − β)T )
]

. (3)

This expression closely resembles one from [19], where it was applied in a

different context.

The uncertainty in ω for the current case — again calculated as the

FWHM from the plot of Pex vs ω— is found to be δ = π
T
, exactly the same as

before. This would suggest that the inclusion of decoherence has no bearing

on the precision of the measurements. However, this is not true because the

maximum outcome for the probability has definitely diminished. Put into

more physical terms, the decoherence of the system reduces its ability to

function as a quantum clock. More rigorously, a constrained minimization of

the uncertainty in the probability Pex(2τ +T ) leads to the following relation,

αT ∼ O(1) , (4)

as elaborated on in Appendix D.

The above outcome indicates that the desire for a long Ramsey time T

(which must anyways be finite) for the purposes of minimizing the uncertainty

must be balanced against the (similarly finite) effects of decoherence. This
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is really just another way of justifying the previously stipulated condition of

a weakly interacting clock, which translates into αT . O(1) .

And so, in attempting to impose the ideal-clock limit of α → 0 , one

is stymied by both the condition of a finite T and the proclivity for more

accurate measurements. Our conclusion is that the ideal limit of an atomic

clock is neither a tenable nor an optimal choice.

4 What can be said about ideal clocks

The story that the above result seems to be telling is one where interactions

are a necessary feature in the framework of the CPI. The current objective

is to both generalize and strengthen our conclusions about atomic clocks

(and, previously, coherent states [12]). This will be accomplished with an

independent, qualitative argument.

Let us start by reconsidering the Wheeler–DeWitt equation. Its timeless-

ness can be attributed to the Universe having a total net energy of zero, as

per the right-hand side of eq. (1). The precise value of the energy, however,

is really besides the point. Any (strictly) constant value for the energy would

imply that the dynamics of the Universe are frozen, rendering time a mean-

ingless concept. Let us now consider the more familiar case of an isolated

(sub-)system as it would be described in a textbook on quantum mechan-

ics. The dynamics of this system are similarly frozen, yet we attribute it

with a time parameter all the same; namely that of the time-independent

Schrödinger equation. Where did this time come from? There are only two

possibilities: the system’s notion of time was put in by hand or it was inher-
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ited from a larger, ancestral system. But can the idealized clock system of

the CPI answer this same question about the the origin of its notion of time?

The CPI ‘rulebook’ does not permit us to put in time by hand and neither

can the clock inherit its time from an ancestor, as the only one available

is the timeless Universe à la Wheeler and DeWitt. And so, with no notion

of time available and no opportunity to interact with its environment, the

ideal clock cannot possibly evolve relative to another system or component

thereof. In short, the idealized clock could never serve as a timepiece for

another system any more or less than the Universe as a whole could.

A sequence of states could still be described for these timeless, isolated

systems as illustrated in Marletto and Vedral’s treatment [11]. Each suc-

cessive state of R is identified with a time measurement of C and a history

is produced. However, as pointed out by those same authors, this picture

provides neither a flow of time nor an arrow of time — both of these concepts

should be viewed as fictitious within this timeless framework. There is sim-

ply no motivation for moving from one state to the next, and no provision

for a sense of movement through time without also assuming an absolute,

external time along with an imposed direction. The ideal-clock scenario then

precludes the possibility of a clock which itself can experience time or can

provide a measurement of time for an external agent.

Taking our lead from the above argument and including interactions as

a matter of principle, we arrive at a very different result. The requirement

of an open system for C immediately allows for a clock with a sense of

evolving in time and, likewise, for its complement R. The resulting time

evolution includes a description of not just the history of states for C and R
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but also an arrow in time thanks to the non-reversible effects of decoherence

and/or damping. We thus have a way of reconciling our experience of passing

through time with the timeless state of the Universe.

5 Conclusions

Our investigation into atomic-clock systems showed that the optimal choice

of clock requires a compromise between fending off the effects of decohering

interactions and maximizing the accuracy of the clock. This reinforced a pre-

vious result on coherent-state clocks and led to a new view on the description

of time within the framework of the CPI. The restriction to the ideal-clock

(non-interacting) limit prohibits any description of motion through time;

there can only be a static series of states with no motivation for any move-

ment between them. The inclusion of interactions, however, resolves this

issue as the interacting clock system can evolve through its relation with

the complementary system. Elevating this framework to ‘reality’ (or, rather,

some simplistic description thereof), one would translate this evolution into

a passage through time, rather than the inclusion of an abstract, absolute

time dimension which sits ‘outside’ of our experience. Our conclusion is

that the use of an ideal clock in the CPI not only fails at being the optimal

choice in practice but also represents a misleading assumption in principle;

interactions must be included as a strict rule.

This motivation to use only interacting clocks within the CPI does, how-

ever, reintroduce the clock ambiguity as the ideal-clock limit can no longer

be called upon to resolve the issue. As the inclusion of interactions appears
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to come along with a free arrow of time, there could well be a solution to the

clock ambiguity which utilizes a preference for clocks obeying the second law,

rather than appealing to the redundancy of ideal clocks. This possibility is

currently under investigation [16].
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A Evolution according to Page and Wootters

Section 1.1 outlined the Page–Wootters method of recovering time. The

method is based on the timeless description of the Universe as a pure state

|ψ〉, which is governed by the Hamiltonian Ĥ in the Wheeler–DeWitt equa-

tion. Here, we describe the method in more detail along with an explanation

of the role of the abstract variable t which is discussed in Section 1.2.

The standard description involves the division of |ψ〉 into the clock C

and the rest R. This partitioning is accompanied by the identification of

the Hamiltonians ĤC = TrRĤ and ĤR = TrCĤ , which govern C and R

respectively.
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Interaction effects (governed by ĤI) between C and R complete the

Hamiltonian, which can be written as Ĥ = ĤC ⊗ 1 + 1⊗ ĤR + ĤI . Under

the Page–Wootters method, these interaction effects are considered vanish-

ingly weak and so ĤI can be ignored. This leads to the approximate relation

Ĥ ≈ ĤC ⊗1+1⊗ ĤR and, because Ĥ|ψ〉 = 0 for physical states, it follows

that

ĤC ≈ −ĤR (5)

is true when acting on physical states.

The last requirement for the Page–Wootters method is that C and R be

in a maximally entangled state,

|ψ〉 =
∑

j

αj |ψC〉j |ψR〉j , (6)

where |ψC,R〉 are states for C and R respectively, a subscript of j indicates a

basis state and αj represents numerical coefficients. In this way, the evolution

of C can be ‘transfered’ to R,

|ψj〉 = cj

(

e−iĤCp |ψC〉j

)

|ψR〉j = cje
−i(Ĥ−ĤR)p |ψC〉j |ψR〉j

≈ cj |ψC〉j

(

eiĤRp |ψR〉j

)

,

(7)

where p refers to the eigenvalues of the conjugate to ĤC ; in other words, p

is the emergent time parameter for R. Note that we have set ~ = 1 , here

and throughout.

Up to this point, the standard description of the Page–Wootters method

is sufficient. But, in order to analyze the case of the atomic clock, we use

a variant that was inspired by Dolby [14]. What is now needed is some

observable property of C (but not necessarily p) to act as the time parameter
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for R. Let us denote this property by x. (In [12], x was literally a position

variable. For the atomic clock, x would be related to the inverse of the

resonant frequency.) Let us further denote the conjugate to the operator

that measures x as Φ̂x
C . Then the condition of maximal entanglement is

enough to ensure that there is a “mirror” operator acting on states of R, Φ̂x
R,

for which

Φ̂x
C ≈ −Φ̂x

R (8)

is true when acting on physical states and for some suitable choice of bases.

Meaning that Φ̂x
C,R can (and do) play the role of effective Hamiltonians.

Let us now consider how the abstract time parameter t fits in and under-

stand why it does not require a physical interpretation. If t is the ‘conven-

tional’ time parameter for the clock operator, there should be some semiclas-

sical relation x = x(t) . Then the probability for the clock to be in a state

for which x = x′ can be expressed as an integral over the probability that

x = x′ when conditioned on t = t′ . In other words,

PC(x
′) =

∫ ∞

−∞

dt′ |〈x|ψC(t
′)〉|2 . (9)

And so t is merely an intergation variable as advertised. Moreover, because

of the condition of maximal entanglement, the relationship

PR(x
′) ≈ PC(x

′) (10)

immediately follows.

B Determining the evolution operator

Here, Ramsey’s evolution matrix [15] is generalized to allow for decoherence.
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Let us consider a two-level system at time t = 0 in its energy basis,

|ψ(0)〉 = c1 |1〉 + c2 |2〉 . If the external potential oscillates according to

V (t) = λeiωt+λe−iωt with λ real, then the state at a later time t is |ψ(t)〉 =
(

cos(Ωt)− iθ
2Ω

sin(Ωt)
)

eiθt/2 |1〉+ γe−iθt/2

iΩ
sin(Ωt) |2〉 and its density matrix is

ρ(t) = |ψ(t)〉 〈ψ(t)| =





1− γ2

Ω2a
2 iγeiθt

Ω
a
(

b− iθ
2Ω
a
)

− iγe−iθt

Ω
a
(

b+ iθ
2Ω
a
)

γ2

Ω2a
2



 , (11)

where a = sin(Ωt) , b = cos(Ωt) and Ω =
√

λ2 + θ2

4
. Alternatively, the

evolution can be described by ρ(t) = U(t, 0)ρ(0)U †(t, 0) .

Assuming that the system starts in its ground state, ρ(0) =





1 0

0 0



 ,

one find an evolution matrix of the form




ρ(t)11 ρ(t)12

ρ(t)21 ρ(t)22



 =





A B

−B∗ A∗









1 0

0 0









A∗ −B

B∗ A



 . (12)

where

|A|2 = b2 +
θ2

2Ω2
a2 ,

|B|2 =
λ2

Ω2
a2 ,

−AB =
iλeiθta

Ω
(b−

iθ

2Ω
a) ,

−A∗B∗ =
−iλe−iθta

Ω
(b+

iθ

2Ω
a) .

(13)

Since A = b − iθ
2Ω
a is true up to a phase, the evolution matrix can be

resolved into

U(t, 0) =





b− iθ
2Ω
a − iλeiθt

ω
a

− iλe−iθt

ω
a b+ iθ

2Ω
a



 . (14)

The non-decohering limit of this outcome agrees with the final form of Ram-

sey’s result [18].
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C Calculating the probability

The following is a calculation of the probability of finding the system in its

excited state after the Ramsey procedure has been completed.

The first pulse (or exposure zone) changes the system from the ground

state according to ρ(τ) = U(τ, 0)ρ(0)U †(τ, 0) . To include decoherence

during the Ramsey time period T , the following Lindblad equation [20] is

applied [19]:

ρ̇ = −i[Ĥ, ρ(t)] +
∑

α

[

L̂αρ(t)L̂
†
α −

1

2
L̂†
αL̂αρ(t)−

1

2
ρ(t)L̂†

αL̂α

]

. (15)

The effect of this evolution on the system is

ρ(t)mn ∝ e−i(Em−En)t−γmnt = e−i(Em−En)t−γmnt , (16)

where m, n label the eigenstates of the operators on the right-hand side of

eq. (15) and γmn = α + iβ = (α − iβ)∗ = γ∗nm represents the decoherent

part of their eigenvalues (the state labels on α and β are implied).

It can be seen that the diagonal terms of ρ(τ) are insensitive to the

decoherence. On the other hand, the effect on the off-diagonal terms is

evident from

ρ(τ + T ) =





b2 + θ
4Ω2a

2 iλeiθe(iω21−γ)T

Ω
a(b− iθ

2Ω
a)

−iλe−iθe(−iω21−γ∗)T

Ω
a(b− iθ

2Ω
a) b2 + θ

4Ω2a
2



 , (17)

where a and b have been defined after eq. (11).

It should be noted that the external potential V (t) continues to oscillate

for the duration of T . This introduces an additional phase factor e±iωT in

the off-diagonal terms of the evolution operator once the second pulse τ is
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applied. The equation governing this last exposure zone is given by





ρ(2τ + T )11 ρ(2τ + T )12

ρ(2τ + T )21 ρ(2τ + T )22



 =





A B

−B∗ A∗









ρ(τ + T )11 ρ(τ + T )12

ρ(τ + T )21 ρ(τ + T )22









A∗ −B

B∗ A



 ,

(18)

where A and B have been defined in eq. (13).

The element ρ(2τ + T )22 represents the probability of finding the system

in its excited state Pex(2τ + T ) and is determined to be

Pex(2τ + T ) = ρ(2τ + T )22 =
4λ2

Ω2
sin2(Ωτ)

[

2 cos(Ωτ) +
θ2

2Ω2
sin2(Ωτ)

+ e−αT
(

2 cos2(Ωτ) cos((θ − β)T )

−
θ

2Ω2
sin2(Ωτ) cos((θ − β)T )

−
2θ

4Ω
sin(2Ωτ) sin((θ − β)T )

)]

,

(19)

which correctly reduces to Ramsey’s result when α = β = 0 .

D Taking limit of uncertainty

The goal here is to use a more rigorous method to substantiate the claim in

Section 3 that αT ∼ O(1) .

To quantify the effect of decoherence on a clock measurement, we will

calculate and then minimize the relative uncertainty of of Pex(2τ + T ) ; that

is, δPex

Pex
(with the time dependence now left implicit). To start, let us
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consider the relation δPex =
√

(

∂Pex

∂ω

)2
δω2 , which then gives

δPex

Pex
=

π

2
e−αT sin(ΘT )

(

1 + e−αT cos(ΘT )
)−1

, (20)

where the definition Θ = θ − β has been applied.

Eq. (20) makes it clear that the limit T → ∞ minimizes the uncertainty.

However, the restriction on a finite value for T must still be in place in order to

complete the procedure as prescribed by Ramsey. Given that the constraint

(see Section 2) T ∼ 1
δω

is also in effect — which also ensures a finite T

barring the classical limit — the minimization procedure then amounts to

solving

∂

∂T

[

δPex

Pex

− Λ(δω −
π

T
)

]

= 0 , (21)

where Λ is a Lagrange multiplier. With the help of eq. (20), the above

expression resolves into

e−2αT
(

ΘT 2−2Λ cos2(ΘT )
)

+e−αT
(

(ΘT 2−4Λ) cos(ΘT )−αT 2 sin(ΘT )
)

−2Λ = 0 .

(22)

Looking at Θ = θ − β and knowing that θ will vanish as the resonant

case is approached, we can apply the approximation |Θ| ≈ −β . We can

further approximate β ∼ ±α , as α is essentially the only dimensional scale

in the problem. With these simplifications, it can now be readily checked

that either of the limits αT ≫ 1 or αT ≪ 1 implies that Λ = 0 .

However, one cannot argue that Λ vanishes as this choice effectively removes

the finiteness condition on T . That leaves αT ∼ O(1) as the only viable

solution.

Even though this is not an explicit calculation, the approximations still

allow us to make a statement about the relationship between α and T . Specif-
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ically, the fact that the two are related through a finite-valued product indi-

cates that only one of the pair can be set independently. This is exactly why

the finiteness of T imposes the same condition on α.
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