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Abstract: The dynamical cascade of momentum, spin, charge, and other quantum num-

bers from an ultra-violet process into the infra-red is a fundamental concern for asymp-

totically free or conformal gauge field theories. It is also a practical concern for any high

energy scattering experiment with energies above tens of GeV. We present a formulation

of the evolution equation that governs this cascade, the Banfi-Marchesini-Smye equation,

from both an effective field theory point of view and a direct diagrammatic argument. The

equation uses exact momentum conservation, and is applicable to both scattering with

initial and final state hard partons. The direct diagrammatic formulation is organized by

constructing a generating functional. This functional is also automatically realized with soft

wilson lines and collinear field operators coupled to external currents. The two approaches

are directly connected by reverse engineering the Lehman-Symanzik-Zimmermann reduc-

tion procedure to insert states within the soft and collinear matrix elements. At leading

order, the cascade is completely controlled by the soft anomalous dimension. By decom-

posing the anomalous dimension into on-shell and off-shell regions as would be realized in

the effective field theory approach with a Glauber mediating potential, we are forced to

choose a transverse momentum ordering in order to trivialize the overlap between Glauber

potential contributions and the pure soft region. The evolution equation then naturally

incorporates factorization violating effects driven by off-shell exchanges for active partons.

Finally, we examine the consequences of abandoning exact momentum conservation as well

as terminating the evolution at the largest inclusive scale, procedures often used to simplify

the analysis of the cascade.
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1 Introduction

We are concerned with the dynamics of the reduced density matrix for soft or collinear

physics at late times after a hard interaction. This has been discussed extensively in Refs.

[1–6], with the aim of developing a shower which coherently simulates the transport of color

and spin into the infra-red, including simultaneously soft and collinear effects. We will ex-

amine a simplified evolution of the reduced density matrix, focusing mostly on soft physics,

since our aim is not to replicate previous efforts.1 We focus on the soft approximation since

non-trivial characteristics of the QCD parton-shower can still be obtained. For instance

the structure of the color charge transport is one of the most questions, being connected

to the violation of collinear factorization when both initial and final hard directions are

present in the scattering[13–19]. Nonetheless, the evolution and factorization of the density

matrix is well-defined, with or without this additional collinear factorization. Further, the

soft approximation manifests the duality of the time-like evolution of the parton shower

and the space-like evolution of small-x physics (Refs. [20–24]) found in Refs. [25–27].The

soft approximation also simplifies the writing of the evolution equations for the parton

shower, which is critical to our chief concern: to know what logs are resummed in any

parton shower given the definition of the shower, what are the consequences of working

in certain simplifying approximations, and what are the dynamical structures developed

in the course of the cascade. Finally, we would like to know how to map the shower con-

struction to matrix elements of soft wilson lines and collinear operators, of the sort used

1Though as will be pointed out in Sec. 5.3.2, even in soft-sensitive observables, collinear effects can
enhance certain regions of phase-space [7, 8], destabilize the soft approximation for the evolution kernel
[9–11], or even dominate certain limits of the distribution as found in Ref. [12].
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soft-collinear effective field theory (SCET) [28–32]. Our aim is to provide tools to aid these

questions.

We will present a simple way to organize the evolution of the density matrix:2 one using

generating functionals to automate the recursive insertion of real and virtual soft gluons,

rather than the prescriptive rules of Refs. [13, 37–43]. Though this generating functional

seems like a diagrammatic construction, we will also show that it is nothing other than

a particular matrix element of soft wilson lines and collinear field operators, directly con-

nected to the “jet substructure” factorization properties in Ref. [44]. The two approaches

are connected by using some formal manipulations of the Lehman-Symanzik-Zimmerman

(LSZ) reduction formula. These soft wilson lines are objects familiar to the effective field

theorist, found naturally in the context of soft-collinear effective field theory. Indeed, using

a rather effective field theory line of reasoning based on recent developments of SCET with

off-shell potentials, Ref. [45], we will conclude the parton shower must be ordered using

the transverse momentum of the next splitting.

A critical question which we will consider is the use of the multi-pole expansion of effec-

tive theories in defining the evolution equations of the reduced density matrix. Loosely

speaking, the multipole expansion simplifies recoil: when a particular variable is multipole

expanded, the two sectors no longer feel the momentum recoil of each other. For example,

if we are given light-cone directions n, n̄, n · n̄ = 2, and a local product of collinear and soft

operators On(x) and Os(x) defined on momenta with scaling:

p = (n̄ · p, n · p, p⊥) , (1.1)

pn = Q(1, λ2, λ) , (1.2)

ps = Q(λ, λ, λ) . (1.3)

Where we have introduced some small parameter λ � 1 and a hard momentum scale Q.

Then we would expand the local product as:

On(n · x, n̄ · x, x⊥)Os(n · x, n̄ · x, x⊥) = On(n · x, 0, x⊥)Os(0, n̄ · x, x⊥) + ... (1.4)

That is, since the n·p component of the soft operator is larger than the collinear, and the n̄·p
momentum component of the collinear operator is larger than the soft, the expansion will

now prevent the soft momenta from participating in the conservation of the n̄-components,

and the collinear from participating in the conservation of the n-components. Both op-

erators will participate in the conservation of the transverse momenta. This can be seen

examining the fourier transforms of the operators, after the expansion. To a leading power

approximation, momentum conversation will be respected none-the-less when summing

2The astute would note that given the markovian nature of the QCD parton shower in the leading
approximation, the reduced density matrix should obey a Lindblad equation on very general grounds of
quantum mechanics, see Refs. [33–35], if we accept that we are ordering in momentum space rather than
in time. In the context of the soft evolution, it does, and this equation is nothing other than the Banfi-
Marchesini-Smye (BMS) equation [36].
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over all momentum sectors that can contribute to the observable.

The multipole expansion as initially formulated in Ref. [46] is a means to ensure that one

has homogeneous power counting in the expansion at each order in the effective theory,

and is now a standard tool applied to effective theory constructions. Usually applying

the multipole expansion on operators of QCD fields will result in additional divergences

that facilitate the resummation of logarithms, while also removing overlap between distinct

EFT sectors. Most parton showers, on the other hand, are not conducted with any sort of

multipole expansion3. They instead maintain momentum conservation at each step in the

shower. When coupled with an ordering variable, this will regulate all infra-red divergences

at each splitting stage in the shower.

When formulating our shower equations with regards to momentum conservation, we will

follow the parton shower approach. This is perhaps a heretical position for avowed effective

field theorists, but we have a sound reason for doing so. Not only would this be necessary for

a generic parton shower that could be applied to any observable (since the power counting

necessary for the multipole expansion would never be known a priori), we in addition

will argue that following a naive multipole expansion with an insufficient number of EFT

sectors induces a renormalon like effects in the parton shower [8], based on whether or not

one keeps jet functions in the factorization. Disregarding the collinear contributions still

results in a perfectly consistent EFT, but one suffering from large logs in the phase-space

being integrated over. This can be seen by examining the low scale matrix elements found

in a multipole expanded EFT set-up for hemisphere jet observables in e+e−, as in Refs.

[49, 50], where the jet function contribution is indeed dropped. Of course, one can power

count the collinear sectors differently, keeping certain jet functions, as in Ref. [7], or we

can just never perform the multipole expansion, allowing the exact phase space constraints

of the measurement to correctly constrain all multiple emissions, and evolve our parton

shower down to zero cutoff for the ordering variable, rather than the maximal momentum

scale below which we are completely inclusive. Following exact momentum conservation

is much closer to in spirit the automated approach to generic next-to-leading logarithm

resummation approach found in the CAESAR program (Ref. [51]).4

Note: As this paper was being finished, Ref. [52] appeared, which also considered the

full-color evolution of the parton shower with both initial and final state hard partons. Im-

portantly, the paper addresses how one can numerically implement the full-color evolution,

and gives approximations that perturb around the large Nc limit, see also Refs. [53, 54].

3Two exceptions are Refs. [47, 48], though those papers never use the language of “a multipole ex-
pansion” in defining their algorithms. They do intentionally ignore momentum conservation for the exact
purpose of isolating only the soft or the only collinear contributions to the observables being resummed,
which is part of the purpose of the multipole expansion.

4In practice of course, we would not evolve down to zero ordering variable, but to a scale just above the
breakdown of perturbation theory, matching to truly non-perturbative evolution there-after.
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2 Outline of Paper

The logic of this paper is as follows: we first introduce the concept of the reduced density

matrix, first formulated in terms S-matrix elements, but then also in terms of so-called

N-jet operators used in the SCET factorization of amplitudes. We briefly describe how

one calculates “late-time” observables with this object. We then show how one can, from

the bottom up, formulate a generating functional that summarizes all possible soft real

emissions from a particular hard scattering, similar to Ref. [55]. This generating functional

is explicitly worked out to leading order in real and virtual emissions. To go to higher

orders, one simply needs to calculate soft currents to whatever order in perturbation theory

one can, while dressing the hard scattering with the appropriate virtual corrections. The

utility of the generating functional is in how it summarizes the eikonal factorization of soft

partons: soft gluon insertions are simply matter of defining the correct derivative operator,

which is completely dictated by the soft currents. Inserting soft gluons amounts to taking

derivatives. After we familiarize ourselves with this generating functional technique by

working out the “leading-log” generating functional, where all soft emissions are given by

the tree-level eikonal feynman rule. We then square these generating functionals, and using

soft gluon insertion operators working at the level of the amplitude squared, show how one

can construct the Banfi-Marchesini-Smye (BMS) equation [36]. Solving the BMS equation

amounts to resumming the trace one would take of the reduced density matrix weighted by

the appropriate observable. We also show the necessity of using the transverse momentum

of the soft gluons as the ordering variable and discuss how off-shell exchanges involving

active partons are included (however, our proof rests on a decidedly effective field theory

arguement). As an illustration of the resummation of large logarithms accomplished by

the BMS equation, we recover the CAESAR (Ref. [51]) resummation formula for global

logarithms by examining the full evolution equation in a particular kinematic limit.5 This

application is particularly fascinating, since the momentum regions usually assigned in the

SCET power counting naturally arise when using the full momentum conservation and

transverse ordering of the shower.

Then we turn our attention to effective field theory objects like matrix elements of soft

wilson lines. Typically these are an observable weighted sum over final state soft emissions,

with the soft states acting on time-ordered and anti-time-ordered wilson lines given by the

paths taken by energetic particles. We show how one can rewrite the trace over the soft final

state in terms of functional derivatives acting on external currents probing the wilson lines,

which amounts to the LSZ reduction procedure for S-matrix elements. For certain classes

of observables, this LSZ operator implementing the insertion of a complete set of states

constrained by a measurement can be written recursively in terms of an integral equation.

Then using the so-called SCET+ factorization, we argue that the factorization properties

of these wilson lines are exactly those of the generating functionals we earlier constructed,

5Technically speaking, we only recover the double-logarithmic terms in the CAESAR formula, but if we
trivially promoted our eikonal functions to the correct antennae or Catani-Seymour subtraction functions,
we would capture all single logarithmic contributions, including any non-global contributions.
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ultimately pointing to the equivalence of the two approaches. Given that the resummation

properties of soft wilson lines are organized by the soft anomalous dimension, this then

justifies using the effective field theory reasoning to conclude the transverse ordering of

the shower in the BMS equation. We end the SCET section by giving a derivation of

the BMS equation in the hemisphere jets case, now using a naive power counting of only

hard and soft sectors, corresponding to the emissions in the energetic hemisphere, and

generic inclusive soft radiation. This is a perfectly consistent effective theory. The resulting

BMS equation (not transversely ordered and multipole expanded according to the strict

hard-soft factorization), looks very similar to the first BMS equation we derived, however

with a subtly different boundary condition due to where the evolution is stopped and

momentum regions used. We then proceed to find large phase-space logarithms in the

boundary condition, which we argue would be resummed by the first formulation of the

BMS equation in a CAESAR-like manner or by extending the types of momentum regions

used in the SCET approach.

Throughout, particular attention is paid to the ordering variable used in the BMS equa-

tion. In our view, this is immediately decided as soon as one accepts that the naive soft

integrals determining the anomalous dimension must be split into on-shell and off-shell

regions, where the off-shell region is governed by the Glauber/Coulomb gluon exchange.

The splitting of the naive soft integral in this manner is natural in an effective theory with

an explicit Coulomb potential mediating forward scattering effects. The split arises upon

realizing the appropriate zero-bin subtractions, which manifests the “Cheshire” Glauber in

Ref. [45]. Then in order to not interfere with producing the correct imaginary part of the

soft integral after this decomposition, and to maintain a trivial zero-bin subtraction, one

must choose transverse-momentum ordering for the soft anomalous dimension.

We also work explicitly with renormalized quantities. In general, since we are ordering the

emissions, this ordering parameter will regulate both IR and UV divergences. Within the

SCET approach, after renormalizing the soft wilson lines, the ordering parameter is settled

by the soft anomalous dimension. Ultimately, the IR divergences will cancel in the BMS

equation, and the way we write the real insertions and virtual corrections will manifest

how the cancellation can take place point-by-point in phase space when the soft virtual

corrections can be considered equivalent to their on-shell region.

3 Reduced Density Matrix

What is the reduced density matrix? Simply put, it is a way of organizing all the emissions

above some resolution scale τ , where this resolution scale is the scale at which the shower

is terminated. We also assume that some hard process has taken place, with typical energy

scale Q. All radiation below the τ scale according to some measure on momentum space

is traced over, leading to the reduced density matrix. For instance, one could demand

that no emission be counted as “hard” when it has a transverse momentum with respect
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to all other pairs of “hard” emissions below a scale τ (this is the now dominate Monte

Carlo prescription). Alternatively, one could use an observable on the final state of the

scattering like N -jettiness, a jet algorithm, or the energy-energy correlation functions to

define the resolution scale and count hard states, as is done in Refs. [8, 44, 56–62]. We then

split all naive in and out states into hard and unresolved components. The hard state is

composed of effective partons that themselves may be clusters of collinear radiation, having

a dominate color, flavor, and spin. We then consider the unresolved states themselves to

be states composing the effective hard parton, or soft radiation, classified according to our

desired measure on momentum space:

| ∼〉 → hard⊗ unresolved (3.1)

|α, in〉 = |A, in〉 ⊗ |rα, in〉 (3.2)

|m, out〉 = |M,out〉 ⊗ |rm, out〉 (3.3)

|n, out〉 = |N, out〉 ⊗ |rn, out〉 (3.4)

The density matrix formed by time evolving the initial state |α, in〉 to t =∞ is then:

ρ̂mn = 〈α, in|m, out〉〈n, out|α, in〉 (3.5)

We now assume that the initial state is completely hard, for simplicity, so that then in the

”Fock space” of all the emissions above the resolution scale, we can write hard reduced

density matrix, organized by the emissions above the resolution scale:

ρ̂HNM (Q, τ) =
∑
r,|r|<τ

〈α, in|
(
|M,out〉 ⊗ |r〉〈r| ⊗ 〈N, out|

)
|α, in〉 . (3.6)

The trace over the unresolved states is constrained by our resolution variable τ . We have

allowed the hard out-states to be off-diagonal, though the trace over the unresolved out-

states leads to the eventual diagonalization of the directions of the hard partons. The

diagonalization of the directions of the hard momenta follows from the fact the Kinoshita-

Lee-Nauenberg theorem fails for the off diagonal elements, see Refs. [63, 64]. However,

though the hard states diagonalize in terms of the space-time path they take, they are not

actually diagonal in all quantum numbers needed to specify a parton in the Fock space of

emissions above the resolution scale. When we label the hard parton by its path taken

in space-time, we use the result that a parton with large mass or large energy couples to

softer radiation as an external current localized along a world-line, see for instance [65–

68]. Tracing over all fluctuations about these world-lines of the soft radiation coupled

to the path leads to the decoherence of superpositions of distinct world-lines, and the

diagonalization of the space-time path. In the case of hard scattering, the world-lines

point along the direction of the momentum of the hard parton exiting or entering the hard

interaction region. However, the exact color state or spin state of the hard parton does

not decohere due to the soft radiation, leading to the well-known fact that soft evolution

induces a color rotation in the hard state on either side of a cut diagram. Physically, the
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resulting diagonal (in momenta) matrix elements are just proportional to the exclusive

N -jet scattering cross-sections, where exclusive criteria is defined by the resolution scale

used to carve out momentum space.

Generally, at leading-log and leading power, there will be some N such that ρNN (Q, τ)

is understood as the “Born” hard-process starting the shower, and the rest of the entries

(with N + 1 jets, N + 2 jets, etc.) will have emissions populated by the shower starting

from this seed. With the techniques of multi-jet-matching, see for instance Refs. [58, 69–

73], one can include hard loop and radiative corrections (beyond the soft-and collinear

corrections already produced by the parton-shower) to a potentially arbitrary number of

the hard-scattering exclusive cross-sections.

We can also build the reduced density matrix within effective field theory using the so-

called N-jet operators, see for instance Refs. [74–76] (and references therein). These are

formed from the basic building blocks:

Sni = P exp
(
ig

∫ ∞
0

dλni ·A(λni)
)

(3.7)

Xni →


Bµ
ni⊥ = 1

g [W †niiD
µ
⊥Wni ]

χni = W †niψ

Φni = W †niφ
ATAWni

(3.8)

Wn = P exp
(
ig

∫ ∞
0

dλn̄ ·A(λn̄)
)

(3.9)

We should also consider past-point soft wilson lines. Xni are field operators for either

gluons, quarks, or scalars, and each collinear direction is parametrized by a light-cone

direction it points along, ni, and also the conjugate light-cone direction n̄i, satisfying

ni · n̄i � τ
Q . The ⊥ denotes all directions transverse to the axis defined by ni and n̄i in the

rest frame of ni and n̄i. The N -jet operator is then:

ON = CN

(
{Qini}

)
⊗ T

{ N∏
i=1

Sni

}
⊗

N∏
i=1

δ(Qi − n̄i · i∂)Xni , (3.10)

⊗ is a convolution in the large momentum fractions Qi, and CN is the renormalized

hard scattering amplitude, with IR divergences subtracted off and folded into the soft

and collinear operators. So then the density matrix has the form:

ρNM = O†NOM +O
( τ
Q

)
. (3.11)

The corrections are given by the expansion of the full theory scattering amplitudes about

N hard directions [75]. It is now a simple matter to consider tracing over specific collinear

and/or soft sectors. The KLN theorem demands that at some scale τ , we must trace over

all soft degrees of freedom.6 If we trace over the soft degrees of freedom, we will form the

6Unless we can compute QCD scattering non-perturbatively, though soft photons will always require
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hard reduced density matrix, coupled to a soft function:

ρHNM = trs

[
O†NOM

]
= C†a1a2...aN

N S
a1b1...aN bN ;b′1a

′
1...b

′
Ma
′
M

n1...nN ;n′1...n
′
M

(τ)C
a′1...a

′
M

M

N∏
i=1

Xbi
ni

M∏
j=1

X
b′j
n′j
,

(3.12)

S
a1b1...aN bN ;b′1a

′
1...b

′
Ma
′
M

n1...nN ;n′1...n
′
M

(τ) =
∑
X

θτ (X)
〈

0
∣∣∣T{ N∏

i=1

Saibini }
∣∣∣X〉〈X∣∣∣T̄{ M∏

i=1

S
†b′ia′i
n′i
}
∣∣∣0〉 . (3.13)

The trace over the soft states is constrained by our resolution variable τ : we demand that

the soft final state is consistent (inclusively) with the scale τ . For instance, one could

demand that the energy of each individual soft emission is below τ :

θτ (X) =
∏
p∈X

θ(τ − p0) (3.14)

Within the SCET factorization literature, such soft functions are a generalization of the

soft functions typically found in exclusive jet cross-sections, which are of the form:

S
a1b1...aN bN ;b1a′1...bMa

′
M

n1...nN ;n1...nN (τ) =
∑
X

θτ (X)
〈

0
∣∣∣T{ N∏

i=1

Saibini }
∣∣∣X〉〈X∣∣∣T̄{ N∏

i=1

S
†bia′i
ni }

∣∣∣0〉 . (3.15)

Here, we have specifically diagonalized the number, color indices, and directions of the

wilson lines on either side of the “cut,” but we have not diagonalized the color-indices

that tie to the hard coefficient functions. This follows from our earlier argument that the

tracing over soft degrees of freedom below a resolution scale will lead to a density matrix

diagonal in the momentum eigenstates.

Armed with the reduced density matrix, we will want to calculate the expectation values

of observables:

〈O〉 = trH [ρ̂H(Q, τ)O] =
∞∑
N=0

∫ Q

τ
dΦN

∑
Q.N.

ON ρ̂
H
NN (Q, τ) . (3.16)

Where dΦN is the on-shell N-parton phase space, schematically integrated between the

scales Q (where the initiating hard process occurs) and the resolution scale τ that forms

the lower limit to all resolved states.7 ON is the value of the observable on the N -parton

configuration. If we can take τ → 0 in Eq. (3.16), then we have an infra-red and collinear

safe observable. The sum denotes that we should sum (or average) over the quantum

numbers of the hard emissions, like color, spin, flavor, potentially constrained by the mea-

surement and initial conditions of the scattering.

We wish to develop an integral equation that replaces the sum in Eq. (3.16) that will

such a trace.
7This equivalent to integrating over the sliced phase-space, excluding regions that the measure produces

a value less than τ , exactly as in N-jettiness or QT subtractions [56, 61, 62].

– 8 –



incorporate both initial and final state partons, and thus include the factorization violation

effects examined in Refs. [13–19]. This evolution equation will be recognized as the Banfi-

Marchesini-Smye equation [55, 77], used to resum non-global soft correlations between

distinct angular regions of phase space [47, 78], suitably extended to account for initial

state partons.

4 Recursive Soft Gluon Insertions and Generating Functionals

We wish to formulate an object which will carry at the level of the amplitude all subsequent

emissions off of a hard scattering. Within SCET, this is accomplished by just taking the

appropriate matrix elements with soft and collinear states of the N-jet operator of Eq.

(3.10). If instead of collinear operators and wilson lines as our fundamental building blocks,

we would rather take the insertion of additional soft or collinear external states, generated

by soft currents and splitting amplitudes, we can instead adopt a generating functional

formalism. If CN is the renormalized hard scattering coefficient, we write:

CN

(
pb1σ1

1 , pb2σ2
2 , ..., pbNσNN

)
→ CN

(
pb1σ1

1 , pb2σ2
2 , ..., pbNσNN

)
WN

(
pb1σ1

1 , pb2σ2
2 , ..., pbNσNN ;Ui, Uf

)
(no sum).

(4.1)

WN carries all possible soft emissions and virtual corrections off of the hard state {pb1σ1
1 , pb2σ2

2 , ..., pbNσNN },
and will be given a precise definition below. Suffice it to say, it is a generating functional

with functions Ui/f that tie off all subsequent soft emissions.

4.1 Arbitrary Real Emissions

Suppose we have a scattering amplitude AN (qa1λ1
1 , ..., qanλnn ), where we have generated

some soft final state {qa1λ1
1 , ..., qanλnn } off of the hard state {pb1σ1

1 , pb2σ2
2 , ..., pbNσNN }. To

connect with the algorithmic prescription of soft gluon insertions found in Ref. [13, 37–

40, 43] (see as well [41, 42, 79–83]), we need to develop an approximation to the full set of

feynman diagrams encoded in AN (qa1λ1
1 , ..., qanλnn ). At the leading log level, the heart of

the approximation is just the tree-level soft factorization of amplitudes:8

AN (qa1λ1
1 , ..., qanλnn ) =q0

n�q0
i
AN (qa1λ1

1 , ..., q
an−1λn−1

n−1 )
∑

k∈{p1,...,pN ,q1,...,qn−1}

gTan
k J

(T )
k (qn) · εqn(λn) + ... ,

(4.2)

J
(T )
k (q) · εq(λ) =

k · εq(λ)

k · q
. (4.3)

8The lack of an i0 prescription is not a mistake, but is related to how we explicitly deal with the off-shell
regions of integration in later sections. For those uncomfortable with this, just add a +i0 to the eikonal
propagator.
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This is telling us that in the limit that the nth emission is softer than all the initial N

hard partons, as well as the n − 1 subsequent emissions, the n real emission amplitude

factorizes into the amplitude for n−1 emissions and an eikonal factor for the nth emission.

We sum over attachments of the nth soft gluon to all directions (the N hard directions and

the other (less) soft emissions). Tan
k is the color matrix in the representation of the parton

k. This soft gluon insertion rule can be realized as a functional equation. To see how this

is done, we first decompose the soft amplitude into a color basis (possibly over-complete,

not necessarily orthogonal), while making the polarizations explicit. The color basis C
[n]
N

is a color tensor in the N by n ⊗ N color-space, mapping the color space of the initial

hard N directions to the n⊗N color-space of the final state. Written with explicit indices,

it carries 2N -indices in the representations of the hard directions, and n indices in the

representations of the final state radiation.9

A[n]
N = AN (qa1λ1

1 , ..., qanλnn ) =
∑
C

[n]
N

Ca1...an
i1j1,....,iN jN

J
C

[n]
N

N (qµ1
1 , ..., qµnn−1)

n∏
i=1

εµiqi (λi) (4.4)

One can recognize the JCN
N as the kinematic part of the soft currents for N-eikonal direc-

tions. For instance, for a single soft emission off an initial dipole, we would have:

A[1]
2 = A2(qa1λ1

1 ) =
∑
C

[1]
2

Ca1
i1j1,i2j2

J
C

[1]
2

2 (qµ1
1 )εµ1

q1 (λ1)

= g

(
[Ta1

1 ]i1j1δi2j2
p1µ1

p1 · q
+ [Ta1

2 ]i2j2δi1j1
p2µ1

p2 · q

)
εµ1
q1 (λ1) (4.5)

where the subscript i on Ti distinguishes the (possibly distinct) color representations for

the initial partons created in the two hard directions.

With this decomposition, one ties to each emission a formal function. The function (which

we call U) depends on whether the parton is in the initial state or the final state, and maps

a null direction in momentum space, polarization, and color index to a (complex)-number.

That is:10

Ui/f : R+ ⊗ S2 ⊗ {+,−} ⊗R[G]→ C , (4.6)

{q, a, λ} → Uaλi/f (q) . (4.7)

Where R+ ⊗ S2 are the energy and direction of the parton, {+,−} the set of helicities,
and R[G] is its color representation. More explicitly, a, λ are to be associated with the
color index and polarization of a parton line with momentum q = q0(1, q̂), q̂2 = 1, and i/f

9We adopt the bracket [] and parenthesis () notation to explicitly denote the number of real emissions
and virtual correctionsrespectively in a given object, as introduced in Ref. [75].

10These functions can be extended, of course, to carry any other quantum number necessary to specify the
parton’s associated charges. Furthermore, for fermions we should take these functions to be anti-commuting
variables. Since in what follows, we will simply work to leading log order, we ignore any charge or flavor
indices.
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labels whether the parton is in the initial or final state.11 We can then define a color tensor
weighted by the n-point soft-amplitude, living in the N -index color-space of the initial hard
lines by:

W [n]
N

(
Ui, Uf

)
=
( N∏
`=1

U j`λ`z`
(p`)

) ∑
ai,σi

( n∏
i=1

∫
[ddqi]+U

ai σi
f (qi)

)
AN (qa1σ1

1 , ..., qanσnn ) , (4.8)

z` = i or f for each ` , (4.9)

[ddp]+ =
ddp

(2π)d−1
θ(p0)δ(p2) =

1

4π

dp0

(p0)3−d θ(p
0)
dd−2Ωp̂
(2π)d−2

. (4.10)

All color indices, the polarization indices, directions, and the energy dependence of any

soft emission associated with the final state has also been integrated/summed over, being

tied up by contracting with the appropriate U . Note that this object carries a single free

color-index for each of the hard directions, and is itself an invariant color-tensor in the

direct product space formed by the representations of the hard lines. We will call this

object the color-space amplitude, since it maps the momenta and spins of the instigating

eikonal lines to the hard color-space of those lines:

W [n]
N

(
Ui, Uf

)
: ⊗Ni=1

(
R+ ⊗ S2 ⊗ {+,−}

)
→ ⊗Ni=1Ri , (4.11)

where Ri is the representation of the i-th line. The formal meaning of these quantities is

that we have contracted the open final state color, polarization, and momentum quantum

numbers of the soft amplitude into the function U , affecting a type of functional moment

transform to the hard color-space. For example, the color space amplitude for a final state

dipole can be written as

W [0]
2 = U i1λ1

f (p1)U i2λ2
f (p2) = U j1λ1

f (p1)U j2λ2

f (p2)δi1j1δi2j2

W [1]
2 = U j1λ1

f (p1)U i2λ2
f (p2)

∫
[ddq1]+U

a1 σ1
f (q1)g[Ta1

1 ]i1j1
p1µ1

p1 · q + i0
εµ1
q1 (σ1)

+ U i1λ1
f (p1)U j2λ2

f (p2)

∫
[ddq1]+U

a1 σ1
f (q1)g[Ta1

2 ]i2j2
p2µ1

p2 · q + i0
εµ1
q1 (σ1) (4.12)

It is clear that this object (for N=2 and arbitrary soft emissions) has two free color indices

and hence is a rank 2 tensor in color space. The subscript on the T matrix indicates the

representation for the corresponding hard parton.

Through functional differentiation, the two representations of the soft amplitude are equiv-
alent to each other. We define the functional derivative with respect to U as:

δ

δUaλ1
z1 (p)

U bλ2
z2 (q) = 2(2π)d−1(p0)3−dδ(p0 − q0)δ(d−2)(p̂− q̂)δλ1λ2δabδz1z2 , (4.13)

Then demanding these derivatives obey the Leibniz rule gives a definition for these deriva-

11Since we have assumed some hard scattering to have taken place, the time variable is always defined
with respect to the total momentum of the initial state feeding into the hard scattering. This then also
defines any center of mass frame.
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tives for any polynomial functional of the U ’s. Note that the Kronecker delta for the color

indices should also be interpreted as a Kronecker delta on the representation for those in-

dices: U ’s in distinct representations have a zero functional derivative. The delta functions

for the momenta are defined with the appropriate jacobian for the fact we integrate over

on-shell momenta in Eq. (4.8), that is:

δ

δUaλi/f (k)

∑
b,σ

∫
[ddq]+U

bσ
i/f (q)f bσ(q) = faλ(k) . (4.14)

4.1.1 Color Space Generating Functional

We are now in a position to write down the generating functional for soft amplitudes. Since

all the color-space amplitudes (with differing number of final state emissions n) live in the

same hard color space (i.e., all have N free color indices), we can simply sum them to form:

WN

(
Ui, Uf

)
=W [0]

N

(
Ui, Uf

)
+

∞∑
ng ,nq=1

1

ng!nq!nq̄!
W [ng ,nq ,nq̄ ]
N

(
Ui, Uf

)
. (4.15)

This is the generating functional for all soft amplitudes off of N initial hard lines, since any

given soft momentum space amplitude is then constructed from the functional derivatives:

AN (qa1λ1
1 , ..., qanλnn ) =

1∏N
`=1 U

j`λ`
z` (p`)

n∏
i=1

δ

δUaiλif (qi)
WN

(
Ui, Uf

)∣∣∣∣∣
Ui/f=0

. (4.16)

Since the subsequent emissions are always softer than the initiating N hard lines, there is

no interference between the U derivatives of hard and soft emissions. That is, going back

to the color tensor decomposition of the soft amplitudes, we have the formal definition:

WN

(
U ; ζ

)
=
∞∑
n=0

1

ng!nq!nq̄!

( N∏
`=1

U j`λ`z`
(p`)

)∑
ai,σi

( n∏
i=1

∫
[ddqi]+U

ai σi
f (qi)

)
AN (qa1σ1

1 , ..., qanσnn ) .

(4.17)

We note that each soft amplitude has a virtual loop expansion in αs;

AN (qa1λ1
1 , ..., qanλnn ) = A(T )

N (qa1λ1
1 , ..., qanλnn ) + g2A(1)

N (qa1λ1
1 , ..., qanλnn ) + g4A(2)

N (qa1λ1
1 , ..., qanλnn ) + ...

(4.18)

The generating functional we have constructed here thus far is a weighted sum of the

complete QCD radiative corrections ( i.e., it includes the full phase space for arbitrary

number of real and virtual corrections). In the subsequent analysis, we will primarily be

interested in the strongly ordered limit of these corrections which will allow us to develop

a recursive definition of WN .
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4.1.2 Digression on color index contractions

We adopt a modified index notation for the color contractions of the color matrix T,

generalizing the prescription found in Refs. [79, 84]. If CN is a color tensor with N free

color indices:

T`
i ◦ CN = T b`aibiCa1...ai−1bi ai+1...a`−1b`a`+1...aN , (4.19)

CN ◦T`
i = Ca1...ai−1bi ai+1...a`−1b`a`+1...aNT

b`
biai

, (4.20)

Tc
iCN = T caibiCa1...ai−1bi ai+1...aN , (4.21)

CNTc
i = Ca1...ai−1bi ai+1...aNT

c
biai

. (4.22)

Thus the presence of the ◦ denotes that the index on the color matrix is contracted with

the `-th color index. Without the ◦, this index is free. We will further adopt the notation:

Ti ◦Tj ≡ T caibiT
c
ajbj

. (4.23)

For example, following Eq. 4.12, if we define

C2 = U i1λ1
f (p1)U i2λ2

f (p2) , (4.24)

then we can write

W [1]
2 =

∫
[ddq1]+U

a1 σ1
f (q1)g

(
p1µ1

p1 · q
Ta1

1 +
p2µ1

p2 · q
Ta1

2

)
C2ε

µ1
q1 (σ1) . (4.25)

Equivalently, if we define

C3 = U i1λ1
f (p1)U i2λ2

f (p2)Ua1 σ1
f (q1) , (4.26)

then we can write the same object as

W [1]
2 =

∫
[ddq1]+g

(
p1µ1

p1 · q
Ta1

1 +
p2µ1

p2 · q
Ta1

2

)
◦ C3ε

µ1
q1 (σ1) (4.27)

So its clear the ◦ operation reduces the number of free color indices on CN by 1.

4.2 The LL Master Equation For Color Space Amplitudes

The soft gluon insertion rule (4.2) can be written as a functional derivative on the the
color-space amplitude:

W [n+1]
N

(
Ui, Uf

)
= J(T )[1](Ui, Uf )W [n]

N

(
Ui, Uf

)
+ ... , (4.28)

J(T )[1](Ui, Uf ) = g
∑
R

∫
[ddp]+

∫
[ddq]+

(
J (T )
p (q) · εq(λ)Uaλf (q)

)
[Ta

R]cd
∑
σ,z

Udσz (p)
δ

δU cσz (p)
.

(4.29)
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This formula is straightforward to interpret. We have dropped power corrections not
corresponding to the strongly-ordered limit of the additional soft emission. The “·” denotes
a Lorentz index contraction. We sum over all the possible color representations R of

particles in the theory. The functional derivative acts on each U in W [n]
N

(
Ui, Uf

)
one-by-

one, setting the color matrix TR to the correct representation via the representation index
R (remembering the convention on Kronecker delta’s of color indices are to be interpreted
as Kronecker delta’s on the representation also), setting the eikonal direction of the soft

current J
(T )
p to one of the final state or initial eikonal line directions, and ensuring the

contraction with the appropriate color indices. Then the differentiated U is replaced with
itself again. Then another U is added, corresponding to the additional soft gluon, formally

contracting with its quantum numbers. Again, bothW [n]
N

(
Ui, Uf

)
andW [n+1]

N

(
Ui, Uf

)
are

color tensors in the same color space. As an application, we can work out the first two

iterations of the soft gluon insertion operator acting on a hard dipoleW [0]
2 . We will take all

hard directions to be in the final state, so we may drop the initial/final label on U , giving:

W [0]
2

(
U
)

= U i1σ1(p1)U i2σ2(p2) , (4.30)

J(T )[1](U)W [0]
2

(
U
)

=
∑
λ

∫
[ddq]+

(
J (T )µ
p1 (q)T ai1j1δi2j2 + J (T )µ

p2 (q)T ai2j2δi1j1

)
U j1σ1(p1)U j2σ2(p2)Uaλ(q)εµq (λ) ,

(4.31)

J(T )[1](U)J(T )[1](U)W [0]
2

(
U
)

=
∑
λ,ρ

∫
[ddq]+[ddk]+

(
J (T )µ
p1 (q)J (T )ν

p1 (k)T ai1s1T
b
s1j1δi2j2 + J (T )µ

p2 (q)J (T )ν
p2 (k)T ai2s2T

b
s2j2δi1j1

+ J (T )µ
p1 (q)J (T )ν

p2 (k)T ai1j1T
b
i2j2 + J (T )µ

p2 (q)J (T )ν
p1 (k)T ai1j1T

b
i2j2

+ J (T )µ
p1 (q)J (T )ν

q (k)T ci1j1δi2j2if
acb + J (T )µ

p2 (q)J (T )ν
q (k)T ci2j2δi1j1if

acb
)
εµq (λ)ενk(ρ)

U j1σ1(p1)U j2σ2(p2)U j1(p̂1)Uaλ(k)U bρ(k) (4.32)

One can recognize the result for one and two emissions strongly ordered off of the hard

dipole. This reproduces for instance the strongly ordered limit of Eqn. 101 of Ref. [79].

We are now in a position to state the chief result of this section: in the strongly ordered

limit, any soft emission off of the seed eikonal lines can be promoted to an hard seed eikonal

line in its own right. That is, there is an explicit relationship between the N leading-log

color-space amplitude and the N + 1 leading-log color-space amplitude. This relationship

we will call the master equation for color-space amplitudes. We start with the initial

condition:

W [0]
N

(
Ui, Uf

)
= U j1λ1

z1 (p1)U j2λ2
z2 (p2)...U jNλNzN

(pN ) . (4.33)

We suppress the color and polarization indices on the left hand side for a more compact

notation: the subscript N denotes the number of open color indices WN carries. Using the

soft gluon operator J(T )[1] repeatedly, we can write the leading-log approximation to the
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full color-space functional:

W [LL]
N

(
Ui, Uf

)∣∣∣
real

=W [0]
N

(
Ui, Uf

)
+
∞∑
n=1

1

n!
W [n]LL
N

(
Ui, Uf

)
, (4.34)

W [n+1]LL
N

(
Ui, Uf

)
=
[
J(T )[1](Ui, Uf ),W [n]LL

N

(
Ui, Uf

)]
. (4.35)

We write this as a commutation relation so that the derivatives acting further to the right

do not contribute, not because of color. The current operator is constructed to be a color

singlet (it has no free indices), and therefore it’s color matrices commute. The subscript

on the brackets, [∼]LL is to highlight we have dropped power corrections in the strongly

ordered limit. Therefore, we can simply exponentiate the soft gluon insertion operator:

W [LL]
N

(
Ui, Uf

)∣∣∣
real

=

[
Exp

[
J(T )[1](Ui, Uf )

]
,W [0]

N

(
Ui, Uf

)]
. (4.36)

We term this the leading-log N -eikonal line color-space amplitude generating functional.

We also have the following functional differential equation, that relates the N + 1 and the

N -eikonal line leading log generating functionals via the master equation:

Ui/f ·
δ

δUi/f
=def.

∫
[ddp]+

∑
a,σ

Uaσz (p)
δ

δUaσi/f (p)
. (4.37)

Uf ·
δ

δUf
W [LL]
N

∣∣∣
real

=
N∑
i=1

∫
[ddpN+1]

∑
σN+1

(
J (T )
pi (pN+1) · εpN+1(σN+1)

)
TN+1
i ◦W [LL]

N+1

∣∣∣
real

(4.38)

We note that W [LL]
N+1 depends on both the color index, momentum, and polarization of the

N + 1 lines, and we are formally contracting these into the current terms in Eq. (4.38).

Proof of this relation proceeds inductively on the number n of inserted final state soft

current operators, and we give in bullet form.

• First we note:

Uf ·
δ

δUf
W [n]LL
N

∣∣∣
real

= nW [n]LL
N

∣∣∣
real

(4.39)

• We state the induction hypothesis:

W [n]LL
N

∣∣∣
real

=

N∑
i=1

∫
[ddpN+1]

∑
σN+1

(
J (T )
pi (pN+1) · εpN+1

(σN+1)
)
TN+1
i ◦W [n−1]LL

N+1

∣∣∣
real

(4.40)

Note that the N + 1 hard color index is to be contracted with the upper adjoint

index aN+1 implicit in TN+1
i .

• Eq. (4.40) is true for n = 1.
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• Consider n+ 1:

W [n+1]LL
N

∣∣∣
real

=
[
J(T )[1],W [n]LL

N

∣∣∣
real

]
(4.41)

=

[
J(T )[1],

N∑
i=1

∫
[ddpN+1]

∑
σN+1

(
J (T )
pi (pN+1) · εpN+1

(σN+1)
)
TN+1
i ◦W [n−1]LL

N+1

∣∣∣
real

]
(4.42)

=

N∑
i=1

∫
[ddpN+1]

∑
σN+1

(
J (T )
pi (pN+1) · εpN+1

(σN+1)
)
TN+1
i ◦W [n]LL

N+1

∣∣∣
real

(4.43)

The last line is true since the soft current operator only has derivatives that act on

the U functions, so that it commutes through the other terms.

• The proof ends by differentiating the sum in Eq. (4.34), and then trading the upper

index for the lower index using Eq. (4.40).

4.3 Ordered Virtual Soft Insertion Operator

We now give the form of the operator that implements adding a virtual correction, again
to one loop order. This virtual correction acts on the eikonalized lines, and hence its
operation on Eq. (4.29) does not produce full the one loop corrected soft current operator,
but only the most strongly ordered region of such a correction. We have (repeated indices
are summed):

V(1)(U ;µ) =
1

4

∑
R1,R2

∫
[ddp1]+

∫
[ddp2]+γ12(µ) [Ta

R1
]cdU

dλ1
z1 (p1)

δ

δU cλ1
z1 (p̂1)

[Ta
R2

]efU
fλ2
z2 (p2)

δ

δUeλ2
z2 (p̂2)

,

(4.44)

γ12(µ) = 4παs(µ)

(
− iπ θ(z1 = z2)

4π2

+

∫
[d4q]+θ

(
ω1 −

n2 · q
n1 · n2

)
θ
(
ω2 −

n1 · q
n1 · n2

)
W12(q)µδ

(
µ−O(p1, p2; q)

))
, (4.45)

Wij(q) = J (T )
pi (q) · J (T )

pj (q) =
pi · pj

pi · q q · pj
, (4.46)

θ(true) = 1 , (4.47)

θ(false) = 0 , (4.48)

pi = ωi(1, n̂i) , n̂2
i = 1 . (4.49)

The delta function of µ freezes the transverse integral, which if unrestricted is both UV and

IR divergent. Eq. (4.45) gives the soft anomalous dimension presented in App. A.2, and

utilizes the rewriting of the logarithm appearing in the soft anomalous dimension given in

Eq. (A.21). We rewrite the logarithm in the dipole part of the soft anomalous dimension

as an integral over an on-shell parton weighted by the soft eikonal factor with explicit

cut-offs in energy. This may seem like an excessively complicated way to write a single

logarithm, but it highlights how the virtual correction cancels the infra-red divergences of
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the real emissions point-by-point in phase space when we write out the BMS equation in

Eq. (4.77). The θ-functions with ω1 and ω2 correspond to cutoffs in the energy of the

virtual emission.

One may wonder why in a soft virtual integral, we have included cutoffs set by the energy

of the emissions forming the dipole. They arise due to the contribution from collinear

sectors to the soft anomalous dimension,12 that set the upper limit in rapidity to the

eikonal integral. In the modern literature on the soft anomalous dimension, these collinear

contributions are often realized by tilting all wilson lines off the light-cone, and subtracting

eikonal jet functions, and adding in the full collinear sector contribution, see for instance

Refs. [85, 86]. Our particular virtual operator can of course be upgraded to reproduce the

full collinear anomalous dimension, so long as in the corresponding real emission terms we

include contributions from the full collinear splitting kernels, but for the time being, we

leave this aside.

The iπ term arises from exchange of coulomb/Glauber gluons. Since the soft currents as

we have defined them do not have a +i0 prescription, coupled with the fact that we have

used the on-shell propagator δ(q2) (recall Eq. (4.10)), we must explicitly include this iπ

term. We have only integrated over the on-shell region of the virtual soft parton. We can

then interpret the anomalous dimension in the language of effective field theory as follows:

integrating over the on-shell region only is equivalent to the naive soft region with a zero-

bin subtraction (Ref. [87]) in the Glauber region, removing the overlap to the off-shell

region of integration. Then we explicitly add in the Glauber contribution via the Glauber

Lagrangian insertion between the lines, see Refs. [19, 45]. This contribution is the Glauber

exchange between two active lines connected to the hard interaction.

We note that we have not specified the ordering function of the virtual emissions. This

ordering must be the transverse momentum between the eikonalized lines. One can appeal

to the long history within the Monte Carlo literature in Refs. [88–91] or explicit calculations

using a dressed soft gluon insertion techniques (including Glauber effects) [14–16, 18] to

justify this. For us, the proof is given in App. A, and amounts to taking seriously the

decomposition of the soft virtual integral into an purely soft (on-shell) region and a Glauber

region, the overlap removed by a zero-bin subtraction. If we wish to not perform such a

decomposition of the naive soft integral, then we should adopt a transverse ordering to the

naive soft integrals. So we conclude the proper ordering function should be:

O(p1, p2; q) =

√
2
p1 · q q · p2

p1 · p2
=

√
2W−1

12 (q) . (4.50)

For example in the case of a virtual exchange between two hard partons, one in the n

12Recall that the soft anomalous dimension controls the infra-red divergences of the hard scattering
amplitude. Confusingly, in SCET, one would be liable to call it the hard anomalous dimension.
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direction and the other in the n̄ direction, we see that:

O(n, n̄; q) =
√
n · qn̄ · q = q⊥ , (4.51)

where we have used the on-shell condition for q. The virtual emissions are therefore ordered

in transverse momentum in the frame where the legs of the eikonal lines are back-to-back.

To actually dress the generating functional with the full virtual correction, we will want to

act on it with the integral of the virtual soft current operator. We can straightforwardly

compute the action of this operator on W [0]
N :∫ µf

µi

dµ′

µ′
V(1)(U ;µ′)W [0]

N (U) = −1

2

∑
1≤i<j≤N

∫ µf

µi

dµ′

µ′
γij(µ

′)Ti ◦TjW [0]
N (U) . (4.52)

The δ function in O then automatically enforces ordering in transverse momentum. We

can now dress the W [0]
N with an arbitrary number of ordered virtual corrections,

W(LL)[0]
N (U ;µf , µi)

∣∣∣
virtual

=

W [0]
N (U) +

∫ µf

µi

dµ′

µ′

[
V(1)(U ;µ′),W [0]

N (U)

]

+

∫ µf

µi

dµ′

µ′

∫ µ′

µi

dµ′′

µ′′

[
V(1)(U ;µ′′),

[
V(1)(U ;µ′),W [0]

N (U)

]]

+

∫ µf

µi

dµ′

µ′

∫ µ′

µi

dµ′′

µ′′

∫ µ′′

µi

dµ′′′

µ′′′

[
V(1)(U ;µ′′′),

[
V(1)(U ;µ′′),

[
V(1)(U ;µ′)W [0]

N (U)

]]]
+ ... (4.53)

We note that the soft virtual current operator with the largest µ acts first, and then

the second largest acts, then the third largest, etc. The commutators ensure that the

derivatives act no further to the right. This can be traced to the ordering of the indices on

the color matrices in Eq. (4.44). This way the first current to act will have it’s T matrices

as the outer most in the chain of inserted color generators. This setup by construction

satisfies the differential equation:

µ
d

dµ
W(LL)[0]
N (U ;µ, µi)

∣∣∣
virtual

= −1

2

∑
1≤i<j≤N

γij(µ)Ti ◦TjW(LL)[0]
N (U ;µ, µi) (4.54)

This is solved by the path-ordered exponentiation of the kernel:

W(LL)[0]
N (U ;µf , µi)

∣∣∣
virtual

= UN (µf , µ0)W(LL)[0]
N (U ;µ0, µi)

∣∣∣
virtual

(4.55)

UN (µf , µ0) = PExp

(
− 1

2

∑
1≤i<j≤N

∫ µf

µ0

dµ′

µ′
γij(µ

′)Ti ◦Tj

)
(4.56)

We also define U directly in terms of the soft anomalous dimension in Eq. (A.23). We now

wish to find a leading logarithmic approximation to the generating functional of Eq. (4.15)
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for both the virtual and the real corrections. To combine the real and the virtual corrections

together, we start our recursive definition of the leading log generating functional using a

seed fully dressed with the virtual corrections:

WLL
N

(
U ;µ, µi

)
=W(LL)[0]

N

(
U ;µ, µi

)
+
∞∑
n=1

1

n!
W(LL)[n]LL
N

(
U ;µ, µi

)
(4.57)

W(LL)[n+1]LL
N

(
U ;µ, µi

)
=
[
J(T )[1](U), W(LL)[n]LL

N

(
U ;µ, µi

)]
(4.58)

This is a seemingly trivial statement, since it looks like we merely drop the [ ]′s about the
LL. What will be important is that we will have the following modified relation between
the N and the N + 1 leading log color-space amplitudes:

Uf ·
δ

δUf
WLL
N

(
U ;µ, µi

)
=

N∑
i=1

∫
[ddpN+1]

∑
σN+1

(
J (T )
pi (pN+1) · εpN+1

(σN+1)
)
UN (µ, µi)T

N+1
i ◦ U−1

N+1(µ, µi)WLL
N+1

(
U ;µ, µi

)
(4.59)

This follows directly from Eq. 4.38 by writing WLL
N |real = U−1

N (µ, µi)WLL
N

(
U ; ζ;µ, µi

)
.

Also the set of virtual diagrams that reproduce the leading log result are completely cap-

tured by dressing initial hard lines, i.e., at this order we are not sensitive to virtual correc-

tions imposed on subsequent soft emissions off the initial hard lines.

4.4 Ordered Real Soft Insertion Operator

We can recursively dress the hard amplitude with both virtual corrections and real emis-

sions using the virtual operator of Eq. (4.44), and the current operator of (4.28). However,

we have not yet implemented any ordering to the real current operator. Formally the soft

real emissions could be at any scale, though we can imagine that the functions U we have

introduced have support at scales below the hard interaction. The conundrum we face is

then how to order the real emissions explicitly. At the level of the amplitude, we only have

the hard scales of the underlying process as the reference. That is, we could attempt to

impose an ordering by dressing the current using:

J
(T )
k (q) · εq(λ)→ θ

(
µ− P ref · q√

s

)
J

(T )
k (q) · εq(λ) . (4.60)

P ref then must be some momentum associated with the hard process, for instance, we

could take P ref = k, the momentum of the hard leg, or P ref to be the total momentum of

the initial state. The former would correspond to virtuality ordering of the real emissions,

the second would be an energy ordering, which is known to be a problematic prescription,

see Ref. [92]. However, since at the level of the amplitude, we do not yet know which

leg will absorb the real emission when we square the amplitude, energy/virtuality ordering
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seems to be the only prescription which we could consistently implement if we insist on

trying to write an evolution equation for the amplitude.

How might we order the real emissions in Eq. (4.28)? Briefly, defining:

J(T )[1](Ui, Uf ;µ) = g
∑
R

∫
[ddp]+

∫
[ddq]+

(
J (T )
p (q) · εq(λ)Uaλf (q)

)
[Ta

R]cd
∑
σ,z

Udσz (p)
δ

δU cσz (p)
µδ(µ− np · q).

(4.61)

Where np is the null vector in the direction of p, rescaled so n0
p = 1. We have then for the

ordered real emissions:

W [LL]
N

(
Ui, Uf ;µ, λ

)∣∣∣
real

=

[
P exp

[ ∫ µ

λ

dµ′

µ′
J(T )[1](Ui, Uf ;µ′)

]
,W [0]

N

(
Ui, Uf

)]
. (4.62)

Ultimately, the ordered color-space amplitude will be of little use for us when calculating

cross-sections, since we demand ordering with transverse momentum. We have developed

it merely as an exercises in the generating functional technology. For a real emission, the

transverse momentum is defined relative to the two eikonal lines, each on either side of the

cut diagram. That is, while we can easily implement transverse ordering on the virtual

corrections at the level of the amplitude, we must go to the level of the amplitude squared

in order to efficiently define transverse ordering for the real emissions.

4.5 The Amplitude Squared

We now simply write down the correct evolution equation for the amplitude squared. We
introduce a real emission operator, exactly analogous to Eq. (4.44):

H[1](U,U†;µ) =

1

2

∑
R1,R2

∫
[ddp1]+

∫
[ddp2]+Wab

12(µ;U,U†) [Ta
R1

]cdU
dλ1
z1 (p1)

δ

δU cλ1
z1 (p̂1)

[Tb
R2

]feU
†fλ2
z2 (p2)

δ

δU†eλ2
z2 (p2)

,

(4.63)

Wab
12(µ;U,U†) =

∑
σ,λ

4παs(µ)

V

∫
[ddq]+W12(q;σ, λ)µδ

(
µ−O(p1, p2; q)

)
Uaσf (q)U†bλf (q) , (4.64)

Wij(q;σ, λ) = J (T )
pi (q) · εq(σ)ε∗q(λ) · J (T )

pj (q) =
pi · εq(σ)ε∗q(λ) · pj

pi · q q · pj
. (4.65)

V is the normalizing factor. The definition and need for this factor will be explained in

the next section when we calculate expectation values of observables using these generating

functionals.
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The action of H[1](U,U †;µ) is easy to calculate:

H[1](U,U†;µ)W [0](0)
N (U)W†[0](0)

N (U) =∑
1≤i<j≤N,σ

1

V

∫
[ddpN+1]+Wij(pN+1)µδ

(
µ−O(pi, pj ; pN+1)

)
TN+1
i ◦W [0](0)

N+1 (U)W†[0](0)
N+1 (U) ◦TN+1

j .

(4.66)

Here the color matrix Ti is inserted via U -derivatives, and the Tj via the U † derivatives.

And further, an additional U and U † functions are inserted, associated with the additional

final state emission. Since we are working in the strongly ordered limit, this emission now

acts as a hard parton for all subsequent emissions which allows us to write the result in

terms of W [0](0)
N+1 (U)W†[0](0)

N+1 (U). The real emission insertion operator H[1](U,U †;µ), like

the virtual one is a color singlet and its action on W [0](0)
N (U)W†[0](0)

N (U) preserves the color

space.

We can now write down how to dress a hard amplitude squared with a arbitrary number
of real and virtual emissions:

W [0](0)
N (U)W†[0](0)

N (U)→ Pexp

(∫ µH

µS

dµ

µ

{
H[1](U,U†;µ) + V†(1)(U ;µ) + V(1)(U ;µ)

})
W [0](0)
N (U)W†[0](0)

N (U)

(4.67)

The operator is implemented in a µ ordered form in the same way as Eq. 4.53. This

implementation ensures the strongly ordered limit for both real and virtual corrections,

i.e., the virtual corrections applied to a given real emission are automatically ordered with

respect to the transverse momentum of that emission. We only consider this subset of

corrections since those are the ones which will recover the leading log result to all orders.

4.6 Probabilities within the Generating Functional Approach

To get to a probability, we need to square the amplitudes, and sum over all scatterings

that contribute to the considered cross-section. This we do now, the following averaging

rules for the functions U and U †:〈
Uaλx (p)U †bσy (q)

〉
= 2(2π)d−1(p0)3−dδ(p0 − q0)δ(d−2)(p̂− q̂)δλσδabδxy , (4.68)

0 =
〈
U †aλx (p)U †bσy (q)

〉
=
〈
Uaλx (p)U bσy (q)

〉
, (4.69)

0 = 〈U †aλx (p)〉 = 〈U bσy (q)〉 . (4.70)

We handle products of U ’s Wick’s Theorem.13 We can also introduce an averaging weighted
by an observable:〈

Uaλx (p)U†bσy (q)
〉
O

= 2(2π)d−1(p0)3−dδ(p0 − q0)δ(d−2)(p̂− q̂)δλσδabδxyδλσOλx(p) . (4.71)

13This is because the U averaging can be given a formal path integral definition, see Ref. [93], which can
be implemented numerically via an equivalent langevin simulation [94, 95].
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We allow the observable to depend on whether the parton is in the initial state. Note
that the O can depend on all the parton momenta in this averaging rule. Nothing prevents
us from including an arbitrary number of U ′s in such an averaging rule, for instance, we
might demand:〈( n∏

i=1

Uaiλixi (pi)
)( n∏

j=1

U†bjσjyj (qj)
)〉

O

= O
(
{pi, λi, xi}ni=1

)〈( n∏
i=1

Uaiλixi (pi)
)( n∏

j=1

U†bjσjyj (qj)
)〉

.

(4.72)

Where we average on the left hand side with no observable constraint. Which averaging

rule we implement depends on the observable in question.

Now if we want to compute the soft contribution to a cross-section, we simply must calcu-

late:

GN (O) = N

〈
WN (Ui, Uf )W†N (Ui, Uf )

〉
O

tr
〈
WN (Ui, Uf )W†N (Ui, Uf )

〉 (4.73)

The ratio is to cancel out the δ-functions on the initial eikonal lines, and N is a normaliza-

tion factor dictated by the normalization of the hard coefficients. Often we will suppress

the denominator and the normalization, both being understood.

To illustrate the averaging rules, we work out the one loop real emission eikonal contri-
bution to Eq. (4.73) from a color dipole, making the assumption that the measurement is
independent of polarization, and all U ′s are in the final state:〈
W [1]

2 (U)W [1]†
2 (U)

〉
O

= −4παsT
a
i1j1T

a
i2j2

∫ µf

µi

dµ

µ

∫
[ddq]+

p1 · p2

p1 · qq · p2
µδ
(
µ−

√
2W−1

12 (q)
)
O(p1, p2, q)

〈Ua†(q)Ua(q)〉
V

(4.74)

The cross connection between the U’s for the hard lines and soft emission is prevented by

the fact that the polarization tensor for a massless particle is transverse to its momentum

(we have gone ahead and performed the polarization sum produced by U,U † averaging,

further, we must remember the polarization sum produces a minus sign). The normalizing

factor V is defined so as to remove the δ(0) terms that arise from the contraction of U

and U † at the same momentum. At higher order emissions, the ordering in µ prevents the

contraction of U and U † at different emission momenta.

4.7 The LL BMS Equation

We are now in a position to write out the leading log BMS equation. We simply take the
soft trace in Eq. (4.73), and substitute the leading log generating functional for the full
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generating functional using Eq. (4.67):

GN

(
O;µH , µS

)
=

〈
Pexp

(∫ µH

µS

dµ

µ

{
H[1](U,U†;µ) + V†(1)(U ;µ) + V(1)(U ;µ)

})
W†[0](0)
N (U)W [0](0)

N (U)

〉
O

.

(4.75)

Formally we should consider the limit µS → 0. We implicitly assume then that this limit

exists. This is equivalent to demanding that the observable O is infra-red and collinear

safe. Otherwise we must set µS = µhad > ΛQCD, and between the scales µhad and ΛQCD
we will need a non-perturbative model. It is important to note that the real and the

virtual corrections have their integration regions foliated along contours constant µ, so

that the IR divergences will match point by point in phase space. This can be seen as the

justification for Eq. (4.75): this equation populates below the scale µH both real and virtual

corrections from the N -hard eikonal lines. The virtual corrections match the leading order

IR divergences in the virtual correction to the N hard-lines, and the real correction matches

the leading order IR divergences of one of the real emissions for N + 1 hard amplitude

squared, when that emission is taken soft. Indeed, it was this observation that forms the

basis of parton-showers based around Catani-Seymour subtractions [84, 96] or anntennae

subtractions to form coherent dipole showers (Refs. [1, 97–100]): the subtraction procedure

that renders the amplitude squared finite also tells one how to populate the next emission.

The lowest order in perturbation theory is given as:

GN (O) = O
(
{pi, λi}Ni=1

)
+ ... (4.76)

which is simply the constraint giving the contribution of the N initial hard partons to
the measurement. The Banfi-Marchesini-Smye equation simply controls the evolution of
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GN

(
O;µH

)
with changing initial hard scale µH :14

µH
d

dµH
GN

(
O;µH

)
=

− 1

2

N∑
i,j=1

αs(µH)

π
λij

[
iπ

Ti ◦Tj

2
,GN

(
O;µH

)]

−
N∑

i,j=1

2παs(µH)

∫
[d4pN+1]+Wij(pN+1)µHδ

(
µH −

√
W−1
ij (pN+1)

)

×

{
TN+1
i ◦GN+1

(
O;µH

)
◦TN+1

j

− θ
(
ωi −

nj · pN+1

ni · nj

)
θ
(
ωj −

ni · pN+1

ni · nj

)(Ti ◦Tj

2
GN

(
O;µH

)
+ GN

(
O;µH

)Ti ◦Tj

2

)}
,

(4.77)

λij =

{
1 if i and j are both initial or both final state partons ,

0 otherwise
(4.78)

This equation follows in the same way as Eq. 4.54. The GN and the GN+1 have distinct

implicit phase-space constraints, as can be seen when using the averaging rules of Eq.

(4.72). We have in the virtual on-shell terms a constraint from the energies ωi and ωj on

the ni or nj components. We have not included such a constraint in the real emission term.

This is justifiable to NLL order, as will be illustrated in Sec. 4.8.3, as long as the averaging

rules enforce the conservation of momentum for all the real emissions: conservation of

momentum on N + 1 emissions will produce these cut-offs anyways (but this would not

happen for the virtual terms). We can also include these cut-offs in the real emission term

explicitly as well, being redundant with the conservation of momentum, thus making the

phase-space between the on-shell real and virtual emissions identical in the BMS equation.15

4.8 The Out-of-Gap/Dressed Gluon Expansions and Calculating a Cross-Section

One way to determine the nontrivial effects of these phase space-constraints is to use the

Out-of-Gap or Dressed Gluon expansions of Refs. [8, 14–16, 44]. This type of dressed-soft-

jet expansion is also at the heart of every Monte-Carlo generator which weights the next

emission by the Sudakov no-splitting kernels. This formally exponentiates all the virtual

corrections to a certain perturbative order in the Sudakov exponent for each real emission.

14We have gone ahead and already performed the polarization sum in the BMS equation, so we must
remember the polarization sum produces a minus sign on the real emission term.

15This would be akin to using local conservation of momentum as done in some parton showers, for
example see Refs. [90, 98]. In a local conservation scheme, the conservation of momentum is applied to
both the no-splitting probability (virtual terms) and the real emissions, but only using the momenta of
the currently decaying color-connected dipole, that is, the momenta of the two eikonal lines involved in
the decay. As we will see in Sec. 4.8.3, the difference between local and global momentum conservation is
beyond NLL accuracy for double-log sensitive observables, unless we can prove some recoil-free conditions
to all orders Refs. [101, 102].
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All Monte Carlos then terminate after a finite number of real emissions, a prescription that

converges to the correct solution of the BMS equation in all regions of phase-space [8]. A

similar claim cannot be made for the fixed order expansion. As noted in the beginning of

Sec. 4, by construction, the W carries all subsequent emissions from the hard interaction,

and GN appropriately squares and averages over these amplitude level emissions. Thus

if CN is the hard amplitude corresponding to the Born-level configuration of the hard

scattering, dΦN is the on-shell phase space for the N hard partons, then the observed

cross-section is:

dσ

dO
=

∫
dΦN lim

µS→0
tr[CNGN

(
O;µH , µS

)
C†N ] , (4.79)

dΦN =
N∏
i=1

[ddpi]+ (4.80)

In this section we will develop these resummed expansions for GN . This will be a re-

organization of the expansion for GN not in terms of αs but in terms of the number of

real resolved emissions (jets). One will include global/Sudakov resummation, and would

correspond to a strict expansion in the number emissions, with each emission dressed by all

its virtual corrections. This would be closely related to both how Monte Carlo event gen-

erators and the CAESAR resummation framework proceed. The dressed-gluon expansion

will factor out the global or Sudakov resummation, since the global resummation depends

on the details of the measurement about collinear regions. The residual equation will de-

scribe the non-global correlations between distinct angular regions. This factoring is of

course not unique, one may factor any arbitrary constant between the “global” and the

“non-global” contributions. Which logarithms to factor as part of the global resummation

can be decided to all orders by looking at the born configuration of the observable’s initial

hard function, and collinear contribution to the observable.

4.8.1 Resummed Expansion

To see how this reorganization can be made, we define a new object gN which is related

to GN by a dressing of virtual corrections

GN

(
O;µH

)
= UN

(
µH ;µS

)
gN

(
µH , µS

)
U†N
(
µH ;µS

)
(4.81)

(4.82)

We also introduce the shorthand:

dΦij
k (µ) = 2παs(µ)(1− δij)

∫
[d4pk]+Wij(pk)µδ

(
µ−

√
2W−1

ij (pk)
)
, (4.83)

(4.84)

– 25 –



This explicitly factors out the global hard evolution, µS is an arbitrarily low scale. We
then plug this into Eq. (4.77) which then gives us an evolution equation for gN :

µH
d

dµH
gN

(
O;µH , µS

)
=−

N∑
i,j=1

∫
dΦijN+1(µH)

{
U−1
N

(
µH ;µS

)
TN+1
i ◦GN+1

(
O;µH

)
◦TN+1

j U−1†
N

(
µH ;µS

)}
(4.85)

The boundary condition on GN is the physical fact that we turn off the evolution at some

IR scale µS , so that:

GN (O,µH = µS) = O
(
{pi, λi}Ni=1

)
(4.86)

We can now integrate both sides and use the boundary conditions to give:

GN

(
O;µH , µS

)
= O

(
{pi, λi}Ni=1

)
U†N (µH ;µS)UN (µH ;µS)

−
N∑

i,j=1

2π

∫ µH

µS

dµ

µ

∫
dΦijN+1(µ)U†N (µH , µ)TN+1

i ◦GN+1

(
O;µ, µS

)
◦TN+1

j UN (µH , µ) .

(4.87)

Iterations of this equation then produce equation 1.5 of Ref. [18], once we substitute in

Eq. 1.1 found therein, or can be seen as generating the sum in Eq. (3.16) for the reduced

density matrix calculation of the cross-section.

For the high scale µH , we should choose a point where the logarithms of the renormalized

scattering amplitude is minimized. Naively, when we iterate Eq. (4.87) and insert the

resulting expansion into the cross-section of (4.79), we might expect a cancellation of the

soft resummation factors U . However, because of the measurement constraints, the integral

up to µH in the second term of Eq. (4.87) will be effectively cutoff above a certain scale.

Thus the soft resummation factors when we insert this into the cross-sections using Eqs.

(4.79) will only cancel below the scale mH . Thus as long as we take µS � mH ,mL, we are

insensitive to the actual choice of µS : this scale will cancel out order-by-order in the soft

jet expansion.

4.8.2 Illustration of a Measurement Constraint

As an illustration of the measurement constraints O
(
{pi, λi}Ni=1

)
, we can take the example

of the cumulative hemisphere thrust distributions in e+e− →hadrons. The hemispheres
are defined by the regions in which the total transverse momentum of all radiation in each
hemisphere parallel to the plane dividing the hemispheres is zero. We then find (one minus)
the thrust in each hemisphere. In the dijet limit, we can introduce light-cone directions
n = (1, t̂) and n̄ = (1,−t̂), where t̂ is in the direction perpendicular to the plane dividing
the hemispheres, the thrust axis. Thus t̂ gives the direction where most of the energy is
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flowing, and we can write the measurement function in this limit as:

O
(
{pi, λi}Ni=1

)
=

θ
(
mH −

N∑
i=1

n · piθ(n̄ · pi − n · pi)
)
θ
(
mL −

N∑
i=1

n̄ · piθ(n · pi − n̄ · pi)
)

× δ(2)
( n+2∑
i=1

pi⊥θ(n̄ · pi − n · pi)
)
δ(2)
( n+2∑
i=1

pi⊥θ(n · pi − n̄ · pi)
)
δ
(
Q−

n+2∑
i=1

n · pi
)
δ
(
Q−

n+2∑
i=1

n̄ · pi
)
.

(4.88)

Q is the hard center of mass momentum of the e+e− collision. We have used a projector

to insure that the sum of transverse momenta in one hemisphere is zero, and momentum

conservation gives the total momenta in the other hemisphere as necessarily zero. We have

not performed any multipole expansion of the momentum conservation or measurement

constraints, as would be done in a strict effective field theory approach. This is due

to the fact that we have not, in our general evolution equation, specified an exact power

counting for the soft radiation. We have also included the condition that the total transverse

momentum in each hemisphere is zero, and our light-cone coordinate system is specified

by the thrust axis t̂:

n = (1, t̂), n̄ = (1, t̂), n · q⊥ = n̄ · q⊥ = 0 (4.89)

By conservation of momentum, we must have for all N at least two of the momenta in the

set {pi}Ni=1 satisfy (say p1 and p2):

p1 ≈
Q

2
n , (4.90)

p2 ≈
Q

2
n̄ . (4.91)

That is more generally, within {pi}Ni=1, there must be two subsets of momenta which are

within a cone of size
√
mH/Q and

√
mL/Q of each other, one parallel t̂ and the other to

−t̂. These sets are carrying the bulk of the momenta, see Ref. [101].

4.8.3 Recovering CAESAR

We show how for an observable defined on an initial (time-like, so we can ignore the

Glauber phase and possible factorization violating effects) color-dipole we can recover the

CAESAR resummation formula (Ref. [51])16 up to sub-leading logarithmic effects. We

16For an extension of the CAESAR paradigm to NNLL for global observables, see Ref. [103], and see
also Ref. [104] for direct comparison to various Monte Carlo schemes of resummation.
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adopt the shorthand for the phase-space and measurement constraint:

dφijk (µ) = 2παs(µ)(1− δij)
∫

[d4pk]+Wij(pk)µδ
(
µ−

√
2W−1

ij (pk)
)
, (4.92)

O
(
{pi, λi}Ni=1

)
= ON . (4.93)

The Kronecker delta in Eq. (4.92) will help condense the notation below. We then iterate
Eq. (4.87):

G2

(
O;µH , µS

)
=

O2U†2 (µH , µS)U2(µH , µS)

−
∫ µH

µS

dµ

µ

∫
dφi3j33 (µ)O3U†2 (µH , µ)T3

i3 ◦ U
†
3 (µ, µS)U3(µ, µS) ◦T3

j3U2(µH , µ)

+ (−1)2

∫ µH

µS

dµ

µ

∫
dφi3j33 (µ)

∫ µ

µS

dµ′

µ′

∫
dφi4j4x4 (µ′)

O4U†2 (µH , µ)T3
i3 ◦ U

†
3 (µ, µ′)T4

i4 ◦ U
†
4 (µ′, µS)U4(µ′, µS) ◦T4

j4U3(µ, µ′) ◦T3
j3U2(µH , µ)

+ ... (4.94)

The repeated indices in, jn are summed over, each running through the set {1, ...., n− 1}.
The definition of the phase space insures terms in = jn are set to zero. We now expand

the resummation factors U with emission p3 collinear to emissions 1 or 2, following App.

A.3. This is justifiable, since the measurement will constrain the invariant mass of p3 with

respect to p1 or p2 to be much smaller than the invariant mass p1 · p2. Then:

UN (µf , µi) = Sp13(µf , µi)UN−1(µf , µi) , (4.95)

We further use the fact that the initiating dipole is a color singlet, so that the exponent in

U2, can be written as

2T1 ◦T2 = −T2
1 −T2

2 (4.96)

when acting on the two initiating hard partons. The R.H.S of this equation is just the
Casimirs for the representation of the two partons and hence U2 (and its conjugate) can be
pulled out of the overall expression. This allows us to considerably simplify the expansion
and we can see the first two terms become (focusing on the 1 ‖ 3 case):

G2

(
O;µH , µS

)
=

O2U†2 (µH , µS)U2(µH , µS)

− U†2 (µH , µS)U2(µH , µS)

∫ µH

µS

dµ

µ

∫
dφi3j33 (µ)O3Sp

2
13(µ, µS)Ti3 ·Tj3

+ (−1)2

∫ µH

µS

dµ

µ

∫
dφi3j33 (µ)Sp2

13(µ, µS)

∫ µ

µS

dµ′

µ′

∫
dφ

i′3j
′
3

4 (µ′)

O4U†2 (µH , µ
′)TA1

i3
T3
i′3
◦ U†3 (µ′, µS)U3(µ′, µS) ◦T3

j′3
TA1
i3
U2(µH , µ

′)

+ ... (4.97)
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Note that U3 in the second term will now only depend p2, p4 and on a null vector approx-
imating p1 + p3. The emission p4 will only radiate off of the coherent sum of emissions p1

and p3, so that we relabel the indices i4 and j4 to j′3 and j′3 to emphasize that in this limit
p4 only radiates off of the dipole formed from p1 + p3 and p2. This dipole is again a color
singlet which allows us to utilize the same simplification as before. We now expand p1 ‖ p4:

G2

(
O;µH , µS

)
= O2U†2 (µH , µS)U2(µH , µS)

− U†2 (µH , µS)U2(µH , µS)

∫ µH

µS

dµ

µ

∫
dφi3j33 (µ)O3Sp

2
13(µ, µS)Ti3 ·Tj3

+ (−1)2U†2 (µH , µS)U2(µH , µS)

∫ µH

µS

dµ

µ

∫
dφi3j33 (µ)Sp2

13(µ, µS)∫ µ

µS

dµ′

µ′

∫
dφ

i′3j
′
3

4 (µ′)Sp2
14(µ′, µS)O4T

A1
i3

TA2

i′3
TA2

j′3
TA1
i3

+ ... (4.98)

We then expand in the strongly ordered collinear limit, so that emission pN+1 is collinear
to p1, after we have taken all the previous emissions in that limit. The momentum p3

will be collinear to either p1 or p2, and that will decide the collinearity of all subsequent
emissions. We can also treat the initial momenta p1 and p2 to be back-to-back, so that
expanding p3 to be collinear to p1 or p2 will result in the same eikonal factor. We do not
yet explicitly expand the measurement constraints (a point which is crucial for getting a
finite result), only the resummation factors and eikonal factors. We then have the result
when we also include the region where each emission is parallel to p2:

G2

(
O;µH , µS

)
=

U†2 (µH , µS)U2(µH , µS)

(
O2

+

∞∑
n=1

(
T2

1 + T2
2

2
)nP

∫ µH

µS

n∏
i=1

dµi
µi

∫
dφ12

i+2(µi)
(
On+2Sp

2
1 i+2(µi, µS)

∣∣∣∣∣
‖p1

+On+2Sp
2
2 i+2(µi, µS)

∣∣∣∣∣
‖p2

))
(4.99)

where we have the path-ordered integration:

P
∫ µH

µS

n∏
i=1

dµi
µi

=

∫ µH

µS

dµ1

µ1

∫ µ1

µS

dµ2

µ2
...

∫ µn−1

µS

dµn
µn

. (4.100)

Eq. (4.99) is essentially the CAESAR resummation formula. In order to achieve full next-
to-leading log accuracy claimed for the CAESAR formalism, we must however use the
running coupling in Eq. (4.92) in the CMW scheme [105, 106], and instead of using the
eikonal factor W12(p), we should promote the eikonal factor to include the collinear limits
as well, by using the appropriate antenna or Catani-Seymour functions for radiation off of
a quark or gluon pair. If we take the example of the total cumulative thrust distribution,
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we then have for the measurement function:

On+2 = θ
(
τ −

n+2∑
i=1

n · piθ(n̄ · pi − n · pi)−
n+2∑
i=1

n̄ · piθ(n · pi − n̄ · pi)
)

× δ(2)
( n+2∑
i=1

pi⊥θ(n̄ · pi − n · pi)
)
δ(2)
( n+2∑
i=1

pi⊥θ(n · pi − n̄ · pi)
)
δ
(
Q−

n+2∑
i=1

n · pi
)
δ
(
Q−

n+2∑
i=1

n̄ · pi
)
.

(4.101)

Given that we can take p1 and p2 to lie in separate hemispheres, when integrating over
the transverse momentum and the longitudinal momentum fraction of p1, we are really
integrating over all possible orientations of the axis for the hemispheres. Each configura-
tion will give an identical thrust distribution. We also use the symmetry between each
hemisphere to remap the integration of each emission to be solely in the p1 hemisphere.
Thus we achieve:∫

dn̄ · p1

∫
d2p1⊥P

∫ µH

µS

n∏
i=1

dµi
µi

∫
dφ12

i+2(µi)On+2

∣∣∣∣∣
‖p1

=
( 2

π

)n
P
∫ µH

µS

n∏
i=1

dµi
µi

αs(µi)

∫ 1

µi
Q

dzi
zi
θ
(
τ −

n∑
i=1

µ2
i

Qzi

)
θ(1−

n∑
i=1

zi) (4.102)

here we have used the transverse ordering and on-shell condition to write:

n · pi+2 =
µ2
i

n̄ · pi+2
, n̄ · pi+2 = Qzi (4.103)∫

dφ12
i (µi) =

1

2π

αs(µi)

µi

∫
dzi
zi

. (4.104)

Formally, p1 will contribute to the thrust with a term:

n · p1 = −
|
∑n+2

i=3 ~pi⊥|2

Q(1−
∑n

i=3 zi)
. (4.105)

But within the region where µi ∼ Qzi � µH , this term is sub-dominate. Then using:17

n∏
i=1

∫ ∞
xi

dzi
zi
θ
(
A−

n∑
i=1

zi

)
=

n∏
i=1

∫ A

xi

dzi
zi

+O(N2LL) , (4.106)

where by N2LL we mean that we explicitly loose two logarithms. Then we have:

Eq. (4.102) =
( 2

π

)n
P
∫ µH

µS

n∏
i=1

dµi
µi

αs(µi)

∫ 1

µi
Q

dzi
zi
θ
(
τ −

n∑
i=1

µ2
i

Qzi

)
+O(N2LL) . (4.107)

To finish, we can take a derivative with respect to τ , set T2
1 = T2

2 = C, and Laplace

17This approximation for integrating over the full conservation of the large momentum is what justifies
not treating the phase space of the real and virtual emissions identically in Eq. (4.77).
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transform to achieve:∫ ∞
0

dτe−θτ
d

dτ
G2

(
O;µH , µS

)
= U†2 (µH , µS)U2(µH , µS)exp

(
C

4

π

∫ µH

µS

dµ

µ
αs(µ)

∫ 1

µ
Q

dz

z
e−θ

µ2

Qz

)
.

(4.108)

We have for the resummation from the soft anomalous dimension:

U†2 (µH , µS)U2(µH , µS) = exp

(
− C 2

π

∫ µH

µS

dµ

µ
αs(µ)

∫ 1

µ2

Q2

dz

z

)
. (4.109)

The upper and lower limits on the virtual momentum fraction integral as set by the

momentum conservation constraint. We then use:∫ 1

µ2

Q2

dz

z
= 2

∫ 1

µ
Q

dz

z
, (4.110)

to get our final result:∫ ∞
0

dτe−θτ
d

dτ
G2

(
O;µH , µS

)
= exp

(
C

4

π

∫ µH

0

dµ

µ
αs(µ)

∫ 1

µ
Q

dz

z

(
e−θ

µ2

Qz − 1
))

. (4.111)

We now use the approximation from Ref. [107]:

e−θ a − 1 ≈ −θ
(
a− (eγEθ)−1

)
(4.112)

Then we split up the integration regions as:

θ
( µ2

Qz
− (eγEθ)−1

)
θ(1− z)θ

(
z − µ

Q

)
= θ
(
eγEθ

µ2

Q
− 1
)
θ(1− z)θ

(
z − µ

Q

)
+ θ
(

1− eγEθµ
2

Q

)
θ
(
eγEθµ− 1

)
θ
(
eγEθ

µ2

Q
− z
)
θ
(
z − µ

Q

)
(4.113)

So that:∫ µH

0

dµ

µ
αs(µ)

∫ 1

µ
Q

dz

z

(
e−θ

µ2

Qz − 1
)

=

∫ µH

µJ (θ)

dµ

µ
αs(µ)ln

Q

µ
−
∫ µJ (θ)

µS(θ)

dµ

µ
αs(µ)ln(µθ eγE ) + ...

(4.114)

µJ(θ) =

√
Q

θ eγE
(4.115)

µS(θ) =
1

θ eγE
(4.116)

This is to be compared to the SCET result for the resummation of thrust. In laplace-

space, the scale setting choices for the renormalization group evolution are precisely given

by Eqs. (4.115) and (4.116) see Refs. [108–110], corresponding to the typical collinear

opening angle and ultra-soft energy scale for the thrust distribution.
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5 Soft Amplitudes and Soft Functions

In this section we will examine the construction of the BMS equation using the definition

of soft functions from wilson lines18. We will give the formal definition of a soft trace for

additive observables on N -directions, corresponding to an insertion of a complete set of

states normally used to calculate a soft function. The ingredients for this soft trace are

writing down an operator definition of the generating functional for the soft emissions,

valid to arbitrary order. Then using Lehmann-Symanzik-Zimmerman (LSZ) reduction

formula to accomplish the insertion of the complete set of states, we write down the form

of the measurement operator that generates a state consistent with the required final state

constraints. This operator admits a recursive description of ordered emissions in energy,

to any given logarithmic accuracy. Then following the logic of [55], but written in terms of

objects familiar to an effective field theorist, we will give a leading logarithmic evolution

equation, the BMS equation, for this soft trace, using this recursively defined insertion

of ordered states. The method of proof is straightforward, and extends to higher orders,

being limited only by the calculated perturbative accuracy of soft currents. This directly

connects the BMS equation as an evolution equation satisfied by the standard effective

field theory definitions of soft functions.

When building the BMS evolution equation, we will use a minimally consistent power

counting, as done in Ref. [49] in the example of hemisphere jet observables. This power

counting is sufficient to resum all non-global logarithms, but does not suffice to resum all

large phase-space logarithms, as we will illustrate.

5.1 Soft amplitudes and soft functions from Wilson lines

A basic building block for the analysis of soft physics is the vacuum matrix element of

time-ordered wilson lines. To this end we introduce the soft amplitude functional:

YN [j] = 〈0|T
{

Sp1 ...SpN e
iS[A]+ij·A

}
|0〉 , (5.1)

j ·A =df

∫
ddxjaµ(x)Aaµ(x) . (5.2)

Here we have introduced a current only for the gluon field, but all parton flavors would

have their distinct currents, which we suppress for conciseness. S is simply the action for

the gauge theory under consideration. This functional in principle encodes all the possible

soft amplitudes. The n-point soft amplitudes are the amplitudes for the production of

n-partons from the fixed number of hard scatters. These soft amplitudes are defined via

18See references [49, 111] for another SCET based approach.
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the LSZ reduction procedure on the soft amplitude functional:

A[n]
N (qa1λ1

1 , ..., qanλnn ) =

n∏
i=1

(
lim
q2
i→0

∫
ddxie

iqi·xiεµiqi (λi)∂
2
xi

δ

iδjaiµi(xi)

)
YN [j]

∣∣∣∣∣
j=0

. (5.3)

Where εµiqi (λi) is the polarization vector for the i-th soft parton, qi its momentum, ai
its color index, and λi the polarization quantum number (± for helicity). At this stage,

all the emissions are softer than the initiating N hard partons, but otherwise arbitrary.

This amplitude also includes all order virtual corrections for each real emission which

is obtained by successive insertions of the Lagrangian interaction in the exponent. To

condense notation, we will denote the LSZ reduction operator as:

L
(
qa1λ1

1 , ..., qanλnn ;
δ

δj

)
=

n∏
i=1

(
lim
q2
i→0

∫
ddxie

iqi·xiεµiqi (λi)∂
2
xi

δ

iδjaiµi(xi)

)
. (5.4)

We can then formally calculate the contribution to an observable by squaring, weighting

the matrix element, and summing over all such amplitudes:

〈Ô〉N =

∞∑
n=0

∫ n∏
i=1

[ddqi]+

∣∣∣A[n]
N (qa1λ1

1 , ..., qanλnn )
∣∣∣2Oa1λ1,...,anλn(q1, ..., qn) . (5.5)

The function O gives the final state contribution to some pre-defined observable. The

factorization theorem for the hard scattering process then takes the form:

dσ

dO
= tr

[
HN 〈Ô〉N

]
⊗Ni=1 Ji(Ô) , (5.6)

where now the trace is over the color. Ji here are the jet functions for the initial N hard

partons and include contributions from collinear emissions(with energy of the same order

as the N partons). Of particular importance are so-called additive observables. We will

call an observable additive if it satisfies in some conjugate space the property19:

Oa1λ1,...,anλn(q1, ..., qn) = Oa1λ1(q1)Oa2λ2(q2)....Oanλn(qn) ∀n. (5.7)

Note that the observable for our purposes only needs to be additive in the soft limit with

respect to the hard scale of the eikonal lines. We have not taken the measurement to be

independent of color and spin, but generally, one can relax this constraint and still have

additivity. For most event shapes, one has

Oaλ(q) = O(q) . (5.8)

Having introduced the LSZ reduction procedure to generate final states, we can give a

formal definition to the insertion of a complete set of states connecting a soft amplitude

19We call this additive in deference to event shapes where this additivity is in the exponent of the
Laplace/Fourier transform.
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functional and its conjugate weighted by a particular observable:

〈Ô〉N =

∞∑
n=0

Ô[n]
( δ2

−i2δj+ · δj−
)
Y†N [j−]YN [j+]

∣∣∣∣∣
j+=j−=0

(5.9)

Where we have defined the LSZ measurement operator for the n-parton contribution to
the observable Ô:

Ô[n]
( δ2

δj+ · δj−
)

=

n∏
i=1

∫
[ddqi]+O

a1λ1,...,anλn(q1, ..., qn)∫
ddxi

∫
ddyie

iqi·(xi−yi)εµiqi (λi)ε
νi
qi (−λi)∂

2
xi∂

2
yi

δ2

−i2δj+ai
µi (xi)δj−aiνi(yi)

(5.10)

=

n∏
i=1

∫
[ddqi]+O

a1λ1,...,anλn(q1, ..., qn)L
(
qa1λ1
1 , ..., qanλnn ;

δ

δj+

)
L
(
qa1λ1
1 , ..., qanλnn ;

δ

δj−

)
.

(5.11)

Formally, Eq. (5.9) is nothing more than the insertion of a complete set of states, a method

often used to calculate a soft function in SCET when there are no straightforward dispersion

relations relating the soft function to a time-ordered product. Often such a insertion of a

complete set of states is written as:

〈Ô〉N =
∑
Xs

O(Xs)〈0|T̄{Sp1 ...Spn}|Xs〉〈Xs|T{Sp1 ...Spn}|0〉 (5.12)

The reason we adopt the more formal LSZ reduction approach to inserting states given

in Eq. (5.9) is that we can write an explicit integral equation (for example, Eq. (5.31))

accurate to a specific logarithmic order for the recursive insertion of these states.

We can of course rephrase the functional derivatives as a particular in-in path integral, see
Refs. [112, 113]. We refer the reader to Ref. [114] for an illustration of the in-in path
integral for a soft function calculation, see also Ref. [115]. For simplicity, we will work in
pure Yang-Mills, but the results straightforwardly extend to full QCD. We write:

〈Ô〉N =

∫
DA+DA−S+

p1 ...S
+
pnS−p1 ...S

−
pnExp

[
iS[A+]− iS[A−]

] ∏
x∈Σ∞

δ(A+(x)−A−(x))
∏
x∈Σ∞

Ô(A+(x), A−(x))

(5.13)

Here Σ∞ denotes a space-like surface at time t = ∞ upon which the + and − fields

are constrained to be equal. The observable Ô then constrains the energy-momentum

configuration on this surface, for instance by specifying the value of all suitably smeared

C-correlators on this surface, as defined in Refs. [116, 117]. Within the in-in formalism, any

free-theory two-point function connecting a + to a − field is equivalent to using an on-shell

delta function for the propagator, and then we use time-ordered and anti-time ordered

propagators to complete the basis for the total in-in propagator. Such +,− two-point

functions are explicitly realized in Eq. (5.9) with the LSZ reduction procedure.
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5.2 Connecting SCET+ and the Generating Functional

Often one is interested in a hierarchy of soft scales, so that between the hard eikonal lines

and the softest unresolved emissions are a set of observed softer jets. These soft jets could

have hierarchies amongst themselves or not, but minimally there is a set of soft emissions

(with respect to the hard initial jets) that are strongly ordered with respect to all other soft

emissions (which are soft compared to all other scales, except perhaps ΛQCD). An example

of an observable which gives this type of hierarchy will be discussed in the next section.

We now write out the soft gluon matching for these ordered emissions in terms of the

vacuum expectation value of wilson lines, and derive analogous results for the color-space

generating functional.

Suppose we do not want to keep the full set of soft emissions (which are softer than the

initial hard partons but otherwise arbitrary), but only want to retain the emissions in a

(partially) strongly ordered limit. Specifically, if one does not set the current to zero in Eq.

(5.3), then one can order the momenta coupled to the current to be at a soft or collinear

scale lower than the explicit momentum insertions enforced by the LSZ operator. This leads

to a matching equation that can be derived following arguments of Refs. [44, 118, 119]:

L
(
qg1σ1

1 , ..., qgnσnn ;
δ

δj

)
Ya1b1,...,aN bN
N [j, µ]

N∏
k=1

Jbkνknk
(ωckλkk ;µ) =

Ja1b1,...,aN bN
N (qµ1e1

1 , ..., qµnenn , µ)Yb1d1,...,bNdN ,e1f1,....,enfn
N+n [j, µ]

N∏
k=1

Jdkνknk
(ωckλkk ;µ)

n∏
i=1

Jµifini (ωgiσii ;µ) + ... .

(5.14)

We have added an additional n wilson lines to the original soft function, and color con-

tracted into the new hard matching coefficient. We have also made all color (ak, bk, ck, dk, ei, fi, gi)

and spin (νk, λk, µi, σi) indices explicit in the soft and jet functions, at risk of cluttering the

equation. We have not necessarily ordered any of the emissions qi amongst themselves, only

with respect to additional emissions beyond qi, i = 1, ..., n. It is clear that one could then

recursively apply such soft factorizations, which is equivalent to an ordering assumption on

various subsets of the final state momenta. Note that in this equation, we have explicitly

kept track of the color flow and polarization dependence of the new field insertions, but

left the color indices of the original eikonal lines unspecified. The JN are the matching

coefficients for the factorization, and will in general be related to soft currents familiar

from QCD factorization. Indeed, this must be true, since after setting j = 0, we must

reproduce Eq. (5.3). The matrix elements become scaleless, and would feed the collinear

polarizations and color indices to the currents, forming the appropriate soft amplitudes.
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We have also introduced collinear matrix elements:20

Jµicini (ωaiλii ) = 〈0|δ(n̄i · qi − P̄i)Xciµi
ni (0)|qai λii 〉 (5.15)

for each of the new soft eikonal lines, and ni, n̄i form a light-cone basis for the i-th direction.

We also emphasize this matching equation holds for renormalized quantities on both sides

of the equation.

The color-space generating functionals also satisfy an analogous factorization, now ex-

pressed in terms the generalization of the color space currents. Ignoring the particular

loop order the current has been evaluated to, we may write:

J[n](U)WN

(
U
)

=

∫ n∏
i=1

[ddqi]+A[n]
N · WN+n

(
U
)
, (5.16)

where one recalls that the color-space generating functional was defined with specific di-

rections for the hard eikonal directions. In particular, we can then identify the vacuum

expectation value of the N -eikonal line soft matrix element with the generating functional

for soft amplitudes:

A[n]
N ↔ JN (qµ1b1

1 , ..., qµnbnn , µ) (5.17)

WN

(
U
)
↔ 〈0|T

{
Sp1 ...SpN e

iS[A]+ij·A
}
|0〉

N∏
k=1

Jnk(ωk) (5.18)

We have suppressed the color and spin indices for conciseness. Finally, we have the basic

connection between U -averaged generating functional in Eq. (4.73) and the insertion of a

complete set of states in an SCET soft function (5.12). In general, we must consider both

the soft and collinear contributions since the soft anomalous dimension depends on the

large momentum of each collinear sector. We can define the ordered infra-red functions:21

SN (Ô, µH , µ) =
∑

|Xs,c|<µH

O
(
Xs, Xc; {pi}Ni=1

)
〈0|T̄{Sp1 ...SpN }|Xs〉〈Xs|T{Sp1 ...SpN }|0〉

N∏
k=1

Jpk(Xc)

(5.19)

Jpk(Xc;µ) = Nktr〈0|Xpk(0)δ(n̄k · pk − n̄k · P)δ
(2)
⊥pk

(
~P⊥
)
|Xc〉〈Xc|Xpk(0)|0〉 (5.20)

Where we use collinear field operators defined in Eq. (3.8). P denotes the momentum

operator, and the subscript ⊥ pk denotes the projection onto the plane transverse to

the null direction pk. The scale µ denotes where the ultra-violet virtual divergences are

renormalized, and |Xs,c| < µH denotes that the final soft Xs states and the collinear Xc

states are to be ordered together. For us, the ordering of the real emissions is dictated

20For conciseness, we have written the operator implicitly as if they were all gluons, using a Lorentz
vector index µ for the fields. Technically, we can also have other collinear field operators for fermions or
scalars.

21For the time being we ignore PDFs.
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by the ordering of the soft anomalous dimension as derived in the effective theory in App.

A: the on-shell region of the virtual corrections must match the real emissions, so that

we are guaranteed no spurious large logarithms and the correct cancellation of infra-red

divergences.22 Then the resummation of GN as asserted in Eq. (4.75) follows from using

the observable constrained sum over states found in (5.10), the factorization properties

found in Eq. (5.14) for the case of a single additional emission, which drives the connection

between GN and GN+1 within the BMS equation.

We have made no assumption about the factorization properties of the measurement. Nk

is the appropriate normalization factor for the jet function, so its tree level value is 1 for a

cumulative distribution, given we trace over color and spin indices for the jet function. We

emphasize that Eq. (5.19) must be defined with overlaps between the soft and collinear

states removed.23

We should also clarify the recoil constraints. Each momentum pK used to define a collinear

sector can be required to satisfy exact momentum conservation through the measurement

constraint O
(
Xs, Xc; {pi}Ni=1

)
. If we define each jet function relative to a recoil sensitive

jet axis, for example the thrust axis, the final state of the jet function will not necessarily

align with pk, and we could induce an explicit transverse momentum injected into the jet

function.

Then we have:

GN (O,µH) = UN (µH , µ)SN (Ô, µH , µ)U†N (µH , µ) . (5.21)

We note that this construction is formally independent of µ, where we renormalize the

virtual corrections. This relationship will hold so long as we insist that the measurement

constraints in the U -averaging found in Eq. (4.71) are identical to the constraints used

in O
(
Xs, Xc; {pi}Ni=1

)
. This object will evolve with Eq. (4.77) or equivalently Eq. (4.87)

once we use transverse-ordering. In the language of SCET, this is essentially saying that

we evolve our hard function(which is the same as the virtual corrections) from the hard

scale to some IR scale µ at which the soft and jet functions are evaluated, making the

whole object GN , µ independent.

For a specific observable, we can often make use of the multipole expansion to significantly

simplify Eq. (5.19), disentangling the collinear and soft sectors. However, if we are not

careful in the power counting of the modes used for the multipole expansion, all large logs

in phase-space may not be resummed by the resulting multipole expanded functions. We

now elaborate on this point.

22In the large-Nc limit, this argument is essentially an unitarity argument, as the soft anomalous dimen-
sion gives the no splitting probability, and the splitting phase-space must according match.

23In the parton shower literature, this would be called sectorizing the shower. In the EFT language, we
must perform a zero-bin subtraction.
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5.3 Constructing Evolution Equations for a Multipole Expanded Measure-

ment

We now examine constructing a BMS equation with a strict multipole expansion using a

hard-soft factorization, as in as Ref. [50], for the case of hemisphere jet masses. We ignore

the transverse ordering that the Glauber mediated interactions impose. We will adopt a

theory with two modes:

pH ∼ mH(1, 1, 1) ,

pS ∼ mL(1, 1, 1) . (5.22)

Ref. [50] argued that collinear modes need not be introduced, and we will examine the

consequences of such a power counting. Indeed, we will see such a theory is perfectly

consistent, but does not resum all large logarithms of phase-space. That is, it will miss

multiple emission effects near the boundary of the two hemispheres, or at and below the

scale mL. Evolving with the object defined in Eq. (5.21) with Eq. (4.77) or equivalently

Eq. (4.87) will not suffer from such a limitation, since one would use the correct phase-space

constraints for all emissions (not presupposing a multipole expansion of the phase-space),

populating formally all emissions down to µS = 0, or more appropriately, the hadronization

scale. Put simply, the full parton-shower will populate both hemispheres with multiple

emissions as the phase-space constraints allow.

5.3.1 Structure of Observables

Before deriving the BMS master equation, we first clarify the structure of the additive ob-
servable. In the wilson line approach, the LSZ reduction procedure allows one to construct
all the necessary scattering amplitudes, so to form the soft expectation value, one simply
needs to stitch together the appropriate amplitudes, as is done in Eq. (5.10). We take as
an illustrative example the non-global observable of a fat jet cumulative energy(mH), and
the complement region’s cumulative energy(mL) such that mH > mL. For n final state
partons, this is the LSZ measurement operator:

Î [n]
mH ,mL =
n∏
i=1

∫
[ddqi]+θ

(
mH −

n∑
i=1

n · qiθJ(qi)
)
θ
(
mL −

n∑
i=1

n̄ · qiθJ(qi)
)
L
(
qa1λ1
1 , ..., qanλnn ;

δ

δj+

)
L
(
qa1λ1
1 , ..., qanλnn ;

δ

δj−

)
(5.23)

Note that we do not apply any momentum conservation constraints on this operator, this

is in accord with the SCET multipole expansion for hemisphere soft-functions probing the

jet mass, see Ref. [109]. The observable itself to all orders is then:

ÎmH ,mL = 1 +
∞∑
n=1

Î [n]
mH ,mL

(5.24)

– 38 –



An important consideration for any master equation is to find the correct ordering of the
above phase space accurate to the logarithmic order one is working. In particular, one is
interested in the region between mH and mL. In order to trace over a particular emission
(replacing it with a wilson line and a jet function), this emission must be above the softest
scale mL in the observable. We introduce then the low-scale measurement operator:

Ŝ [n]
mL =

n∏
i=1

∫
[ddqi]+θ

(
mL −

n∑
i=1

n̄ · qiθJ(qi)
)
L
(
qa1λ1
1 , ..., qanλnn ;

δ

δj+

)
L
(
qa1λ1
1 , ..., qanλnn ;

δ

δj−

)
ŜmL = 1 +

∞∑
n=1

Ŝ [n]
mL (5.25)

The integral is unrestricted when the soft emission is in the fat jet region, due to the multi-
pole expansion, see Ref. [49]. Then we have the ordered (resolved) emissions measurement
operator:

R̂[n]
mH ,mL =

n∏
i=1

∫
[ddqiθJ(qi)]+θ

(
mH −

n∑
i=1

n · qi
)
θ(n · q1 − n · q2)

× θ(n · q2 − n · q3)...θ(n · qn−1 − n · qn)θ(n · qn −mL)

L
(
qa1λ1
1 , ..., qanλnn ;

δ

δj+

)
L
(
qa1λ1
1 , ..., qanλnn ;

δ

δj−

)
R̂mH ,mL = 1 +

∞∑
n=1

R̂[n]
mH ,mL (5.26)

The ordering involves no approximations, at least in a pure yang-mills theory24, since the

matrix element is invariant under interchanges, so that one can impose and rearrange an

ordering to a canonical form. The major approximation is that the softest emission is still

above the scale mL, so that all emissions are at the fat jet scale. Note that the emissions

must be in the fat jet region, given they are all above the scale mL.

Now we can write down the leading logarithmic recursion relation that can be made to the

resolved emission measurement operator25:

R̂[n]
mH ,mL

=LL

∫
[ddqθJ(q)]+θ

(
mH − n · q

)
R̂[n−1]
n·q,mLL

(
qaλ;

δ

δj+

)
L
(
qaλ;

δ

δj−

)
(5.27)

This can be solved using energy ordered exponentials, defining the argument of the expo-

24And also for a theory where all flavors have the same charge representation. Thus they give rise to
“identical” Wilson lines. One still would have to consider the jet function contributions.

25This leading logarithmic expansion of the phase space is the same as that done in the coherent branching
algorithm of Ref. [105]. Indeed, there they showed the leading logarithmic expansion of the phase space
works to next-to-leading log as well. Beyond leading log order, one would use the same ordering and
factorization between low and high-scale measurements, but in laplace space variables.
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nential to be:

E(λ; δj+ · δj−) =

∫
[ddqθJ(q)]+δ(λ− n · q)L

(
qaλ;

δ

δj+

)
L
(
qaλ;

δ

δj−

)
(5.28)

R̂LLmH ,mL = TE Exp

[∫ mH

mL

dλ′ E(λ′; δj+ · δj−)

]
(5.29)

This last relation follows from using the fact:∫ λf

λi

dλ′δ(λ′ − λ) = θ(λf − λ)θ(λ− λi) (5.30)

Often, we will find it useful to consider the integral equation satisfied by the resolved

emission measurement operator:

R̂LLmH ,mL = 1 +

∫ mH

mL

dλ R̂LLλ,mLE(λ; δj+ · δj−) (5.31)

Finally, for the purpose of computing non-global distributions, we need the full measure-

ment operator to factorize at leading power in mL/mH :

ÎmH ,mL = ŜmLR̂mH ,mL +O
(mL

mH

)
(5.32)

With Eq. (5.32), we act:〈
ÎmH ,mL

〉
N

= ÎmH ,mLY†N [j+]YN [j−]
∣∣∣
j+=j−=0

. (5.33)

Then after we make use of the integral equation (5.31) with the factorization in Eq. (5.32),

and then renormalize all global divergences, that is, divergences associated with becoming

parallel to either the n or n̄ directions as defined by the thrust axis, we can derive a

minimal BMS equation to resum hemisphere distributions. The critical point is the infra-

red boundary condition, which is given by the soft matrix elements:〈
ŜmL

〉
N
. (5.34)

We now turn to the one-loop expression for these matrix elements.

5.3.2 Limits of the Hard-Soft Factorization

So far, we have only considered the BMS equation in a factorization between only hard

modes and soft modes. One might think this is justified for observables dominated by soft

physics, the non-global observables. One can straightforwardly factor out any collinear

effects associated with the Sudakov double logarithms, and the left over result will be a

single logarithmic series. The issue encountered is two fold, but related: the kernels for

multiple soft emissions that make up the BMS equation at higher orders are not uniform
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in phase-space, but have certain regions that are enhanced due to collinear splittings [11],

and the boundary conditions in the infra-red have enhanced regions of phase space due

to collinear splittings [7, 8]. Here we will focus on the latter case, merely pointing out

which logarithms in the fixed order calculation of the boundary condition are problematic.

The important point to emphasize, though, is that these large logarithms are integrable

order-by-order in perturbation theory, since infra-red and collinear divergences cancel in

the BMS equation. One can work to a formally well-defined order in the soft-logarithms

without resumming collinear effects. However, large logarithms integrate to large constants,

so the question arises whether this formally well-defined order is genuinely perturbatively

stable, i.e., the next correction is smaller than what has been retained.

What is an example of a large logarithm in the infra-red boundary condition? We take the
case of hemisphere dijet invariant mass spectra in e+e− collisions as an example. The result
for the boundary condition was calculated in Refs. [49, 50], but also can be extracted from
the results of Ref. [120], due to their decomposition of phase space integral for a single soft
emission off of an arbitrary set of hard jets. Let n be the null vector defined by the thrust
axis pointing into the heavy hemisphere, and let θi be the angle the emission i generated
in the course of the BMS evolution makes to the thrust axis. Finally φi is the azimuthal
angle that emission i has in the transverse plane dividing the hemispheres. Then we have
for the boundary condition (in laplace-space):∫ ∞

0

dmLe
−τLmL

〈
ŜmL [µ]

〉
N

∣∣∣
one−loop

=
∑
i,i6=n

Tn ·Ti
αs(µ)

4π
u(τLµ, θi) +

∑
i,j,i 6=n,j 6=n

Ti ·Tj
αs(µ)

8π
v(τLµ; θi, θj , φi − φj) .

(5.35)

Let us single out a particular emission i, so that we can write:∫ ∞
0

dmLe
−τLmL

〈
ŜmL [µ]

〉
N

∣∣∣
one−loop

=

Tn ·Ti
αs(µ)

4π
u(τLµ, θi) +

∑
j 6=n

Ti ·Tj
αs(µ)

8π

(
v(τLµ; θi, θj , φi − φj) + v(τLµ; θj , θi,−φi + φj)

)
+ ... .

(5.36)

Where the “...” refers to terms not involving the eikonal line i. Importantly, as θi → π
2 :∫ ∞

0

dmLe
−τLmL

〈
ŜmL [µ]

〉
N

∣∣∣
one−loop

=

αs(µ)

4π

(
Tn ·Ti +

∑
j 6=n

Ti ·Tj

)(
− 4ln(µτL)ln

(
1− tan2 θi

2

)
+ 2ln2

(
1− tan2 θi

2

))
+ ... ,

(5.37)

= −αs(µ)

2π
T2
i

(
− 2ln(µτL)ln

(
1− tan2 θi

2

)
+ ln2

(
1− tan2 θi

2

))
+ ... (5.38)

This is precisely the structure of logarithms found in Ref. [7], where a jet function was

introduced to resum the large phase-space logarithm ln
(

1 − tan2 θi
2

)
, called the “edge-

of-jet” function. These jet functions of course can be introduced directly into the BMS

equation itself. That they should appear is clear from Eq. (5.14), since it contains collinear
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functions. One then forms jet functions once one squares the SCET+ factorization, with a

phase space sensitive to the boundary of the active jet region, not expanding their phase-

space as if they are deep inside the active jet region (that gives scaleless integrals for the

jet function). Physically, the appearance of these logarithms in the boundary conditions

corresponds to a situation where as a jet populated by the BMS evolution approaches the

boundary of the active jet region, it may collinearly split in and out of the active region.

Then the boundary of the active region acts as a collinear cut-off which will not cancel

out due to the mismatch in the scales between the light and heavy hemispheres. These

logarithms are integrable, but give rise to large contributions to the coefficients of the fixed-

order expansion for the non-global logarithms, as detailed in Ref. [8]. The leading log series

will have a finite radius of convergence, while the collinear splittings eventually will act as

a sort of renormalon as one pushes to higher orders in the BMS resummation, unless the

collinear splittings themselves are resummed. Merely adopting the renormalization scale

µ ∼ mL ∼ τ−1
L , the scale choice consistent with a simple decomposition into only soft

and hard regions dominate as advocated in Ref. [49] does not appear to suffice to control

all large logarithms in phase-space. That is, it appears we must work beyond the soft

approximation to have a controlled perturbation series.26

We contrast this state of affairs with the evolution with the transverse-ordered BMS equa-

tion encoded in Eq. (4.87) (which we may take to act on effective field theory objects as

in (5.21)). There we do not multipole expand the phase space for each emission, keeping

the constraints exact, allowing the evolution equation to populate the phase space as the

measurement constraints allow. This is exactly analogous to how the transverse-ordered

BMS equation reproduced the NLL resummation for global observables as accomplished,

eventually resumming the large logarithms with explicit population of multiple emissions

at the infra-red inclusive scales. Evolving the transverse-ordered BMS equation down to

zero cutoff (or the hadronization scale), formally below the completely inclusive scale mL,

would resum the large phase-space logarithms in the low-scale soft function
〈
ŜmL

〉
N

that

acts as the infra-red boundary condition for the multipole expanded BMS equation, using

the strict hard-soft factorization without collinear modes.

6 Conclusions

We have presented two ways to understanding how soft radiation in a non-abelian gauge

theory dresses a hard interaction, both leading to the BMS equation. The first way intro-

duced a generating functional built from the soft anomalous dimension. This anomalous

dimension controls the infra-red divergences of exclusive hard scattering coefficients at the

level of the S-matrix amplitude. Real-emissions are handled with the eikonal currents

for real emissions, following Refs. [55, 121]. These currents are related to the factoriza-

26Of course, given the complexity of the BMS equation, it is important to have all the simplifying
approximations one can make in order to understand it. Some form of the multipole expansion has therefore
been used in Refs. [12, 44, 47, 55, 77, 121].
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tion properties of wilson lines matrix elements with external states [44, 118, 119], and the

anomalous dimension to the renormalization of the wilson lines. We then see that the EFT

operators deformed in the presence of an external current really are nothing other than the

generating functional built from real and virtual diagrams. The BMS equation itself can

be seen as a way of organizing the Fock space of resolved emissions. Iterating the BMS

equation while exponentiating all virtual corrections produces the dressed gluon/out-of-gap

expansion of Refs. [8, 14–16, 44], which can been seen as equivalent to taking the trace of a

reduced density matrix of all resolved emissions against the appropriate operator specifying

the observable.

The most important new result is a straightforward proof of the out-of-gap/dressed gluon

expansion of Ref. [18] when both initial state and final state eikonal lines are required.

Once one exposes the Cheshire Glauber in the soft region with a zero-bin subtraction, the

transverse ordering of the soft anomalous dimension is the only sensible way to reproduce

the correct imaginary part, if one wants to trivialize the zero-bin. The Glauber region

produces the imaginary part of the soft anomalous dimension, and the Glauber region gets

its ultra-violet divergence from integrating over the transverse momentum of exchanged

between a pair of partons. Within the multipole expanded Glauber potential of the EFT,

this is the only foliation of momentum space that induces ultra-violet divergences, without

interfering with the light-cone integrals and the resulting iπ. Then the BMS equation

with both initial and final state lines, with the appropriate ordering variable, can be seen

as resumming all the factorization violating effects associated with the hard process in a

hadron-hadron collision driven by active-active Glauber exchanges.

However, the transversely ordered BMS equation does not itself constitute a complete solu-

tion to the underlying event or factorization violation. It is still the evolution equation for

an effective theory of semi-infinite wilson lines and perhaps additional collinear splittings.

Thus it cannot describe to all orders spectator-spectator interactions, where Glauber ex-

changes do not eikonalize. Given a set of eikonal lines, it shows how to populate another

final state wilson line, which will contribute to the observable. To describe spectator-

spectator interactions and thus completely factorize the underlying event one would have

to create in the course of BMS evolution multiple additional initial-state (spectator) eikonal

lines also participating in the hard interaction27. But accomplishing that goal would seem

to require something like the B-JIMWLK [20–24] hierarchy to describe the initial state,

interfaced with the BMS hierarchy to describe the production of additional jets.

With regards the multipole expansion, we should stress that nothing wrong has occurred,

only that simplifying assumptions about the momentum regions to be used can lead to

a multipole expansion that induces large logs in certain regions of phase-space that are

not resummed, even though the EFT is perfectly consistent with those modes. More-

over, for the effective theory formulation of the Lagrangian mediating all interactions, we

have kept the multipole expansion and used the zero-bin subtraction for soft, collinear,

27Here we do not necessarily mean the hard interaction (like the Higgs production region), but any energy
constraint or veto placed on the final state above the scale ΛQCD (like a pT veto or gaps-between-jets).
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and Glauber interactions for the construction of the soft anomalous dimension and all

amplitude constructions, using SCETII power counting (Refs. [122–124]). We have only

abandoned the multipole expansion for the phase-space. We can resum all logs using the

multipole expansion with sufficient infra-red regions, leading to a more complicated BMS

equation/dressed-soft-jet expansion including a jet function contribution and its resum-

mation, or we can adopt exact momentum conservation in the shower, and evolve down

to arbitrarily low scales (or till hadronization), using the measurement constraints on the

phase-space as the regulator rather than dimensional/analytic regularization. Both will

resum all large logs, however, the price we pay in the use of exact momentum conserva-

tion will be in-homogeneous power counting, obscuring the sub-leading power form of the

shower. This seems a small price to pay given the complexity of the resummation of soft

physics.

Thus the important conclusion is that we should really consider the full soft and collinear

production after a hard interaction, even if we beguile ourselves into thinking we only

need a hard/soft factorization. Non-global effects make it very difficult to make all orders

statements. Indeed, transverse ordering of the shower only works so long as we consider

the one real emission term of the BMS equation. At higher perturbative orders for the

BMS equation kernel, there will be multiple emissions terms that are not strongly ordered

interacting with multiple wilson lines in a non-dipole form. How these terms should be

ordered is an open question, particular beyond leading color, and would require detailed

calculations, though an energy-energy correlator like scheme similar to Refs. [8, 59, 125]

was adopted in Ref. [83] for the BMS equation at large-Nc. Such observables form a

natural extension of transverse-momentum for multiple emissions. Indeed, one may need to

formulate a distinct ordering variable for each multiple emission term in the BMS equation.

In the large Nc limit, always considering the full soft and collinear contributions is per-

formed by almost all modern parton-showers, using full soft and collinear coherent matrix

elements, though by taking the large Nc limit they lose the factorization violation effects

formally included here. Even in the large Nc limit, adopting transverse ordering has long

been understood as the best choice to resum the most effects in the parton shower. Still,

considering the hard/soft factorization with the most aggressive multipole expansion of the

traditional BMS equation is fruitful if for no other reason than it is simpler. But turning

to the full parton shower, perhaps the most interesting theoretical questions to ask are:

firstly, does the full parton shower accomplish the suggested collinear improvements to the

BMS equation found in Ref. [11] and how? Secondly, what are the “late-time” asymptotics

of the full parton shower, with exact momentum conservation? That is, along the lines of

results in [12], what are the changes in the structure of the buffer region [78], what is the

diffusive behavior of the parton shower in active regions, how do Glauber gluon exchanges

modify these asymptotics, and what are the impacts of collinear splittings and recoil, even

in soft sensitive observables?
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A Soft Virtual Corrections

Here we show how to justify the transverse ordering in the resummation of virtual cor-

rections. We split the divergent parts of the soft integral determining the one-loop soft

anomalous dimension into an “on-shell” term and an “off-shell” term. The “on-shell” term

exactly matches the real emission eikonal factor by construction, and the “off-shell” compo-

nent is the contribution from the Glauber exchange. Within the framework of soft-collinear

effective field theory, the on-shell component corresponds to the naive soft contribution mi-

nus the Glauber region of the naive soft integral. The correct off-shell component will arise

from insertions of the Glauber Lagrangian of Ref. [45]. Of course, since we are dealing with

active-active Glauber exchanges, by setting the directions of the wilson line appropriately,

we need not formally consider the Glauber region at all, but leaving the Glauber region

within the soft sector obscures its renormalization and how to justify transverse ordering.

We have decompose the soft virtual emission into light-cone coordinates defined by two

collinear sectors i and j as:

qµ =
1

pi · pj

(
pi · q pµj + pj · q pµi

)
+ qµ⊥ij . (A.1)

The soft integral we want to consider is:

Sij =

∫
ddq

(2π)d
pi · pj

(pi · q + i0)(q · pj + i0)
× 1

q2 + i0
, (A.2)

=

∫
[ddq]+

pi · pj
(pi · q)(q · pj)

− iλijπ
∫ ∞

0

dq⊥ij
q⊥ij

+ ... . (A.3)

The first term is the Glauber-bin subtracted soft integral, and the second is the explicit

Glauber contribution, where λij = 1 if both i, j are incoming, 0 otherwise. If one explicitly

calculates the Glauber Lagrangian contribution, the Glauber exchange between sectors i

and j contributes as:∫
dpi · q

pi · q + i0

dpj · q
pj · q + i0

∫
dd−2q

−q2
⊥ij
→ −iπλij

∫
dd−2q

−q2
⊥ij

. (A.4)

This form of the Glauber contribution is necessary consequence of the multi-pole expansion

of the effective theory, and the iπ is the necessary prescription for the rapidity divergent

integrals as argued in Ref. [45]. The ultra-violet divergences is manifestly in the transverse
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momentum alone, so the renormalization induces a running in the scales.28 If q is on-shell,

then:

q2 = 0↔ ~q 2
⊥ij =

2pi · qq · pj
pi · pj

(A.5)

If we wish to impose an ultra-violet cutoff within the naive soft sector in Eq. (A.3) that

respects the form of the ultra-violet divergences from the Glauber exchange without in-

terfering with the imaginary part of the naive soft sector, then we should break up the

integral into contours of constant transverse momentum:

Sij(µ) =

∫
ddq

(2π)d
pi · pj

(pi · q + i0)(q · pj + i0)
× 1

q2 + i0
µδ
(
µ− q⊥ij

)
. (A.6)

We could of course attempt to slice the ultra-violet divergences in the naive soft sector

however we wish, but then a non-trivial zero-bin would be necessary to insure we only

renormalized the Glauber region contribution with respect to the transverse momentum

integration, as dictated by the multipole expanded Glauber Lagrangian in the effective

theory. This we avoid by imposing the transverse ordering on the entire naive soft sector.

We can then forget about the zero-bin subtraction, since the zero-bin and the Glauber

Lagrangian contributions will equal each other, and cancel. Splitting the soft integral into

its on-shell (zero-bin subtracted) and Glauber-contributions we then have the result:

Sij(µ) = −iλijπ +

∫
[ddq]+

pi · pj
(pi · q)(q · pj)

µδ
(
µ−

√
2W−1

ij (q)
)

(A.7)

This expression then sets the appropriate soft anomalous dimension including Glauber ef-

fects at both one and two loops in the perturbative expansion for soft anomalous dimension,

given its dipole form to that order.

A.1 On-shell Integral

We evaluate Eq. (4.45), (for clarity, we denote the µ of the dimensional regularization

procedure as µ̄, so that we are not necessarily identifying µ = µ̄, though this will be done

eventually):

γ
(1)
ij (µ) =

∫
[ddq]+

pi · pj
pi · q q · pj

µδ
(
µ−O(pi, pj ; q)

)
=
µ̄4−d

4π

∫ ∞
0

dω

ω5−d

∫
dd−2Ωq̂

(2π)d−2

pi · pj
pi · nq nq · pj

µδ
(
µ−O(pi, pj ; q)

)
(A.8)

28If we choose some other cutoff, other than the transverse momentum, then one would mix the integration
over the light-cone directions with the transverse momentum, and one would not produce the correct
imaginary part in the rapidity regulated Glauber potential insertion.
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Where we have made use of the change of variables:

q = ω nq (A.9)

nq = (1, q̂) (A.10)∫
[ddq]+ =

1

4π

∫ ∞
0

dω

ω5−d

∫
dd−2Ωq̂

(2π)d−2
(A.11)

We take as our ordering:

O(pi, pj ; q) = c ω
(pi · nq nq · pj

pi · pj

)β
2

(A.12)

Within dimensional regularization, we have:

γ
(1)
ij (µ) =

1

4π

(cµ̄
µ

)4−d
∫

dd−2Ωq̂

(2π)d−2

(
pi · pj

pi · nq nq · pj

)1−β
2

(4−d)

(A.13)

We note that when β = 1, that is, when we have transverse ordering, the collinear singulari-

ties are unregulated by dimensional regularization, and require an additional regularization

procedure. To cancel the collinear divergences, we must add the collinear contributions aris-

ing from jet functions, and subtract any overlap induced by the regularization procedure.

For an extensive discussion, in particular in the context of virtual corrections to gauge

theory amplitudes, see Ref. [122], and for renormalization/resummation of these rapidity

see Refs. [123, 124]. The end result will be to induce a maximal virtuality of the soft

emission q to the initial hard directions ni or nj , summarized in Eq. (A.21).

A.2 Soft Anomalous Dimension

We can consider a process by which N -hard partons scatter from an initial hard configu-

ration i to a final hard configuration f , in the presence of an external current j which only

couples to long wave length modes. We then have the factorization:

A(i→ f ; j) = CN (i→ f ;µ)YN [j, µ]
N∏
i=1

Ji(ωi, µ) , (A.14)

µ
d

dµ
CN (i→ f ;µ) = CN (i→ f ;µ)ΓN

(
{pi}Ni=1;µ;αs(µ)

)
. (A.15)

ΓN is the soft anomalous dimension. The matrix element definition of the jet function

is given in Eq. (5.15), we have suppressed color and polarization indices for conciseness.

First we present the results for the naive soft anomalous dimension up to two loop order

for the soft anomalous dimension of wilson lines from Ref. [85].29 The naive transverse-

ordered soft anomalous dimension is collinear divergent, which is cured by subtracting out

29For a discussion of the factorization constraints on this anomalous dimension, see Refs. [126, 127]

– 47 –



the appropriate eikonal jet functions, or equivalently, performing the zero-bin subtraction,

and adding in the jet function contribution. We have:

YN [j, µ]
N∏
i=1

Ji(ωi, µ) = Pexp
(
− 1

2

∫ µ2

µ2
i

dλ2

λ2
ΓN [λ, αs(λ)]

)
YN [j, µi]

N∏
i=1

Ji(ωi, µi) ,

(A.16)

µ
d

dµ

(
YN [j, µ]

N∏
i=1

Ji(ωi, µ)
)

= −ΓN

(
YN [j, µ]

N∏
i=1

Ji(ωi, µ)
)
, (A.17)

ΓN = −1

2
γ̂K

(
αs(µ)

) ∑
1≤i<j≤N

Ti ·Tj ln
2pi · pj + i0

−µ2
+

N∑
i=1

T2
i γi

(
αs(µ)

)
+ ... ,

(A.18)

γ̂K

(
αs(µ)

)
=
αs
π

+
(αs
π

)2
(
CA

(67

36
− π2

12

)
− 5

9
nfTf

)
+ ... . (A.19)

We have only written the dipole contribution to the soft anomalous dimension, where γ̂K is

the cusp anomalous dimension with the leading Casimir factor scaled out. This dipole form

is violated at three loops, [86, 128], and the “collinear terms” are the terms proportional

to T2
i , and the ... denote terms which violate the dipole form. The i0 prescription on the

argument of the logarithm is more transparently written as:

2pi · pj + i0 = −|2pi · pj |e−iπλij where λij = 1 if both i, j are incoming or out-going, 0 otherwise.

(A.20)

We wish to examine the “on-shell” region of the soft anomalous dimension, so we drop

the i0-prescription and assume all invariants are in the time-like region: pi · pj > 0. The

correct imaginary part is restored with the Glauber contribution. Then we may represent

the logarithm in the soft function as arising from the integration over the on-shell phase-

space given as:

ln
2pi · pj
µ2

= 4π2

∫
[d4q]+µδ

(
µ−

√
2W−1

ij (q)
)
θ
(
ωi −

nj · q
ni · nj

)
θ
(
ωj −

ni · q
ni · nj

)
Wij(q) ,

(A.21)

pi · pj = ωiωj ni · nj . (A.22)

We have factored the light-like momenta into their energy ωi and a null direction ni =

(1, n̂i). Formally, the naive soft-sector integral with transverse ordering is given by Eq.

(A.7), not Eq. (A.21), which contains constraints that the soft parton cannot have too large

an energy. These constraints are indeed actually realized in the jet function contributions

to the on-shell component of the soft anomalous dimension. Finally, we introduce the
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resummation factor used throughout the text (see Eq. (4.56)):

UN (µF , µI) = Pexp

(
−
∫ µF

µI

dµ′

µ′
ΓN (µ′)

)
(A.23)

A.3 Collinear Limit

For an all orders discussion of collinear limits in the case of time-like separations, see Ref.
[129]. For the on-shell contribution to the soft anomalous dimension, up to two loops, we
may write:

ΓN

(
{pk}Nk=1;µ

)
= ΓN−1

(
{pk}Nk=1

∣∣∣
i‖j

;µ
)

+ ΓSp
ij (A.24)

ΓSp
ij = T2

i γi
(
αs(µ)

)
+ T2

jγj
(
αs(µ)

)
− (Ti + Tj)

2γi+j
(
αs(µ)

)
− 1

2
γ̂K
(
αs(µ)

){
Ti ·Tj ln

|sij |
µ2
−Ti · (Ti + Tj)ln

ωi
ωi + ωj

−Tj · (Ti + Tj)ln
ωj

ωi + ωj

}
(A.25)

Where {pk}Nk=1

∣∣∣
i‖j

denotes replacing pi and pj by a null vector parallel to both, with an

energy corresponding to the sum of the two energies ωi and ωj . The new color generator

for this combined direction is the sum of the old ones: Ti + Tj . The list then should be

appropriately relabeled from 1 to N − 1. The splitting amplitude’s anomalous dimension

can also be expressed purely in terms of quadratic color generators using 2Ti · Tj =

(Ti + Tj)
2 −T2

i −T2
j , and thus it exponentiates simply.

A.4 Anomalous dimensions of Soft Currents

Finally, we can deduce the anomalous dimensions for the soft currents defined in the
matching equation (5.14), up to eikonal jet function subtractions and the standard jet
function contributions:

µ
d

dµ
JN (qµ1b1

1 , ..., qµnbnn , µ) = JN (qµ1b1
1 , ..., qµnbnn , µ)ΓN+n

(
{pi}Ni=1 ∪ {{qi}ni=1};µ

)
− ΓN

(
{pi}Ni=1;µ

)
JN (qµ1b1

1 , ..., qµnbnn , µ) . (A.26)

References

[1] Z. Nagy and D. E. Soper, Parton showers with quantum interference, JHEP 09 (2007) 114,

[arXiv:0706.0017].

[2] Z. Nagy and D. E. Soper, Parton showers with quantum interference: Leading color, with

spin, JHEP 07 (2008) 025, [arXiv:0805.0216].

[3] Z. Nagy and D. E. Soper, Parton showers with quantum interference: Leading color, spin

averaged, JHEP 03 (2008) 030, [arXiv:0801.1917].

– 49 –

http://arxiv.org/abs/0706.0017
http://arxiv.org/abs/0805.0216
http://arxiv.org/abs/0801.1917


[4] Z. Nagy and D. E. Soper, Parton shower evolution with subleading color, JHEP 06 (2012)

044, [arXiv:1202.4496].

[5] Z. Nagy and D. E. Soper, A parton shower based on factorization of the quantum density

matrix, JHEP 06 (2014) 097, [arXiv:1401.6364].

[6] Z. Nagy and D. E. Soper, What is a parton shower?, arXiv:1705.08093.

[7] D. Neill, The Edge of Jets and Subleading Non-Global Logs, arXiv:1508.07568.

[8] A. J. Larkoski, I. Moult, and D. Neill, The Analytic Structure of Non-Global Logarithms:

Convergence of the Dressed Gluon Expansion, JHEP 11 (2016) 089, [arXiv:1609.04011].

[9] E. Iancu, J. D. Madrigal, A. H. Mueller, G. Soyez, and D. N. Triantafyllopoulos,

Resumming double logarithms in the QCD evolution of color dipoles, Phys. Lett. B744

(2015) 293–302, [arXiv:1502.05642].

[10] E. Iancu, J. D. Madrigal, A. H. Mueller, G. Soyez, and D. N. Triantafyllopoulos,

Collinearly-improved BK evolution meets the HERA data, arXiv:1507.03651.

[11] Y. Hatta, E. Iancu, A. H. Mueller, and D. N. Triantafyllopoulos, Resumming double

non-global logarithms in the evolution of a jet, arXiv:1710.06722.

[12] D. Neill, The Asymptotic Form of Non-Global Logarithms, Black Disc Saturation, and

Gluonic Deserts, JHEP 01 (2017) 109, [arXiv:1610.02031].

[13] S. Catani, M. Ciafaloni, and G. Marchesini, NONCANCELLING INFRARED

DIVERGENCES IN QCD COHERENT STATE, Nucl. Phys. B264 (1986) 588–620.

[14] J. R. Forshaw, A. Kyrieleis, and M. Seymour, Super-leading logarithms in non-global

observables in QCD, JHEP 0608 (2006) 059, [hep-ph/0604094].

[15] J. Forshaw, A. Kyrieleis, and M. Seymour, Super-leading logarithms in non-global

observables in QCD: Colour basis independent calculation, JHEP 0809 (2008) 128,

[arXiv:0808.1269].

[16] J. R. Forshaw, M. H. Seymour, and A. Siodmok, On the Breaking of Collinear Factorization

in QCD, JHEP 11 (2012) 066, [arXiv:1206.6363].

[17] S. Catani, D. de Florian, and G. Rodrigo, Space-like (versus time-like) collinear limits in

QCD: Is factorization violated?, JHEP 07 (2012) 026, [arXiv:1112.4405].

[18] R. ngeles Martnez, J. R. Forshaw, and M. H. Seymour, Coulomb gluons and the ordering

variable, JHEP 12 (2015) 091, [arXiv:1510.07998].

[19] M. D. Schwartz, K. Yan, and H. X. Zhu, Collinear factorization violation and effective field

theory, Phys. Rev. D96 (2017), no. 5 056005, [arXiv:1703.08572].

[20] I. Balitsky, Operator expansion for high-energy scattering, Nucl.Phys. B463 (1996) 99–160,

[hep-ph/9509348].

[21] Y. V. Kovchegov, Small x F(2) structure function of a nucleus including multiple pomeron

exchanges, Phys.Rev. D60 (1999) 034008, [hep-ph/9901281].

[22] J. Jalilian-Marian, A. Kovner, L. D. McLerran, and H. Weigert, The Intrinsic glue

distribution at very small x, Phys.Rev. D55 (1997) 5414–5428, [hep-ph/9606337].

[23] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, The Wilson renormalization

group for low x physics: Towards the high density regime, Phys.Rev. D59 (1998) 014014,

[hep-ph/9706377].

– 50 –

http://arxiv.org/abs/1202.4496
http://arxiv.org/abs/1401.6364
http://arxiv.org/abs/1705.08093
http://arxiv.org/abs/1508.07568
http://arxiv.org/abs/1609.04011
http://arxiv.org/abs/1502.05642
http://arxiv.org/abs/1507.03651
http://arxiv.org/abs/1710.06722
http://arxiv.org/abs/1610.02031
http://arxiv.org/abs/hep-ph/0604094
http://arxiv.org/abs/0808.1269
http://arxiv.org/abs/1206.6363
http://arxiv.org/abs/1112.4405
http://arxiv.org/abs/1510.07998
http://arxiv.org/abs/1703.08572
http://arxiv.org/abs/hep-ph/9509348
http://arxiv.org/abs/hep-ph/9901281
http://arxiv.org/abs/hep-ph/9606337
http://arxiv.org/abs/hep-ph/9706377


[24] E. Iancu, A. Leonidov, and L. D. McLerran, The Renormalization group equation for the

color glass condensate, Phys.Lett. B510 (2001) 133–144, [hep-ph/0102009].

[25] G. Marchesini and A. Mueller, BFKL dynamics in jet evolution, Phys.Lett. B575 (2003)

37–44, [hep-ph/0308284].

[26] Y. Hatta, Relating e+ e- annihilation to high energy scattering at weak and strong coupling,

JHEP 11 (2008) 057, [arXiv:0810.0889].

[27] E. Avsar, Y. Hatta, and T. Matsuo, Soft gluons away from jets: Distribution and

correlation, JHEP 0906 (2009) 011, [arXiv:0903.4285].

[28] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, An Effective field theory for collinear

and soft gluons: Heavy to light decays, Phys.Rev. D63 (2001) 114020, [hep-ph/0011336].

[29] C. W. Bauer, S. Fleming, and M. E. Luke, Summing Sudakov logarithms in B -¿ X(s

gamma) in effective field theory, Phys.Rev. D63 (2000) 014006, [hep-ph/0005275].

[30] C. W. Bauer and I. W. Stewart, Invariant operators in collinear effective theory, Phys.Lett.

B516 (2001) 134–142, [hep-ph/0107001].

[31] C. W. Bauer, D. Pirjol, and I. W. Stewart, Soft collinear factorization in effective field

theory, Phys.Rev. D65 (2002) 054022, [hep-ph/0109045].

[32] C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein, and I. W. Stewart, Hard scattering

factorization from effective field theory, Phys.Rev. D66 (2002) 014017, [hep-ph/0202088].

[33] A. Kossakowski, On quantum statistical mechanics of non-hamiltonian systems, Reports on

Mathematical Physics 3 (1972), no. 4 247 – 274.

[34] G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math.

Phys. 48 (1976) 119.

[35] V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Properties of

Quantum Markovian Master Equations, Rept. Math. Phys. 13 (1978) 149.

[36] G. Marchesini and E. Onofri, Exact solution of BFKL equation in jet-physics, JHEP 0407

(2004) 031, [hep-ph/0404242].

[37] A. Bassetto, M. Ciafaloni, G. Marchesini, and A. H. Mueller, Jet Multiplicity and Soft

Gluon Factorization, Nucl. Phys. B207 (1982) 189–204.

[38] A. Bassetto, M. Ciafaloni, and G. Marchesini, Jet Structure and Infrared Sensitive

Quantities in Perturbative QCD, Phys.Rept. 100 (1983) 201–272.

[39] S. Catani and M. Ciafaloni, Generalized Coherent State for Soft Gluon Emission, Nucl.

Phys. B249 (1985) 301. [,I.97(1984)].

[40] F. Fiorani, G. Marchesini, and L. Reina, Soft Gluon Factorization and Multi - Gluon

Amplitude, Nucl. Phys. B309 (1988) 439–460.

[41] F. A. Berends and W. T. Giele, Recursive Calculations for Processes with n Gluons, Nucl.

Phys. B306 (1988) 759–808.

[42] F. A. Berends and W. Giele, Multiple Soft Gluon Radiation in Parton Processes, Nucl.Phys.

B313 (1989) 595.

[43] M. L. Mangano and S. J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200

(1991) 301–367, [hep-th/0509223].

– 51 –

http://arxiv.org/abs/hep-ph/0102009
http://arxiv.org/abs/hep-ph/0308284
http://arxiv.org/abs/0810.0889
http://arxiv.org/abs/0903.4285
http://arxiv.org/abs/hep-ph/0011336
http://arxiv.org/abs/hep-ph/0005275
http://arxiv.org/abs/hep-ph/0107001
http://arxiv.org/abs/hep-ph/0109045
http://arxiv.org/abs/hep-ph/0202088
http://arxiv.org/abs/hep-ph/0404242
http://arxiv.org/abs/hep-th/0509223


[44] A. J. Larkoski, I. Moult, and D. Neill, Non-Global Logarithms, Factorization, and the Soft

Substructure of Jets, arXiv:1501.04596.

[45] I. Z. Rothstein and I. W. Stewart, An Effective Field Theory for Forward Scattering and

Factorization Violation, JHEP 08 (2016) 025, [arXiv:1601.04695].

[46] B. Grinstein and I. Z. Rothstein, Effective field theory and matching in nonrelativistic gauge

theories, Phys.Rev. D57 (1998) 78–82, [hep-ph/9703298].

[47] M. Dasgupta and G. Salam, Resummation of nonglobal QCD observables, Phys.Lett. B512

(2001) 323–330, [hep-ph/0104277].

[48] M. Dasgupta, F. Dreyer, G. P. Salam, and G. Soyez, Small-radius jets to all orders in QCD,

JHEP 04 (2015) 039, [arXiv:1411.5182].

[49] T. Becher, M. Neubert, L. Rothen, and D. Y. Shao, Factorization and Resummation for Jet

Processes, JHEP 11 (2016) 019, [arXiv:1605.02737]. [Erratum: JHEP05,154(2017)].

[50] T. Becher, B. D. Pecjak, and D. Y. Shao, Factorization for the light-jet mass and

hemisphere soft function, arXiv:1610.01608.

[51] A. Banfi, G. P. Salam, and G. Zanderighi, Principles of general final-state resummation and

automated implementation, JHEP 03 (2005) 073, [hep-ph/0407286].

[52] R. n. Martnez, M. De Angelis, J. R. Forshaw, S. Pltzer, and M. H. Seymour, Soft gluon

evolution and non-global logarithms, arXiv:1802.08531.

[53] S. Platzer and M. Sjodahl, Subleading Nc improved Parton Showers, JHEP 07 (2012) 042,

[arXiv:1201.0260].

[54] S. Pltzer, Summing Large-N Towers in Colour Flow Evolution, Eur. Phys. J. C74 (2014),

no. 6 2907, [arXiv:1312.2448].

[55] H. Weigert, Nonglobal jet evolution at finite N(c), Nucl.Phys. B685 (2004) 321–350,

[hep-ph/0312050].

[56] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its

application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002,

[hep-ph/0703012].

[57] I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, N-Jettiness: An Inclusive Event

Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002, [arXiv:1004.2489].

[58] S. Alioli, C. W. Bauer, C. J. Berggren, A. Hornig, F. J. Tackmann, C. K. Vermilion, J. R.

Walsh, and S. Zuberi, Combining Higher-Order Resummation with Multiple NLO

Calculations and Parton Showers in GENEVA, JHEP 09 (2013) 120, [arXiv:1211.7049].

[59] A. J. Larkoski, G. P. Salam, and J. Thaler, Energy Correlation Functions for Jet

Substructure, JHEP 06 (2013) 108, [arXiv:1305.0007].

[60] S. Alioli, C. W. Bauer, C. Berggren, F. J. Tackmann, J. R. Walsh, and S. Zuberi, Matching

Fully Differential NNLO Calculations and Parton Showers, JHEP 06 (2014) 089,

[arXiv:1311.0286].

[61] J. Gaunt, M. Stahlhofen, F. J. Tackmann, and J. R. Walsh, N-jettiness Subtractions for

NNLO QCD Calculations, JHEP 09 (2015) 058, [arXiv:1505.04794].

[62] R. Boughezal, C. Focke, X. Liu, and F. Petriello, W -boson production in association with a

jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015), no. 6

062002, [arXiv:1504.02131].

– 52 –

http://arxiv.org/abs/1501.04596
http://arxiv.org/abs/1601.04695
http://arxiv.org/abs/hep-ph/9703298
http://arxiv.org/abs/hep-ph/0104277
http://arxiv.org/abs/1411.5182
http://arxiv.org/abs/1605.02737
http://arxiv.org/abs/1610.01608
http://arxiv.org/abs/hep-ph/0407286
http://arxiv.org/abs/1802.08531
http://arxiv.org/abs/1201.0260
http://arxiv.org/abs/1312.2448
http://arxiv.org/abs/hep-ph/0312050
http://arxiv.org/abs/hep-ph/0703012
http://arxiv.org/abs/1004.2489
http://arxiv.org/abs/1211.7049
http://arxiv.org/abs/1305.0007
http://arxiv.org/abs/1311.0286
http://arxiv.org/abs/1505.04794
http://arxiv.org/abs/1504.02131


[63] H.-P. Breuer and F. Petruccione, Destruction of quantum coherence through emission of

bremsstrahlung, Phys. Rev. A 63 (Feb, 2001) 032102.

[64] D. Carney, L. Chaurette, D. Neuenfeld, and G. W. Semenoff, Infrared quantum

information, Phys. Rev. Lett. 119 (2017), no. 18 180502, [arXiv:1706.03782].

[65] J. C. Collins and D. E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B193 (1981) 381.

[Erratum: Nucl. Phys.B213,545(1983)].

[66] G. P. Korchemsky and A. V. Radyushkin, Loop Space Formalism and Renormalization

Group for the Infrared Asymptotics of QCD, Phys. Lett. B171 (1986) 459–467.

[67] G. P. Korchemsky and A. V. Radyushkin, Infrared factorization, Wilson lines and the heavy

quark limit, Phys. Lett. B279 (1992) 359–366, [hep-ph/9203222].

[68] G. P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of

Wilson loop, Nucl. Phys. B406 (1993) 225–258, [hep-ph/9210281].

[69] S. Hoeche, F. Krauss, M. Schonherr, and F. Siegert, QCD matrix elements + parton

showers: The NLO case, JHEP 04 (2013) 027, [arXiv:1207.5030].

[70] T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr, and F. Siegert, NLO QCD matrix

elements + parton showers in e+e− —¿ hadrons, JHEP 01 (2013) 144, [arXiv:1207.5031].

[71] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061,

[arXiv:1209.6215].

[72] S. Pltzer, Controlling inclusive cross sections in parton shower + matrix element merging,

JHEP 08 (2013) 114, [arXiv:1211.5467].

[73] L. Lnnblad and S. Prestel, Merging Multi-leg NLO Matrix Elements with Parton Showers,

JHEP 03 (2013) 166, [arXiv:1211.7278].

[74] I. Feige and M. D. Schwartz, Hard-Soft-Collinear Factorization to All Orders, Phys. Rev.

D90 (2014), no. 10 105020, [arXiv:1403.6472].

[75] A. J. Larkoski, D. Neill, and I. W. Stewart, Soft Theorems from Effective Field Theory,

JHEP 06 (2015) 077, [arXiv:1412.3108].

[76] M. Beneke, M. Garny, R. Szafron, and J. Wang, Anomalous dimension of subleading-power

N-jet operators, arXiv:1712.04416.

[77] A. Banfi, G. Marchesini, and G. Smye, Away from jet energy flow, JHEP 0208 (2002) 006,

[hep-ph/0206076].

[78] M. Dasgupta and G. P. Salam, Accounting for coherence in interjet E(t) flow: A Case

study, JHEP 0203 (2002) 017, [hep-ph/0203009].

[79] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the

next-to-next-to-leading order and beyond, Nucl.Phys. B570 (2000) 287–325,

[hep-ph/9908523].

[80] S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl.Phys. B591

(2000) 435–454, [hep-ph/0007142].

[81] Y. Li and H. X. Zhu, Single soft gluon emission at two loops, JHEP 1311 (2013) 080,

[arXiv:1309.4391].

[82] C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization,

Phys.Lett. B727 (2013) 452–455, [arXiv:1309.4393].

– 53 –

http://arxiv.org/abs/1706.03782
http://arxiv.org/abs/hep-ph/9203222
http://arxiv.org/abs/hep-ph/9210281
http://arxiv.org/abs/1207.5030
http://arxiv.org/abs/1207.5031
http://arxiv.org/abs/1209.6215
http://arxiv.org/abs/1211.5467
http://arxiv.org/abs/1211.7278
http://arxiv.org/abs/1403.6472
http://arxiv.org/abs/1412.3108
http://arxiv.org/abs/1712.04416
http://arxiv.org/abs/hep-ph/0206076
http://arxiv.org/abs/hep-ph/0203009
http://arxiv.org/abs/hep-ph/9908523
http://arxiv.org/abs/hep-ph/0007142
http://arxiv.org/abs/1309.4391
http://arxiv.org/abs/1309.4393


[83] S. Caron-Huot and M. Herranen, High-energy evolution to three loops, arXiv:1604.07417.

[84] S. Catani and M. H. Seymour, A General algorithm for calculating jet cross-sections in

NLO QCD, Nucl. Phys. B485 (1997) 291–419, [hep-ph/9605323]. [Erratum: Nucl.

Phys.B510,503(1998)].

[85] S. M. Aybat, L. J. Dixon, and G. F. Sterman, The Two-loop anomalous dimension matrix

for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001, [hep-ph/0606254].

[86] y. Almelid, C. Duhr, E. Gardi, A. McLeod, and C. D. White, Bootstrapping the QCD soft

anomalous dimension, JHEP 09 (2017) 073, [arXiv:1706.10162].

[87] A. V. Manohar and I. W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field

Theory, Phys.Rev. D76 (2007) 074002, [hep-ph/0605001].

[88] G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B306

(1988) 746–758.

[89] P. Z. Skands and S. Weinzierl, Some remarks on dipole showers and the DGLAP equation,

Phys. Rev. D79 (2009) 074021, [arXiv:0903.2150].

[90] S. Platzer and S. Gieseke, Coherent Parton Showers with Local Recoils, JHEP 01 (2011)

024, [arXiv:0909.5593].

[91] L. Hartgring, E. Laenen, and P. Skands, Antenna Showers with One-Loop Matrix Elements,

JHEP 10 (2013) 127, [arXiv:1303.4974].

[92] Yu. L. Dokshitzer and G. Marchesini, Monte Carlo and large angle gluon radiation, JHEP

03 (2009) 117, [arXiv:0809.1749].

[93] J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 77

(1989) 1–914.

[94] Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite Nc, Nucl.Phys.

B874 (2013) 808–820, [arXiv:1304.6930].

[95] Y. Hagiwara, Y. Hatta, and T. Ueda, Hemisphere jet mass distribution at finite Nc,

arXiv:1507.07641.

[96] S. Catani and M. H. Seymour, The Dipole formalism for the calculation of QCD jet

cross-sections at next-to-leading order, Phys. Lett. B378 (1996) 287–301, [hep-ph/9602277].

[97] Z. Nagy and D. E. Soper, A New parton shower algorithm: Shower evolution, matching at

leading and next-to-leading order level, in Proceedings, Ringberg Workshop on New Trends

in HERA Physics 2005: Ringberg Castle, Tegernsee, Germany, October 2-7, 2005,

pp. 101–123, 2006. hep-ph/0601021.

[98] W. T. Giele, D. A. Kosower, and P. Z. Skands, A simple shower and matching algorithm,

Phys.Rev. D78 (2008) 014026, [arXiv:0707.3652].

[99] S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole

factorisation, JHEP 03 (2008) 038, [arXiv:0709.1027].

[100] M. Dinsdale, M. Ternick, and S. Weinzierl, Parton showers from the dipole formalism, Phys.

Rev. D76 (2007) 094003, [arXiv:0709.1026].

[101] C. W. Bauer, S. P. Fleming, C. Lee, and G. F. Sterman, Factorization of e+e- Event Shape

Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev.

D78 (2008) 034027, [arXiv:0801.4569].

– 54 –

http://arxiv.org/abs/1604.07417
http://arxiv.org/abs/hep-ph/9605323
http://arxiv.org/abs/hep-ph/0606254
http://arxiv.org/abs/1706.10162
http://arxiv.org/abs/hep-ph/0605001
http://arxiv.org/abs/0903.2150
http://arxiv.org/abs/0909.5593
http://arxiv.org/abs/1303.4974
http://arxiv.org/abs/0809.1749
http://arxiv.org/abs/1304.6930
http://arxiv.org/abs/1507.07641
http://arxiv.org/abs/hep-ph/9602277
http://arxiv.org/abs/hep-ph/0601021
http://arxiv.org/abs/0707.3652
http://arxiv.org/abs/0709.1027
http://arxiv.org/abs/0709.1026
http://arxiv.org/abs/0801.4569


[102] A. J. Larkoski, D. Neill, and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 1404

(2014) 017, [arXiv:1401.2158].

[103] A. Banfi, H. McAslan, P. F. Monni, and G. Zanderighi, A general method for the

resummation of event-shape distributions in e+e annihilation, JHEP 05 (2015) 102,

[arXiv:1412.2126].

[104] S. Hoeche, D. Reichelt, and F. Siegert, Momentum conservation and unitarity in parton

showers and NLL resummation, arXiv:1711.03497.

[105] S. Catani, B. R. Webber, and G. Marchesini, QCD coherent branching and semiinclusive

processes at large x, Nucl. Phys. B349 (1991) 635–654.

[106] Y. L. Dokshitzer, V. A. Khoze, and S. I. Troian, Specific features of heavy quark production.

LPHD approach to heavy particle spectra, Phys. Rev. D53 (1996) 89–119,

[hep-ph/9506425].

[107] S. Catani, L. Trentadue, G. Turnock, and B. Webber, Resummation of large logarithms in

e+e− event shape distributions, Nucl.Phys. B407 (1993) 3–42.

[108] M. D. Schwartz, Resummation and NLO matching of event shapes with effective field

theory, Phys. Rev. D77 (2008) 014026, [arXiv:0709.2709].

[109] S. Fleming, A. H. Hoang, S. Mantry, and I. W. Stewart, Jets from massive unstable

particles: Top-mass determination, Phys. Rev. D77 (2008) 074010, [hep-ph/0703207].

[110] L. G. Almeida, S. D. Ellis, C. Lee, G. Sterman, I. Sung, and J. R. Walsh, Comparing and

counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174,

[arXiv:1401.4460].

[111] T. Becher, M. Neubert, L. Rothen, and D. Y. Shao, Effective Field Theory for Jet

Processes, Phys. Rev. Lett. 116 (2016), no. 19 192001, [arXiv:1508.06645].

[112] J. S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407–432.

[113] L. V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47

(1964) 1515–1527. [Sov. Phys. JETP20,1018(1965)].

[114] A. V. Belitsky, Two loop renormalization of Wilson loop for Drell-Yan production, Phys.

Lett. B442 (1998) 307–314, [hep-ph/9808389].

[115] I. I. Balitsky and V. M. Braun, The Nonlocal operator expansion for inclusive particle

production in e+ e- annihilation, Nucl. Phys. B361 (1991) 93–140.

[116] N. A. Sveshnikov and F. V. Tkachov, Jets and quantum field theory, Phys. Lett. B382

(1996) 403–408, [hep-ph/9512370].

[117] P. S. Cherzor and N. A. Sveshnikov, Jet observables and energy momentum tensor, in

Quantum field theory and high-energy physics. Proceedings, Workshop, QFTHEP’97,

Samara, Russia, September 4-10, 1997, pp. 402–407, 1997. hep-ph/9710349.

[118] C. W. Bauer, F. J. Tackmann, J. R. Walsh, and S. Zuberi, Factorization and Resummation

for Dijet Invariant Mass Spectra, Phys. Rev. D85 (2012) 074006, [arXiv:1106.6047].

[119] P. Pietrulewicz, F. J. Tackmann, and W. J. Waalewijn, Factorization and Resummation for

Generic Hierarchies between Jets, JHEP 08 (2016) 002, [arXiv:1601.05088].

[120] S. D. Ellis, C. K. Vermilion, J. R. Walsh, A. Hornig, and C. Lee, Jet Shapes and Jet

Algorithms in SCET, JHEP 1011 (2010) 101, [arXiv:1001.0014].

– 55 –

http://arxiv.org/abs/1401.2158
http://arxiv.org/abs/1412.2126
http://arxiv.org/abs/1711.03497
http://arxiv.org/abs/hep-ph/9506425
http://arxiv.org/abs/0709.2709
http://arxiv.org/abs/hep-ph/0703207
http://arxiv.org/abs/1401.4460
http://arxiv.org/abs/1508.06645
http://arxiv.org/abs/hep-ph/9808389
http://arxiv.org/abs/hep-ph/9512370
http://arxiv.org/abs/hep-ph/9710349
http://arxiv.org/abs/1106.6047
http://arxiv.org/abs/1601.05088
http://arxiv.org/abs/1001.0014


[121] S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation,

arXiv:1501.03754.

[122] J.-y. Chiu, A. Fuhrer, R. Kelley, and A. V. Manohar, Factorization Structure of Gauge

Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev.

D80 (2009) 094013, [arXiv:0909.0012].

[123] T. Becher and M. Neubert, Drell-Yan Production at Small qT , Transverse Parton

Distributions and the Collinear Anomaly, Eur. Phys. J. C71 (2011) 1665,

[arXiv:1007.4005].

[124] J.-Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, A Formalism for the Systematic

Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084,

[arXiv:1202.0814].

[125] A. J. Larkoski, I. Moult, and D. Neill, Power Counting to Better Jet Observables, JHEP

1412 (2014) 009, [arXiv:1409.6298].

[126] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD

scattering amplitudes, JHEP 03 (2009) 079, [arXiv:0901.1091].

[127] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory

Amplitudes, JHEP 06 (2009) 081, [arXiv:0903.1126]. [Erratum: JHEP11,024(2013)].

[128] J. M. Henn and B. Mistlberger, Four-Gluon Scattering at Three Loops, Infrared Structure,

and the Regge Limit, Phys. Rev. Lett. 117 (2016), no. 17 171601, [arXiv:1608.00850].

[129] L. J. Dixon, E. Gardi, and L. Magnea, On soft singularities at three loops and beyond,

JHEP 02 (2010) 081, [arXiv:0910.3653].

– 56 –

http://arxiv.org/abs/1501.03754
http://arxiv.org/abs/0909.0012
http://arxiv.org/abs/1007.4005
http://arxiv.org/abs/1202.0814
http://arxiv.org/abs/1409.6298
http://arxiv.org/abs/0901.1091
http://arxiv.org/abs/0903.1126
http://arxiv.org/abs/1608.00850
http://arxiv.org/abs/0910.3653

	1 Introduction
	2 Outline of Paper
	3 Reduced Density Matrix
	4 Recursive Soft Gluon Insertions and Generating Functionals
	4.1 Arbitrary Real Emissions
	4.1.1 Color Space Generating Functional
	4.1.2 Digression on color index contractions

	4.2 The LL Master Equation For Color Space Amplitudes
	4.3 Ordered Virtual Soft Insertion Operator
	4.4 Ordered Real Soft Insertion Operator
	4.5 The Amplitude Squared
	4.6 Probabilities within the Generating Functional Approach
	4.7 The LL BMS Equation
	4.8 The Out-of-Gap/Dressed Gluon Expansions and Calculating a Cross-Section
	4.8.1 Resummed Expansion
	4.8.2 Illustration of a Measurement Constraint
	4.8.3 Recovering CAESAR


	5 Soft Amplitudes and Soft Functions
	5.1 Soft amplitudes and soft functions from Wilson lines
	5.2 Connecting SCET+ and the Generating Functional
	5.3 Constructing Evolution Equations for a Multipole Expanded Measurement
	5.3.1 Structure of Observables
	5.3.2 Limits of the Hard-Soft Factorization


	6 Conclusions
	7 Acknowledgments
	A Soft Virtual Corrections
	A.1 On-shell Integral
	A.2 Soft Anomalous Dimension
	A.3 Collinear Limit
	A.4 Anomalous dimensions of Soft Currents


