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The difficulty of describing the gauge dependent bi-quark condensate in the QCD colour supercon-
ducting phase has made it hard to construct a holographic dual of the state. To side step this
problem, we argue that near the chiral restoration transition in the temperature-chemical potential
plane, the strongly coupled gluons are likely completely gapped so that the colour quantum numbers
of the quarks can be thought of below that gap as global indices. A standard AdS-superconductor
model can then be used to analyze the fermionic gap formation. We investigate the role of four-
fermion interactions, which might be used to include the gapped QCD interactions, on the vacuum
and metastable vacua of the model. It turns out to be easiest to simply relate the standard in-
teraction of the holographic superconductor to the strength of the gapped gluons. The result is a
holographic description of the QCD colour superconducting phase diagram. We take a first look at
how quark mass enters and causes a transition between the colour flavour locked phase and the 2SC
phase.

A fermionic system at finite chemical potential is ex-
pected to develop a Fermi surface. It is known that if
there is any attractive interaction between the fermions,
Cooper pair condensation will occur causing supercon-
ductivity or superfluidity. This was made transparent to
a particle physics audience by the renormalization group
flow analysis of the papers in [1] (updated to a relativistic
system in [2]). This fact leads to the natural expectation
that quarks will condense in high density QCD and there
has been considerable work on understanding the phase
structure over a number of years (see for example the re-
view [3]). Typically the preferred condensation channel
is expected to break the colour gauge group so the phe-
nomena is referred to as colour superconductivity (CSC).

At very large chemical potentials QCD is believed to be-
come weakly coupled due to asymptotic freedom and an
exact computation of the condensation pattern is possi-
ble [4]. The more experimentally interesting case though
is when the density and temperature of the quark gluon
plasma are of order the strong coupling scale Λc and here
the strongly coupled nature of the problem makes precise
computation tricky. Gap equation and renormalization
group analysis have been done and there is a large liter-
ature on the possible phase structure as a function of Nf
and the quark masses [3].

Over the last two decades holography has emerged as a
new tool to study strongly coupled gauge theories [5].
It provides the ability to rigorously compute in theo-
ries close to large Nc N = 4 super Yang-Mills theory
(including theories with quarks [6]) using a weakly cou-
pled gravitational/stringy dual. The framework has been
expanded phenomenologically to AdS/QCD type mod-
els of a wider space of theories [7]. It has been natu-
ral throughout this period to attempt to study the CSC
phase of QCD with this new tool. There are immediately
a number of large obstacles though. The CSC effect is

sub-leading in the large Nc limit [8]. The condensate
depends on Nc so there is no clear large Nc limit. Fi-
nally the dimension 3 condensate likely breaks the gauge
group yet on the gravitational side only gauge invariant
operators are manifest so it is not clear how to even pose
the problem (the gauge invariant square of the operator is
dimension 6 but a stringy state in the dual theory). Nev-
ertheless an instability to pair condensation of gauginos,
which can form a colour singlet pair, in the presence of
a chemical potential was observed, for example, early on
in [9]. This idea was phenomenologically used to develop
AdS descriptions of superconducting condensed matter
systems [10] leading to the AdS/CM field of study. Holo-
graphic studies of related instabilities in theories with
scalar quarks have also been studied in [11].

In this paper we want to return to the problem in QCD.
The obstacles above remain grave so our approach will
be to side step them. In the intermediate density phase
of QCD the quark gluon plasma is strongly coupled and
full of free electrically charged quarks and presumably
composite, magnetically charged scalars (see [12] for a
recent discussion). These latter condense below the chi-
ral phase transition to cause confinement (at least in the
pure glue theory). Above the transition such states will
still be present if not condensed. The expectation is that
these fields, through loop diagrams, will generate a Debye

mass of order g
√
T 2 + µ2 for both the electric and mag-

netic gluons (the latter are not gapped at weak coupling
where there are no magnetic charges present [13]). We
will posit here that, because g is large, there can be an
order of magnitude gap between the gluon mass and the
chemical potential/temperature scale. We will squeeze a
holographic description, in the spirit of AdS/QCD, into
this energy regime. Since the gluons are gapped we will
dodge the issue of treating the SU(3) colour symmetry
of the quarks as a gauge symmetry and instead impose
it as just a flavour symmetry. Although the biquark con-
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densate will further gap the gluons we presume this to
be a small effect relative to the Debye screening. These
assumptions will saves us from the problems encountered
holographically to date.

We stress that we work in a phenomenological bottom
up fashion in the spirit of AdS/QCD (at Nc = 3) or
AdS/CM (where phonon interactions of electrons are
described). We will use an AdS space to phenomeno-
logically describe the conformal symmetries of the free
fermions below the Debye gap scale which are then bro-
ken by the operators and sources of the theory that
appear in the bulk - for example, temperature, chemi-
cal potential etc. One should of course worry that at
low Nc the bulk modes might become strongly coupled
and stringy but the AdS/QCD philosophy is to soldier
on and measure success by the output. Our model is
at heart the simplest AdS/superconductor model [10].
We still need to correctly describe the broken QCD in-
teractions that generate the Cooper pair condensation!
We will discuss reintroducing the interactions as four
fermion terms using Witten’s double trace prescription
[17] (Recent work on developing the holography of four
fermion operators can be found in [14, 15]). There are
subtleties in this analysis including excited states of the
vacuum and it turns out that an infinitely repulsive force
is needed to switch off the inherent attractive channel
of the base AdS/superconductivity model. We will con-
clude we should just choose to tune the intrinsic pair-
ing interaction of the holographic model to represent the
broken QCD interactions on the global colour degrees of
freedom. The goal of this paper is to study such broken
gauge interactions in the quark gluon plasma to develop a
sensible description of the CSC phase in the QCD phase
diagram.

Let us quickly review the CSC condensation patterns
that will interest us here [3]. The superconducting con-
densation is triggered by a chemical potential for U(1)B
and the associated quark number density. In all case we
are interested in the condensation of a biquark operator
with quark number 2 or baryon number 2/3. We assume
that at strong coupling the 3̄ colour channel remains at-
tractive as at weak coupling whilst the 6 is repulsive
so the condensation is the usual anti-symmetric 3̄ state.
A spin 0 condensate is formed from an anti-symmetric
combination of spins. The flavour wave function of the
condensate must also therefore be anti-symmetric. First
with three massless quark flavours this implies the con-
densate is an anti-symmetric flavour 3̄ also. We can rep-
resent this state by the matrix (we show the make up of
the 3̄s of colour and flavour in terms of the constituents)

R̄ Ḡ B̄
BG−GB BR−RB RG−GR

ū sd− ds | ∆1 |
d̄ su− us | ∆2 |
s̄ ud− du | ∆3 |

(1)

In the three flavour massless limit the expectation is that
the condensate will be the diagonal as shown with all ∆i

equal - this is the colour-flavour locked state [16]. As
the strange quark becomes massive the condensates of
the top two rows (∆1,∆2) switch off and we expect to
find a vev for the triplet, SU(2) flavour singlet of the
bottom row (∆3) - this is the 2SC phase of the massless
two flavour case. Note all of these states carry net colour
charge although we have argued the main source of gluon
mass is the Debye screening rather than the Meissner
induced mass. In the holographic model we will describe
an AdS-scalar ψ that is dual to an element ∆i of this
matrix which acquires a vev. We will seek the phase
boundary where the condensate switches on in the T −µ
plane. We will briefly discuss including a quark mass
in our final section to display a transition between the
colour-flavour locked and the 2SC phases although as we
will stress the analysis is very naive and challenges remain
to find a complete holographic picture.

In Section I we will review the origin of the electric and
magnetic Debye gluon masses that generate a gap. In
Section II we review the AdS superconductor model that
we will use including fields for each of the biquark gaps
we consider. In Section III we look at the role of four
quark operators in the supercondutor model including
the role of unstable minima of the model. In Section
IV we match the superconductor model’s coupling to the
QCD coupling inthe T − µ plane to predict the gap size.
In sub-section IV.1 we discuss how quark mass would en-
ter the holographic model to suppress the biquark con-
densates. Finally in Section V we conclude.

I. ELECTRIC AND MAGNETIC DEBYE
MASSES

Our arguments about the gapping of the gluonic degress
of freedom are important to our approach so we will
briefly review the ideas already in the literature in more
detail. At high density QCD is believed to become weakly
coupled and one can explicitly compute in perturbation
theory [13]. Here it is then known that the electric A0

gluon components acquire a Debye mass of order gµ .
The magnetic Ai degrees of freedom though are not fully
screened but instead Landau damped. Their self energy
behaves as Σ2 ∼ g2µ2|q0|/|q| with q the gluonic four mo-
mentum. In such weakly coupled theories if colour su-
perconductivity sets in then the charged gap is the only
source of mass for the magnetic gluonic degrees of free-
dom. Indeed a central point of the analysis in [4] was to
include the effects of the Landau dampng in the estimate
for the gap scale.

We argue though that at low chemical potential, which
is relevant for neutron star and heavy ion collisions, the
behaviour is probably rather different. In particular we
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expect the QCD plasma to contain magnetically charged
scalars (see [12] for a recent discussion) because of their
role in confinement below the chiral/deconfinement tran-
sition. If such (composite) states do exist then they will
simply through one loop diagrams generate a Debye like
mass for the magnetic Ai gluonic degrees of freedom too.
Now all the gluons are gapped at the scale gµ which
for chemical potentials in the hundreds of MeV and for
g ∼ 4π are much higher than the superconductor gap
scale which is typically estimated in the 10s of MeV.
This separation of scales motivates a description of colour
supeconductivity in which the quarks exist as the sole
degrees of freedom in the low energy theory below gµ
interacting only by four fermion operators generated by
the gluons. In such a description the colour quantum
numbers of the quarks will appear as global quantum
numbers (although a full description of all higher dimen-
sion operators would secretly include gauge invariance).
Since holographic colour superconductor models describe
the breaking of global symmetries we can now hope to
apply that framework to this energy regime in high den-
sity QCD. Note that we assume that the contribution ot
the gluon gap from the low scale superconducting con-
densate is small relative to the Debye masses generated
by the plasma so that the cut off scale and gap can be
considered disconnected.

II. ADS SUPERCONDUCTORS

As a first start in this paper, we will just address the
CSC phase which is the novel physics of interest. We will
assume the chiral transition, where the q̄q condensation
occurs, is at the scale where the QCD coupling diverges
Λc. Thus consider T, µ scales above this energy scale
only. One finds the phase diagram in Figure 5.

Let us begin by setting up a very simple AdS description
of superconductivity following the start up model of [10].
We place our description in a black hole geometry (which
we will not backreact)

ds2 = r2(−fdt2 +d~x2)+
1

r2f
dr2, f = 1− r

4
H

r4
. (2)

Here ~x = x, y, z are the boundary coordinates and the
radial distance is r so that the boundary is located at
infinity. The usual relation between temperature and the
horizon position is rH = πT (we have set the AdS radius
to 1).

The key ingredients we need are a scalar field, ψi, to
represent the quark bilinear ∆i from (10 (here a compo-
nent of the quark bilinear in the 3̄ of colour) with baryon
number B = 2/3 and dimension 3, and a gauge field as-
sociated with U(1)B whose At component will describe

the chemical potential. We use an action

L = −1

4
FµνFµν − |∂ψi − iBAψi|2 + 3ψ2

i , (3)

the mass is picked to be minus three in units of the AdS
radius since this corresponds holographically via M2 =
∆(∆− 4) to a dimension 3 operator. We have neglected
any order ψ4 interaction terms between different ψi.

The equations of motion are

ψ′′
i +

(
f ′

f
+

5

r

)
ψ′
i +

B2

r4f2
A2
tψi +

3

r2f
ψi = 0, (4)

and

A′′
t +

3

r
A′
t −
∑
i

2B2

r2f
ψ2
iAt = 0. (5)

As usual for regularity one requires At = 0 at the horizon
which implies from the first equation of motion that

ψ′
i = − 3

4rH
ψi. (6)

Note that strictly at T = 0 we can not assume this bound-
ary condition and the model is not complete. We will use
the model to work out the edge of the phase boundary
at finite T and not address the T=0 state.

There is always a solution

ψi = 0, At = µ− µr2
H

r2
. (7)

There are more complex solutions that we can find nu-
merically by shooting out from the horizon. In the UV
they take the form

ψi =
Jc
r

+
c

r3
+ ... At = µ+

d

r2
+ ... (8)

c is interpreted as the Cooper pair condensate, O = ψψ,
Jc the source for that operator (which carries both colour
and flavour indices generically), µ is the chemical poten-
tial and d the density. Since there are two constraints
on ψ,ψ′, At, A

′
t at the horizon we get a two parameter

family of solutions (set in the IR by ψ(rH) and A′
t(rH)

which we label by the values of Jc and µ, predicting c
and d).

For example, let us consider the case with a single ψi field
which might describe ∆3 in the two flavour case. Note
that if there is more than one identical ψi then there is an
effective factor of Ni in the interaction term in (5). This
can be removed by rescaling the ψi by 1/

√
Ni leaving the

same equations to be solved. In practice this means the
CFL condensates will be a factor of

√
3 smaller than the

2SC computations we make. Crucially though the phase
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FIG. 1: (a) The ψ functions in the unbroken phase at T =
0.1, µ = 1.0. (b) The ψ functions in the broken phase at
T = 0.1, µ = 5.0.

boundaries remain at the same coupling values. For this
reason we wil mainly study the Ni = 1 case.

Now we can solve (4) and (5) numercially: in Figure
1a for T = 0.1 we plot the solutions of ψ (we plot rψ
which asymptotes to Jc in the UV) where in each case
A′
t(rH) has been adjusted to set µ = 1.0. In Figure 1b

we show solutions for µ = 5.0. At low µ there is no
symmetry breaking - the only solution with Jc = 0 is
that with ψ = 0 so that c = 0. For the higher value of
µ, the solution that asymptotes to Jc = 0 is symmetry
breaking (the curve shown with the highest IR value)-
this solution has a non-zero condensate c. the physics
here in AdS is that the chemical potential generates an
effective negative mass squared for the scalar ψ and when
it violates the Brietenlohner-Freedman (BF) bound of
M2 = −4 [18] an instability to ψ condensation results.

In Figure 2 we plot the value of the condensate against
µ for the Jc = 0 embeddings at fixed T = 0.1 and show
there is a second order transition. Note that the pres-
ence of this transition means the model has an intrinsic
attractive interaction built into it - condensation would
not occur otherwise. Below we will investigate switching
off this intrinsic attraction by switching on a repulsive
four fermion interaction but also move to adjusting its

1.92 1.94 1.96 1.98 2.00 2.02 2.04 μ
0.02

0.04

0.06

0.08

0.10

0.12

0.14

c

FIG. 2: The condensation vs µ in the broken phase at T =
0.1.

strength to play the role of the QCD interactions.

The model has interesting structure beyond the basic
transition. If in the broken phase we allow ψ(rH) to fall
below the value that generates the Jc = 0, c 6= 0 solution
there are solutions, shown in Figure 1b, that asymptote
to negative Jc. A minimum Jc is encountered as one low-
ers ψ(rH) and the UV value of Jc then rises again. There
is a further solution with Jc = 0, c 6= 0 where the ψ func-
tion dips once below the axis. This is an excited state
of the vacuum where the first radially excited state of
the bound states associated with ψ has condensed rather
than the ground state. As ψ(rH) falls further excited
states can occur, with condensation of higher and higher
excitation modes. We demonstrate this by plotting the
solutions in the Jc, c plane for µ = 5, 10 in Figure 3 where
a spiral structure is revealed. As the spiral moves be-
tween quadrants of the plane the solutions for ψ change
- first there are solutions for which ψ is always positive,
then when the solution falls below the axis in the UV we
switch to negative Jc and so on. This is typical in holo-
graphic models of symmetry breaking having first been
identified in the D3/D7 system with a magnetic field [19].
These extra vacua will play an interesting role in the dis-
cussions to come.

We will next turn to introducing NJL interactions into
the model.

III. NJL OPERATORS

A natural step is to include the QCD interactions into
our model of CSC as four fermion operators since the
gluons are assumed to have acquired a large mass. Four
fermion operators are an example of a “double trace” op-
erator and can be incorporated using Witten’s prescrip-
tion [17]. Previous work on NJL operators in holographic
superconductors can be found in [14] and recent work un-
derstanding the holographic description of the relativistic
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FIG. 3: c vs Jc where T = 0.1. (a) Unbroken phase where
µ = 1.0. (b): Broken phase where µ = 5.0. (c) Broken phase
where µ = 10.0.

Nambu-Jona-Lasinio model is in [15].

Consider the holographic description of an opera-
tor/source pair O, J by a holographic field ψ in AdS

ds2 = r2dx2
3+1 +

dr2

r2
, (9)

with action (here we pick M2 = −3 since all our opera-

tors are dimension 3)

S = −
∫
dr

1

2

(
r5(∂rψ)2 − 3r2ψ2

)
. (10)

The solutions take the form

ψ = J/r + O/r3. (11)

Evaluating the action there is a UV divergence so we
must include the counter term at the UV boundary (Λ)

LUV = −1

2
Λ4ψ2|Λ. (12)

This term is crucial for the analysis below.

(Note that in the previous paper [15] we worked with a
rescaled field L = rψ. This is natural from the point of
view of the D3/probe D7 system where the UV action
takes precisely this form. If one substitutes this rescaled
field into the action above and integrates by part then
the surface term vanishes and the action takes the form

L = −
∫
dr

1

2
r3(∂rL)2, (13)

which, since L ∼ J + .., has no UV divergence and hence
no counter term. The IR boundary condition ∂rL = 0
forces O = 0 which is appropriate for supersymmet-
ric gauge theory configurations where, for example, the
quark condensate is forbidden. Here the action also van-
ishes with L = constant corresponding to the vacuum
energy of the gauge theory vanishing.)

We now wish to include in the field theory a term of the
form

∆L = − g
2

Λ2
OO, (14)

where O 6= 0 then this term generates a source J = g2

Λ2O.
If we substitute this relation back into the Lagrangian
term we uncover

∆L = −Λ2J2

g2
. (15)

In analogy to this term Witten’s prescription in the holo-
graphic description is to add a UV surface term evaluated
at the cut off Λ

∆L = −Λ4ψ2

g2
, (16)

since ψ ∼ J/Λ + .. in the UV these match.

The simplest way to include this extra term in the anal-
ysis is by considering the result of the change to the UV
boundary condition on the solutions. Varying the action
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FIG. 4: (a) Plot of c against g2 (Λ = 10) in the unbroken
phase for embeddings in Fig 1a. (T=0.1, µ = 0.1) (b) Plot of
c against g2 (Λ = 10) in the broken phase (T=0.1, µ = 5) for
solutions in Fig 1b.

gives

δS = 0 = −
∫
dr

(
∂r
∂L

∂ψ′ −
∂ψ

∂ψ

)
δψ +

∂L

∂ψ′ δψ

∣∣∣∣
UV,IR

.

(17)
There is also the variation of the surface counter term

δS = −2Λ4ψδψ|UV . (18)

Normally in the UV one would require the source to be
fixed and δψ = 0 to satisfy the boundary condition. We
do this by fixing the source J to specify a particular the-
ory.

To describe the double trace operator though we allow ψ
(J) to change at the UV boundary and instead impose
the vanishing at that boundary of

0 =
∂L

∂ψ′ + ψΛ4
UV +

2ψΛ4
UV

g2
, (19)

where we have included the variation of the new surface
term. For our action ∂L

∂ψ′ = −r5ψ′. Assuming (11) we

find that we need

J ' g2

Λ2
O. (20)

This condition (which matches the expectation under
(14)) is simple to apply to the solutions of the (un-
changed) equation of motion we already have.

III.1 NJL Operators in the Superconductor

Let us now return to the holographic superconductor
model of the previous section. We can apply our analysis
to the ψ functions of Figure 1. We can interpret each
function, including those with Jc 6= 0 as describing the
model with zero intrinsic Jc but a four fermion operator
present. The four fermion operator in the presence of the
condensate c generates the UV source Jc. For example
we can translate the functions of Figure 1a, where µ lies
below the critical value, through Figure 3a, to a plot of
c against g2 which we show in Figure 4a. Here we have
taken Λ = 10 numerically. We observe a critical value of
the NJL coupling that triggers symmetry breaking at a
second order transition. Note here there are no solutions
where in the UV Jc and c have opposite signs - putting in
a repulsive four fermion term (negative g2) produces no
solutions other than Jc = 0, c = 0 as one might expect.

Similarly we can translate the functions of Figure 1b
through Figure 3b to the plot in Figure 4b which again
shows c vs g2 but here at g2 = 0 there is already symme-
try breaking. There are two interesting additional fea-
tures here. Firstly there are solutions at negative, re-
pulsive, g2. This is not surprising because at g2 = 0
there is symmetry breaking - switching on a repulsive
four fermion term would be expected to reduce the con-
densation, and it does. The surprising feature is that
the condensation does not switch off completely except
at infinite repulsive interaction strength (there are solu-
tions with zero c but non-zero Jc that generate infinite
g2 values). The intrinsic attractive interaction in the
AdS/superconductor model is presumably more subtle in
structure than the NJL operator which is only switching
parts of the interaction off. Remember in superconductor
theory any attractive interaction will result in condensa-
tion. The remaining structure in the c − g2 plane is the
translation of the spiral in the c − Jc plane seen previ-
ously.

Our initial intention to describe QCD had been to take
the basic holographic superconductor model and intro-
duce a critically tuned repulsive NJL operator to switch
off condensation at each T, µ value. On this interaction
free description of the quark gluon plasma we would then
add back the QCD interactions as further positive shifts
in the NJL coupling strengths. We have now shown that
this is not achievable because the intrinsic interactions
are more subtle than the NJL interaction so an infinitely
repulsive interaction is needed to switch off the base con-
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0.0 0.5 1.0 1.5 2.0 2.5 3.0μ0.0

0.5

1.0

1.5

2.0

T

FIG. 5: Plot of the superconducting phase boundary at dif-
ferent G = 0.5, 1, 2, 3, 4, 5, 6, 7 from bottom to top in the T
- µ plane. The black region is expected to be the chirally
symmetric phase below a scale of µ2 + T 2 = 1.

densation. However, this approach was essentially to un-
invent the wheel and then reinvent it! An equally sensible
approach is to simply modify the strength of the inter-
action between ψ and At to reflect the QCD interaction
strength. Our assumption is still that the gluons are
massive in this strongly coupled phase so that we can de-
scribe the colour of quarks by a global symmetry but now
the interactions will be introduced through the action

L = −1

4
FµνFµν − |∂ψ − iGBAψ|2 + 3/L2ψ2. (21)

We interpret the Aψ interaction term as the holographic
models knowledge of the broken gauge interactions. Note
the inclusion of the new coupling G which we will shortly
relate to the QCD running coupling.

First though we can find the phase boundary for the su-
perconducting phase as a function of G. For each T and
G we make plots as in Figure 2 and then plot µc(T ) in
the plane. This is shown in Figure 5. Note that given
the solutions for G = 1 one can move to another G by
scaling ψ → Gψ and At → GAt in (4), (5) so the critical
µ just scales with G.

IV. THE QCD PHASE DIAGRAM

Let us now attempt to describe the colour superconduct-
ing phase of QCD using these tools. We will assume that
the chiral phase transition occurs at T 2 + µ2 = Λ2

c and
numerically set Λc = 1 with a UV cut off on the holo-
graphic model of Λ = 10Λc where we read off c, Jc. We
will assume a phase with a q̄q condensate lives below Λc.

In the quark gluon plasma phase we will use the action
of (21) but we must set the value of G at the cut off scale
to a sensible ansatz in QCD. A natural choice based on

0.0 0.5 1.0 1.5 2.0 2.5 3.0μ0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T

FIG. 6: QCD phase diagram: the blacked out area is below Λc

where chiral symmetry breaking is expected. The remaining
phase edges shows where the CFL phase is present for the
choices of κ = 1, 10, 20 from bottom to top.........

the one loop running is

G2 =
κ

b ln(T 2 + µ2)/Λ2
c

, b = 11Nc/3− 2Nf/3,

(22)
which blows up at Λc. We need to fix κ so it is appropri-
ate for the strength of attraction that generates the 3̄ of
colour condensate.

Perturbatively the strength of tree level t-channel one
gluon exchange interaction for the four different colour
channels for q̄q and qq is

1q̄q : 8q̄q : 6qq : 3̄qq = −8

3
:

1

3
:

1

6
: −1

3
(23)

The attraction might be as little as 1/8 the attraction for
the chiral condensate. Of course at strong coupling the
relative strength of these interactions is not known. The
intrinsic interaction between the fields ψ and At in the
holographic model should be controlled by the strength
of the QCD interactions that presumably lie between κ =
1− (4π)2. Given the 1/8th suppression we will study the
range of κ between 1 and 20 to estimate the area of the
phase diagram where superconductivity is likely.

It is now simple to construct the phase diagram from the
analysis of Figure 5. We overlay circles in the T, µ plane
for each value of G from (22) taking Nf = 3 and identify
the points where they cross the same G value transition
curve. We find the phase diagram in Figure 6. Very
close to Λc the coupling gets very strong and the super-
conducting phase then hugs the phase boundary up to
high values of T. Most likely the chiral phase will extend
a little above Λc though and this feature will be greatly
reduced. Typically we see the superconducting phase is
predicted to exist below T of 0.15 Λc (for κ ' 10), which
we might estimate as 20 MeV or so if Λc ' 175 MeV,
the expected temperature of the chiral transition. This
value might rise sharply just before the chiral transition.
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FIG. 7: Phase diagram for the model at fixed G = 0.9 and
for quark mass m = 0, 1.3, 2, 3, 4, 5 from left to right.

Usual estimates place the gap in the 10-100 MeV range
[3] so this seems a sensible model.

IV.1 Quark Mass

Our phase diagram so far has been plotted for the mass-
less theory and the expected condensation is of the colour
flavour locked form for Nf = 3 and 2SC for Nf = 2.
One might expect there to be a transition as the strange
quark mass grows from CFL to a two flavour 2SC phase
at lower µ. The presence of the mass leads to a lower
value of the Fermi momentum which will reduce the con-
densate but also relative differences in the Fermi surface
levels for different quark flavours is expected to frustrate
the formation of the colour flavour locked condensate.

Holographically modelling this transition is not straight-
foward. Each component of (1) is of mixed flavour and
should see the different chemical potenitals and masses
associated with each of the two constituents. Presumably
this should be described by a non-abelian Dirac Born In-
feld type action (assuming one could neglect the stringy
nature of the states stretched between different flavour
branes). Here though we will try something very naive
to show a mechanism by which mass could switch off the
condensation.

The quark mass, m should be described by a new holo-
graphic field χ with asymptotic behaviour χ = m/r + ...
(the solution for a scalar of mass -3 in pure AdS) and
IR dynamics that should be connected to the formation
of the chiral condensate which is the sub-leading opera-
tor part of the solution. One would need a full model of
the chiral transition to write down a potential for the χ
scalar so to avoid getting bogged down in that dynam-
ics we will just set χ = m/r and look at its effects on
the ψ Cooper pair formation (of course really one should
solve linked equations but our simplistic approach will
show how the mass could suppress the Cooper pair con-
densation). We imagine a simple Lagrangian coupling of
the form |χ|2|ψ|2 so that the equation of motion for ψ

0.0 0.5 1.0 1.5 2.0 2.5 3.0μ0.00

0.05

0.10

0.15

0.20

0.25

0.30

T

FIG. 8: QCD phase diagram with quark mass m: in the
blacked out area chiral symmetry breaking is expected. The
remaining phase edges shows where the CFL phase is present
for the choices of κ = 10 and m = 0, 0.5, 1.0, 1.3 from top to
bottom.

becomes

ψ′′ +

(
f ′

f
+

5

r

)
ψ′ +

G2B2

r4f2
A2
tψ+

1

r2f

(
3− m2

r2

)
ψ = 0.

(24)
Clearly the m2 term acts to oppose the instability in-
duced by µ, which is the main mechanism we wish to
flag here.

We first plot the phase boundary for G = 0.9 at differ-
ent values of m in Figure 7. As the quark mass rises the
boundary line tilts in the plane until for masses of order
the chemical potential the phase is excluded at low µ.
The positive contribution to the scalar ψ’s mass squared
is greater than the BF bound violating negative contri-
bution from At. The mass therefore discourages the con-
densation.

We plot the phase structure of the theory with the run-
ning coupling (22) for κ = 10 and m = 0., 0.5, 1.0, 1.3
in Figure 8. For small quark masses the phase bound-
ary simply moves to lower values of T at a given µ. If
the mass becomes larger though then for a range of µ
there is no condensation present. At large µ the mass
is overwhelmed and the condensation returns. Note at
µ ' 1 where the coupling becomes arbitrarily strong the
phase briefly returns however large m is, but this region
is likely inside the chirally broken phase since the quark
anti-quark attraction is also getting very strong.

In the case of QCD one can interpret the above descrip-
tion as that for ∆1 and ∆2 with the interaction with χ de-
scribing the interplay with the strange quark mass. The
phase boundaries in Figure 8 for different m represent
our estimate of where the CFL phase (∆1 and ∆2 ) will
switch off, although it is only a naive estimate since we
have not include the effect of different Fermi surface lev-
els. The 2SC phase would be expected to exist between
the edge of the CFL phase and boundary for m = 0 since
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∆1 is oblivious to the strange mass. If we take κ = 10
and assume Λc = 10MeV then the physical strange mass
corresponds roughly to the m = 0.5 curve and the CFL
phase exist down to the chiral boundary although with
a transition to the 2SC phase at higher T. For lower κ
values the CFL phase might cease completely at lower µ.

This discussion has been very naive, although it reveals
a mechanism by which the CFL phase will be shut down
by the strange quark mass, and we leave to future work
including the correct dynamics for χ, including the chi-
ral transition, as well as incorporating the non-abelian
nature of the discussion.

V. DISCUSSION

The goal of this paper has been to push through the block
in thinking as to how to describe the colour supercon-
ducting phase of QCD holographically. For a long while
the colour charged nature of the bi-quark condensate has
stopped progress. We have attempted to side step this
issue by arguing that at strong coupling and intermedi-
ate temperatures and chemical potentials the gluons are
likely gapped by the plasma. If we treat the colour sym-
metry of the quarks as a global index then holographic
models can progress. Indeed here we have demonstrated
that by recycling the simplest holographic superconduc-
tor model adjusted to this setting. The key question was
how to then include the QCD interactions. We investi-
gated NJL operators as one possibility and we have in-
cluded the discussion here because there is an interesting
story connected to the spiral structure in the operator-
source plane in the superconductor model reflecting ex-
cited states of the vacuum (note that this structure is
also present in the AdS4 superconductor but we are not
aware of any discussion of it in the literature). This
leads to the conclusion that only an infinitely repulsive

four fermion operator suffices to switch off the intrinsic
attractive interaction of the holographic superconductor
model. That attractive interaction is presumably more
complex in structure than the four fermion operator and
any residual attraction would lead to superconductivity.
In fact we moved to simply adjusting the strength of
that intrinsic interaction to reflect the QCD couplings
value as a function of µ, T . As a result we can plot the
phase diagram of the superconducting phase - see Fig-
ure 6. The transition temperature lies near 20MeV or so
which matches the usually quoted range of 10-100MeV.

The model we have used is somewhat like an NJL model
of colour superconductivity but the holographic setting
would allow one to easily compute equations of state
and transport properties of the phases. We hope to
investigate these and the consequences for neutron star
structure and collisions in the future. There is also
plenty of scope to make a more sophisticated model
of the phase structure including back reaction on the
metric, describing the chiral transition of QCD and the
interplay between the quark mass and the condensation
pattern. We made a first attempt at understanding
that mass dependence by a very simple model of an
interaction between a quark mass and the Cooper pair
which revealed a transition between a colour flavour
locked phase and a 2SC phase - shown in Figure 8.
Again this matches the form of the usually expected
phase structure.
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