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Abstract

Renault, Wassermann, Handelman and Rossmann (early 1980s) and Evans
and Gould (1994) explicitly described the K-theory of certain unital AF-
algebras A as (quotients of) polynomial rings. In this paper, we show that
in each case the multiplication in the polynomial ring (quotient) is induced
by a ˚-homomorphism A b A Ñ A arising from a unitary braiding on a
C*-tensor category and essentially defined by Erlijman and Wenzl (2007).
We also present some new explicit calculations based on the work of Gepner,
Fuchs and others. Specifically, we perform computations for the rank two
compact Lie groups SU(3), Sp(4) and G2 that are analogous to the Evans–
Gould computation for the rank one compact Lie group SU(2).

The Verlinde rings are the fusion rings of Wess–Zumino–Witten models
in conformal field theory or, equivalently, of certain related C*-tensor cat-
egories. Freed, Hopkins and Teleman (early 2000s) realized these rings via
twisted equivariant K-theory. Inspired by this, our long-term goal is to real-
ize these rings in a simpler K-theoretical manner, avoiding the technicalities
of loop group analysis. As a step in this direction, we note that the Verlinde
rings can be recovered as above in certain special cases.
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1 Introduction

This paper concerns the K-theory of certain unital AF-algebras. Recall that AF-
algebras are limits of inductive sequences of finite-dimensional C*-algebras with
connecting ˚-homomorphisms. They were first introduced by Bratteli in the paper
[7]. The K-theory K0pAq of an AF-algebra A is an ordered group, i.e., an abelian
(additively written) group G together with a positive cone G`, i.e., a subset
G` Ă G that satisfies G` ` G` Ă G`, G` X p´G`q “ t0u and G “ G` ´ G`.
If A is a unital AF-algebra then K0pAq is an ordered group with a distinguished
order unit (cf. Remark 4.22), and Elliott [15] showed that unital AF-algebras are
classified by this data. He also classified non-unital AF-algebras by a slightly
more complicated invariant. The ordered groups that arise as K0pAq for some
AF-algebra A are called dimension groups. They were abstractly characterized by
Effros, Handelman and Shen in [14]. We refer the reader to Effros’ monograph
[13] for more information on the K-theory of AF-algebras.

Although K0pAq is in general only an ordered group, it also sometimes has
a natural ordered ring structure (cf. section 3.3). By the Elliott Classification
Theorem [15], if A is a unital AF-algebra such that K0pAq has the structure
of an ordered ring then the product on K0pAq is induced by a (non-explicit) ˚-
homomorphism AbAÑ A. In the present paper, we consider certain unital AF-
algebras A for which K0pAq has the structure of an ordered ring and the underlying
˚-homomorphism A b A Ñ A can be defined in terms of a unitary braiding on a
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rigid C*-tensor category. (These concepts are described in some detail in section
2.1 below, and some historical background and references can be found in Remark
3.7.) We place certain K-theory calculations of Renault, Wassermann, Handelman
and Rossmann (early 1980s) and Evans–Gould (1994) within this framework and,
in some special cases, give new explicit descriptions of the ring K0pAq in terms
of generators and relations, i.e., as a quotient of a polynomial ring by an ideal
generated by certain polynomials. Below, we motivate our computations and put
them into a historical context.

In the early 2000s, Freed, Hopkins and Teleman used K-theory to study Wess–
Zumino–Witten (WZW) models in 2d conformal field theory. Each WZW model
has an underlying rigid C*-tensor category (in fact, a unitary modular tensor
category) RepkpGq with a unitary braiding. Here, G is a simple, connected,
simply connected, compact Lie group and k is a positive integer known as the
“level” (cf. Example 2.5 below). The fusion ring of this category, which is known
as the Verlinde ring VerkpGq, describes the so-called operator product expansion
of primary fields in the model. Freed, Hopkins and Teleman described VerkpGq in
terms of twisted equivariant K-theory (cf. [22, 23, 24]). In symbols, those authors
proved that, as rings,

VerkpGq –
τK

dimpGq
G pGq,

where G acts on itself by conjugation, the twist τ “ τpkq belongs to the equivariant
Čech cohomology group H3

GpG;Zq – Z, and the ring structure on the right hand
side arises from the group product. (The above formula is actually a special case

of a more general theorem from [22, 23, 24].) Note that τK
dimpGq
G pGq can also be

viewed, in terms of the graded K-theory of C*-algebras, as KG
dimpGqpC0pG,Kτ qq

or, equivalently, as KdimpGqpC0pG,Kτ q¸Gq, where C0pG,Kτ q is the C*-algebra of
sections of a certain twisted G-equivariant graded bundle Kτ of compact operators
over G.

Inspired by this, a long-term goal of ours is to find a simpler K-theoretical
description of these rings, avoiding the technically complicated analysis of loop
groups used in [22, 23, 24] and perhaps even allowing us to describe the underlying
rigid C*-tensor category in terms of modules over a “natural” (possibly non-AF)
C*-algebra along with a “natural” tensor product on these modules. This served
as one impetus for the present paper. Since it was written, we have actually
accomplished something along these lines. Namely, in [1] (see Remark 5.6 therein)
we use the graphical calculus for RepkpGq (see Remark 3.7 below) to realize this
category as a braided C*-tensor category of Hilbert C*-modules over a C*-algebra
of compact operators. In the present paper, we content ourselves with realizing —
in certain special cases — the ring VerkpGq, equipped with a natural positive cone,
as the ordered K0-ring of a unital AF-algebra arising from the category RepkpGq.

K-theory has also been used to study certain actions of compact groups on
AF-algebras, for instance in the work of Wassermann [66], Handelman–Rossmann
[36, 37] and Handelman [34, 35] in the 1980s. As part of their work, those authors
explicitly described the K-theory of the corresponding fixed point AF-algebras as
polynomial rings. For example, inspired by Renault’s computation of K0pM

T
28q
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(cf. the appendix to [59]), Wassermann showed that K0pM
SUp2q
28 q – Zrts as ordered

rings (cf. [66], pp. 118–123; see also Theorem 4.5 below), while Handelman and

Rossmann showed that K0pM
Upnq
n8 q – Zrt1, . . . , tn´1s as rings (cf. Proposition

VII.1 in [36]). In these formulae, Mn8 is the infinite tensor product MnpCq b
MnpCq b ¨ ¨ ¨ and the action of SUp2q on M28 (resp. of Upnq on Mn8) arises from
the action of SUp2q on M2pCq (resp. of Upnq on MnpCq) by conjugation. (See also
Example 3.1 below.)

Related to this, Evans and Gould in [17] explicitly described the K-theory of
certain unital AF-algebras that arise from Jones’ subfactors [41] and from WZW
models associated to SU(2) as quotients of polynomial rings (see also Theorem 4.2
below). In the present paper, we note that braided C*-tensor categories, in the
sense of Erlijman–Wenzl [16], yield a common framework for the computations of
Renault, Wassermann, Handelman and Rossmann on the one hand and of Evans
and Gould on the other by showing that in each case the ring structure in K-theory
is induced by a ˚-homomorphism, essentially defined by Erlijman and Wenzl in
[16], that arises from a unitary braiding on an underlying rigid C*-tensor cate-
gory. (Note that the tensor product of Hilbert C*-modules that appears in [1] is
defined via a ˚-homomorphism that is given by a similar formula.) For example, in
Wassermann’s computation the underlying category is the category ReppSUp2qq
of continuous finite-dimensional unitary representations of SUp2q whereas in the
Evans–Gould computation it is RepkpSUp2qq. Moreover, we perform computa-
tions for the rank two Lie groups SU(3), Sp(4) and G2 that are analogous to the
Evans–Gould computation for SU(2). Our calculations are based on the work of
Gepner [30], Fuchs [26] and others (see section 2.2) in which Verlinde rings were
described as quotients of polynomial rings or, equivalently, of representation rings.

Let us now describe the structure of the present paper. In section 2, we discuss
preliminary material on rigid C*-tensor categories and unitary braidings, includ-
ing both the complicated examples RepkpGq and simpler examples, such as the
representation categories of compact groups. We also define the fusion rings of
these categories, and discuss modular S-matrices and the aforementioned work of
Gepner, Fuchs and others on the Verlinde rings.

Thereafter, in section 3, we define the unital AF-algebras with which we are
concerned in the present paper. Specifically, given a rigid C*-tensor category C
and an object π in C, we define the unital AF-algebra ApC, πq “ ind-limnEndppπ̄b
πqbnq. Following Erlijman–Wenzl [16], we also use a unitary braiding on C to
define a ˚-homomorphism θ : ApC, πq b ApC, πq Ñ ApC, πq. As an example, we
describe in detail the situation where C “ RepkpSUp2qq and π is the fundamental
representation, in which case ApC, πqmay be described in terms of Temperley–Lieb
diagrams. Returning to the general setup, we next show that the ˚-homomorphism
θ induces a well-defined ring structure on K0pApC, πqq by embedding K0pApC, πqq
as a subgroup of a localization of the fusion ring of C in such a way that K0pθq is
identified with the product on the localization.

In section 4, we compute K0pApRepkpGq, πqq, where G is one of the rank
two Lie groups SU(3), Sp(4) and G2 and π is a fundamental representation. For
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the convenience of the reader, we also state the aforementioned computations of
Wassermann and Evans–Gould. The computation for G “ SUp3q is given in detail,
but we omit the similar (but simpler) details of the computations for Sp(4) and G2.
We also give a computation of K0pApReppSUp3qq, πqq, but as this is essentially
due to Handelman and Rossmann, we only provide the main ingredients in an
“elementary” proof (using only Lie theory and general facts about ordered groups
and rings).

In section 5, we show that if C “ RepkpSUp2qq, where k ´ 1 R 3Z or k P 2Z,
then one can find an object π in C (or, more precisely, an explicit isomorphism
class) such that K0pApC, πqq and VerkpSUp2qq are isomorphic as ordered rings.
Finally, concluding remarks and open questions may be found in section 6.

We end the present section with a comment on notation. We will use the
symbol N to denote the set of (strictly) positive integers. The set of non-negative
integers will be denoted by N0. Given a set X and r P N, we will denote the
Cartesian product X ˆX ˆ ¨ ¨ ¨ ˆX (r factors) by Xˆr.
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author opportunities to present our work.
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2 Preliminaries

2.1 C*-tensor categories

In this paper, we will consider examples of so-called rigid C*-tensor categories. A
complete definition of such a category, as well as some historical background for
this definition, can e.g. be found in Chapter 2 of [52]. (See also e.g. [16], [8], [55].)
Here, we content ourselves with an outline of the main features of such a category.
(In particular, we are sweeping under the rug the question of strictness of such a
category, which is e.g. covered in [52].) As we go over these features, the reader
should keep in mind the following simple examples.
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• The category Hilb, whose objects are finite-dimensional Hilbert spaces and
whose morphisms are linear maps.

• The category ReppGq, whose objects are finite-dimensional unitary repre-
sentations of a finite group G and whose morphisms are intertwining linear
maps.

For the convenience of the reader, we give a reminder about conjugation in these
categories (which is one of the features of a general rigid C*-tensor category).
Given a Hilbert space H, the conjugate Hilbert space H is defined, as a set, by
H “ tξ̄ : ξ P Hu. Its Hilbert space operations are defined by ξ̄`η̄ “ ξ ` η, zξ̄ “ z̄ξ
and xξ̄, η̄y “ xη, ξy for ξ, η P H and z P C. Given a linear map T : H Ñ K, where
K is a Hilbert space, the conjugate operator T : H Ñ K is defined by T pξ̄q “ T pξq
for ξ P H. Given a unitary representation π : G Ñ UpHq, its conjugate (or dual)
representation is the unitary representation π̄ : GÑ UpHq defined by π̄pgq “ πpgq
for g P G. It is an easy exercise to check that, indeed, H is a Hilbert space, T
is a linear map, and π̄ is a unitary representation, and that if T intertwines two
unitary representations π and ρ then T intertwines π̄ and ρ̄.

Frobenius Reciprocity, which is mentioned below as one of the features of a
rigid C*-tensor category, is a classical fact for representations of finite groups.

2.1.1 Features of a rigid C*-tensor category

A rigid C*-tensor category C has the following features (where π and ρ always
denote arbitrary objects of C):

• Each morphism set Morpπ, ρq is a (complex) Banach space.

• There is an involutive ˚-operation on morphisms, mapping a morphism
T : π Ñ ρ to a morphism T˚ : ρÑ π, such that the C*-identity

}T˚T } “ }T }2

holds for any morphism T : π Ñ ρ.

Accordingly, two objects π and ρ in C are said to be (unitarily) isomorphic
if there exists a morphism u : π Ñ ρ such that u˚u “ idπ and uu˚ “ idρ.

• One can take direct sums of objects and of morphisms, and there is a dis-
tinguished object 0, which is a zero object. In particular, 0‘π – π‘0 – π.

• One can take tensor products of objects and of morphisms, and there is a
distinguished object 1, which is a tensor unit. In particular, 1bπ – πb1 –
π.

• Every object π (resp. morphism T ) has a conjugate π̄ (resp. T ).

• Semisimplicity : Every object is a (finite) direct sum of simple objects. (By
definition, an object π is simple if Endpπq :“ Morpπ, πq – C.)
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• The tensor unit 1 is a simple object.

• Each endomorphism space Endpπq is a finite-dimensional unital C*-algebra
with a canonical faithful positive trace Trπ that satisfies TrπbρpT1 b T2q “

TrπpT1qTrρpT2q for all T1 P Endpπq and T2 P Endpρq. (These traces were
constructed in this general setting by Longo and Roberts [49].)

Moreover, the following is true. Denote by Λ the set of isomorphism classes
of simple objects in C and choose a representative πλ in λ for each λ P Λ. If

π –
À

λPΛ π
‘Nλπ
λ for some multiplicities Nλ

π P N0 then

Endpπq –
à

λPΛ

MNλπ
pCq

as C*-algebras and Nλ
π “ dimC Morpπλ, πq for all λ P Λ.

• Each object π has a quantum dimension dpπq “ Trπpidπq, which satisfies
dpπ b ρq “ dpπqdpρq and dpπ ‘ ρq “ dpπq ` dpρq (cf. [49]).

• Frobenius Reciprocity, that is, certain isomorphisms

Morpπ b ρ, ψq – Morpπ, ψ b ρ̄q – Morpρ, π̄ b ψq.

In particular, 1 is always a direct summand of π b π̄.

Moreover, the operations and objects ˚, ¯̈, b, ‘, 0 and 1 satisfy certain natural
compatibility conditions, which we will not state here.

Example 2.1. In addition to the examples that we mentioned above, the category
ReppGq of continuous finite-dimensional unitary representations of a compact
(quantum) group G is also a rigid C*-tensor category (cf. e.g. [52]).

Let us end this section by stating a fact that we will use later.

Remark 2.2. Let π be an object in a rigid C*-tensor category C. Then the unitary
equivalence classes of projections in the finite-dimensional C*-algebra Endpπq are
indexed by the (isomorphism classes of) direct summands ρ of π. More precisely,
if we denote the class corresponding to ρ by Xρ then a projection p P Endpπq
belongs to Xρ if and only if there exists a morphism v : ρÑ π such that v˚v “ idρ
and vv˚ “ p. This is essentially the statement that C is a C*-category that admits
direct sums and is semisimple.

2.1.2 Braided C*-tensor categories

The examples that we are most interested in have an additional feature, namely
a unitary braiding, which we proceed to define following [16].

A unitary braiding c´,´ on a (strict) rigid C*-tensor category C is an assign-
ment of an isomorphism

cπ,ρ : π b ρ ÝÑ ρb π

to every pair pπ, ρq of objects in C, which
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• is natural, i.e., given morphisms Tj : πj Ñ ρj (j “ 1, 2), we have that

pT2 b T1q ˝ cπ1,ρ1
“ cπ2,ρ2

˝ pT1 b T2q;

• satisfies the hexagon identities, i.e.,

pidρ b cπ,σq ˝ pcπ,ρ b idσq “ cπ,ρbσ,

pcπ,σ b idρq ˝ pidπ b cρ,σq “ cπbρ,σ;

• is unitary, i.e.,

c˚π,ρ ˝ cπ,ρ “ idπbρ,

cπ,ρ ˝ c
˚
π,ρ “ idρbπ.

Following [16], we call a rigid C*-tensor category with a distinguished unitary
braiding a braided C*-tensor category.

Example 2.3. The categories Hilb and ReppGq, where G is a (genuine, i.e., not
“quantum”) compact group, have a unitary braiding. Namely, to a pair pπ, ρq
of unitary representations, π : G Ñ UpHq and ρ : G Ñ UpKq, one associates the
isomorphism cπ,ρ : H b K Ñ K b H defined by ξ b η ÞÑ η b ξ. This braiding
is symmetric (or trivial) in the sense that cρ,π ˝ cπ,ρ “ idπbρ. (The categories
ReppGq, where G ranges over all compact groups, were shown to be characterized
by the existence of such a braiding by Doplicher and Roberts in [10].)

We are interested in certain rigid C*-tensor categories that have finitely many
(isomorphism classes of) simple objects (i.e., they are what are often called fusion
categories) as well as an asymmetric, even non-degenerate, unitary braiding (i.e.,
they are what are often called unitary modular tensor categories). Non-degeneracy
of a braiding is defined as follows. To a rigid C*-tensor category C with a finite
set Λ of simple objects and a unitary braiding c´,´, one can associate a matrix
S PMΛpCq, called the modular S-matrix, by setting

Sµ,ν “ Trµbνpcν,µ ˝ cµ,νq

for µ, ν P Λ. The braiding c´,´ is said to be non-degenerate, and the category C
to be modular, if S is an invertible matrix. (See e.g. [28] for more information.)

Example 2.4. For C “ ReppGq, where G is a finite group, the modular S-matrix
is given by

Sµ,ν “ Trµbνpidµbνq “ dpµb νq “ dpµqdpνq,

whereby it is of rank one. Thus, this category is not modular unless G is the
trivial group, in which case the category in question is Hilb.

Example 2.5. It is rather more difficult to construct examples (‰ Hilb) of modular
braided C*-tensor categories. One class of examples arises from WZW models in
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2d conformal field theory or, in other words, as categories of integrable highest-
weight modules over certain affine Lie algebras or vertex operator algebras. (See
e.g. [40] and the references therein.) These categories, which we will denote by
RepkpGq, are parameterized by pairs pG, kq, where G is a simple, connected,
simply connected, compact Lie group (such as SUpnq for n ě 2) and k is a positive
integer that is known as the “level”. We will use the symbol Gk to denote the
quantum group (see below) or WZW model that underlies RepkpGq.

The category RepkpGq can also be realized using level k positive energy rep-
resentations of the loop group LG of G, which is the group of smooth maps
S1 Ñ G under pointwise multiplication. Note, however, that the tensor product
in RepkpGq does not arise from the usual tensor product of representations (see
[56], [67]). Moreover, the category RepkpGq also arises from the representation
theory of a certain quantum group UqpGq at a root of unity q, which is a Hopf
algebra associated to G (see [69]). For an overview of the various realizations of
RepkpGq, we refer the reader to [38].

Below, we will explain relevant aspects of these categories, but we will not
provide the reader with a detailed construction. For this, we direct the reader to
the references in [38]. (See also Remark 3.7 below.)

2.2 Fusion rings

Let C be a rigid C*-tensor category. We retain the notation of the previous section.
In particular, Λ is the set of (isomorphism classes of) simple objects in C. Given
an object π in C and µ, ν P Λ, we have that

π b πν –
à

µPΛ

π
‘Nµπ,ν
µ

for certain multiplicities Nµ
π,ν “ Nµ

πbν , which are called the fusion rules of the
category and are organized into fusion matrices Nπ “ pN

µ
π,νqν,µ P MΛpCq. It is

sometimes useful to consider the fusion graph Γπ of C with respect to π, whose
vertex set is Λ and whose adjacency matrix is Nπ. In other words, in Γπ there are
Nµ
π,ν edges from the vertex ν P Λ to the vertex µ P Λ.

Remark 2.6. If Λ is a finite set then the quantum dimension dpπq of π is precisely
}Nπ}, i.e., the Perron–Frobenius eigenvalue of Nπ. The corresponding Perron–
Frobenius eigenvector is pdpµqqµPΛ. (See e.g. [28] for more information.)

The fusion ring FC of C is defined as follows. As a group, it is the free abelian
group ZpΛq “

À

µPΛ Zµ, which we turn into an associative unital ring by imposing
the product

λ ¨ ν “
ÿ

µPΛ

Nµ
λ,νµ

for λ, ν P Λ. (See e.g. [26], [28] for information on fusion rings.)
Throughout this paper, we restrict attention to categories whose fusion ring is

commutative. Braided C*-tensor categories of course have this property. However,
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there are many examples of rigid C*-tensor categories that have a commutative
fusion ring but no unitary braiding. For instance, as mentioned in [16], Drinfeld–
Jimbo quantized universal enveloping algebras UqpGq with q ą 1 are such exam-
ples. Moreover, it is easy to find examples of rigid C*-tensor categories whose
fusion ring is non-commutative. For instance, given a non-abelian discrete group
Γ, the category ReppΓ̂q is such an example. (Here, Γ̂ is the compact quantum
group pC˚r pΓq,∆q, where C˚r pΓq is the reduced group C*-algebra of Γ and the
co-multiplication ∆ is defined by ug ÞÑ ug b ug for g P Γ, where tugugPΓ are the
canonical unitary elements in C˚r pΓq.)

The fusion ring of the category RepkpGq is called the Verlinde ring of G at
level k (after Verlinde, who studied these rings in [64]) and we will denote it
by VerkpGq. (Here, and for the remainder of this section, G denotes a simple,
connected, simply connected, compact Lie group.) The fusion rules of RepkpGq
may be viewed as a truncation of the fusion rules of ReppGq. They are given by
the Kač–Walton Formula (cf. e.g. [28] and the references therein).

It is a classical fact that the simple objects tπ~λu~λ in the category ReppGq are

naturally parameterized by the set Nˆr0 of Dynkin labels ~λ “ pλ1, . . . , λrq, where
r is the rank of G, in such a way that the zero vector ~0 corresponds to the trivial
representation and the standard basis vectors ~ej correspond to the fundamental
representations. Meanwhile, the simple objects tπ~λu~λ in the category RepkpGq
are naturally indexed by a certain finite subset of Nˆr0 corresponding to integrable

highest weights at level k. Explicitly, the Dynkin labels ~λ that correspond to simple
objects in RepkpGq are exactly those for which the “level” `p~λq :“

řr
j“1 a

_
j λj of

~λ is at most k. Here, a_1 , . . . , a
_
r are the colabels of the group G, which are e.g.

explicitly given in [27].

Example 2.7. In the category ReppSUp2qq, the simple objects are indexed by the
set Λ “ N0 and the fusion rules are given by

πi b πj – π|i´j| ‘ π|i´j|`2 ‘ ¨ ¨ ¨ ‘ πi`j

for i, j P N0. Meanwhile, in the category RepkpSUp2qq, the simple objects are
indexed by the set Λ “ t0, 1, . . . , ku and the fusion rules are given by

πi b πj –

#

π|i´j| ‘ ¨ ¨ ¨ ‘ πi`j if i` j ď k,

π|i´j| ‘ ¨ ¨ ¨ ‘ π2k´pi`jq if i` j ą k,

for 0 ď i, j ď k (as shown by Gepner and Witten in [32]).

Example 2.8. In the category ReppSUp3qq, the simple objects are indexed by
the set Λ “ Nˆ2

0 and the fusion rules are determined by the fusion graph Γπp1,0q
of ReppSUp3qq with respect to the fundamental representation πp1,0q, which is
shown in figure 1. Note that the fusion graph of ReppSUp3qq with respect to
πp0,1q “ π̄p1,0q is obtained from Γπp1,0q by reversing all of the edges.

In the category RepkpSUp3qq, the simple objects are indexed by the set Λ “

t~λ P Nˆ2
0 : `p~λq ď ku, where `p~λq “ λ1 ` λ2 for ~λ “ pλ1, λ2q P Nˆ2

0 . The fusion

10



Figure 1: The fusion graph of ReppSUp3qq with respect to πp1,0q.

rules are determined by the fusion graph Γπp1,0q of RepkpSUp3qq with respect to
the simple object πp1,0q, which is obtained from the graph in figure 1 by discarding

all vertices ~λ for which `p~λq ą k (as well as any edges that are connected to them).
Again, the fusion graph of RepkpSUp3qq with respect to πp0,1q “ π̄p1,0q is obtained
from Γπp1,0q by reversing all edges. The fusion rules of RepkpSUp3qq were explicitly
calculated at all “levels” k in [4].

In our K-theory computations, we will use a result of Gepner [30], which was
transferred from the setting of VerkpGqbC (the Verlinde algebra) to the setting of
VerkpGq by Fuchs [26]. To state it, we first recall some facts and introduce some
terminology and notation. It is a classical theorem that when C “ ReppGq, in
which case FC is the representation ring RpGq of G, there is a ring isomorphism
FC Ñ Zrx1, . . . , xrs that maps (the isomorphism class of) the j’th fundamental
representation to the variable xj and the trivial representation to 1. (As above,
r is the rank of G.) We will denote the image of π~λ under this isomorphism by
QG~λ px1, . . . , xrq. The fusion variety V associated to the category RepkpGq is the
subset

V “ tpx
p1q
~λ
, . . . , x

prq
~λ
q : `p~λq ď ku

of Cr. In this formula, x
pjq
~λ
“ S~ej ,~λ{S~0,~λ for j “ 1, . . . , r, where S is the modular

S-matrix for RepkpGq, which is given by the Kač–Peterson Formula [45]. (The
formula is e.g. spelled out for each G in [27] and for G “ SUp3q in [19], but
note that the formula for the modular S-matrix on page 400 of [19] contains a
typographical error: The ‘`’ in the second term should be ‘´’.) The fusion ideal
JkpGq associated to the category RepkpGq is the ideal

JkpGq “ tppx1, . . . , xrq P Zrx1, . . . , xrs : pp~zq “ 0 for all ~z P V u

11



of Zrx1, . . . , xrs. In particular, px
p1q
~0
, . . . , x

prq
~0
q “ pS~e1,~0{S~0,~0, . . . , S~er,~0{S~0,~0q “

pdpπ~e1q, . . . , dpπ~er qq (cf. e.g. [28]) is a common zero of the polynomials in JkpGq.
(As usual, d denotes the quantum dimension.)

Theorem 2.9 (Gepner, Fuchs). The fusion ring of RepkpGq, that is, the Verlinde
ring VerkpGq, is isomorphic to Zrx1, . . . , xrs{JkpGq in such a way that the simple
object π~λ corresponds to the coset rQG~λ px1, . . . , xrqs.

In [30], Gepner also proved that

JkpSUp2qq “ xQ
SUp2q
k`1 px1qy

and
JkpSUp3qq “ xQ

SUp3q
pk`1,0qpx1, x2q, Q

SUp3q
pk`2,0qpx1, x2qy,

where, given elements r1, . . . , rn (resp. a subset X) in a ring R, we denote by
xr1, . . . , rny (resp. xXy) the (two-sided) ideal generated by the set tr1, . . . , rnu
(resp. X). Below, we will use these facts as well as the formula

JkpSpp4qq “ xtQ
Spp4q
~λ

px1, x2q : λ1 ` λ2 “ k ` 1u Y tQ
Spp4q
p0,k`2qpx1, x2quy,

which follows from the work of Bourdeau–Mlawer–Riggs–Schnitzer [5] and Gepner–
Schwimmer [31], and the formula

JkpG2q “ xtQ
G2

~λ
px1, x2q : λ1 ` 2λ2 “ k ` 1u Y tQG2

pk`2,0qpx1, x2quy,

which may e.g. be deduced from the work of Douglas (cf. Theorem 1.1 in [11]).
For an in-depth discussion of explicit generating sets for the fusion ideals, we refer
the reader to the papers [6] and [12].

3 AF-algebras from braided categories

3.1 Construction and basic examples

Let C be a rigid C*-tensor category and fix an object π in C. Put σ “ π̄bπ and, for
each n P N0, ApC, πqn “ Endpσbnq. Define, for each n P N0, a ˚-homomorphism
ιn : ApC, πqn Ñ ApC, πqn`1 by ιnpT q “ T b idσ for T : σbn Ñ σbn. Since

Trσbpn`1qpιnpT qq “ TrσbnpT qTrσpidσq “ dpσqTrσbnpT q

for all T : σbn Ñ σbn, it follows that each ιn is injective, hence isometric. Thus,
we may define the inductive limit C*-algebra

ApC, πq “ ind-limnpApC, πqn, ιnq,

which is a unital AF-algebra. Note that, up to ˚-isomorphism, ApC, πq only de-
pends on the fusion rules for π, i.e., on the matrix Nπ.
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Example 3.1. Unsurprisingly, the easiest examples arise from the category Hilb.
If V is a Hilbert space of dimension N then ApHilb, V q –MN8 , where MN8 is the
infinite tensor product MN pCqbMN pCqb¨ ¨ ¨ , i.e., the UHF-algebra associated to
the “supernatural number” N8. In particular, ApHilb,Cq – C while ApHilb,C2q

is ˚-isomorphic to the CAR-algebra.
To get a slightly more complicated example, let π be an object of ReppGq,

where G is a compact group. Suppose that π is an N -dimensional representation.
Then ApReppGq, πq is ˚-isomorphic to the fixed point algebra MG

N8 of the follow-
ing action of G on MN8 by automorphisms. For each g P G, view πpgq and π̄pgq
as unitary matrices in MN pCq. Then G acts via the formula

g ¨ px1 b x2 b ¨ ¨ ¨ q “ π̄pgqx1π̄pgq
˚ b πpgqx2πpgq

˚ b ¨ ¨ ¨ .

As we have mentioned before, such fixed point algebras were much studied by
Wassermann [66], Handelman and Rossmann [36, 37], and Handelman [34, 35] in
the early 1980s, and some of their K-theory computations will be presented later
in this paper (cf. Theorem 4.5, Theorem 4.20 and Corollary 4.23).

Remark 3.2. As e.g. explained in Remark 8.2 of [55], it follows from the work of
many people, including Jones [41], Wenzl [68, 69], Popa [54], Banica [2] and Xu
[70], that ApC, πq is the inductive limit of a tower of higher relative commutants
arising from a certain subfactor associated to the pair pC, πq.

3.2 From unitary braidings to ˚-homomorphisms

We will next, following [16], define a ˚-homomorphism ApC, πqbApC, πq Ñ ApC, πq
that will turn out to induce a multiplication map on K0pApC, πqq.

3.2.1 Definition of the ˚-homomorphism

Assume now moreover that C is a braided C*-tensor category with unitary braiding
c´,´. For each n P N, Erlijman and Wenzl in [16] defined a ˚-homomorphism

θn : ApC, πqn bApC, πqn ÝÑ ApC, πq2n

by
θnpT1 b T2q “ UnpT1 b T2qU

˚
n

for T1, T2 P ApC, πqn “ Endpσbnq, where

Un “
n´1
ź

j“1

`

idbpn´jqσ b cbjσ,σ b idbpn´jqσ

˘

P UpApC, πq2nq.

Using a well-known graphical calculus for braided C*-tensor categories, θnpT1bT2q

may be depicted as follows when n “ 3.
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θnpT1 b T2q “ T1 T2

The following lemma was proved in [16].

Lemma 3.3 (Erlijman–Wenzl). For each n P N,

θn`1 ˝ pιn b ιnq “ ι2n`1 ˝ ι2n ˝ θn.

In fact, Erlijman and Wenzl used the maps θn to construct new examples of
subfactors. In the present paper, we only use the above lemma (and the fact that
each θn is isometric) to get an induced ˚-homomorphism

θ : ApC, πq bApC, πq Ñ ApC, πq.

For the convenience of the reader, we give an algebraic proof of the lemma.

Proof of Lemma 3.3. (For simplicity, we give the proof in the case where C is a
strict category, but this is not an actual restriction.) Note first that

cσ,σn “ pid
bpn´1q
σ b cσ,σqpcσ,σn´1 b idσq

for all n ě 1 by the hexagon identities.
We next claim that

Un`1 “ pUn b idb2
σ qpid

bn
σ b cσ,σn b idσq (1)

for all n ě 1. The statement is clear for n “ 1. Assume that the statement holds
for n “ k ´ 1. Then, writing id for idσ and using the fact that

Un`1 “ idb cbnσ,σUn b id

for all n ě 1 by definition, we get that

Uk`1 “ idb cbkσ,σUk b id

“ idb

ˆ

cbkσ,σpUk´1 b idb2
qpidbpk´1q

b cσ,σk´1 b idq

˙

b id
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“ idb

ˆ

`

pcbpk´1q
σ,σ Uk´1q b idb2

˘

˝ pidbp2k´2q
b cσ,σqpid

bpk´1q
b cσ,σk´1 b idq

˙

b id

“ idb

ˆ

`

pcbpk´1q
σ,σ Uk´1q b idb2

˘`

idbpk´1q
b cσ,σk

˘

˙

b id

“ ppidb cbpk´1q
σ,σ Uk´1 b idq b idb2

qpidbk b cσ,σk b idq

“ pUk b idb2
qpidbk b cσ,σk b idq,

which is exactly the statement for n “ k.
We are now ready to prove that

θn`1 ˝ pιn b ιnq “ ι2n`1 ˝ ι2n ˝ θn

for all n ě 1. Setting γ “
`

θn`1 ˝ pιn b ιnq
˘

pT1 b T2q), equation (1) and the
naturality of the braiding imply that

γ “ Un`1pT1 b idb T2 b idqU´1
n`1

“ pUn b idb2
qpT1 b pcσ,σnpidb T2qc

´1
σ,σnq b idqpU´1

n b idb2
q

“ pUn b idb2
qpT1 b pT2 b idq b idqpU´1

n b idb2
q

“ pι2n`1 ˝ ι2n ˝ θnqpT1 b T2q,

which proves what we wanted.

Example 3.4. Let C be the category ReppGq, where G is a compact group. Then,
as we saw in Example 3.1, ApReppGq, πq is ˚-isomorphic to a fixed point alge-
bra MG

N8 , where N is the dimension of π. Under this identification (recalling
the unitary braiding on ReppGq from Example 2.3), the above ˚-homomorphism
θ : ApC, πqbApC, πq Ñ ApC, πq corresponds to the restrictionMG

N8bM
G
N8 ÑMG

N8

of the ˚-isomorphism MN8 bMN8 ÑMN8 that interlaces the tensor factors.

3.2.2 SU(2) and Temperley–Lieb–Jones algebras

We will next explain how the ˚-homomorphism θ is defined when C“RepkpSUp2qq
and π“ π1. We recall first the notion of an pm,nq-Temperley–Lieb diagram (for
m,n P N0 of equal parity), which first appeared in the work of Kauffman [46]. Such
a diagram consists of pn ` mq{2 non-crossing smooth strands inside a rectangle
with m marked points on the upper edge and n marked points on the lower edge,
each marked point being connected to a unique strand. For example, the following
is a p4, 6q-Temperley–Lieb diagram.
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We next use Temperley-Lieb diagrams to define some (complex) algebras. As a
vector space, the n’th Temperley–Lieb algebra with parameter δ P C (for n P N0)
is the formal (complex) linear span of all pn, nq-Temperley–Lieb diagrams, i.e.,

TLnpδq “ spanCtpn, nq-Temperley–Lieb diagramsu.

We define the product of two diagrams by stacking them, aligning marked points,
smoothing strands, and removing all closed loops at the cost of multiplying by
δN , where N is the total number of closed loops. The following picture illustrates
the product of two p4, 4q-Temperley–Lieb diagrams in the algebra TL4pδq.

“ δ

The n’th Temperley–Lieb–Jones algebra with parameter δ is defined as

ĂTLnpδq “ TLnpδq{tx : Trpxyq “ 0 for all yu,

where the trace Tr (often called a Markov trace) is defined on diagrams by

Note that ĂTLnpδq is a ˚-algebra under the ˚-operation that reflects diagrams about

a horizontal axis and that the map in : ĂTLnpδq Ñ ĂTLn`1pδq, defined on diagrams
by placing a vertical strand on the right side, is an injective ˚-homomorphism.

We believe that the following result may be ascribed to Jones [41], Kauffman
[46] and Goodman–de la Harpe–Jones [33].

Theorem 3.5 (Jones, Kauffman, Goodman–de la Harpe–Jones). Let k P N be

given and put δ “ 2 cospπ{pk ` 2qq. Then ĂTLnpδq is a C*-algebra for all n, and
there is a ˚-isomorphism

ApRepkpSUp2qq, π1q – ind-limnpĂTLnpδq, inq.

Remark 3.6. Put J “ t2 cospπ{pk ` 2qq : k P Nu Y r2,8q. A version of Jones’
Index Rigidity Theorem from [41] states that, given a parameter δ, Tr is a positive

linear functional on TLnpδq for all n if and only if δ P J . In particular, ĂTLnpδq
is a C*-algebra for all n whenever δ P J .

Under the identification in the preceding theorem, θ is given by superposition
of diagrams. For instance, if we define the θn and Un in terms of the self-conjugate
object π “ π1 rather than σ then θ3 may be depicted in the following way.
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Â

ÞÑ “

Here, the diagram in the top-most rectangle on the right represents the unitary
element U3 and the crossings are to be interpreted as follows.

“ ie
πi

2pk`2q ´ ie´
πi

2pk`2q

This formula for a crossing arose from Kauffman’s work on knot invariants [46].

Remark 3.7. The Temperley–Lieb algebras first appeared in the work of Temperley
and Lieb [61] on Potts and ice-type models in statistical mechanics, in which they
were defined in terms of generators and relations. These relations reappeared in
the work of Jones [41], in which the Temperley–Lieb–Jones algebras manifested as
subalgebras of higher relative commutants of subfactors (see also [33]). Soon, in
a paper [46] about a knot invariant introduced by Jones [42], Kauffman described
Temperley–Lieb algebras in terms of Temperley–Lieb diagrams (see also [44]).

Later, it was realized that a diagrammatic description could also be given
for standard invariants of subfactors (cf. Jones’ introduction of subfactor planar
algebras [43] based on work of Popa [54]) and tensor categories (cf. [63] as well as
e.g. [16], [8]). For example, the category RepkpSUp2qq was described in terms of
Temperley–Lieb diagrams (cf. [63] as well as e.g. [71], [9], [20]) while the category
RepkpSUp3qq was described in terms of so-called A2-Temperley–Lieb diagrams
(cf. [48], in which A2-Temperley–Lieb diagrams were first introduced, as well as
e.g. [68], [9], [18], [20]). In fact, it was observed that rigid C*-tensor categories are
in some sense the same as so-called factor planar algebras (cf. [51], [8]).

3.3 Induced (ordered) ring structure in K-theory

Using the “external product” K0pApC, πqqbZK0pApC, πqq Ñ K0pApC, πqbApC, πqq
in K-theory (cf. e.g. section 4.7 of [39]), which is in fact a group isomorphism in
this case, the ˚-homomorphism θ induces a binary operation

K0pθq : K0pApC, πqq bZ K0pApC, πqq ÝÑ K0pApC, πqq,
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which will turn out to be an associative product on K0pApC, πqq that endows it
with the structure of a unital ring. We will prove this by identifying K0pApC, πqq
with a subgroup of the localization FCrσ

´1s in such a way that K0pθq corresponds
to the product on FCrσ

´1s. (Recall that FCrσ
´1s consists of equivalence classes of

formal fractions x{σn with x P FC and n P N0 under the equivalence relation „
defined as follows: x{σn „ y{σm if σN pσmx´ σnyq “ 0 in FC for some N P N0.)

Identifying K0pApC, πqnq with
À

µăσbn Zµ, where µ ă σbn is to be read as

“µ occurs as a direct summand of σbn”, we have that K0pApC, πqq is isomorphic
(as an ordered group) to the limit of the inductive sequence

¨ ¨ ¨ ÝÑ
à

µăσbn

Zµ Mσ
ÝÑ

à

µăσbpn`1q

Zµ ÝÑ ¨ ¨ ¨ , (2)

where Mσ is defined on basis vectors by

Mσpµq “
ÿ

νPΛ

Nν
σ,µν

and the positive cone in
À

µăσbn Zµ is t
ř

µăσbn vµµ : vµ ě 0 for all µu. Note
that if we view

À

µăσbn Zµ as a subset of FC then Mσ just multiplies by σ. Define,
for each n P N0, a group homomorphism

φn :
à

µăσbn

Zµ ÝÑ FCrσ
´1s

by φnpµq “ µ{σn for µ ă σbn. Then clearly φn`1 ˝Mσ “ φn for all n, whereby
we get an induced group homomorphism

φ : K0pApC, πqq ÝÑ FCrσ
´1s.

It is straightforward to verify that φ is injective. We claim that m ˝ pφn b φnq “
φ2n ˝K0pθnq, i.e., that the following diagram commutes, for all n, where m is the
product on FCrσ

´1s.

K0pEndpσbnqq bZ K0pEndpσbnqq
φnbφn
ÝÝÝÝÝÑ FCrσ

´1s bZ FCrσ
´1s

K0pθnq

§

§

đ

§

§

đ

m

K0pEndpσb2nqq
φ2n

ÝÝÝÝÑ FCrσ
´1s

By Remark 2.2, a projection p P Endpσbnq belongs to the (unitary equivalence)
class corresponding to the direct summand µ of σbn if and only if there exists
an element v P Morpµ, σbnq such that v˚v “ idµ and vv˚ “ p. It follows that if
p P Endpσbnq belongs to the class corresponding to µ and q P Endpσbnq to the
one corresponding to ν then θnppb qq “ Unppb qqU

˚
n P Endpσb2nq belongs to the

class corresponding to the direct summand µb ν of σb2n. This proves the claim.
We conclude that m ˝ pφbφq “ φ ˝K0pθq, whereby K0pθq has the properties that
we asserted at the beginning of this section.
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Remark 3.8. Denote by C1 the full C*-tensor subcategory of C generated by the
simple objects that occur as direct summands in tensor powers of σ. Then φ maps
into the subring FC1

rσ´1s of FCrσ
´1s.

By an ordered ring , we shall mean a commutative ring R with identity equipped
with a positive cone R`, i.e., a subset R` Ă R satisfying R` ` R` Ă R`, R` X
p´R`q “ t0u and R “ R` ´ R`, for which R` ¨ R` Ă R` and in which the
identity element 1 is an order unit for the ordered group pR,R`q under addition
(cf. Remark 4.22). In particular, we have the following. Define a positive cone in
FCrσ

´1s by
FCrσ

´1s` “ tx : dpxq ą 0u Y t0u,

where d denotes the ring homomorphism d : FCrσ
´1s Ñ R defined by dpµ{σnq “

dpµq{dpσqn for µ P Λ and n P N0. (On the right hand side, d denotes the quantum
dimension in C.) Then K0pApC, πqq and FCrσ

´1s are ordered rings and φ is a
positive map, i.e., φpK0pApC, πqq`q Ă FCrσ

´1s`.

Remark 3.9. Assume now that C has only finitely many simple objects. We
claim that φ is an ordered ring isomorphism onto the ordered subring FC1

rσ´1s

of FCrσ
´1s. This follows from the fact that, in this case, the directed system in

equation (2) is stationary in the sense of Chapter 6 in [13], and is closely related
to the fact that, by Theorem 6.1 in [13], ApC, πq has a unique (normalized) faithful
positive trace. (Note also that ApC, πq is a simple C*-algebra.)

Let us provide some further details. It is easy to show that φ is a ring isomor-
phism onto FC1

rσ´1s. (In particular, K0pApC, πqq is a finitely generated ring.) We
will prove that it maps the positive cone of K0pApC, πqq onto that of FC1

rσ´1s.
Denote by Λ1 the set of simple objects that occur in some tensor power of σ. Then
the aforementioned stationarity refers to the fact that, since 1 ă σ (cf. the proof
of Lemma 5.1 below), K0pApC, πqq is isomorphic (as an ordered group) to the limit
of the inductive sequence

G1
Mσ
ÝÑ G2

Mσ
ÝÑ G3

Mσ
ÝÑ ¨ ¨ ¨ ,

where Gn “ ZpΛ1q “
À

µPΛ1 Zµ for all n and Mσ is viewed as a matrix in MΛ1pZq.
Consider now an arbitrary element of the limit of this inductive sequence. It can
be viewed as the equivalence class rv, ns of an element v P Gn (for some n). It is
well-known that, in this stationary situation, rv, ns is a non-zero positive element
in the limit if and only if xv, wy ą 0, where w is the Perron–Frobenius eigenvector
of Mσ, which is equal to

ř

µPΛ1 dpµqµ by Remark 2.6 and Frobenius Reciprocity.
Thus, rv, ns ą 0 if and only if dpφprv, nsqq ą 0. The claim follows.

4 Explicit computations

We will next, in a variety of cases, explicitly describe the ring K0pApC, πqq in terms
of generators and relations, i.e., as a quotient

Zrt1, . . . , trs{xP1pt1, . . . , trq, . . . , Pmpt1, . . . , trqy.
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The computations for SU(3), Sp(4) and G2 have, as far as we are aware, not
appeared in the literature before, except that the computation for ReppSUp3qq
essentially appeared in the work of Handelman–Rossmann [36, 37] and Handelman
[34, 35]. The SU(2)-computations were done by Wassermann [66] in the case of
ReppSUp2qq and by Evans–Gould [17] in the case of RepkpSUp2qq. The only
novelty in these cases is a slight clarification of the ring structure.

Example 4.1. As a warm-up, we give an explicit computation for the irreducible
2-dimensional representation in C “ ReppS3q, where S3 is the symmetric group
on three letters. In this case Λ “ t1, s, πu, where 1 is the trivial representation,
s is the sign representation, and π is the 2-dimensional representation π : S3 Ñ

UpC3 a tp1, 1, 1quq that permutes the coordinates. They satisfy the fusion rules
sb s – 1, sb π – π and π b π – 1‘ s‘ π (and 1 is the tensor unit).

We claim that
K0pApC, πqq – Zrts{x1´ t´ 2t2y

as ordered rings, where the positive cone on the right hand side is trpptqs :
pp1{2q ą 0u Y tr0su (and rpptqs denotes the coset of pptq P Zrts). Note that,
as we saw in Example 3.1, K0pApC, πqq – K0pM

S3
28q and that, since 1{2 is a root

of 1´ t´ 2t2, it makes sense to evaluate a coset in Zrts{x1´ t´ 2t2y at 1{2.
Since π is self-conjugate and every simple summand occurs in πb2, the map

φ : K0pApC, πqq Ñ FCrπ
´1s from section 3.3 is an isomorphism of ordered rings,

where the positive cone on the right hand side is tx : dpxq ą 0u Y t0u. Here, the
fusion ring FC is the representation ring RpS3q of S3 and the quantum dimension
d in C is just the vector space dimension. (Note that FCrπ

´1s “ FCrpπ̄πq
´1s.)

Define a map Φ: RpS3q Ñ Zrts{x1 ´ t ´ 2t2y by Φp1q “ Φpsq “ r1s and
Φpπq “ r2t ` 1s. This is a ring homomorphism, since Φps2q “ Φpsq2 “ r1s,
Φps ¨ πq “ Φpsq ¨ Φpπq “ Φpπq and

Φpπ2q “ Φp1` s` πq “ r2t` 3s “ r2t` 1s2 “ Φpπq2.

As Φpπq “ r2t`1s is an invertible element in Zrts{x1´t´2t2y (with r2t`1s´1 “ rts),
we get an induced ring homomorphism RpS3qrπ

´1s Ñ Zrts{x1 ´ t ´ 2t2y (also
denoted Φ), which is surjective because Φp1q “ r1s and Φp1{πq “ rts. It is easy to
verify that, when Zrts{x1´ t´ 2t2y is equipped with the aforementioned positive
cone, Φ is in fact an isomorphism of ordered rings. The claim follows.

4.1 SU(2)k

Evans and Gould proved the following result in [17].

Theorem 4.2 (Evans–Gould). As ordered groups,

K0pApRepkpSUp2qq, π1qq – Zrts{Ik,

where Ik “ xP
SUp2q
k`1 ptqy.
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Here, the polynomial P
SUp2q
λ ptq (for λ P N0) is obtained from the Laurent poly-

nomial x´λQ
SUp2q
λ pxq by performing the change of variables t “ 1{x2, and the

positive cone on the right hand side is

`

Zrts{Ik
˘

`
“ trpptqs : ppαkq ą 0u Y tr0su,

where αk “ dpπ1q
´2 “ r4 cos2pπ{pk ` 2qqs´1.

Note that the definition of the positive cone makes sense, since αk is a common
zero of the polynomials in Ik by the discussion in section 2.2.

Remark 4.3. The polynomials P
SUp2q
λ ptq first appeared in [41], where their posi-

tivity properties were used to prove Jones’ Index Rigidity Theorem.

Remark 4.4. It is easy to prove that the above identification is in fact one of
ordered rings. The proof employs similar ideas to the ones used in section 4.3, but
is quite a bit simpler. Also, as mentioned in section 3.2.2, ApRepkpSUp2qq, π1q is
an inductive limit of Temperley–Lieb–Jones algebras, and the ˚-homomorphism
θ that induces the product in K-theory has a particularly nice diagrammatic
description in terms of superimposed Temperley–Lieb diagrams.

4.2 SU(2)

The preceding computation is closely related to the following earlier result from
Wassermann’s thesis [66].

Theorem 4.5 (Wassermann). As ordered rings,

K0pApReppSUp2qq, π1qq – Zrts,

where the positive cone on the right hand side is

Zrts` “ tpptq : p ą 0 on p0, 1{4su Y t0u

and the product on K0pApReppSUp2qq, π1qq – K0pM
SUp2q
28 q is induced by the ˚-

homomorphism M28 bM28 ÑM28 that interlaces the tensor factors.

Remark 4.6. By the same work as that cited in section 3.2.2, ApReppSUp2qq, π1q is
also an inductive limit of Temperley–Lieb–Jones algebras (with parameter δ “ 2),
and the ˚-homomorphism θ has the same description in terms of superimposed
Temperley–Lieb diagrams.

4.3 SU(3)k

We will next prove the following result.

Theorem 4.7. As ordered rings,

K0pApRepkpSUp3qq, πp1,0qqq – Zrs, ts{Ik,

21



where Ik “ xP
SUp3q
pk`1,0qps, tq, P

SUp3q
pk`2,0qps, tqy.

Here, the polynomial P
SUp3q
~λ

ps, tq (for ~λ “ pλ1, λ2q P Nˆ2
0 ) is obtained from the

Laurent polynomial x´λ1y´λ2Q
SUp3q
~λ

px, yq by performing the change of variables

ps, tq “ px{y2, y{x2q, and the positive cone on the right hand side is

`

Zrs, ts{Ik
˘

`
“ trpps, tqs : ppβk, βkq ą 0u Y tr0su,

where βk “ dpπp1,0qq
´1 “ r1` 2 cosp2π{pk ` 3qqs´1.

Again the definition of the positive cone makes sense because pβk, βkq is a common
zero of the polynomials in Ik by the discussion in section 2.2.

Remark 4.8. One can show that the AF-algebra ApRepkpSUp3qq, πp1,0qq is an
inductive limit of so-called A2-Temperley–Lieb–Jones algebras (cf. the references
in Remark 3.7) and that the ˚-homomorphism θ has a description in terms of
superimposed A2-Temperley–Lieb diagrams.

As the proof of Theorem 4.7 is rather lengthy, we will spend a moment de-
scribing the overall strategy. We will first define a group homomorphism

ψ : K0pApRepkpSUp3qq, πp1,0qqq Ñ Zrs, ts{Ik

and show that it is an isomorphism of ordered groups. Next, we will show that
we have a commutative diagram

K0pApRepkpSUp3qq, πp1,0qqq
ψ

ÝÝÝÝÑ Zrs, ts{Ik

φ

§

§

đ

ψcv

§

§

đ

VerkpSUp3qqrσ´1s
ψGF
ÝÝÝÝÑ Zrx˘1, y˘1s{J̃k

where φ is the injective ring homomorphism from section 3.3, ψcv is given by the
aforementioned change of variables, J̃k is the image of the fusion ideal JkpSUp3qq Ă
Zrx, ys in the localization pZrx, ysqrpxyq´1s “ Zrx˘1, y˘1s, and ψGF is induced by
the ring isomorphism from Theorem 2.9. Finally, we conclude that ψ “ ψ´1

cv ˝

ψGF ˝ φ is in fact an isomorphism of ordered rings.

Remark 4.9. One can deduce from the above argument that Ik “ tpps, tq P Zrs, ts :
ppx{y2, y{x2q “ 0 for all px, yq P V ztp0, 0quu, where V is the fusion variety associ-
ated to RepkpSUp3qq, cf. section 2.2. Moreover, if we define Ik by this formula
then we can right away define ψ as the composition ψ´1

cv ˝ ψGF ˝ φ, and then the
surjectivity of ψ, which takes up most of the following proof, is essentially auto-
matic, since we know from the outset that ψ is a ring homomorphism. However,
in this approach it is not clear how to prove that Ik has the stated generating set.

Before we move on to the proof of the theorem, we must go over some prelim-
inaries. We will use the notation |~λ| “ λ1 ` λ2 for ~λ “ pλ1, λ2q P Nˆ2

0 . Then |~λ|

is precisely the “level” of ~λ that we denoted by `p~λq in section 2.2.
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Table 1: The polynomials Q
SUp3q
~λ

px, yq with λ1 ě λ2 and |~λ| ď 6

~λ Q
SUp3q
~λ

px, yq

p0, 0q 1

p1, 0q x

p2, 0q x2 ´ y
p1, 1q xy ´ 1

p3, 0q x3 ´ 2xy ` 1
p2, 1q x2y ´ y2 ´ x

p4, 0q x4 ´ 3x2y ` y2 ` 2x
p3, 1q x3y ´ 2xy2 ´ x2 ` 2y
p2, 2q x2y2 ´ x3 ´ y3

p5, 0q x5 ´ 4x3y ` 3xy2 ` 3x2 ´ 2y
p4, 1q x4y ´ 3x2y2 ` y3 ´ x3 ` 4xy ´ 1
p3, 2q x3y2 ´ 2xy3 ´ x4 ` x2y ` 2y2 ´ x

p6, 0q x6 ´ 5x4y ` 6x2y2 ´ y3 ` 4x3 ´ 6xy ` 1
p5, 1q x5y ´ 4x3y2 ´ x4 ` 3xy3 ` 6x2y ´ 3y2 ´ 2x
p4, 2q x4y2 ´ 3x2y3 ´ x5 ` y4 ` 2x3y ` 3xy2 ´ 2x2 ´ y
p3, 3q x3y3 ´ 2x4y ´ 2xy4 ` 3x2y2 ` 2x3 ` 2y3 ´ 5xy ` 1

4.3.1 On the polynomials Q
SUp3q
~λ

px, yq and P
SUp3q
~λ

ps, tq

By the well-known fusion rules of ReppSUp3qq, cf. Example 2.8, the polyno-

mials Q
SUp3q
~λ

px, yq are uniquely determined by the conditions Q
SUp3q
~0

px, yq “ 1,

Q
SUp3q
p1,0q px, yq “ x,

xQ
SUp3q
~λ

px, yq “ Q
SUp3q
~λ`p1,0q

px, yq `Q
SUp3q
~λ`p0,´1q

px, yq `Q
SUp3q
~λ`p´1,1q

px, yq

(with the convention that Q
SUp3q
~λ

px, yq “ 0 if ~λ R Nˆ2
0 ), and

Q
SUp3q
pλ1,λ2q

py, xq “ Q
SUp3q
pλ2,λ1q

px, yq.

The first few of these polynomials are given in Table 1.

We will next show that the expression x´λ1y´λ2Q
SUp3q
~λ

px, yq is a polynomial

in s “ x{y2 and t “ y{x2. This follows immediately from the next two lemmas.

Lemma 4.10. Let ~λ P Nˆ2
0 be given. Then there exist integers γ~ν such that

Q
SUp3q
~λ

px, yq “ xλ1yλ2 `
ÿ

~νPNˆ2
0

γ~νx
ν1yν2 ,
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where γ~ν “ 0 unless the following conditions are satisfied: ν1 ` 2ν2 ď λ1 ` 2λ2,
2ν1 ` ν2 ď 2λ1 ` λ2, |~ν| ă |~λ| and ν1 ´ ν2 ” λ1 ´ λ2 (mod 3).

Proof. This follows by induction on |~λ|.

Lemma 4.11. Let a, b P Z be given. Then xayb is a polynomial in s “ x{y2 and
t “ y{x2 if and only if a ” b (mod 3), a` 2b ď 0 and 2a` b ď 0.

Proof. Note that xayb “ sktl with k “ ´pa` 2bq{3 and l “ ´p2a` bq{3.

Denote by P
SUp3q
~λ

ps, tq the polynomial obtained by performing the change of vari-

ables s “ x{y2 and t “ y{x2 in the expression x´λ1y´λ2Q
SUp3q
~λ

px, yq. The first few

of these polynomials are given in Table 2. Note that P
SUp3q
pλ1,λ2q

pt, sq “ P
SUp3q
pλ2,λ1q

ps, tq

for all ~λ P Nˆ2
0 , and that we have the recursion formulae

P
SUp3q
~λ

ps, tq “

$

&

%

P
SUp3q
~λ`p´1,0q

ps, tq ´ stP
SUp3q
~λ`p´1,´1q

ps, tq ´ tP
SUp3q
~λ`p´2,1q

ps, tq if λ1 ě 1,

P
SUp3q
~λ`p0,´1q

ps, tq ´ stP
SUp3q
~λ`p´1,´1q

ps, tq ´ sP
SUp3q
~λ`p1,´2q

ps, tq if λ2 ě 1

(with the convention that P
SUp3q
~λ

ps, tq “ 0 if ~λ R Nˆ2
0 ). In particular,

P
SUp3q
~λ

p0, tq “

$

&

%

P
SUp3q
~λ`p´1,0q

p0, tq ´ tP
SUp3q
~λ`p´2,1q

p0, tq if λ1 ě 1,

P
SUp3q
~λ`p0,´1q

p0, tq if λ2 ě 1.

We deduce from these identities that P
SUp3q
~λ

p0, tq is independent of λ2 and (by

using that P
SUp2q
0 ptq “ P

SUp2q
1 ptq “ 1 and P

SUp2q
λ`1 “ P

SUp2q
λ ptq ´ tP

SUp2q
λ´1 ptq for

λ P N) that we in fact have the following lemma.

Lemma 4.12. For every ~λ P Nˆ2
0 , we have the identities P

SUp3q
~λ

p0, tq “ P
SUp2q
λ1

ptq

and P
SUp3q
~λ

ps, 0q “ P
SUp2q
λ2

psq.

The next lemma is analogous to the following special case of the results in [30]:

JkpSUp3qq “ xQ
SUp3q
pk`1,0qpx, yq, Q

SUp3q
pk`2,0qpx, yqy “ xQ

SUp3q
~λ

px, yq : |~λ| “ k ` 1y.

Lemma 4.13. For every k P N,

Ik :“ xP
SUp3q
pk`1,0qps, tq, P

SUp3q
pk`2,0qps, tqy “ xP

SUp3q
~λ

ps, tq : |~λ| “ k ` 1y.

Proof. Fix k P N. Put I “ xP
SUp3q
~λ

ps, tq : |~λ| “ k ` 1y. Since P
SUp3q
pk`2,0qps, tq “

P
SUp3q
pk`1,0qps, tq ´ tP

SUp3q
pk,1q ps, tq P I, we have that Ik Ă I.
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Table 2: The polynomials P
SUp3q
~λ

ps, tq with λ1 ě λ2 and |~λ| ď 6

~λ P
SUp3q
~λ

ps, tq

p0, 0q 1

p1, 0q 1

p2, 0q 1´ t
p1, 1q 1´ st

p3, 0q 1´ 2t` st2

p2, 1q 1´ t´ st

p4, 0q 1´ 3t` t2 ` 2st2

p3, 1q 1´ 2t´ st` 2st2

p2, 2q 1´ s´ t

p5, 0q 1´ 4t` 3t2 ` 3st2 ´ 2st3

p4, 1q 1´ 3t` t2 ´ st` 4st2 ´ s2t3

p3, 2q 1´ 2t´ s` st` 2st2 ´ s2t2

p6, 0q 1´ 5t` 6t2 ´ t3 ` 4st2 ´ 6st3 ` s2t4

p5, 1q 1´ 4t´ st` 3t2 ` 6st2 ´ 3st3 ´ 2s2t3

p4, 2q 1´ 3t´ s` t2 ` 2st` 3st2 ´ 2s2t2 ´ s2t3

p3, 3q 1´ 2s´ 2t` 3st` 2s2t` 2st2 ´ 5s2t2 ` s3t3

Put Ipjq “ xtP
SUp3q
pi,k`1´iqps, tq : i “ j ` 1, . . . , k ` 1u Y tP

SUp3q
pk`2,0qps, tquy for

j “ 0, . . . , k (so that Ip0q Ą Ip1q Ą ¨ ¨ ¨ Ą Ipkq “ Ik). We claim that

P
SUp3q
pj,k`1´jqps, tq P I

pjq

for all j “ 0, . . . , k. The claim implies first that P
SUp3q
pk,1q ps, tq P Ipkq, whereby

Ipk´1q “ Ipkq, next that P
SUp3q
pk´1,2qps, tq P I

pk´1q, whereby Ipk´2q “ Ipkq, etc. Con-

tinuing in this way, the claim implies that I Ă Ipkq “ Ik.
We skip the easy proof of the claim, which proceeds by induction on j us-

ing the identity P
SUp3q
p0,k`1qps, tq “ P

SUp3q
p1,kq ps, tq ´ sP

SUp3q
p2,k´1qps, tq, which implies that

P
SUp3q
p0,k`1qps, tq P I

p0q, and the identity

tP
SUp3q
pj,k`1´jqps, tq “ P

SUp3q
pj`1,k´jqps, tq ´ P

SUp3q
pj`2,k´j´1qps, tq ` sP

SUp3q
pj`3,k´j´2qps, tq,

which is valid for j “ 0, . . . , k ´ 1.

In the statement of the following lemma, we use the floor function t¨u defined
by txu “ maxtn P Z : n ď xu for x P R.
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Lemma 4.14. Given ~λ P Nˆ2
0 , we can write

P
SUp3q
~λ

ps, tq “
n
ÿ

j“0

pstqj
`

Ajpsq `Bjptq
˘

(3)

for some n P N0, Ajpsq P Zrss with degAjpsq ď tλ2{2u, and Bjptq P Zrts with
degBjptq ď tλ1{2u. Moreover, one of the following two additional sets of condi-
tions (but not both) may be arranged.

(i) If λ2 is even then we may arrange that degAjpsq ď tλ2{2u´ 1 for j ą 0 and
that Bjp0q “ 0 for all j.

(ii) If λ1 is even then we may arrange that degBjptq ď tλ1{2u´ 1 for j ą 0 and
that Ajp0q “ 0 for all j.

Proof. We proceed by induction on |~λ|. The basis for the induction follows by

inspection of Table 2. Let next ~λ P Nˆ2
0 be given and assume that the assertion is

true at all “levels” ă |~λ|.
Suppose first that λ2 ě 1. Then, by induction hypothesis, we can write

P
SUp3q
~λ`p0,´1q

ps, tq “
ÿ

jě0

pstqj
`

Cjpsq `Djptq
˘

,

P
SUp3q
~λ`p´1,´1q

ps, tq “
ÿ

jě0

pstqj
`

Ejpsq ` Fjptq
˘

,

P
SUp3q
~λ`p1,´2q

ps, tq “
ÿ

jě0

pstqj
`

Gjpsq `Hjptq
˘

with polynomials Cjpsq, Djptq, . . . that satisfy

degCjpsq ď

Z

λ2 ´ 1

2

^

, degEjpsq ď

Z

λ2 ´ 1

2

^

, degGjpsq ď

Z

λ2 ´ 2

2

^

,

degDjptq ď

Z

λ1

2

^

, degFjptq ď

Z

λ1 ´ 1

2

^

, degHjptq ď

Z

λ1 ` 1

2

^

for all j. If λ1 “ 0 then P
SUp3q
~λ`p´1,´1q

ps, tq “ 0, in which case we may assume that

Ejpsq “ Fjptq “ 0 for all j. On the other hand, if λ2 “ 1 then P
SUp3q
~λ`p1,´2q

ps, tq “ 0,

in which case we may assume that Gjpsq “ Hjptq “ 0 for all j.
Setting E´1psq “ F´1ptq “ H´1ptq “ 0, put Ajpsq “ Cjpsq´Ej´1psq´sGjpsq´

sHjp0q P Zrss and Bjptq “ Djptq´Fj´1ptq´ t
´1pHj´1ptq´Hj´1p0qq P Zrts for all

j. It follows from the recursion formulae on page 24 that

P
SUp3q
~λ

ps, tq “
ÿ

jě0

pstqj
`

Ajpsq `Bjptq
˘

.
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Here, if λ2 ě 2 then

degAjpsq ď max

"Z

λ2 ´ 1

2

^

,

Z

λ2 ´ 2

2

^

` 1, 1

*

“

Z

λ2

2

^

for all j, while if λ2 “ 1 then

degAjpsq ď

Z

λ2 ´ 1

2

^

“ 0 “

Z

λ2

2

^

for all j. Also,

degBjptq ď max

"Z

λ1

2

^

,

Z

λ1 ` 1

2

^

´ 1

*

“

Z

λ1

2

^

for all j.
Assume now that λ2 is even. Then λ2 ´ 2 is even and we may arrange that

degGjpsq ď tpλ2 ´ 2q{2u´ 1 for j ą 0 and Hjp0q “ 0 for all j. Thus,

degAjpsq ď max

"Z

λ2 ´ 1

2

^

,

Z

λ2 ´ 2

2

^*

“

Z

λ2

2

^

´ 1

for j ą 0. As tλ2{2u´ 1 ě 0, we may replace Bjptq with Bjptq ´Bjp0q and Ajpsq
with Ajpsq`Bjp0q to ensure that Bjp0q “ 0 for all j without altering the estimates
on the degrees.

Assume next that λ1 is even. Then we may arrange that degDjptq ď tλ1{2u´1
for j ą 0 and Cjp0q “ 0 for all j. Thus,

degBjptq ď max

"Z

λ1

2

^

´ 1,

Z

λ1 ´ 1

2

^

,

Z

λ1 ` 1

2

^

´ 1

*

“

Z

λ1

2

^

´ 1

for j ą 0. If λ1 “ 0 then Cjp0q “ Ej´1p0q “ 0 so that Ajp0q “ 0 for all j. If
λ1 ě 2 then tλ1{2u´ 1 ě 0 so that we may replace Bjptq with Bjptq ` Ajp0q and
Ajpsq with Ajpsq ´ Ajp0q to ensure that Ajp0q “ 0 for all j without altering the
estimates on the degrees.

If λ1 ě 1 (but possibly λ2 “ 0) then one first applies the above arguments to

P
SUp3q
pλ2,λ1q

ps, tq and then interchanges s and t.

4.3.2 On certain monomials m~λ,nps, tq

We will now introduce two families of sets. Their relevance will become clear in
the next section. For each n P N0, we put

B0pnq “ t~λ P Nˆ2
0 : λ1 ” λ2 (mod 3), λ1 ` 2λ2 ď 3n, 2λ1 ` λ2 ď 3nu

and
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B1pnq “ t~λ P Nˆ2
0 : λ1 ´ 1 ” λ2 (mod 3),

pλ1 ´ 1q ` 2λ2 ď 3n, 2pλ1 ´ 1q ` λ2 ď 3nu.

Given n P N0 and ~λ P B0pnq, we denote by m~λ,nps, tq the monomial in Zrs, ts
obtained by performing the change of variables s “ x{y2 and t “ y{x2 in the
expression xλ1´nyλ2´n. The fact that this expression is indeed a monomial in s
and t follows from Lemma 4.11. Similarly, given n P N0 and ~λ P B1pnq, we denote
by m~λ,nps, tq the monomial in Zrs, ts obtained by performing the same change

of variables in the expression xpλ1´1q´nyλ2´n. By definition, we then have the
following identities, in which s “ x{y2 and t “ y{x2.

m~λ,nps, tqP
SUp3q
~λ

ps, tq “

#

Q
SUp3q
~λ

px, yq{pxnynq if ~λ P B0pnq,

Q
SUp3q
~λ

px, yq{pxn`1ynq if ~λ P B1pnq.
(4)

Moreover, we have the following easy lemma.

Lemma 4.15. Let n P N0 and ~λ P Bjpnq be given, where j P t0, 1u. Then there
exist integers γ~ν such that

(i) xλ1yλ2 “
ř

~νPNˆ2
0
γ~νQ

SUp3q
~ν px, yq, and

(ii) m~λ,nps, tq “
ř

~νPNˆ2
0
γ~νm~ν,nps, tqP

SUp3q
~ν ps, tq,

where γ~ν “ 0 unless |~ν| ď |~λ| and ~ν P Bjpnq.

Proof. The statement (i) follows by induction on |~λ| using Lemma 4.10, whereafter
(ii) follows from (i) and equation (4).

4.3.3 Definition, injectivity and positivity of ψ

Fix k P N. Recall the fusion rules of RepkpSUp3qq from Example 2.8.

Lemma 4.16. Consider the objects π “ πp1,0q, π̄ “ πp0,1q and σ “ π b π̄ in
RepkpSUp3qq. For every n P N0, we have that

(i) tµ P Λ : µ ă σbnu “ tπ~λ : |~λ| ď k, ~λ P B0pnqu;

(ii) tµ P Λ : µ ă σbn b πu “ tπ~λ : |~λ| ď k, ~λ P B1pnqu.

Proof. Due to Frobenius Reciprocity, the proof amounts to showing the following
two statements.

(A) tπ~λ : |~λ| ď k, ~λ P B1pnqu is the set of simple objects that occur as a direct

summand of π~λ b π for some ~λ P B0pnq with |~λ| ď k.

(B) tπ~λ : |~λ| ď k, ~λ P B0pn ` 1qu is the set of simple objects that occur as a

direct summand of π~λ b π̄ for some ~λ P B1pnq with |~λ| ď k.
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We will only prove (A). The proof of (B) is similar. Let first ~λ P B1pnq with

|~λ| ď k be given. If λ1 ě 1 then π~λ occurs as a direct summand of π~λ`p´1,0q b π,

where clearly ~λ ` p´1, 0q P B0pnq, while if λ1 “ 0 then λ2 ě 2, π~λ occurs as a

direct summand of π~λ`p1,´1q b π, and it is easy to show that ~λ` p1,´1q P B0pnq.

Assume conversely that ν is a simple object occurring as a direct summand of
π~λbπ for some ~λ P B0pnq with |~λ| ď k. Then ν “ π~µ for some ~µ P t~λ`p1, 0q, ~λ`

p0,´1q, ~λ` p´1, 1qu X Nˆ2
0 Ă B1pnq.

Let π, π̄ and σ be as in the preceding lemma. Then K0pApRepkpSUp3qq, πqq
is isomorphic (as an ordered group) to the limit of the inductive sequence

¨ ¨ ¨ ÝÑ
à

µăσbn

Zµ Mπ
ÝÑ

à

µăσbnbπ

Zµ Mπ̄
ÝÑ

à

µăσbpn`1q

Zµ ÝÑ ¨ ¨ ¨ , (5)

where Mπ (resp. Mπ̄) is defined by multiplication by π (resp. π̄) in the fusion ring.
Given n P N0, we define

ψ0,n :
à

µăσbn

Zµ ÝÑ Zrs, ts{Ik

by ψ0,npπ~λq “ rm~λ,nps, tqP
SUp3q
~λ

ps, tqs for ~λ P B0pnq with |~λ| ď k and

ψ1,n :
à

µăσbnbπ

Zµ ÝÑ Zrs, ts{Ik

by ψ1,npπ~λq “ rm~λ,nps, tqP
SUp3q
~λ

ps, tqs for ~λ P B1pnq with |~λ| ď k. To verify that
these maps induce a group homomorphism

ψ : K0pApRepkpSUp3qq, πp1,0qqq ÝÑ Zrs, ts{Ik,

we must show that, for each n P N0,

(i) ψ0,n “ ψ1,n ˝Mπ, and

(ii) ψ1,n “ ψ0,n`1 ˝Mπ̄.

We proceed to prove (i). Put ∆~λ,~ν “ pNπqπ~λ,π~ν for ~λ, ~ν P Nˆ2
0 with |~λ|, |~ν| ď k,

where Nπ is the fusion matrix of π in RepkpSUp3qq. Let ~λ P B0pnq with |~λ| ď k
be given. Then

xQ
SUp3q
~λ

px, yq ´
ÿ

|~ν|ďk

∆~λ,~νQ
SUp3q
~ν px, yq “

#

0 if |~λ| ă k,

Q
SUp3q
~λ`p1,0q

px, yq if |~λ| “ k.

By the statement (A) in the proof of the preceding lemma, we get that ∆~λ,~ν ‰ 0

only if ~ν P B1pnq (and |~ν| ď k). Hence, we may divide by xn`1yn and use equation
(4) on page 28 to deduce that
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m~λ,nps, tqP
SUp3q
~λ

ps, tq ´
ÿ

|~ν|ďk

∆~λ,~νm~ν,nps, tqP
SUp3q
~ν ps, tq

“

#

0 if |~λ| ă k,

m~λ`p1,0q,nps, tqP
SUp3q
~λ`p1,0q

ps, tq if |~λ| “ k.

Since the right hand side belongs to Ik by Lemma 4.13, we conclude that (i) holds.
The proof of (ii) is similar. Thus, we have an induced group homomorphism ψ as
above.

For the sake of convenience, we will from now on use the notation

Bpk, nq “ t~λ P B0pnq : |~λ| ď ku.

Lemma 4.17. The group homomorphism ψ is injective and positive.

Proof. To show that ψ is injective, it suffices to prove the following: If ψ0,npvq “
r0s then there exists N P N0 for which MN

σ pvq “ 0 in the fusion ring. Write

v “
ř

~λPBpk,nq v~λπ~λ with v~λ P Z for all ~λ. Then the assumption ψ0,npvq “ r0s

means that
ÿ

~λPBpk,nq

v~λm~λ,nps, tqP
SUp3q
~λ

ps, tq “ p1ps, tqP
SUp3q
pk`1,0qps, tq ` p2ps, tqP

SUp3q
pk`2,0qps, tq

for some pjps, tq P Zrs, ts (j “ 1, 2). Performing the change of variables s “ x{y2

and t “ y{x2 and multiplying by a sufficiently high power of xy, we deduce that

pxyqN
ÿ

~λPBpk,nq

v~λQ
SUp3q
~λ

px, yq “ q1px, yqQ
SUp3q
pk`1,0qpx, yq ` q2px, yqQ

SUp3q
pk`2,0qpx, yq

for some N P N0 and qjpx, yq P Zrx, ys (j “ 1, 2). Since the right hand side belongs
to the fusion ideal JkpSUp3qq, this implies that MN

σ pvq “ 0, as desired.
It follows by the same reasoning as that applied in Remark 3.9 that ψ maps

the positive cone K0pApRepkpSUp3qq, πp1,0qqq` into
`

Zrs, ts{Ik
˘

`
.

4.3.4 Proof of surjectivity of ψ

According to Lemma 4.15, we have that

rm~λ,nps, tqs “ ψ0,n

¨

˝

ÿ

~νPBpk,nq

γ~νπ~ν

˛

‚P imψ

for n P N0 and ~λ P Bpk, nq. This has the following consequence.

Lemma 4.18. For each r P t0, 1, . . . , tk{3uu, we have that rsrs, rtrs P imψ.

Proof. Note that mp3r,0q,2rps, tq “ sr and mp0,3rq,2rps, tq “ tr for r ě 0.
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We will also need the following remark.

Remark 4.19. Let n1, n2 P N0 and ~ν P Bpk, n1q be given. Then ~ν P Bpk, n1 ` n2q

and, by performing the change of variables s “ x{y2 and t “ y{x2 (under which
pxyq´1 “ st) in the identity xλ1´pn1`n2qyλ2´pn1`n2q “ pxyq´n2xλ1´n1yλ2´n1 , we
get that m~ν,n1`n2

ps, tq “ pstqn2m~ν,n1
ps, tq. It follows that if rqps, tqs P imψ then

rpstqjqps, tqs P imψ for all j P N0.

We are now ready to prove the surjectivity of ψ. Let us first prove it for k “ 5.
This will guide us to the proof in the general case. By Lemma 4.18, (the cosets of)
1, s and t belong to the image of ψ. By Remark 4.19, so do monomials obtained
from these by multiplying by a power of st. Also, Lemma 4.13 implies that, in
Zrs, ts{I5, we have the identity

0 ” P
SUp3q
p2,4q ps, tq “ s2 ´ 3s` 1´ t` stp2` 3sq ` pstq2p´2´ sq.

Thus, s2 is also in the image of ψ. By multiplying the above identity by s repeat-
edly, we get that sj P imψ for all j ě 0. Similarly, the identity

0 ” P
SUp3q
p4,2q ps, tq “ t2 ´ 3t` 1´ s` stp2` 3tq ` pstq2p´2´ tq

shows, by repeated multiplication by t, that tj P imψ for all j ě 0. By using
Remark 4.19 again, we conclude that ψ is surjective for k “ 5.

In general, for k ě 6, Lemma 4.18 shows that 1, s, . . . , sr and 1, t, . . . , tr belong
to imψ, where r “ tk{3u, and Lemmas 4.13 and 4.14 yield an identity

0 ” P
SUp3q
p2r,k`1´2rqps, tq “

n
ÿ

i“0

pstqirAipsq `Biptqs,

where Aipsq P Zrss with degAipsq ď tpk ` 1 ´ 2rq{2u and Biptq P Zrts with
degBiptq ď r for all i. Moreover, we may assume that A0p0q “ 0 and that

degBiptq ď r´ 1 for i ą 0. Since P
SUp3q
p2r,k`1´2rqp0, tq “ P

SUp2q
2r ptq by Lemma 4.12, it

is easy to verify that B0ptq “ P
SUp2q
2r ptq is a polynomial of degree r with leading

coefficient ˘1. Also, since

Z

k ` 1´ 2r

2

^

“

Z

k ` 1

2

^

´

Z

k

3

^

ď

Z

k

3

^

“ r

for k ě 6 (as is shown e.g. by splitting up into six cases depending on the residue
class of k modulo 6), we get that degAipsq ď r for all i. Thus, we can show that
every power of t belongs to imψ by multiplying the above identity repeatedly by
t (and using Remark 4.19). Since one can similarly show that every power of s
belongs to imψ, it follows that ψ is surjective whenever k ě 6.

Finally, one can deal with each k P t1, 2, 3, 4u in a similar fashion to conclude
that ψ is surjective for every positive integer k.
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4.3.5 Conclusion of the proof of Theorem 4.7

Consider the diagram

K0pApRepkpSUp3qq, πp1,0qqq
ψ

ÝÝÝÝÑ Zrs, ts{Ik

φ

§

§

đ

ψcv

§

§

đ

VerkpSUp3qqrσ´1s
ψGF
ÝÝÝÝÑ Zrx˘1, y˘1s{J̃k

where φ is the injective ring homomorphism from section 3.3, J̃k is the image
of the fusion ideal JkpSUp3qq Ă Zrx, ys in the localization pZrx, ysqrpxyq´1s “

Zrx˘1, y˘1s, ψGF is induced by the ring isomorphism from Theorem 2.9, and ψcv

is defined by ψcvprpps, tqsq “ rppx{y2, y{x2qs for pps, tq P Zrs, ts. (Note that the
definition of Ik and Gepner’s description of JkpSUp3qq immediately imply that ψcv

is well-defined.) By equation (4) on page 28, this diagram commutes.
Since ψ is bijective and as φ and ψGF are injective, it follows that ψcv is

injective as well. Since ψcv is a ring homomorphism, it also follows that ψ´1
cv is a

well-defined ring homomorphism impψGF ˝ φq Ñ Zrs, ts{Ik.
Finally, we conclude that ψ “ ψ´1

cv ˝ψGF˝φ is an isomorphism of ordered rings.
This completes the proof of Theorem 4.7.

4.4 SU(3)

The following result can be deduced from the work of Handelman–Rossmann [36,
37] and Handelman [34, 35] (and is also related to the work of Price [57]). More
specifically, it is a corollary of the main result of [35].

Theorem 4.20. As ordered rings,

K0pApReppSUp3qq, πp1,0qqq – Zrs, ts,

where the positive cone on the right hand side is

Zrs, ts` “ t
ÿ

a,b

satbpa,bps, tq : pa,b ą 0 on Yu Y t0u

for a certain compact set Y Ă r0,8qˆ2, which is described below, and the product

on K0pApReppSUp3qq, πp1,0qqq – K0pM
SUp3q
38 q is induced by the ˚-homomorphism

M38 bM38 ÑM38 that interlaces the tensor factors.

Remark 4.21. As in the case of RepkpSUp3qq (cf. Remark 4.8), the unital AF-
algebra ApReppSUp3qq, πp1,0qq is an inductive limit of A2-Temperley–Lieb–Jones
algebras and the ˚-homomorphism θ has a description in terms of superimposed
A2-Temperley–Lieb diagrams.
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Figure 2: The curve p2a` a´2, 2a´1 ` a2q, a ą 0, which bounds X . (The figure was produced
using the computer program Maple.)

The set Y can be described as

T pX q Y
`

t0u ˆ r0, 1{4s
˘

Y
`

r0, 1{4s ˆ t0u
˘

,

where X “ tpa ` b´1 ` a´1b, a´1 ` b ` ab´1q : a, b ą 0u Ă p0,8qˆ2 and
T : p0,8qˆ2 Ñ p0,8qˆ2 is defined by T px, yq “ px{y2, y{x2q. The sets X and
Y are depicted in figures 2 and 3, respectively.

Remark 4.22. Let us outline an “elementary” proof of Theorem 4.20. First of
all, the asserted isomorphism ψ is the unique map making the following diagram
commute.

K0pApReppSUp3qq, πp1,0qqq
ψ

ÝÝÝÝÑ Zrs, ts

φ

§

§

đ

ψcv

§

§

đ

FReppSUp3qqrσ
´1s

ψRR
ÝÝÝÝÑ Zrx˘1, y˘1s

Here, φ is the injective ring homomorphism from section 3.3, ψRR is induced by
the classical ring isomorphism FReppSUp3qq Ñ Zrx, ys (cf. section 2.2), and ψcv is
defined by ψcvppps, tqq “ ppx{y2, y{x2q. It is straightforward to verify that ψ is a
well-defined injective ring homomorphism. (Explicitly, ψ is defined by a formula
that is similar to that defining its namesake in section 4.3.3.) Since it is easy to
see that x{y2 and y{x2 belong to impψRR ˝ φq, hence that 1, s and t belong to
imψ, it follows that ψ is surjective.

The non-trivial step in the proof is the determination of the positive cone
Zrs, ts`, which can be accomplished by first using the well-known branching rules
for the maximal torus in SU(3) as well as the Weyl Character Formula for SU(3),
in the form of the formula

Q
SUp3q
pn´1,m´1qpz1 ` z

´1
2 ` z´1

1 z2, z
´1
1 ` z2 ` z1z

´1
2 q
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Figure 3: The curve
`

p1´ 2uq{p2´ 3uq2, up2´ 3uq
˘

, u P p0, 1{3s, and its reflection in the line
s “ t, which together with the coordinate axes bound Y. (The figure was produced using the
computer program Maple.)

“
zn1 z

m
2 ´ z

´m
1 z´n2 ` zm1 z

´pn`mq
2 ´ zn`m1 z´m2 ` z

´pn`mq
1 zn2 ´ z

´n
1 zn`m2

z1z2 ´ z
´1
1 z´1

2 ` z1z
´2
2 ´ z2

1z
´1
2 ` z´2

1 z2 ´ z
´1
1 z2

2

(valid for all those z1, z2 P Czt0u for which the denominator is non-zero and easily
provable by induction), to show that

X “ tpx, yq P R2 : Q
SUp3q
~λ

px, yq ě 0 for all ~λ P Nˆ2
0 u

“ tpx, yq P R2 : Q
SUp3q
~λ

px, yq ą 0 for all ~λ P Nˆ2
0 u

and then invoking two general facts, which we state below.
First a bit of terminology. Let pG,G`q be an ordered group. We say that

pG,G`q is unperforated if ng P G` implies g P G` for any g P G and n P N.
An order unit u in pG,G`q is an element u P G` such that, for every g P G,
there exists n P N for which ´nu ď g ď nu. If pG,G`q is an ordered group
with a distinguished order unit u then a (normalized) state on pG,G`q is a group
homomorphism G Ñ R such that φpgq ě 0 for all g P G` and φpuq “ 1. The set
of states is clearly convex, and it makes sense to speak of extremal states. By a
state on an ordered ring, we shall mean a state on the underlying ordered group
with (distinguished) order unit 1.

Now, we can state the promised general facts. (i) If an element of an unper-
forated ordered group with an order unit (such as the ordered K0-group of any
unital AF-algebra, cf. [14]) has strictly positive image under every extremal state
then that element is positive (as first proved by Effros–Handelman–Shen [14] (item
1.4); see also [34], I.1). (ii) Every extremal state on an ordered ring is in fact a
ring homomorphism (as observed by Kerov–Vershik [47], Maserick [50], Voiculescu
[65], and Wassermann [66]; see also [34], I.2).

As a corollary, we obtain the following result from [66] (p. 123).
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Corollary 4.23 (Wassermann). Denote by π the defining representation of SO(3).
Then, as ordered rings,

K0pApReppSOp3qq, πqq – Zrts,

where the positive cone on the right hand side is

Zrts` “ tpptq : p ą 0 on p0, 1{3su Y t0u.

Moreover, ApReppSOp3qq, πq – M
SOp3q
38 and, under the identification above and

that in Theorem 4.20, the map induced by the inclusion M
SUp3q
38 Ñ M

SOp3q
38 in

K-theory is the ring homomorphism Zrs, ts Ñ Zrts given by pps, tq ÞÑ ppt, tq.

Proof. This follows easily from Theorem 4.20 and the well-known branching rules
for the inclusion SOp3q Ă SUp3q (cf. [58]).

4.5 Sp(4)k

The same techniques as those employed for SU(3)k yield the following result.
As the proof introduces no new ideas, we omit it from the present paper. We
note, however, that it is based on the formula for the fusion ideals JkpSpp4qq that
we mentioned in section 2.2 (and, of course, on the well-known fusion graph of
RepkpSpp4qq with respect to πp0,1q, which we also omit).

Theorem 4.24. As ordered rings,

K0pApRepkpSpp4qq, πp0,1qqq – Zrs, ts{Ik,

where Ik “ xtP
Spp4q
~λ

ps, tq : λ1 ` λ2 “ k ` 1u Y tP
Spp4q
p0,k`2qps, tquy.

Here, the polynomial P
Spp4q
~λ

ps, tq (for ~λ P Nˆ2
0 ) is obtained from the Laurent

polynomial y´pλ1`λ2qQ
Spp4q
~λ

px, yq by performing the change of variables ps, tq “

p1{y, x2{y2q, and the positive cone on the right hand side is

`

Zrs, ts{Ik
˘

`
“ trpps, tqs : ppβk,1, βk,2q ą 0u Y tr0su,

where βk,1 “ dpπp0,1qq
´1 and βk,2 “ dpπp1,0qq

2dpπp0,1qq
´2.

The positive cone is well-defined by the discussion in section 2.2. Explicit formulae
for βk,1 and βk,2, which may e.g. be deduced from the formulae for the modular
S-matrix that are mentioned in section 2.2, are rather complicated and not very
illuminating, so we omit them.

4.6 (G2)k

Similarly, we were able to prove the following result.
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Theorem 4.25. As ordered rings,

K0pApRepkpG2q, πp1,0qqq – Zrs, ts{Ik,

where Ik “ xtP
G2

~λ
ps, tq : λ1 ` 2λ2 “ k ` 1u Y tPG2

pk`2,0qps, tquy.

Here, the polynomial PG2

~λ
ps, tq (for ~λ P Nˆ2

0 ) is obtained from the Laurent

polynomial x´pλ1`2λ2qQG2

~λ
px, yq by performing the change of variables ps, tq “

p1{x, y{x2q, and the positive cone on the right hand side is

`

Zrs, ts{Ik
˘

`
“ trpps, tqs : ppβk,1, βk,2q ą 0u Y tr0su,

where βk,1 “ dpπp1,0qq
´1 and βk,2 “ dpπp1,0qq

´2dpπp0,1qq.

Similar comments to those in section 4.5 apply.

5 Recovering the Verlinde ring in special cases

We will in this section show that K0pApC, πqq – FC as ordered rings in certain
special cases, where FC is equipped with the positive cone pFCq` “ tx : dpxq ą
0u Y t0u. (As usual, d denotes the quantum dimension in C.)

5.1 General remarks

Fix a rigid C*-tensor category C and an object π therein. We denote by Λ the set
of simple objects in C and (as in Remark 3.8) by C1 the full C*-tensor subcategory
of C generated by the simple objects that occur as direct summands in tensor
powers of σ “ π̄ b π. In the next two lemmas, we clarify some assumptions that
we will make later.

Lemma 5.1. Suppose that Λ is a finite set. Then the following conditions are
equivalent.

(i) C1 “ C;

(ii) For every µ P Λ there exists n P N0 such that µ ă σbn;

(iii) There exists n P N0 such that µ ă σbn for every µ P Λ.

Proof. This follows from the fact that 1 ă σ, which implies that the set of those
µ P Λ for which µ ă σbn increases with n, and hence stabilizes eventually.

Given a commutative ring R with identity, we will use the symbol InvpRq to denote
the group of invertible elements in R.

Lemma 5.2. Suppose that Λ is a finite set and that FC is commutative. Then the
following conditions are equivalent.
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(i) detpNπq “ ˘1;

(ii) σ P InvpFCq;

(iii) σ P InvpFC1q.

Proof. Note that FC b C is a finite-dimensional ˚-algebra under the ˚-operation
induced by conjugation of objects. Recall the regular representation of C (in the
terminology of [55]), which is the injective ˚-homomorphism N : FCbCÑMΛpCq
defined by Npµq “ Nµ for µ P Λ (and extended by linearity), which manifests
FC b C as a commutative C*-subalgebra of MΛpCq.

Let x P FC be given. Then Npxq PMΛpZq and we claim that detpNpxqq “ ˘1 if
and only if x P InvpFCq. To see this, assume first that detpNpxqq “ ˘1. Then Npxq
is invertible in MΛpZq, whereby it is also invertible in the C*-subalgebra FCbC of
MΛpCq. Thus, there are complex numbers cµ such that xp

ř

µ cµµq “ 1. Applying

N to this equation, we get that Npxq
`
ř

µ cµNµ
˘

“ 1, i.e., Npxq´1 “
ř

µ cµNµ. In
particular, the columns corresponding to 1 P Λ coincide. It follows that cµ P Z for
all µ P Λ, hence that x P InvpFCq. The converse implication is clear, so the claim
is now proved.

The claim implies that (i) is equivalent to (ii). Moreover, it follows from the
claim and Frobenius Reciprocity that (ii) is equivalent to (iii).

Remark 5.3. Note that, in the case where C “ RepkpGq, one can define a
˚-isomorphism VerkpGq b C Ñ CpV q by π~λ ÞÑ QG~λ px1, . . . , xrq|V , where V is

the fusion variety associated to RepkpGq, cf. section 2.2. Moreover, in the nota-

tion of that section, QG~λ px
p1q
~ν , . . . , x

prq
~ν q “ S~λ,~ν{S~0,~ν , which means that the vectors

pS~λ,~νq~λ, i.e., the columns of the modular S-matrix, constitute a basis of simulta-
neous eigenvectors for the fusion matrices Nπ~λ and, moreover, that the eigenvalue
of Nπ~λ that corresponds to the eigenvector pS~λ,~νq~λ is S~λ,~ν{S~0,~ν . This is precisely

the statement that the Verlinde Conjecture (cf. [64]) holds for the WZW models,
a fact which was proved in [62], [21], [3].

Proposition 5.4. Suppose that C is a braided C*-tensor category with finitely
many simple objects and suppose that the given object π in C satisfies both the
equivalent conditions in Lemma 5.1 and those in Lemma 5.2. Then

K0pApC, πqq – FC

as ordered rings, where the positive cone in FC is pFCq` “ tx : dpxq ą 0u Y t0u.

Proof. This follows immediately from Remark 3.9.

5.2 SU(2)k

We will next give some examples of “levels” k and (isomorphism classes of) objects
π in the category C “ RepkpSUp2qq for which the hypotheses of Proposition 5.4
are satisfied.
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Lemma 5.5. The element π “ 1` π1 P VerkpSUp2qq satisfies

π P InvpVerkpSUp2qqq ðñ k R 1` 3Z.

Proof. Put ak “ detpNπq, where π is viewed as an object in RepkpSUp2qq. It is
easy to verify that a1 “ 0, a2 “ ´1, and ak`1 “ ak´ak´1 for all k ě 2. It follows
that ak “ 0 if k P 1` 3Z while ak “ ˘1 otherwise.

Since every simple object in RepkpSUp2qq occurs as a direct summand of
p1‘ π1q

bk, the object 1‘ π1 satisfies the hypotheses of Proposition 5.4. Thus, if
k R 1` 3Z then K0pApRepkpSUp2qq,1‘ π1qq – VerkpSUp2qq as ordered rings.

Lemma 5.6. In the ring Ver2npSUp2qq, where n P N0, we have that

2n
ÿ

j“0

p´1qjπ2
j “

n
ÿ

j“0

p´1qjπ2j .

Proof. Assume first that 2n “ 4m´ 2. Then we have that

4m´2
ÿ

j“0

p´1qjπ2
j “

2m´1
ÿ

j“0

p´1qjr1`π2`¨ ¨ ¨`π2js`

4m´2
ÿ

j“2m

p´1qjr1`π2`¨ ¨ ¨`π8m´4´2js.

In the first sum on the right hand side, 1 appears 2m times with alternating sign,
hence cancels out. More generally, for each 0 ď i ď 2m ´ 1, π2i appears 2m ´ i
times with alternating sign, starting with the sign p´1qi. Thus, the first sum is
equal to ´π2´π6´ ¨ ¨ ¨´π4m´2. Similarly, the second sum on the right hand side
is equal to 1` π4 ` ¨ ¨ ¨ ` π4m´4. This proves the formula in this case. The proof
in the case where 2n “ 4m is similar.

Proposition 5.7. In the ring Ver2npSUp2qq, where n P N0, we have the identity

˜

1` 2
2n
ÿ

j“1

πj

¸˜

1` 2
2n
ÿ

j“1

p´1qjπj

¸

“ 1.

Proof. It is clearly enough to show that

2n
ÿ

i,j“1

p´1qiπiπj “ ´
n
ÿ

j“1

π2j .

By Lemma 5.6, this is equivalent to

ÿ

1ďiăjď2n
i”j (mod 2)

p´1qiπiπj “ ´

tn{2u
ÿ

i“1

π4i.
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We can write the left hand side as
řn´1
r“1 xr, where

xr “
n´r
ÿ

i“1

p´1qiπiπi`2r `

2n´2r
ÿ

i“n´r`1

p´1qiπiπi`2r.

Here, the left-most sum is equal to

n´r
ÿ

i“1

p´1qirπ2r ` π2r`2 ` ¨ ¨ ¨ ` π2r`2is

while the right-most sum is equal to

2n´2r
ÿ

i“n´r`1

p´1qirπ2r ` π2r`2 ` ¨ ¨ ¨ ` π4n´2r´2is.

Thus, by the proof of Lemma 5.6, if r ” n`1 (mod 2) then xr “ ´π2r`2`π2r`4´

¨ ¨ ¨ ´ π2n while if r ” n (mod 2) then xr “ ´π2r`2 ` π2r`4 ´ ¨ ¨ ¨ ` π2n. It follows

easily from this that
řn´1
r“1 xr “ ´

řtn{2u

i“1 π4i, as desired.

We conclude that the object π “ 1 ‘
À2n

j“1 π
‘2
j in Rep2npSUp2qq satisfies the

hypotheses of Proposition 5.4.

Remark 5.8. If n ě 2 then the ordered group Ver1pSUpnqq, equipped with the
positive cone defined above, is not the ordered K0-group of any AF-algebra. This
can be shown as follows. Recall first that an ordered group pG,G`q is said to have
the Riesz interpolation property if, whenever h1, h2, g1, g2 P G are such that hi ď gj
for all i, j P t1, 2u, there exists x P G such that hi ď x ď gj for all i, j P t1, 2u. It is
a fact that the ordered K0-group of any AF-algebra has this property, cf. [14]. To
see that Ver1pSUpnqq with the positive cone Ver1pSUpnqq` “ tx : dpxq ą 0uYt0u
does not have this property, note first that each of the n simple objects ρ1 “ 1,
ρ2 “ π~e1 , . . ., ρn “ π~en´1

in Rep1pSUpnqq has quantum dimension 1 by the main
result of [25]. Moreover, with h1 “ 0, h2 “ ρ1 ´ ρ2, g1 “ ρ1 and g2 “ 2ρ1 ´ ρ2,
we get that hi ď gj for all i, j P t1, 2u. If now x P G were such that hi ď x ď gj
for all i, j P t1, 2u then we would either have dpxq “ 0 or dpxq “ 1, both of which
lead to a contradiction.

6 Concluding remarks

In the present paper, we have explicitly identified certain ordered K0-groups with
(quotients of) polynomial rings over Z and shown that the product on these rings is
induced by a ˚-homomorphism that arises from a unitary braiding on an underly-
ing rigid C*-tensor category. These considerations raise the following question. As
ApReppGq, πq –MG

n8 , where n “ dimpπq, one is lead to ask if also ApRepkpGq, πq
may be realized as a fixed point algebra AGq under some action (properly defined)
of a quantized deformation Gq of G on a C*-algebra A. If we could do this, then
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the ring structure on K0pA
Gq q should be induced by a “natural” ˚-homomorphism

AbAÑ A.
Wassermann [66] and Handelman–Rossmann [37] observed that if G is a com-

pact, connected group then K0pMn8 ¸ Gq may be identified with the local-
ization RpGqrpπ̄πq´1s, where RpGq “ FReppGq is the representation ring of G.

Moreover, they noted that K0pM
G
n8q may be identified with a certain subring of

K0pMn8 ¸ Gq (see also [60]). In analogy with this, and with the isomorphism
KG

0 pMn8q – K0pMn8 ¸Gq, which follows from the Green–Julg Theorem (cf. e.g.
[53]), we ought to have that

K
Gq
0 pAq – K0pA¸Gqq – VerkpGqrpπ̄πq

´1s.

Based on the compact group case, one can guess what a Bratteli diagram for
A ¸ Gq should look like. Namely, every level should have the vertex set Λ, i.e.,
the set of simple objects in RepkpGq, and the inclusion matrix between every
pair of neighboring levels should be the fusion matrix Nπ̄bπ “ N˚πNπ. Denote
by BpRepkpGq, πq the AF-algebra arising from this Bratteli diagram. (We are on
purpose being vague about the multiplicities of the vertices.) It is then trivial to
show that K0pBpRepkpGq, πqq – VerkpGqrσ

´1s as ordered groups. It remains to
figure out how to identify BpRepkpGq, πq with A ¸ Gq once the action of Gq on

A has been defined and how to equip K
Gq
0 pAq with a “natural” ring structure.

Let us describe the positive cone of the ordered group K0pBpRepkpGq, πqq in
some special cases. The work of Evans and Gould (cf. Theorem 4.2) readily implies
that positivity in K0pBpRepkpSUp2qq, π1qq – VerkpSUp2qqrπ´2

1 s – Zrx˘1s{J̃k is
determined by evaluating the even and odd parts of a coset separately at dpπ1q.
(Here, J̃k is the image of the fusion ideal JkpSUp2qq in the localization Zrx˘1s

of Zrxs. In what follows, J̃k will always denote the appropriate localization of
the relevant fusion ideal.) More precisely, a coset rfpxqs in Zrx˘1s{J̃k belongs to
the positive cone if and only if rfpxqs “ rf0pxqs ` rf1pxqs, where f0pxq is even,
f1pxq is odd and, for both i “ 1, 2, rfipxqs “ r0s or fipdpπ1qq ą 0. Note that this
splitting up into two parts is due to the fact that the center ZpSUp2qq of SUp2q is
isomorphic to Z{2Z.

Similarly, positivity in K0pBpRepkpSUp3qq, πp1,0qqq – Zrx˘1, y˘1s{J̃k is deter-
mined by evaluating the parts of type 0, 1 and 2 separately at pdpπp1,0qq, dpπp1,0qqq.

Here, a monomial xayb with a, b P Z is said to be of type j if a ´ b ” j (mod
3), where the ‘3’ is related to the fact that ZpSUp3qq – Z{3Z. Finally, pos-
itivity in K0pBpRepkpSpp4qq, πp0,1qqq – Zrx, y˘1s{J̃k is determined by evalua-
tion of “semi-even” and “semi-odd” parts (due to ZpSpp4qq – Z{2Z), where
xayb is semi-even (resp. semi-odd) if a is even (resp. odd), while positivity in
K0pBpRepkpG2q, πp1,0qqq – Zrx˘1, ys{J̃k is determined by evaluation of the whole
function (as G2 has trivial center).

These positivity conditions are analogous to those for the crossed products of
the compact groups in question. For instance, it is easily deduced from the work
of Wassermann (cf. Theorem 4.5 above) that positivity in K0pM28 ¸ SUp2qq –
RpSUp2qqrπ´1

1 s – Zrx˘1s is determined by evaluating the even and odd parts of
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a function separately on the interval r2,8q. Moreover, positivity in K0pM38 ¸

SUp3qq – Zrx˘1, y˘1s is more or less (but not quite) determined by evaluating the
parts of type 0, 1 and 2 separately on the set X that was defined on page 33.

Let us next discuss some exact sequences that relate K0pBpRepkpGq, πqq to
VerkpGq. Given x P VerkpGq bQ, there is a short exact sequence of rings

0 Ñ AnnVerkpGqbQpxq Ñ VerkpGq bQÑ pVerkpGq bQqrx´1s Ñ 0,

where AnnVerkpGqbQpxq “ ty P VerkpGq b Q : xy “ 0u is isomorphic to the null-
space of Npxq (cf. the proof of Lemma 5.2) as a vector space over Q. In the case
where G “ SUp2q, x “ π1 and k is even, this yields a short exact sequence

0 Ñ QÑ VerkpSUp2qq bQÑ K0pBpRepkpSUp2qq, π1qq bQÑ 0 (6)

of groups, since

pVerkpSUp2qq bQqrπ´1
1 s – Qrx˘1s{J̃k – K0pBpRepkpSUp2qq, π1qq bQ

and Nπ1 has nullity one. (Here, J̃k is the ideal obtained by taking the image of the
fusion ideal JkpSUp2qq in the localization Qrx˘1s of Zrxs.) However, when k is odd,
Nπ1

is invertible and we get that K0pBpRepkpSUp2qq, π1qqbQ – VerkpSUp2qqbQ.
In fact, one can show that

K0pBpRepkpSUp2qq, π1qq – VerkpSUp2qq

in this case, since Nπ1
is actually invertible over Z, and use the identification

K0pBpRepkpSUp2qq, π1qq – K0pApRepkpSUp2qq, π1qq
‘2

of groups to define “intrinsically” a ring structure on K0pBpRepkpSUp2qq, π1qq

giving rise to that of VerkpSUp2qq.
Similarly, in the case where G “ SUp3q, x “ πp1,0q and k P 3Z, we get a short

exact sequence

0 Ñ QÑ VerkpSUp3qq bQÑ K0pBpRepkpSUp3qq, π1qq bQÑ 0 (7)

of groups. If k R 3Z then Nπp1,0q is invertible over Q and so

K0pBpRepkpSUp3qq, πp1,0qqq bQ – VerkpSUp3qq bQ.

(In this case, it seems that K0pBpRepkpSUp3qq, πp1,0qqq fl VerkpSUp3qq. At least
rxs is not an invertible element of Zrx, ys{JkpSUp3qq – VerkpSUp3qq unlike in
Zrx˘1, y˘1s{J̃k – K0pBpRepkpSUp3qq, πp1,0qqq.)

For G “ Spp4q and G “ G2, the short exact sequences we get are less nice,
since the nullity of the fusion matrices of fundamental representations seems to
either fluctuate in a haphazard manner or to never be zero as indicated by some
experimentation using the computer program Maple. However, we do get that

K0pBpRepkpSpp4qq, πp0,1qqq bQ – VerkpSpp4qq bQ
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whenever Nπp0,1q is invertible over Q, which seems likely to occur if and only if
k ` 3 is divisible by neither 3 nor 5. Indeed, we used Maple to verify this for
k ď 100. Similarly, we used Maple to verify, again for all k ď 100, that Nπp1,0q is
not invertible. More precisely, we verified that the nullity of Nπp1,0q is tpk ` 2q{2u

for all k ď 100. We also get that

K0pBpRepkpG2q, πp1,0qqq bQ – VerkpG2q bQ

whenever Nπp1,0q is invertible over Q. A theorem of Gannon and Walton (cf.
Theorem 7 in [29]) states that this is the case precisely when k ` 4 is divisible
by neither 4 nor 30. However, we used Maple to verify that, for k ď 100, Nπp1,0q
is invertible if and only if k ` 4 is divisible by neither 4, 7 nor 30. Moreover,
we verified by hand that Nπp1,0q is not invertible over Q when k “ 3. Similarly,
a computation using Maple showed that, for k ď 100, Nπp0,1q is invertible if and
only if k ` 4 is divisible by neither 5, 7 nor 8.

Now, the short exact sequences in equations (6) and (7) as well as the various
isomorphisms above lead us to ask if they can somehow be understood on the level
of ˚-homomorphisms between (possibly non-AF) C*-algebras. This is related to
our aforementioned long-term goal of finding a “natural” C*-algebra B such that
K0pBq – VerkpGq as rings and RepkpGq is the category of (finitely generated
projective) modules over B under an appropriate tensor product (see also [1]).
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