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Abstract. We present an algebraic procedure for constructing Hamiltonians with several
distinct partial dynamical symmetries (PDSs), of relevance to shape-coexistence phenomena.
The procedure relies on a spectrum generating algebra encompassing several dynamical
symmetry (DS) chains and a coherent state which assigns a particular shape to each chain.
The PDS Hamiltonian maintains the DS solvability and quantum numbers in selected bands,
associated with each shape, and mixes other states. The procedure is demonstrated for a variety
of multiple quadrupole shapes in the framework of the interacting boson model of nuclei.

1. Introduction
During the past several decades, the concept of dynamical symmetry (DS) has become the
cornerstone of algebraic modeling of dynamical systems [1–5]. Its basic paradigm is a chain of
nested algebras,

Gdyn ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gsym |λdyn, λ1, λ2, . . . , λsym〉 , (1)

and an Hamiltonian of the system written in terms of the Casimir operators, Ĉ[G], of the
algebras in the chain

ĤDS =
∑
G

aG Ĉ[G] . (2)

In such a case, the spectrum is completely solvable, the energies and eigenstates are labeled by
quantum numbers (λdyn, λ1, λ2, . . . , λsym), which are the labels of irreducible representations
(irreps) of the algebras in the chain. In Eq. (1), Gdyn is the dynamical (spectrum generating)
algebra of the system such that operators of all physical observables can be written in terms of its
generators and Gsym is the symmetry algebra. The DS spectrum exhibits a hierarchy of splitting
but no mixing. A given Gdyn can encompass several DS chains, each providing characteristic
analytic expressions for observables and definite selection rules.

A notable example of such algebraic setting is the interacting boson model (IBM) [2], widely
used in the description of low-lying quadrupole collective states in nuclei in terms of N monopole
(s) and quadrupole (d) bosons, representing valence nucleon pairs. The model is based on
Gdyn = U(6) and Gsym = SO(3). The Hamiltonian is expanded in terms of the generators of

U(6), {s†s, s†dm, d†ms, d†mdm′}, and consists of Hermitian, rotational-scalar interactions which
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Table 1. Eigenvalues of the Casimir operators, Ĉk[G] of order k= 1, 2, for the leading sub-algebras
(G1) of the DS-chains (3). The equilibrium deformations (βeq, γeq) define the quadrupole shape associated
with each chain and determine the G1-symmetry of |βeq, γeq;N〉, Eq. (4). The latter is an extremal state
in a particular irrep (λ=Λ0) of G1, and serves as an intrinsic state for the respective ground-band.

Algebra Eigenvalues of Equilibrium deformations G1-symmetry of |βeq, γeq;N〉
G1 Ĉk[G1] (βeq, γeq) λ1 = Λ0

U(5) nd βeq =0 nd = 0

SU(3) λ2 + (λ+ µ)(µ+ 3) (βeq =
√

2, γeq =0) (λ, µ) = (2N, 0)

SU(3) λ̄2 + (λ̄+ µ̄)(µ̄+ 3) (βeq =
√

2, γeq =π/3) (λ̄, µ̄) = (0, 2N)

SO(6) σ(σ + 4) (βeq =1, γeq arbitrary) σ = N

conserve the total number of s- and d- bosons, N̂ = n̂s + n̂d = s†s +
∑

m d
†
mdm. The solvable

limits of the IBM correspond to the following DS chains

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) |N, nd, τ, n∆, L〉 spherical vibrator , (3a)

U(6) ⊃ SU(3) ⊃ SO(3) |N, (λ, µ), K, L〉 prolate−deformed rotor , (3b)

U(6) ⊃ SU(3) ⊃ SO(3) |N, (λ̄, µ̄), K̄, L〉 oblate−deformed rotor , (3c)

U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) |N, σ, τ, n∆, L〉 γ−unstable deformed rotor . (3d)

Here N,nd, (λ, µ), (λ̄, µ̄), σ, τ, L, label the relevant irreps of U(6), U(5), SU(3), SU(3), SO(6),
SO(5), SO(3), respectively, and n∆,K, K̄ are multiplicity labels. The indicated basis states
are eigenstates of the Casimir operators in the chain, with eigenvalues listed in Table 1 for the
leading sub-algebras G1, and eigenvalues L(L + 1) [τ(τ + 3)] for SO(3) [SO(5)]. The resulting
DS spectra of the above chains resemble known paradigms of nuclear collective structure, as
mentioned in Eq. (3), involving vibrations and rotations of a quadrupole shape.

Geometry is introduced in the algebraic model by means of a coset space U(6)/U(5)⊗ U(1)
and a ‘projective’ coherent state [6, 7],

|β, γ;N〉 = (N !)−1/2(b†c)
N |0 〉 , (4a)

b†c = (1 + β2)−1/2[β cos γd†0 + β sin γ(d†2 + d†−2)/
√

2 + s†] , (4b)

from which an energy surface is derived by the expectation value of the Hamiltonian,

EN (β, γ) = 〈β, γ;N |Ĥ|β, γ;N〉 . (5)

Here (β, γ) are quadrupole shape parameters whose values, (βeq, γeq), at the global minimum
of EN (β, γ) define the equilibrium shape for a given Hamiltonian. The shape can be spherical
(β = 0) or deformed (β > 0) with γ = 0 (prolate), γ = π/3 (oblate), 0 < γ < π/3 (triaxial),
or γ-independent. The coherent state with the equilibrium deformations, |βeq, γeq;N〉, serves
as an intrinsic state for the ground band, whose rotational members are obtained by angular
momentum projection. The equilibrium deformations associated with the DS limits, Eq. (3), are
listed in Table 1 and conform with their geometric interpretation. For these values, the ground-
band intrinsic state, |βeq, γeq;N〉, becomes a lowest (or highest) weight state in a particular irrep
(λ1 = Λ0) of the leading sub-algebra G1, as disclosed in Table 1.
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Figure 1. Energy surfaces accommodating: (a) single minimum, (b) double minima, (c) triple minima,
associated with (a) G1-DS or a single G1-PDS, (b) coexisting G1-PDS and G′

1-PDS, (c) coexisting G1-
PDS, G′

1-PDS and G′′
1 -PDS.

A dynamical symmetry corresponds to a single structural phase with a particular shape
(βeq, γeq). The DS Hamiltonians support a single minimum in their energy surface, hence
serve as benchmarks for the dynamics of a single shape. Coexistence of different shapes in the
same system is a ubiquitous phenomena in many-body systems, such as nuclei [8]. It involves
the occurrence in the spectrum of several states (or bands of states) at similar energies with
distinct properties, reflecting the nature of their dissimilar dynamics. The relevant Hamiltonians,
by necessity, contain competing terms with incompatible (non-commuting) symmetries. The
corresponding energy surface accommodates multiple minima, with different symmetry character
(denoted by G1, G

′
1, G

′′
1 in Fig. 1) of the dynamics in their vicinity. In such circumstances, exact

DSs are broken, and any remaining symmetries can at most be shared by only a subset of states.
To address the persisting regularities in such circumstances, amidst a complicated environment
of other states, one needs to enlarge the traditional concept of exact dynamical symmetry.
In the present contribution, we consider such an extended notion of symmetry, called partial
dynamical symmetry (PDS) [9] and show its potential role in formulating algebraic benchmarks
for the dynamics of multiple shapes.

2. Partial dynamical symmetries
A dynamical symmetry (DS) is characterized by complete solvability and good quantum numbers
for all states. Partial dynamical symmetry (PDS) [9–11] is a generalization of the latter
concept, and corresponds to a particular symmetry breaking for which only some of the states
retain solvability and/or have good quantum numbers. Such generalized forms of symmetries
are manifested in nuclear structure, where extensive tests provide empirical evidence for their
relevance to a broad range of nuclei [9,11–28]. In addition to nuclear spectroscopy, Hamiltonians
with PDS have been used in the study of quantum phase transitions [29–32] and of systems with
mixed regular and chaotic dynamics [33, 34]. In what follows, we present concrete algorithms
for constructing Hamiltonians with single and multiple PDSs, and show explicit examples of
Hamiltonians with such property, in the framework of the IBM.

The construction employs an intrinsic-collective resolution of the Hamiltonian [35–38],

Ĥ ′ = Ĥ + Ĥc . (6)

The intrinsic part (Ĥ) determines the energy surface and band structure, while the collective

part (Ĥc) is composed of kinetic rotational terms and determines the in-band structure. For
a given shape, specified by the equilibrium deformations (βeq, γeq), the intrinsic Hamiltonian is
required to annihilate the equilibrium intrinsic state of Eq. (4),

Ĥ|βeq, γeq;N〉 = 0 . (7)



Since the Hamiltonian is rotational-invariant, this condition is equivalent to the requirement
that Ĥ annihilates the states of good angular momentum L projected from |βeq, γeq;N〉

Ĥ|βeq, γeq;N, x, L〉 = 0 . (8)

Here x denotes additional quantum numbers needed to characterize the states. Symmetry
considerations enter when (βeq, γeq) coincide with the equilibrium deformations of the DS chains
listed in Table 1. In this case, |βeq, γeq;N〉 becomes an extremal state in a particular irrep of the
leading sub-algebra in the DS-chain and, consequently, the states projected from it have good
symmetry.

2.1. Construction of Hamiltonians with a single PDS
The starting point in constructing an Hamiltonian with a single PDS, is a dynamical symmetry
chain,

U(6) ⊃ G1 ⊃ G2 ⊃ . . . ⊃ SO(3) |N, λ1, λ2, . . . , L〉 (βeq, γeq) , (9)

with leading sub-algebra G1, related basis |N, λ1, λ2, . . . , L〉 and associated shape (βeq, γeq) [see
Eq. (3) and Table 1]. The PDS Hamiltonian of Eq. (6) is obtained in a two-step process. First,

one identifies an intrinsic Hamiltonian (Ĥ) with partial G1-symmetry and then one identifies a

collective Hamiltonian (Ĥc), which ensures that the complete Hamiltonian (Ĥ ′) has G1-PDS.
For that purpose, the intrinsic Hamiltonian is required to satisfy

Ĥ|βeq, γeq;N,λ1 =Λ0, λ2, . . . , L〉 = 0 . (10)

The set of zero-energy eigenstates in Eq. (10) are basis states of a particular G1-irrep, λ1 = Λ0,
with good G1 symmetry, and are specified by the quantum numbers of the algebras in the
chain (9). For a positive-definite Ĥ, they span the ground band of the equilibrium shape and
can be obtained by L-projection from the corresponding intrinsic state, |βeq, γeq;N〉 of Eq. (4).

Ĥ itself, however, need not be invariant under G1 and, therefore, has partial-G1 symmetry.
According to the PDS algorithms [10, 19], the construction of number-conserving Hamiltonians
obeying the condition of Eq (10), is facilitated by writing them in normal-order form,

Ĥ =
∑
α,β

uαβT̂
†
αT̂β , (11)

in terms of n-particle creation and annihilation operators satisfying

T̂α|βeq, γeq;N,λ1 =Λ0, λ2, . . . , L〉 = 0 . (12)

The collective part (Ĥc) is identified with the Casimir operators of the remaining sub-algebras
of G1 in the chain (9),

Ĥc =
∑

Gi⊂G1

aGiĈ[Gi] . (13)

For this choice, the degeneracy of the above set of states is lifted, and they remain solvable
eigenstates of the complete Hamiltonian Ĥ ′ (6). The latter, by definition, has G1-PDS. It is

interesting to note that Ĥ ′ = Ĥ + Ĥc has a form similar to the DS Hamiltonian, Eq. (2), with

the intrinsic part Ĥ replacing the Casimir operator of the leading sub-algebra, Ĉ[G1] and Ĥc

is diagonal and leads to splitting but no mixing. The difference, however, is that Ĉ[G1] has all



members of the DS basis |N, λ1, λ2, . . . , L〉 as eigenstates, while Ĥ has only a subset of these
basis states as eigenstates.

To demonstrate the above procedure, consider the SU(3)-DS chain of Eq. (3b). The two-boson
pair operators

P †0 = d† · d† − 2(s†)2 , (14a)

P †2m = 2d†ms
† +
√

7 (d† d†)(2)
m , (14b)

are (λ, µ) = (0, 2) tensors of SU(3) and annihilate the states of the SU(3) ground band,

P0 |N, (λ, µ)=(2N, 0), K=0, L〉 = 0 , L = 0, 2, 4 . . . , 2N

P2m |N, (λ, µ)=(2N, 0), K=0, L〉 = 0 . (15)

The operators of Eq. (15) correspond to T̂α of Eq. (12). The intrinsic Hamiltonian reads

Ĥ = h0 P
†
0P0 + h2 P

†
2 · P̃2 , (16)

where P̃2m = (−)mP2,−m and the centered dot denotes a scalar product. Ĥ of Eq. (16) has
partial SU(3) symmetry. For h2 =h0 it is related to the quadratic Casimir operator of SU(3),

θ̂2 ≡ P †0P0 + P †2 · P̃2 = −Ĉ2[SU(3)] + 2N̂(2N̂ + 3) . (17)

The collective Hamiltonian, Ĥc, is composed of Ĉ2[SO(3)]. The complete Hamiltonian Ĥ ′ (6) has
SU(3)-PDS, shown to be relevant to the spectroscopy of rare earth and actinide nuclei [11–15].

A similar procedure can be adapted to the SU(3)-DS chain of Eq. (3c). The two-boson pair

operators P †0 of Eq. (14a) and

P̄ †2m = −2d†ms
† +
√

7 (d† d†)(2)
m , (18)

are (λ̄, µ̄) = (2, 0) tensors of SU(3) and annihilate the states of the SU(3) ground band,

P0 |N, (λ̄, µ̄)=(0, 2N), K̄=0, L〉 = 0 , L = 0, 2, 4 . . . , 2N

P̄2m |N, (λ̄, µ̄)=(0, 2N), K̄=0, L〉 = 0 . (19)

The intrinsic Hamiltonian reads

Ĥ = t0 P
†
0P0 + t2 P̄

†
2 · ˜̄P2 , (20)

and has partial SU(3) symmetry. For t2 = t0 it is related to the Casimir operator of SU(3),

ˆ̄θ2 ≡ P †0P0 + P̄ †2 · ˜̄P2 = −Ĉ2[SU(3)] + 2N̂(2N̂ + 3) . (21)

Occasionally, the condition of Eq. (10) necessitates higher-order terms in the Hamiltonian.
This is the case for the SO(6)-DS of Eq. (3d). Here the two-boson pair operator

R†0 = d† · d† − (s†)2 , (22)

is a scalar (σ = 0) under SO(6) and annihilates the states in the SO(6) ground-band,

R0 |N, σ = N, τ, n∆, L〉 = 0 , τ = 0, 1, 2, . . . , N (23)

However, in this case, the following two-body term

θ̂0 ≡ R†0R0 = −Ĉ2[SO(6)] + N̂(N̂ + 4) . (24)

is related to the Casimir operator of SO(6), hence is SO(6)-invariant. A genuine SO(6)-PDS can
be realized by including cubic terms in the intrinsic Hamiltonian,

Ĥ = r0R
†
0n̂sR0 + r2R

†
0n̂dR0 . (25)

The collective Hamiltonian, Ĥc, is composed of Ĉ2[SO(5)] and Ĉ2[SO(3)]. The complete

Hamiltonian Ĥ ′ (6) has SO(6)-PDS, shown to be relevant to the spectroscopy of 196Pt [19].



2.2. Construction of Hamiltonians with several PDSs
The procedure described in the previous section was oriented towards constructing Hamiltonians
with a single PDS. A large number of such PDS Hamiltonians [11–21] have been constructed
in this manner. They provide a valuable addition to the arsenal of DS Hamiltonians, suitable
for describing systems with a single shape. To allow for a description of multiple shapes in
the same system, requires an extension of the above procedure to encompass a construction of
Hamiltonians with several distinct PDSs [29–32]. This is the subject matter of the present
contribution. We focus on the dynamics in the vicinity of the critical point, where the
corresponding multiple minima in the energy surface are near-degenerate and the structure
changes most rapidly.

For that purpose, consider two different shapes specified by equilibrium deformations (β1, γ1)
and (β2, γ2) whose dynamics is described, respectively, by the following DS chains

U(6) ⊃ G1 ⊃ G2 ⊃ . . . ⊃ SO(3) |N, λ1, λ2, . . . , L〉 (β1, γ1) , (26a)

U(6) ⊃ G′1 ⊃ G′2 ⊃ . . . ⊃ SO(3) |N, σ1, σ2, . . . , L〉 (β2, γ2) , (26b)

with different leading sub-algebras (G1 6= G′1) and associated bases. As portrayed in Fig. 1, at
the critical point, the corresponding minima representing the two shapes, and respective ground
bands are degenerate. Accordingly, we require the intrinsic critical-point Hamiltonian to satisfy
simultaneously the following two conditions

Ĥ|β1, γ1;N,λ1 = Λ0, λ2, . . . , L〉 = 0 , (27a)

Ĥ|β2, γ2;N, σ1 = Σ0, σ2, . . . , L〉 = 0 . (27b)

The states of Eq. (27a) reside in the λ1 = Λ0 irrep of G1, are classified according to the DS-chain
(26a), hence have good G1 symmetry. Similarly, the states of Eq. (27b) reside in the σ1 = Σ0

irrep of G′1, are classified according to the DS-chain (26b), hence have good G′1 symmetry.
Although G1 and G′1 are incompatible, both sets are eigenstates of the same Hamiltonian. When
the latter is positive definite, the two sets span the ground bands of the (β1, γ1) and (β2, γ2)

shapes, respectively. In general, Ĥ itself is not necessarily invariant under G1 nor under G2

and, therefore, its other eigenstates can be mixed with respect to both G1 and G′1. Identifying
the collective part of the Hamiltonian with the Casimir operator of SO(3) (as well as with the
Casimir operators of additional algebras which are common to both chains), the two sets of
states remain (non-degenerate) eigenstates of the complete Hamiltonian (6), which then has
both G1-PDS and G′1-PDS. The case of triple (or multiple) shape coexistence, associated with
three (or more) incompatible DS-chains is treated in a similar fashion. In the following sections,
we apply the above procedure to a variety of coexisting shapes in the IBM framework, examine
the spectral properties of the derived PDS Hamiltonians, and highlight their potential to serve
as benchmarks for describing multiple shapes in nuclei.

3. Simultaneous occurrence of a spherical shape and a deformed shape
A particular type of shape coexistence present in nuclei involves spherical and quadrupole-
deformed shapes, e.g., in neutron-rich Sr isotopes [39,40], 96Zr [41] and near 78Ni [42,43]). A PDS
Hamiltonian appropriate to simultaneously occurring spherical and axially-deformed prolate
shapes, can be obtained from Eq. (16) by setting h0 =0. This Hamiltonian was studied in great
detail in [29,30], and shown to have coexisting U(5)-PDS and SU(3)-PDS. In a similar manner,

a PDS Hamiltonian with coexisting U(5)-PDS and SU(3)-PDS, appropriate to simultaneously
occurring spherical and axially-deformed oblate shapes, can be obtained from Eq. (20) by setting
t0 =0. The γ degree of freedom and triaxiality can play an important role in the occurrence of
multiple shapes in nuclei [44]. In what follows, we consider a case study of PDS Hamiltonians
relevant to a coexistence of spherical and non-axial γ-unstable deformed shapes.



(a) (b) (c)

Figure 2. Spherical and γ-unstable deformed (S-G) shape coexistence. (a) Contour plots of the
γ-independent energy surface (30), (b) γ= 0 sections, and (c) bandhead spectrum, for the Hamiltonian
Ĥ ′ (32) with parameters r2 =10, ρ5 =ρ3 = 0 and N=20.

3.1. Coexisting U(5)-PDS and SO(6)-PDS
The U(5)-DS limit of Eq. (3a) is appropriate to the dynamics of a spherical shape. For a given N ,
the allowed U(5) and SO(5) irreps are nd=0, 1, 2, . . . , N and τ=nd, nd−2, . . . 0 or 1, respectively.
The values of L contained in a given τ -irrep follow the SO(5) ⊃ SO(3) reduction rules [2]. The
U(5)-DS spectrum resembles that of an anharmonic spherical vibrator, composed of U(5) nd-

multiplets whose spacing is governed by Ĉ1[U(5)] = n̂d, and the splitting is generated by the
SO(5) and SO(3) terms. The lowest U(5) multiplets involve the ground state with quantum
numbers (nd= 0, τ = 0, L= 0) and excited states with quantum numbers (nd = 1, τ = 1, L= 2),
(nd=2 : τ=0, L=0; τ=2, L=2, 4) and (nd=3 : τ=3, L=6, 4, 3, 0; τ=1, L=2).

The SO(6)-DS limit of Eq. (3d) is appropriate to the dynamics of a γ-unstable deformed
shape. For a given N , the allowed SO(6) and SO(5) irreps are σ = N, N − 2, . . . 0 or 1, and
τ = 0, 1, . . . σ, respectively. The SO(5) ⊃ SO(3) reduction is the same as in the U(5)-DS chain.
The SO(6)-DS spectrum resembles that of a γ-unstable deformed rotovibrator, composed of
SO(6) σ-multiplets forming rotational bands, with τ(τ + 3) and L(L+ 1) splitting generated by

Ĉ2[SO(5)] and Ĉ2[SO(3)], respectively. The lowest irrep σ=N contains the ground (g) band of a
γ-unstable deformed nucleus. The first excited irrep σ=N − 2 contains the β-band. The lowest
members in each band have quantum numbers (τ = 0, L = 0), (τ = 1, L = 2), (τ = 2, L = 2, 4)
and (τ = 3, L = 0, 3, 4, 6).

Following the procedure outlined in Eq. (27), the intrinsic part of the critical-point
Hamiltonian, relevant to spherical and γ-unstable deformed (S-G) shape-coexistence, is required
to satisfy

Ĥ|N, σ = N, τ, L〉 = 0 , (28a)

Ĥ|N, nd = 0, τ = 0, L = 0〉 = 0 . (28b)

Equivalently, Ĥ annihilates both the deformed intrinsic state of Eq. (4) with (β = 1, γ arbitrary),
which is the lowest weight vector in the SO(6) irrep σ=N , and the spherical intrinsic state with
β = 0, which is the single basis state in the U(5) irrep nd=0. The resulting intrinsic Hamiltonian
is found to be that of Eq. (25) with r0 = 0,

Ĥ = r2R
†
0n̂dR0 , (29)

and R†0 given in Eq. (22). The energy surface, EN (β, γ) = N(N − 1)(N − 2)Ẽ(β, γ), is given by

Ẽ(β) = r2β
2(β2 − 1)2(1 + β2)−3 . (30)

The surface is an even sextic function of β and is independent of γ, in accord with the SO(5)

symmetry of the Hamiltonian. For r2 > 0, Ĥ is positive definite and Ẽ(β) has two degenerate
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ground (g) and β bands, eigenstates of Ĥ ′ (32)
as in Fig. 2.

global minima, β=0 and β2 =1, at Ẽ=0. A local maximum at β2
∗= 1

5 creates a barrier of height

Ẽ= 2
27r2, separating the two minima, as seen in Fig. 2. For large N , the normal modes shown

schematically in Fig. 2(c), involve β vibrations about the deformed minima, with frequency εβ,
and quadrupole vibrations about the spherical minimum, with frequency ε, respectively,

εβ = 2r2N
2 , (31a)

ε = r2N
2 . (31b)

Identifying the collective part of the Hamiltonian with the Casimir operators of the common
SO(5) ⊃ SO(3) segment of the chains (3a) and (3d), we arrive at the following complete
Hamiltonian

Ĥ ′ = r2R
†
0n̂dR0 + ρ5 Ĉ2[SO(5)] + ρ3 Ĉ2[SO(3)] . (32)

The added rotational terms generate an exact ρ5τ(τ+3)+ρ3L(L+1) splitting without affecting
the wave functions. In particular, the solvable subset of eigenstates, Eq. (28), remain intact.
Since both SO(5) and SO(3) are preserved by the Hamiltonian, its eigenstates have good
(τ, L) quantum numbers and can be labeled as L+

i,τ , where the ordinal number i enumerates

the occurrences of states with the same (τ, L), with increasing energy. The nature of the

Hamiltonian eigenstates can be inferred from the probability distributions, P
(N,τ,L)
nd = |C(N,τ,L)

nd |2

and P
(N,τ,L)
σ = |C(N,τ,L)

σ |2, obtained from their expansion coefficients in the U(5) and SO(6)

bases, Eqs (3a) and (3d). In general, the low lying spectrum of Ĥ ′ (32) exhibits two distinct
classes of states. The first class consists of (τ, L) states arranged in nd-multiplets of a spherical
vibrator. Fig. 3 shows the U(5) nd-decomposition of such spherical states, characterized by



a narrow nd-distribution. The lowest spherical state, L = 0+
2,0, is the solvable U(5) state

of Eq. (28b) with U(5) quantum number nd = 0. The L = 2+
2,1 state has nd = 1 to a

good approximation. The upper panels of Fig. 3 display the next spherical-type of multiplets
(L = 0+

3,0, 2+
2,2, 4+

2,2) and (L = 6+
3,3, 4+

3,3, 3+
3,3, 0+

3,3, 2+
4,1), which have a somewhat less pronounced

(60%) single nd-component, with nd = 2 and nd = 3, respectively.
A second class consists of (τ, L) states arranged in bands of a γ-unstable deformed rotor. The

SO(6) σ-decomposition of such states, in selected bands, are shown in the upper panel of Fig. 4.
The ground band is seen to be pure with σ=N SO(6) character, and coincides with the solvable
band of Eq. (28a). In contrast, the non-solvable β-band (and higher βn-bands) show considerable
SO(6)-mixing. The deformed nature of these SO(5)-rotational states is manifested in their
broad nd-distribution, shown in the lower panel of Fig. 4. The above analysis demonstrates that
although the critical-point Hamiltonian (32) is not invariant under U(5) nor SO(6), some of its
eigenstates have good U(5) symmetry, some have good SO(6) symmetry and all other states
are mixed with respect to both U(5) and SO(6). These are precisely the defining attributes of
U(5)-PDS coexisting with SO(6)-PDS.

Since the wave functions for the solvable states, Eqs. (28), are known, one has at hand closed
form expressions for related spectroscopic observables. Consider the E2 operator,

T (E2) = eB Π(2) = eB (d†s+ s†d̃) , (33)

where Π(2) is a generator of SO(6) and eB an effective charge. T (E2) obeys the SO(5) selection
rules ∆τ = ±1 and, consequently, all (τ, L) states have vanishing quadrupole moments. The
B(E2) values for intraband (g → g) transitions between states of the ground band, Eq. (28a),
are given by the known SO(6)-DS expressions [2]. For example,

B(E2; g, τ + 1, L′ = 2τ + 2→ g, τ, L = 2τ) = e2
B

τ+1
2τ+5(N − τ)(N + τ + 4) , (34a)

B(E2; g, τ + 1, L′ = 2τ → g, τ, L = 2τ) = e2
B

4τ+2
(2τ+5)(4τ−1)(N − τ)(N + τ + 4) . (34b)

Similarly, the E2 rates for the transition connecting the pure spherical states, (nd=τ=1, L=2)
and (nd=τ=0, L=0), satisfy the U(5)-DS expression [2]

B(E2;nd = 1, L = 2→ nd = 0, L = 0) = e2
BN . (35)

Member states of the deformed ground band (28a) span the entire σ = N irrep of SO(6) and are
not connected by E2 transitions to the spherical states since Π(2), as a generator of SO(6), cannot
connect different σ-irreps of SO(6). The weak spherical → deformed E2 transitions persist also
for a more general E2 operator obtained by adding (d†d̃)(2) to T (E2), since the latter term, as a
generator of U(5), cannot connect different nd-irreps of U(5). By similar arguments, there are no
E0 transitions involving these spherical states, since the E0 operator, T (E0) ∝ n̂d, is diagonal in
nd. These symmetry-based selection rules result in strong electromagnetic transitions between
states in the same class, associated with a given shape, and weak transitions between states in
different classes.

The above discussion has focused on the dynamics in the vicinity of the critical point, where
the spherical and deformed configurations are degenerate. The evolution of structure away from
the critical point, can be studied by adding to Ĥ ′ (32) the Casimir operators of U(5) and SO(6),
still retaining the desired SO(5) symmetry. Adding an εn̂d term, will leave the energy of the
spherical nd = 0 state unchanged, but will shift the deformed γ-unstable ground band to higher
energy of order εN/2. Similarly, adding a small αθ̂0 term (24), will leave the solvable SO(6)
σ=N ground band unchanged, but will shift the spherical ground state (nd =L= 0) to higher
energy of order αN2. The resulting topology of the energy surfaces with such modifications are
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Figure 5. Energy-surface sections and level schemes corresponding to departures from the critical
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shown at the bottom row of Fig. 5. If these departures from the critical points are small, the
wave functions decomposition of Figs. 3-4 remain intact and the above analytic expressions for
E2 observables and selection rules are still valid to a good approximation. In such scenarios, the
lowest L=0 state of the non-yrast configuration will exhibit retarded E2 and E0 decays, hence
will have the attributes of an isomer state, as depicted schematically on the top row of Fig. 5.

4. Simultaneous occurrence of two deformed shapes
Shape coexistence in nuclei can involve two deformed shapes (e.g., prolate and oblate) as
encountered in Kr [45], Se [46] and Hg isotopes [47]. In what follows, we study PDS Hamiltonians
relevant to such axially-deformed shapes with γ = 0, π/3 and equal β deformation.

4.1. Coexisting SU(3)-PDS and SU(3)-PDS
The DS limits appropriate to prolate and oblate shapes correspond to the chains (3b) and (3c),

respectively. For a given N , the allowed SU(3) [ SU(3) ] irreps are (λ, µ) = (2N−4k−6m, 2k)
[(λ̄, µ̄) = (2k, 2N −4k−6m)] with k,m, non-negative integers. The multiplicity label K (K̄)
corresponds geometrically to the projection of the angular momentum (L) on the symmetry axis.

The basis states are eigenstates of the Casimir operator Ĉ2[SU(3)] or Ĉ2[SU(3)], with eigenvalues

listed in Table 1. Specifically, Ĉ2[SU(3)]=2Q(2) ·Q(2)+3
4L

(1) ·L(1), Q(2) =d†s+s†d̃−1
2

√
7(d†d̃)(2),

L(1) =
√

10(d†d̃)(1), and Ĉ2[SU(3)] is obtained by replacing Q(2) by Q̄(2) =d†s+s†d̃+1
2

√
7(d†d̃)(2).

The generators of SU(3) and SU(3), Q(2) and Q̄(2), and corresponding basis states, are related
by a change of phase (s†, s) → (−s†,−s), induced by the operator Rs = exp(iπn̂s), with
n̂s = s†s. The DS spectrum resembles that of an axially-deformed rotovibrator composed
of SU(3) [or SU(3)] multiplets forming rotational bands, with L(L + 1)-splitting generated by
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Figure 6. Prolate-oblate (P-O) shape coexistence. (a) Contour plots of the energy surface (38),
(b) γ = 0 sections, and (c) bandhead spectrum, for the Hamiltonian Ĥ ′ (40) with parameters h0 =
0.2, h2 =0.4, η3 =0.571, α=0.018, ρ = 0 and N=20.

Ĉ2[SO(3)] =L(1) · L(1). In the SU(3) [or SU(3)] DS limit, the lowest irrep (2N, 0) [or (0, 2N)]
contains the ground band g(K=0) [or g(K̄=0)] of a prolate [oblate] deformed nucleus. The first
excited irrep (2N−4, 2) [or (2, 2N−4)] contains both the β(K = 0) and γ(K = 2) [or β(K̄ = 0)
and γ(K̄ = 2)] bands. Henceforth, we denote such prolate and oblate bands by (g1, β1, γ1)

and (g2, β2, γ2), respectively. Since RsQ(2)R−1
s =−Q̄(2), the SU(3) and SU(3) DS spectra are

identical and the quadrupole moments of corresponding states differ in sign.
Following the procedure of Eq. (27), the intrinsic part of the critical-point Hamiltonian,

relevant to prolate-oblate (P-O) coexistence, is required to satisfy

Ĥ|N, (λ, µ) = (2N, 0), K = 0, L〉 = 0 , (36a)

Ĥ|N, (λ̄, µ̄) = (0, 2N), K̄ = 0, L〉 = 0 . (36b)

Equivalently, Ĥ annihilates the intrinsic states of Eq. (4), with (β =
√

2, γ = 0) and
(β = −

√
2, γ = 0), which are the lowest- and highest-weight vectors in the irreps (2N, 0) and

(0, 2N) of SU(3) and SU(3), respectively. The resulting intrinsic Hamiltonian is found to be [31],

Ĥ = h0 P
†
0 n̂sP0 + h2 P

†
0 n̂dP0 + η3G

†
3 · G̃3 , (37)

where G†3m=
√

7[(d†d†)(2)d†]
(3)
m =(d†P †2 )

(3)
m =(d†P̄ †2 )

(3)
m and P †0 , P

†
2m, P̄

†
2m, are defined in Eqs. (15)

and (18). The corresponding energy surface, EN (β, γ) = N(N − 1)(N − 2)Ẽ(β, γ), is given by

Ẽ(β, γ) =
{

(β2 − 2)2
[
h0 + h2β

2
]

+ η3β
6(1− Γ2)

}
(1 + β2)−3 . (38)

The surface is an even function of β and Γ = cos 3γ. For h0, h2, η3 ≥ 0, Ĥ is positive definite and
Ẽ(β, γ) has two degenerate global minima, (β=

√
2, γ=0) and (β=

√
2, γ=π/3) [or equivalently

(β=−
√

2, γ=0)], at Ẽ = 0. β = 0 is always an extremum, which is a local minimum (maximum)
for h2−4h0 > 0 (h2−4h0 < 0), at Ẽ = 4h0. Additional extremal points include saddle points
at [β1 > 0, γ = 0, π/3], [β2 > 0, γ = π/6] and a local maximum at [β3 > 0, γ = π/6]. The saddle
points, when exist, support a barrier separating the various minima, as seen in Fig. 6. For large
N , the normal modes involve β and γ vibrations about the respective deformed minima, with
frequencies

εβ1 = εβ2 =
8

3
(h0 + 2h2)N2 , (39a)

εγ1 = εγ2 = 4η3N
2 . (39b)

The members of the prolate and oblate ground-bands, Eq. (36), are zero-energy eigenstates

of Ĥ (37), with good SU(3) and SU(3) symmetry, respectively. The Hamiltonian is invariant
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oblate (g2, β2, γ2) bands, eigenstates of Ĥ ′ (40) with parameters as in Fig. 6, resulting in prolate-oblate
(P-O) shape coexistence. Shown are probabilities larger than 5%.

under a change of sign of the s-bosons, hence commutes with the Rs operator mentioned above.
Consequently, all non-degenerate eigenstates of Ĥ have well-defined s-parity. This implies
vanishing quadrupole moments for the E2 operator (33), which is odd under such sign change. To

overcome this difficulty, we introduce a small s-parity breaking term, αθ̂2 (17), which contributes
to Ẽ(β, γ) a component α̃(1 + β2)−2[(β2−2)2+2β2(2−2

√
2βΓ+β2)], with α̃ = α/(N − 2). The

linear Γ-dependence distinguishes the two deformed minima and slightly lifts their degeneracy,
as well as that of the normal modes (39). Identifying the collective part with Ĉ2[SO(3)], we
arrive at the following complete Hamiltonian

Ĥ ′ = h0 P
†
0 n̂sP0 + h2 P

†
0 n̂dP0 + η3G

†
3 · G̃3 + α θ̂2 + ρ Ĉ2[SO(3)] . (40)

The prolate g1-band remains solvable with energy Eg1(L) = ρL(L + 1). The oblate g2-band

experiences a slight shift of order 32
9 αN

2 and displays a rigid-rotor like spectrum. Replacing θ̂2

by ˆ̄θ2 (21), reverses the sign of the linear Γ term in the energy surface and leads to similar effects,

but interchanges the role of prolate and oblate bands. The SU(3) and SU(3) decompositions
in Fig. 7 demonstrate that these bands are pure DS basis states, with (2N, 0) and (0, 2N)
character, respectively, while excited β and γ bands exhibit considerable mixing. The critical-
point Hamiltonian thus has a subset of states with good SU(3) symmetry, a subset of states with

good SU(3) symmetry and all other states are mixed with respect to both SU(3) and SU(3).

These are precisely the defining ingredients of SU(3)-PDS coexisting with SU(3)-PDS.
Since the wave functions for the members of the g1 and g2 bands are known, one can derive

analytic expressions for their quadrupole moments and E2 rates. For the E2 operator of Eq. (33),
the quadrupole moments are found to have equal magnitudes and opposite signs,

QL = ∓eB
√

16π
40

L
2L+3

4(2N−L)(2N+L+1)
3(2N−1) , (41)

where the minus (plus) sign corresponds to the prolate-g1 (oblate-g2) band. The B(E2) values
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for intraband (g1 → g1, g2 → g2) transitions,

B(E2; gi, L+ 2→ gi, L) =

e2
B

3(L+1)(L+2)
2(2L+3)(2L+5)

(4N−1)2(2N−L)(2N+L+3)
18(2N−1)2

, (42)

are the same. These properties are ensured by RsT (E2)R−1
s = −T (E2). Interband (g2 ↔ g1)

E2 transitions, are extremely weak. This follows from the fact that the L-states of the g1 and g2

bands exhaust, respectively, the (2N, 0) and (0, 2N) irrep of SU(3) and SU(3). T (E2) contains
a (2, 2) tensor under both algebras, hence can connect the (2N, 0) irrep of g1 only with the
(2N − 4, 2) component in g2, which is vanishingly small. The selection rule g2 = g1 is valid also
for a more general E2 operator, obtained by including in it the operators Q(2) or Q̄(2), since
the latter, as generators, cannot mix different irreps of SU(3) or SU(3). By similar arguments,
E0 transitions in-between the g1 and g2 bands are extremely weak, since the relevant operator,
T (E0) ∝ n̂d, is a combination of (0, 0) and (2, 2) tensors under both algebras. In contrast to g1

and g2, excited β and γ bands are mixed, hence are connected by E2 transitions to these ground
bands.

Departures from the critical point, can be studied by varying the coupling constant of the
αθ̂2 term (17) in Ĥ ′ (40). Taking larger values of α, will leave the prolate g1-band unchanged,
but will shift the oblate g2-band to higher energy of order 16αN2/9. Similar effects are obtained

by varying the strength of the ᾱ ˆ̄θ2 term (21), but now the role of g1 and g2 is interchanged. The
resulting topology of the energy surfaces with such modifications are shown at the bottom row
of Fig. 8. If these departures from the critical points are small, the results of Fig. 7, Eqs. (41)-
(42) and the selection rules remain valid to a good approximation. In such a case, the L = 0
bandhead state of the higher gi-band cannot decay by strong E2 or E0 transitions to the lower
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Figure 9. Spherical-prolate-oblate (S-P-O) shape coexistence. (a) Contour plots of the energy
surface (45), (b) γ=0 sections, and (c) bandhead spectrum, for the Hamiltonian Ĥ ′ (47) with parameters
h2 =0.5, η3 =0.571, α=0.018, ρ = 0 and N=20.

ground band, hence, as depicted schematically on the top row of Fig. 8, displays characteristic
features of an isomeric state.

5. Simultaneous occurrence of spherical and two deformed shapes
Nuclei can accommodate more than two shapes simultaneously. A notable example is the
observed coexistence of spherical, prolate and oblate shapes in 186Pb [48]. In what follows,
we consider a case study of PDS Hamiltonians relevant to such triple coexistence of a spherical
shape (β = 0) and two axially-deformed shapes with γ = 0, π/3 and equal β deformations.

5.1. Coexisting U(5)-PDS, SU(3)-PDS and SU(3)-PDS
The DS limits relevant for spherical, prolate-deformed and oblate-deformed shapes, correspond
to the chains (3a), (3b) and (3c), respectively. The intrinsic part of the critical-point Hamiltonian
for triple coexistence of such shapes is now required to satisfy three conditions

Ĥ|N, nd = 0, τ = 0, L = 0〉 = 0 , (43a)

Ĥ|N, (λ, µ) = (2N, 0), K = 0, L〉 = 0 , (43b)

Ĥ|N, (λ̄, µ̄) = (0, 2N), K̄ = 0, L〉 = 0 . (43c)

Equivalently, Ĥ annihilates the spherical intrinsic state of Eq. (4) with β = 0, which is the
single basis state in the U(5) irrep nd = 0, and the deformed intrinsic states with (β=

√
2, γ=0)

and (β=−
√

2, γ=0), which are the lowest and highest-weight vectors in the irreps (2N, 0) and

(0, 2N) of SU(3) and SU(3), respectively. The resulting intrinsic Hamiltonian is found to be
that of Eq. (37) with h0 = 0 [31],

Ĥ = h2 P
†
0 n̂dP0 + η3G

†
3 · G̃3 . (44)

The corresponding energy surface,

Ẽ(β, γ) =
[
h2β

2(β2 − 2)2 + η3β
6(1− Γ2)

]
(1 + β2)−3 , (45)

has now three degenerate global minima: β = 0, (β =
√

2, γ = 0) and (β =
√

2, γ = π/3) [or
equivalently (β =−

√
2, γ = 0)], at Ẽ = 0, separated by barriers as seen in Fig. 9. In addition

to the deformed β- and γ modes of Eq. (39) with h0 = 0, there are now also spherical modes,
involving quadrupole vibrations about the spherical minimum, with frequency

ε = 4h2N
2 . (46)
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Figure 10. U(5) nd-decomposition for spherical states (left panels) and for members of the deformed
prolate (g1) and oblate (g2) ground bands (right panels), eigenstates of Ĥ ′ (47) with parameters as in
Fig. 9, resulting in spherical-prolate-oblate (S-P-O) shape coexistence. The column ‘other’ depicts a sum
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For the same arguments as in the analysis of P-O coexistence in Section 4, the complete
Hamiltonian is taken to be that of Eq. (40) with h0 = 0,

Ĥ ′ = h2 P
†
0 n̂dP0 + η3G

†
3 · G̃3 + α θ̂2 + ρ Ĉ2[SO(3)] . (47)

The deformed bands show similar rigid-rotor structure as in the P-O case. In particular, the
prolate g1-band and oblate g2-band have good SU(3) and SU(3) symmetry, respectively, while
excited β and γ bands exhibit considerable mixing, with similar decompositions as in Fig. 7.
A new aspect in the present S-P-O analysis, is the simultaneous occurrence in the spectrum
[see Fig. 9(c)] of spherical type of states, whose wave functions are dominated by a single nd
component. As shown in Fig. 10, the lowest spherical states have quantum numbers (nd=L=0)
and (nd = 1, L = 2), hence coincide with pure U(5) basis states, while higher spherical states
have a pronounced (∼70%) nd = 2 component. This structure should be contrasted with the
U(5) decomposition of deformed states (belonging to the g1 and g2 bands) which, as shown in
Fig. 10, have a broad nd-distribution. The purity of selected sets of states with respect to SU(3),

SU(3) and U(5), in the presence of other mixed states, are the hallmarks of coexisting partial
dynamical symmetries.

For the E2 operator of Eq. (33), the quadrupole moments of states in the solvable g1 and g2

bands and intraband (g1 → g1, g2 → g2) E2 rates, obey the analytic expressions of Eqs. (41)
and (42), respectively. The same selection rules depicted in Fig. 8, resulting in retarded E2 and
E0 interband (g2 → g1) decays, still hold. Furthermore, in the current S-P-O case, since T (E2)
obeys the selection rule ∆nd =±1, the spherical states, (nd =L= 0) and (nd = 1, L= 2), have
no quadrupole moment and the B(E2) value for their connecting transition, obeys the U(5)-DS
expression of Eq. (35). These spherical states have very weak E2 transitions to the deformed
ground bands, because they exhaust the (nd=0, 1) irreps of U(5), and the nd=2 component in
the (L= 0, 2, 4) states of the g1 and g2 bands is extremely small, of order N33−N . There are
also no E0 transitions involving these spherical states, since T (E0) is diagonal in nd.

In the above analysis, the spherical and deformed minima were assumed to be degenerate. If
the spherical minimum is only local, one can use the Hamiltonian of Eq. (40) with the condition
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decays identify the isomeric states.

h2 > 4h0, for which the spherical ground state (nd = L = 0) experiences a shift of order 4h0N
3.

Similarly, if the deformed minima are only local, adding an εn̂d term to Ĥ ′ (47), will leave the
nd = 0 spherical ground state unchanged, but will shift the prolate and oblate bands to higher
energy of order 2εN/3. In both scenarios, the lowest L = 0 state of the non-yrast configuration
will exhibit retarded E2 and E0 decays, hence will have the character of an isomer state, as
depicted schematically in Fig. 11.

6. Concluding remarks
We have presented an algebraic symmetry-based approach for describing properties of multiple
shapes in dynamical systems. The main ingredients of the approach are: (i) a spectrum
generating algebra encompassing several lattices of dynamical symmetry (DS) chains. (ii) An
associated geometric space, realized by means of coherent states, which assign a particular shape
to a given DS chain. (iii) An intrinsic-collective resolution of the Hamiltonian. The approach
involves the construction of a single number-conserving, rotational-invariant Hamiltonian which
captures the essential features of the dynamics near the critical point, where two (or more) shapes
coexist. The Hamiltonian conserves the dynamical symmetry (DS) for selected bands of states,
associated with each shape. Since different structural phases correspond to incompatible (non-
commuting) dynamical symmetries, the symmetries in question are shared by only a subset of
states, and are broken in the remaining eigenstates of the Hamiltonian. The resulting structure
is, therefore, that of coexisting multiple partial dynamical symmetries (PDSs).

An explicit algorithm for constructing Hamiltonians with several distinct PDS was presented
and the approach was applied to a variety of coexisting quadrupole shapes, in the framework
of the interacting boson model (IBM) of nuclei. The multiple PDSs and shape-coexistence
scenarios considered include (i) Coexisting U(5) and SU(3) PDSs, in relation to spherical and



prolate-deformed shapes. (ii) Coexisting U(5) and SU(3) PDSs, in relation to spherical and
oblate-deformed shapes. (iii) Coexisting U(5) and SO(6) PDSs, in relation to spherical and

γ-unstable deformed shapes. (iv) Coexisting SU(3) and SU(3) PDSs, in relation to prolate and

oblate deformed shapes. (v) Coexisting U(5), SU(3) and SU(3) PDSs, in relation to spherical,
prolate-deformed and oblate-deformed shapes.

In each of the cases considered, the underlying energy surface exhibits multiple minima which
are near degenerate. As shown, the constructed Hamiltonian has the capacity to have distinct
families of states whose properties reflect the different nature of the coexisting shapes. Selected
sets of states within each family, retain the dynamical symmetry associated with the given shape.
This allows one to obtain closed expressions for quadrupole moments and transition rates, which
are the observables most closely related to the nuclear shape. The resulting analytic expressions
are parameter-free predictions, except for a scale, and can be used to compare with measured
values of these observables and to test the underlying partial symmetries. The purity and good
quantum numbers of selected states enable the derivation of symmetry-based selection rules for
electromagnetic transitions (notably, for E2 and E0 decays) and the subsequent identification of
isomeric states. The evolution of structure away from the critical-point can be studied by adding
to the Hamiltonian the Casimir operator of a particular DS chain, which will leave unchanged
the ground band of one configuration but will shift the other configuration(s) to higher energy.

A detailed microscopic interpretation of shape coexistence in nuclei is a formidable task and
computational demanding [8]. The proposed algebraic approach presents a simple alternative,
as a starting point to describe this phenomena, by emphasizing the role of remaining underlying
symmetries, which provide physical insight and make the problem tractable. It is gratifying to
note that shape-coexistence in dynamical systems, such as nuclei, constitutes a fertile ground
for the development and testing of generalized notions of symmetry.
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