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We investigate both the classical and quantum dynamics for a simple kicked system (the standard
map) that classically has mixed phase space. For initial conditions in a portion of the chaotic region
that is close enough to the regular region, the phenomenon of sticking leads to a power-law decay
with time of the classical correlation function of a simple observable. Quantum mechanically, we
find the same behavior, but with a smaller exponent. We consider various possible explanations
of this phenomenon, and settle on a modification of the Meiss–Ott Markov tree model that takes
into account quantum limitations on the flux through a turnstile between regions corresponding to
states on the tree. Further work is needed to better understand the quantum behavior.

I. INTRODUCTION

The subject of this work is the long term correlations
for mixed dynamical systems. For such systems, the mo-
tion is chaotic in some regions of the classical phase space,
while in other regions it is regular [1–3]. An important
phenomenon such systems exhibit is sticking: trajectories
in the chaotic region that are close to the perimeter of a
regular region will stay close for a long time. This can
be quantified by the survival probability, the probability
for a trajectory to be near its initial point after a time
t; sticking results in a a power-law decay of the survival
probability with time. Systems with mixed dynamics in-
clude the Hénon map [4], the standard map [5, 6], and
the “molecular cat” [7]. The classical behavior in such
situations was studied extensively in the past [8–15].

In the present work we focus on the quantum mechani-
cal behavior, and emphasize how it differs from the classi-
cal. We study the standard map on a torus, with param-
eters that would yield transport dominated by accelera-
tor modes on a cylinder; these are phase space islands for
which momentum grows linearly in time [5, 6, 14, 16, 17].
The dynamics around these islands is modeled by the
Hénon map [11, 12].

In earlier work some of us explored the survival prob-
ability in the framework of the Meiss–Ott Markov tree
model. In particular it was found that the model predicts
correctly the decay of the survival probability, falling of
in time with a power

PSur(t) ∼
1

tγ
(1)

where γ does not depend systematically on the parame-
ters of the standard map or the related Hénon map. It
takes the value

γ ≈ 1.57 , (2)
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as was found with various methods [18–21]. On the torus,
the accelerator-mode islands reduce to stationary islands,
since the motion is periodic in both position and momen-
tum directions.

In the present work we study the two-point time corre-
lation function of a simple observable. Such a correlation
function has a straightforward definition both classically
and quantum mechanically, which facilitates comparison
of their behavior. Classically, for initial conditions local-
ized in the sticking region of the chaotic component, the
correlation function will oscillate without decay, and then
have a power-law decay that is related to the power-law
decay of the survival probability. Quantum mechanically,
we also find a power-law decay, but one that is slower for
sufficiently large values of Planck’s constant. We exam-
ine several possible mechanisms for this quantum slowing
down, and conclude that quantum effects lead to “prun-
ing” and “truncation” of the Meiss–Ott Markov tree, re-
sulting in strong deviation from the power law in the
decay of the survival probability and of the correlation
function.

The outline of the paper is as follows. In Sec. II the
quantum and classical correlation functions are defined
and computed, and their behavior compared. In Sec. III
we consider some specific mechanisms of quantum trap-
ping, and conclude these are irrelevant for the present
case. We propose a mechanism for modification of the
Markov tree by quantum effects and conjecture the re-
sulting form of the decay of the correlations function.
Our conclusions are in Sec. IV.

II. DECAY OF QUANTUM AND CLASSICAL
CORRELATION FUNCTIONS

The standard map is [1, 6]

pt+1 = pt +K sin(xt) (3)

xt+1 = xt + pt+1 . (4)

We take both x and p to be periodic with period 2π so
it is defined on a torus. The Hamiltonian that generates
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this map is

H = 1
2p

2 +K cos(x)
∑
nδ(t− n) . (5)

To quantize the map while preserving both periodicities,
we discretize both x and p, as is done for the baker’s map
or cat map [22–24]. Mapping

x→ xj = 2π(j + η)/N , j = 0, . . . , N − 1 , (6)

p→ pk = 2π(k + η)/N , k = 0, . . . , N − 1 , (7)

where 0 ≤ η < 1 is a possible offset, and N is a positive
integer. We should have exp(ipx/~) = exp(2πi(j+η)(k+
η)/N), which implies

~ =
2π

N
. (8)

The inner product between a position eigenstate and a
momentum eigenstate is then

〈xj |pk〉 =
1√
N

exp(2πi(j + η)(k + η)/N) . (9)

Position and momentum eigenstates each form a com-
plete basis,

N−1∑
j=0

|xj〉〈xj | =
N−1∑
k=0

|pk〉〈pk| = I . (10)

The unit-time evolution operator is

U = exp(−ip2/2~) exp(−iK cos(x)/~) . (11)

Using eqs. (7) and (8), exp(−ip2/2~) → exp(−iπ(k +
η)2/N). We want this to be invariant under under
k → k + N . This requires η + 1

2N to be an integer.

So we must have either η = 0 and N even, or η = 1
2 and

N odd. For simplicity with the numerics, we choose

η = 0 , N even . (12)

We also choose to let the 2π-periodic coordinates x and
p be in the range [−π, π] rather than [0, 2π] so that the
classical island is in the center of the range.

We choose cos(x) as the observable whose correlations
we will study. We have chosen this function since its
phase space average vanishes. We wish to calculate the
quantum correlation function, and compare it to the clas-
sical result. For this purpose we define

f̃Q(t) = 〈cos(xt) cos(x0)〉
= 〈Ψ0|(U†)t cos(x)(U)t cos(x)|Ψ0〉 , (13)

where xt is the position operator in the Heisenberg rep-
resentation at time t. For the convenience of calculation,
we split the computation into two parts

|R〉 = (U)t cos(x)|Ψ0〉 (14)

and

〈L| = 〈Ψ0|(U†)t . (15)

Here 〈L| and |R〉 are vectors in the Dirac representation.
These expressions are calculated using FFT starting from
〈Ψ0| and |Ψ0〉 . The product is computed to obtain

f̃Q(t) = 〈L| cos(x)|R〉 .

To obtain a real correlation function that can be com-
pared to its classical counterpart, we define the sym-
metrized product

f̃S(t) =
1

2
[cos(xt) cos(x0) + cos(x0) cos(xt)] .

Its expectation value is

fQ(t) = 〈Ψ0|f̃S(t)|Ψ0〉 = <
[
f̃Q(t)

]
. (16)

In the classical limit, it is expected to approach

fC(t) = 〈cos(xt) cos(x0)〉C . (17)

where xt is the classical position at time t and 〈〉C is the
average over the classical initial conditions corresponding
to |Ψ0〉.

We consider values of N from 217 to 221, up to time
t = 104. As the initial condition we take a minimum-
uncertainty quantum wave packet, centered on a phase-
space point (xc, pc), which need not be a grid point. In
the position representation it takes the form

ψ(xj) ∝ exp[ipcxj/~− (xj − xc)2/2~]

∝ exp[iNpcxj/2π −N(xj − xc)2/4π]

∝ exp[ipc(j + η)− πN(j + η − xc/2π)2] . (18)

We take xc = 1.7, pc = −0.25. The corresponding clas-
sical phase-space density is

ρ(x, p) ∝ exp[−(x− xc)2/~− (p− pc)2/~]

∝ exp[−N(x− xc)2/2π −N(p− pc)2/2π](19)

For parameter value of K = 6.476939 this wave packet is
centered around a hyperbolic fixed point of a secondary
island chain belonging to the “accelerator island”. As ex-
plained in the introduction, the island corresponds to an
accelerator mode if the map is defined on a cylinder, but
in the present paper it is defined on a torus and the island
is stationary. The classical ensemble consists of N0 = 106

initial conditions. The initial point was chosen so that it
is in a favorable situation to observe the power law decay
of correlations resulting of sticking. The islands belong-
ing to accelerator modes are approximated by the Hénon
map [11]. We prepared the initial distribution centered
on the hyperbolic point of a period 5; see Fig. 1. The
initial wave packet (and the corresponding distribution
of the initial condition) is much narrower than the size of
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the torus. At the initial stages (for t < 102) we see rapid
oscillations of period 5. At later time only sticking tra-
jectories stay at the vicinity of the island. We assume fol-
lowing Karney [12] that only these contribute to the long
time behavior of the correlation function fC(t), while the
rest diffuse in phase space and do not contribute to the
correlation function. We assume that the probability to
stick for a time τ is for long τ

p(τ) ∼ 1

τγ+1
(20)

The survival probability is asymptotically

PSur(t) ∼
∞∫
t

1

τγ+1
dτ ∼ 1

tγ
, (21)

with the value of γ given by Eq. (2). We turn now to
the calculation of the decay of the classical correlation
function Eq. (17). Using the assumption that only the
sticking part contributes to the correlation function

fC(t) ∼
∞∫
t

τ
1

τγ+1
dτ ∼ 1

tγ−1
. (22)

We used the fact that the probability that 0 and t are
both in an interval of length τ is proportional to τ . We
see that the decay of the classical correlation function is
strongly related to the decay of the survival probability.

In order to compare with the quantum sticking we pre-
pare an initial wave function corresponding to a mini-
mal uncertainty wave packet (18). In Fig. 2 We com-
pare the correlation function with the one found for the
corresponding classical density (19). We find a region
of oscillations with period 5 for t < 5 · 102, while for
5 · 102 < t < 5 · 103 we see a regime of power-law de-
cay with exponent γ − 1 ≈ 0.8, in reasonable agreement
with Eq. (2). We did not calculate the correlation func-
tion beyond 104 since up to that value we found excellent
agreement between the quantum and classical results for
N = 221, as is clear from Fig. 2. For longer times the
quality of the classical distribution with N0 = 106 initial
conditions deteriorates, since only a small fraction of the
trajectories does not run away from the sticky region.
Running for much larger ensemble is beyond our numer-
ical possibilities. Moreover we believe that the current
results are sufficient for the conclusions of the paper.

In Fig. 3 we present the quantum correlation function
for various values of Planck’s constant ~ = 2π

N . We find
that as ~ increases the quantum correlation function de-
creases slower than the classical one. To understand it
we plot in Fig. 4 the classical correlation as found start-
ing from initial conditions corresponding to the ones used
for the correlation function presented in Fig. 3. The ini-
tial conditions are patches of the blue heavy points near
the hyperbolic fixed point in Fig. 1. If the initial con-
dition was a distribution satisfying detailed balance, the

classical survival probability would decay with the ex-
ponent γ − 1 [25]. For our initial distribution there is
no definite theoretical prediction, but since it is within
the strictly chaotic layer we expect it to decay like γ − 1
approximately. Indeed we find this exponent to vary in
the interval γ − 1 ∈ [0.5, 0.75]. We consider this numer-
ical result to be in agreement with theory. The quan-
tum correlations as can be seen from Fig. 3 decay more
slowly, with exponents γq − 1 = 0.1, 0.15, 0.33, 0.49, 0.81
for N = 217, 218, 219, 220, 221 respectively. The fits were
performed in the interval t ∈ [5 · 102, 5 · 103] using log-
log scale with uniform distribution of points. The rest of
this paper is devoted to the explanation of the difference
between the quantum and the classical distributions.

III. DETAILED ANALYSIS OF THE QUANTUM
SPREADING

We would like to understand what slows the quantum
spreading compared to the classical one. For this pur-
pose we analyze the mechanisms that slow down quan-
tum spreading. The first is trapping in islands. For this
purpose we use the Husimi function defined as

H(x′, p′) =
1

2π~

∣∣∣∣∣∣
π∫
−π

dxψ(x)
1

4
√
π~
e−

(x−x′)2
2~ + ip′x

~

∣∣∣∣∣∣
2

,

(23)
which is normalized such that

π∫
−π

π∫
−π

H(x′, p′)dx′dp′ = 1 .

Note that the wave function has finite weight inside the
classical island (see Fig. 5). We fix the grid of p′, x′ ∈
[−π, π] to be 1024 × 1024. This is done mainly due to
computation time and memory considerations. Note that
the grid of x from Eq. (23) is still set by ~.

In order to understand the different power laws, we
define a weight WD as the integral of the Husimi distri-
bution over the domain D,

WD =

∫
D

∫
dp′dx′H(x′, p′) , (24)

where several different domains D are chosen in what
follows. We study the behavior of WD for different values
of N (and therefore ~). The normalization of the Husimi
function is such that in the classical limit the weights
reduce to the survival probability of Eq.(1) of [18].

A. Trapping in islands

In order to study the effect of trapping inside the clas-
sical islands we study the Husimi distribution in a classi-
cal island. This is shown in Fig. 5 for time t = 104. The
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(a) (b)

FIG. 1. (a) The island for K = 6.476939 and the initial classical phase space density (in heavy blue) corresponding to N = 221. (b) The

same as (a) but zoomed around the initial density.

10 0 10 1 10 2 10 3 10 4

t

10 -4

10 -3.5

10 -3

10 -2.5

10 -2

10 -1.5

10 -1

f
(t

)

fC

fQ

!0:79log10(t) + 0:1

FIG. 2. The classical and quantum correlation functions for K =

6.476939, N = 221, and the initial conditions of Fig. 1 on a log-log

plot. For comparison the straight line with y = −(γ−1)x+b where

γ−1 is the exponent of the power law decay resulting from the best

fit for5 · 102 < t < 5 · 103.

10 0 10 1 10 2 10 3 10 4

t

10 -4

10 -3.5

10 -3

10 -2.5

10 -2

10 -1.5

10 -1

f Q
(t

)

N = 217

N = 218

N = 219

N = 220

N = 221

N

FIG. 3. The quantum correlation function for the initial conditions

of Fig. 2, but for N = 217−221.

most external classical trajectory (marked by a heavy
black line) is the boundary circle of the island. It is de-
termined by following classical trajectories started inside
the island. Using the island as a domain of integration for

10 0 10 1 10 2 10 3 10 4

t

10 -4

10 -3.5

10 -3

10 -2.5

10 -2

10 -1.5

10 -1

10 -4

f C
(t

)

N = 217

N = 218

N = 219

N = 220

N = 221

N

FIG. 4. The classical correlation functions corresponding to the

quantum ones presented in Fig. 3 The dependence on N results

from different initial conditions chosen to match the quantum initial

wave function

the Husimi function we calculate by Eq. (24) the weight
in small and big islands Ws and Wb respectively. These
are plotted in Fig. 6. We see that these weights saturate
at t = 102 and stay constant at least till t = 104, and
correlations presented in Fig. 3 decay for shorter time,
therefore this process is irrelevant for the understanding
of the decay of correlations presented in Fig. 3.

We checked also that if the initial wave packet is placed
in the small island the weight in the small and in the big
island does not decay significantly at least till t = 104,
therefore it is irrelevant for the result of Fig. 3. Simi-
lar behavior was seen in [26, 27]. In our case the build
up in the island is faster than in the cited paper, since
our initial wave packet is in the sticky region, near the
hyperbolic fixed point.

.
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(a) (b)

(c) (d)

FIG. 5. Color scale plots of the log10(H) of Husimi distribution on small island for t = 104. For comparison classical trajectories are in

black dots in all sub-figures, the outer circle form the island’s boundary. (a) N = 217 (b) N = 219 , and (c) N = 221. In (d) we show

the entire region of phase space where sticking takes place. The color scale is the same for all sub figures. It is clear that for larger N

islands are less occupied by the wave packet (darker color means the Husimi function is smaller). The initial wave-packet was placed near

hyperbolic point as in Fig. 1

(a)

10 1 10 2 10 3 10 4

t

10 -25

10 -20

10 -15

10 -10

10 -5

10 -0

W
b

N = 217

N = 219

N = 221

(b)

10 1 10 2 10 3 10 4

t

10 -30

10 -25

10 -20

10 -15

10 -10

10 -5

10 -0

W
s

N = 217

N = 219

N = 221

FIG. 6. (a) The weight inside the big island Wb for several values of N . (b) The weight inside the small island Ws.

B. The region where the sticking takes place

The sticking takes place in a region around the island.
In Fig. 7(a) this is demonstrated. The selected region
is confined by the unstable and stable manifold of the
period-1 hyperbolic fixed point all the way to their first

homoclinic intersection [25]. The weight W is calculated
using Eq. (24) where the domain D is the strip presented
in Fig. 7 (a), and is presented in Fig. 7 (b). The decay is
obvious; note the visible steps for large t. This decay is
described in detail by the modified Markov tree presented
in Sec. III D.
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(a) (b)

10 1 10 2 10 3 10 4 10 5 10 6

t

10 -1.5

10 -1

10 -0.5

10 0

W

N = 215

N = 217

N = 219

N = 221

FIG. 7. (a) The sticking strip around the big island. (b) The weight W of this strip for a range of values of N .

C. Scars

The scars [28] in eigenfunctions result in asymptotic
trapping, therefore these cannot serve as a mechanism for
quantum decay. For this reason we turn to modification
of the Markov model.

D. Modification of the Markov model

We now try to explain the slowdown qualitatively by
using a modification of the Markov model introduced by
Meiss and Ott [10] and studied in [18] for the classical
case. The transition rates on the tree are defined by

pS→S′ =
∆WS,S′

AS
. Where AS is the accessible region

and WS,S′ is the flux through a turnstile area between
two neighboring regions. In [29] the quantum asymp-
totic transition weight, that is the projection of the wave
function started on one side of the turnstile on a region
located on the other side after some time, and then aver-
aged over time, was computed. It turns out to agree with
a simple random transition model. It was found that this
weight should be changed with ~ via the function

∆W
~

1 + ∆W
~
. (25)

Inspired by their work we conjecture that for each turn-
stile the corresponding function is

f(
∆W

~
) = tanh(

∆W

~
). (26)

Both Eq. (25) and Eq. (26) converge to the correct lim-
its in the extreme values of ~. We checked that both
Eq. (25) and Eq. (26) give qualitatively similar results.
Using Eq. (26) changes the rates such that

pS→S′ =
∆WS,S′

AS
tanh(

∆W

~
). (27)

We now build a Markov matrix in a manner similar to
what described in [18]. Here we assume that the Markov
property, namely that each of the turnstiles acts inde-
pendently, holds also quantum mechanically, and here it
provides a transition probability (rather an amplitude).
This is a result of the fact that the turnstiles are sepa-
rated by chaotic regions. The rate p1→∅′ is set arbitrarily
to be 0.1, and A1 is set to be the size of the major island
discussed above. This determines ∆W1,∅ via Eq. (27).
Next all other values found using scalings drawn from
distributions of the flux and areas as in [18]. In that way
a matrix describing the master equation can be calcu-
lated. Next, the matrix is used to propagate an initial
distribution equivalent to detailed balance if p1→∅′ = 0
[20], and

ρS(0)pS→DS = ρDS(0)pDS→s (28)

This is done for several values of ~ for the same realization
of transition rates. The result is presented in Fig. 8. It
shows that small fluctuations in the ~ → 0 limit turn
into regions of exponential decay when ~ is increased.
This happens since when ∆W

~ << 1, then tanh(∆W
~ ) ∼

∆W
~ . Since for most entries of the matrix ∆W

~ << 1
multiplying ~ by 2 is the same as dividing almost the
entire matrix W given by [18] :

d~ρ

dt
=W~ρ , WS,S′ = pS′→S − δS,S′

∑
S′′

pS→S′′ , (29)

by the same factor. This will cause the eigenvalues to sep-
arate, and due to separation of time scales, exponential
decay appear for increasing times intervals. In intermedi-
ate cases of ∆W

~ the power law found for the classical case
turns out to be replaced by a step structure, presented in
Fig. 8. The classical power law decay is a result of con-
tribution of many small decay exponents related to high
generations of the tree, and it goes forever for infinite
tree [18]. If the tree is truncated at a finite generation,
at the time corresponding to that generation, the power
law decay stops and exponential decay is found. Finite
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~ eventually leads to such a truncation. The manifesta-
tion of the step structure for longer times was found by
explicit calculations. It was found that the dependence
of the survival probability on time depends on the choice
of A1 for the short time part. The step structure of the
survival probability is a result of the modification in the
Markov tree and it results of the quantum mechanics.
We check explicitly that such structure is also found for
a typical matrix generated at random for the Markov tree
multiplied by factors that control the step structure. A
similar step structure was found for the system we study
(see Fig. 7), e.g. for N = 215.

10 1 10 2 10 3 10 4 10 5 10 6
10 -2.5

10 -2

10 -1.5

10 -1

10 -0.5

10 0

FIG. 8. Survival probabilities over the Markov tree model for

several values of ~. The black curve for tanh( ∆W
~ ) ≡ 1. The arrow

shows the direction of increasing ~

It is important to note that since we are interested in
small values of ~ we keep many generations of the tree
where it is pruned and not yet truncated.

IV. CONCLUSIONS

We have studied both the classical and quantum dy-
namics for a simple kicked system (the standard map)
that classically has mixed phase space. For initial con-
ditions in a portion of the chaotic region that is close
enough to the regular region, the phenomenon of stick-
ing leads to a power-law decay with time of the classical
correlation function of a simple observable. Quantum
mechanically, we observed the same behavior, but with a
smaller exponent. We considered various possible expla-
nations of this phenomenon, and settled on a modifica-
tion of the Meiss–Ott Markov tree model that takes into
account quantum limitations on the flux through a turn-
stile region between regions corresponding to the states
of the tree. A natural question is why the correlations
decay in spite of the fact that the spectrum is discrete.
One should notice that the discreteness of the spectrum
is important for time very much longer than the Heisen-
berg time τH [30] In our case τH ≈ (2π)2 ·221 ∼ 106, while
the correlation function is studied for t < 104. Further
work is needed to better understand the quantum behav-
ior. Our results can be considered as a first step in such
a direction.

Acknowledgments: We would like to thank Oded
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