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Abstract

In this article we present and describe a notion of ”logical perfec-
tion”. We extract the notion of ”perfection” from the contemporary
logical concept of categoricity. Categoricity (in power) has become
in the past half century a main driver of ideas in model theory, both
mathematically (stability theory may be regarded as a way of approxi-
mating categoricity) and philosophically. In the past two decades, cat-
egoricity notions have started to overlap with more classical notions of
robustness and smoothness. These have been crucial in various parts
of mathematics since the nineteenth century.

We postulate and present the category of logical perfection. We
draw on various notions of perfection from mathematics of the 19th
and 20th centuries and then trace the relation to the concept of cat-
egoricity in power as a logical notion of what a ”mathematically per-
fect” structure is.

This essay is an attempt to present the idea of logical perfection to a
philosophical audience. This expression is often used informally in mathe-
matical practice and sometimes also in more formal discussion around math-
ematics. This happens sometimes in the form of an aesthetic criterion, and
is one of the strongest drivers of mathematical activity and one of the main
tests for its relevance. Since the advent of the discipline of mathematical logic
it has become possible to investigate a potentially adequate formal notion by
mathematical means. Roughly, before giving more detail, a mathematical
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object of a certain “size” is logically perfect if in a certain formal language
it allows a “concise” description fully determining the object.1

This notion, in particular, is central in the third author’s paper [14] and
has been implicitly present, mainly as a motivating factor, in a number of
other research papers in various branches of mathematics.

Of course, writing for a wider audience means we skip many subtle math-
ematical details and avoid as much as possible using technical terms.

We draw on various analogies to show that logical perfection has strong
versions outside of mathematics. Moreover, we will argue that logically per-
fect structures can be used for the study of the physical world, making the
idea relevant not just in mathematics but in the realm of physics too. The
question whether logical perfection manifests itself in other areas of the hu-
man activity (such as art) is left open here; we may only hope it will raise
the interest of some of our readers.

Finally, we thank the referee for many insightful comments that led to
serious improvements and clarifications of this paper.

1 Why logical perfection?

The interest in looking for some kind of perfection in mathematical structures
is not new. In the history of their discipline, mathematicians have been driven
to think about this kind of perfection, albeit for different sorts of motivations,
and have tried to capture this idea by means of mathematical tools. Let
us mention a few of these attempts in the work of Galois, Riemann and
Grothendieck and build up a first collection of examples for our discussion
of logical perfection.

Galois made a bold switch from the classical perspective of looking di-
rectly for solutions to algebraic equations to a study of the symmetry of
possible solutions: a move toward a completion of the set of possible solu-

1The essay has arisen from many conversations and collaboration the authors have had
during the past few years and it is originally based on two talks the first author gave, one
in Paris and the other one in Bogotá, about the work of the third author. The second
author then brought some additional perspective. The first author wants to mention in
particular the talk given at Bogotá during the workshop Mapping traces: Representation
from Categoricity to Definability organised by the second author and Maŕıa Clara Cortés
at Universidad Nacional de Colombia in 2014. This was very helpful since the audience
consisting of philosophers, mathematicians and artists made the idea of writing about
logical perfection for a general audience possible.
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tions by means of the study of the group of symmetries of all the solutions
that could exist, and by filtering out the interaction between enlarging the
field where these solutions could appear and the group of such symmetries.
The resulting theory (aptly named much later “Galois Theory”) goes way
beyond the initial quest for solutions to algebraic equations and changed the
ground to an idea (the symmetry of possible solutions in extensions of fields,
and the duality between the groups of these symmetries and the field exten-
sions) that is still central after two centuries, and whose scope goes much
beyond the wildest dreams Galois could have had. This is a first form of
“perfection” for us: completeness of possible solutions, and register
of emerging symmetry. More importantly even, underlying these two as-
pects of perfection arising in Galois’ work, there is a kind of uniqueness, only
reached once all possible solutions (and their symmetries) are considered.
This wholeness, this uniqueness, albeit implicit in the work of Galois, is a
component of the main tenets of the notion of logical perfection we propose.

Our second example is Riemann’s work on the foundations of geometry.
In a move parallel to Galois’, he went beyond understanding geometry in
terms of global axioms and laid the ground for a “local” approach, driven by
a “metric” (a way of measuring distances) that could change, twist, curve
itself. Instead of placing objects such as curves, planes, surfaces inside a
“global space” (as had been done for aeons in mathematics), Riemann put the
twisting itself, so to speak, at centerstage: instead of placing twisted, curved
objects “in” a space, the space itself became the twisting. Here, the notion
of logical perfection is of a different kind from what we had in the Galois
example. There, global symmetry (and the connection between symmetry
and extensions where solutions live) was the expression of that perfection.
Here the perfection is rather the new flexibility Riemann’s construction offers
us, when compared with earlier incarnations of “space”, of geometry2.

Our third example, much more contemporary and of a different kind,
is Grothendieck’s new foundations of algebraic geometry. Very roughly,
the concept of a general notion of “space” is again at stake. But here
Grothendieck essentially first “disassembles” the surfaces or curves (called

2Suffice it to say that half a century later, Einstein would base his General Relativity
Theory on Riemann’s work: the mathematical content of Einstein’s theory is essentially
present in Riemann’s approach to geometry. Here, the “perfection” aspect has more the
flavor of a way to construct many possible geometries, one for each “Riemann metric”
—one for each way to “twist” space, so to speak— and a global treatment of all of these
geometries (and moreover, mathematical ways of classifying and comparing them).
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more generally “varieties” by mathematicians) by putting all the weight of
the analysis into one single aspect (localisation) of the space and then find-
ing a system for placing these localisations in a coherent way. By doing this,
Grothendieck creates a version of “space” (called affine scheme) that em-
bodies two movements: first, the localisation (and the possibility of treating
only one aspect of the space) and second, the coherence. This highlights yet
a different aspect of logical “perfection”: the possibility of regarding space
as a coherent way of pasting localised versions of itself.

What is new in the approach presented here is that we claim the existence
of a relevant rigorous mathematical concept which allowed an amazingly deep
theory, and has led to a new understanding of a number of specific structures
central to modern mathematics. This rigorous concept is defined within the
discipline called model theory, a subdiscipline of mathematical logic, which
deals with formal languages and their semantics. One can confidently claim
that the central concept of present-day model theory is that of stability of
formal theories and one key notion of stability theory (from which it started
in the 1960s) is that of uncountably categorical theories. Through the
efforts of many people, and most prominently by contributions of S. Shelah
(see [7]), we now have a rather comprehensive classification theory which
establishes an effective hierarchy in the “universe” of mathematical structures
(or their theories)3. The hierarchy is effectively based on the complexity of
the system of invariants which ultimately describe a given structure, a model
of a formal theory4. The highest level of the hierarchy corresponds to the
simplest system of invariants. This corresponds, in some sense, to a highest
level of perfection.

The previous emphasis on the stability hierarchy, and in particular the
region near its “top” (uncountably categorical theories) describes a mathe-
matically rigorous (and completely abstract) approach to a notion relevant
to a working definition of logical perfection. We still have to address the
issue of how adequate and useful this notion is, which dividing lines it draws
and which important mathematical structures satisfy the criteria.

3An interesting interactive visualisation of “a map of the universe” can be seen online
at http://www.forkinganddividing.com . Unfortunately, the graphics present it as a flat
landscape although there is a natural feel that the “more stable” structures should be at
higher levels of the landscape.

4Shelah also uses the criteria of whether the given first-order theory has a structure
theorem, that is if the isomorphism types of models of the theory can be classified in terms
of a simple combinatorial structure.

4

http://www.forkinganddividing.com


An interesting observation from the cumulated experience with the study
of the stability hierarchy would establish (very roughly) that the higher a
structure is in the hierarchy, the closer it is to a “centre of mathematical
universe”. We may take this center to be algebraic geometry in the broadest
sense5. In some (limited) sense we may define the most general form of
geometry to be the structures populating the top levels of stability hierarchy6.

2 Logical perfection and the issue of unique-

ness

In the previous section we posited one reason why we may consider cate-
goricity (in uncountable cardinals) as a center of classification theory: the
observation that many “central mathematical structures” (those from alge-
braic geometry or those corresponding to linear phenomena) seem to hover
close to that region7.

The notion of categoricity concretises the meaning of uniqueness. One
says that a collection of statements in a formal language (set of axioms) is
categorical if it has just one model, up to isomorphism. This expression “up
to isomorphism” means that we do not want to distinguish two structures if
they differ only by the way their elements are presented.

The choice of the formal language is very essential. Usually it is meant to

5Definining exactly what algebraic geometry “in the broadest sense” means is not
immediate, but we may take Grothendieck’s ideas as the main guide.

6Working on this presumption one arrives at a meaningful notion of non-classical geo-
metric spaces (see [1], [13], [15] and the discussion in section 3 ) which in a more conven-
tional mathematical setting are treated via the formalism of non-commutative (or quan-
tum) geometry. The latter approach is essentially a syntactic algebraic analysis avoiding
geometric semantics.

7There are important exceptions to this reason. The first one is obvious: real numbers
are far from being categorical yet are also clearly central mathematical structures in many
senses. However, aside from the infinite order that is the reason for their non-categoricity,
the exhibit a rather simple structure of definable sets : each one of them is really a finite
union of intervals. This notion, called o-minimality, provides reasons to place them in a
region where some of the good properties of uncountably categorical structures still work,
albeit in a different way. The role of interactions between complex analysis and real anal-
ysis is mimicked by this correspondence. The second exception is subtler: classification
theory provides many other regions that, while not corresponding to the “supremely per-
fect” uncountably categorical region, they exhibit very strong regularity and smoothness
properties.
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be a first-order language, that is one which allows only finite length formulas
and quantifiers “for all” and “there exists” which refer to elements of the
structure in question (but not to relations or functions). However, as the
research in the last three decades has shown, much of what will be said
below about categoricity in the first-order context holds in a more general
setting.

The notion of categoricity has existed for as long as logic has been for-
malised. But in the context of first order languages one realises very quickly,
from basic facts of the theory, that the above absolute categoricity can only
hold for descriptions of finite structures. For infinite structures M it is pos-
sible to have uniqueness in some cases if we add to the first order description
the (non-first-order) statement fixing the cardinality κ of the structure M.
This relative categoricity is called categoricity in cardinality (in power)
κ or κ-categoricity.

One has to distinguish two types of cardinalities in the context of cat-
egoricity, namely, uncountable (large) and countable (the minimal infinite)
categoricity. We are interested in uncountable categorically describable struc-
tures which entails that the structure is much bigger than the size of its de-
scription. A remarkable fact was proved by Michael Morley in 1964, namely,
that categoricity in one uncountable cardinality implies the categoricity in
all uncountable cardinalities: the actual value of the uncountable cardinal is
irrelevant8.

The study of this kind of structures has been in the focus of research in
model theory for at least 60 last years. The amazing conclusion derived from
the research is that among the huge diversity of mathematical structures
there are very few which satisfy the (slightly narrower) definition of cate-
goricity, and those can be classified. These certainly seem to corresponding
to an ideal of logical perfection, in the following sense: categorical structures
M determine a first order theory Th(M) (the set of all sentences that are true
in M) and then comes the reason why we call them “logically perfect”: all

8This is in sharp contrast with countable categoricity. Countably categorical struc-
tures might also in some sense be candidates to a kind of perfection, probably - but all
the geometric features of uncountably categorical structures are lost in that case. This
dependence on the cardinality might be regarded as non-logical in some sense, but the
case of uncountable categoricity has strong logical properties as well as strong geometric
properties.
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other structures that satisfy the theory Th(M) and are of the same
cardinality as M are isomorphic to M . In other words, uncountably
categorical structures are inextricably linked to their logical description; the
description T = Th(M) completely determines the structure M (with the
usual caveat of “up to isomorphism” and because of limitations in the ex-
pressive power of first order logic9 provided also one considers only structure
of the same cardinality as M).

It is not that surprising that a remarkable example of such theory is the
theory of the field of complex numbers C in the language based on algebraic
operations + and ×. Note that this is the language where algebraic geometry
is naturally done10 but we can not, e.g. distinguish the real part of a complex
number, so we can not speak about the real numbers when working over C.
Recall that the theory of the field R of real numbers is not categorical11.

Complex numbers are present everywhere in mathematics as are the re-
als. However, there is a significant difference in the theories and in fact
complex geometry and the geometry of real manifolds are two different spe-
cialisations within mathematics. Classification theory detects the difference
and following the above logic in effect claims a certain “priority” of complex
geometry.

Of course, for a mathematician the choice of an area of research is a
personal matter and is usually made on either historic or aesthetic grounds.
Both complex and real geometry are equally respected fields of mathematical
research although from our point of view the first is fundamental while the
second is auxiliary. We stress again the fact that it was Bernhard Riemann
who first understood how real and complex geometries interact with one
another and how the study to the latter introduces a whole new range of
powerful methods of algebraic geometry into the field.

Different criteria work in the studies of real world. Here the wrong choice
of mathematical setting can have adverse effect on the understanding of real-
ity. The mathematical model of Newtonian physics was based on real analytic
geometry. This tradition continued into the new physics with the model en-
riched by more and more uses of complex numbers, seen rather as convenient
auxiliary tools. One of the first who pointed to the importance of reversing

9Namely, the Löwenheim-Skolem theorem.
10In algebraic geometry classical objects are solution sets of algebraic expressions, that

is, polynomials written with + and ·

11And is not even stable!
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this perspective was Roger Penrose in his 1978 address at the International
Congress of Mathematicians under the title “The complex geometry of the
natural world”, [8]. In more recent decades, with the arrival of string theory,
the priority or at least the centrality of complex geometry is undeniable.

To summarise the logicality of our notion of perfection: we started with
various notions of perfection as we did in Section 1, coming from differing
examples in the history of mathematics but then in this section we narrowed
our focus to the notion of uniqueness and its logical expression, (uncountable)
categoricity. Then we remarked that a whole classification theory that
encompasses all first order theories12 on the one hand grew up out of the
attempts to prove the Morley theorem and its generalisations and on the
other hand ended up providing ways of callibrating exactly how far from
categoricity one is, in terms of smoothness/regularity properties that slowly
vanish as we go further and further away from categoricity. It is in this
very sense that categoricity has been playing the role of a logical form of
perfection. A posteriori we realise that a major part (although not all) of
central mathematics actually happens to be one of the theories that are
uncountably categorical.

3 Logically perfect structures: the role of ge-

ometry

Perhaps the most remarkable feature of model-theoretic classification theory
is that it exposes a geometric nature of some “perfect” structures. The
geometric features of those structures arise from their logical definition, albeit
in a highly non-trivial and initially unforeseen way. These were discovered
in the course of proving the original ground-breaking categoricity theorem of
Michael Morley (see previous section) as the key technical instruments of the
proof: Morley rank, homogeneity and, added in later versions of the proof,
dimension (Baldwin and Lachlan), and associated combinatorial geometries
(Marsh, Zilber). It took a while to realise the geometric character of the
technical definitions and to develop a new geometric intuition around the
notions. In particular, Morley rank is a very good analogue of dimension in
algebraic and analytic geometry and thus we can think of “curves”, “surfaces”
and so on in the very general context of categorical and even stable theories.

12and in more recent decades much more
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This stage of the theory is summarised in the monograph [6] by A. Pillay.
In the 1980s the third author formulated a Trichotomy Conjecture (see [11])

which, based on the above intuition, suggested that any uncountably cate-
gorical structure is “reducible” to either an object of algebraic geometry, or
linear algebra, or to a simple combinatorial structure. Although in many
special classes the conjecture has been confirmed, the general case was re-
futed by Ehud Hrushovski who found remarkable counter-examples opening
fascinating new perspectives on the nature of model theory (its interactions
with geometry) and its links with the analytic world.

Around the same time, a way to fix the Trichotomy conjecture was found.
This required narrowing the class of structures subject to the conjecture —in
some sense, this amounted to refining the notion of logical perfection. This
was done by being more careful in choosing the logic in question. Namely,
our logical language must be able to distinguish positively formulated state-
ments from their negations. The axioms of a good (perfect) theory must be
“equational” just like laws of physics and objects of geometry are given by
equations (and never by negating equations). And this is already the princi-
ple on which algebraic geometry is built on! It studies curves, surfaces, shapes
given as solution sets for systems of algebraic equations. Algebraic geometry
treats such sets as closed in the Zariski topology. The corresponding gener-
alisation of this notion in the context of categorical and stable structures led
to the notion of a Zariski structure (or Zariski geometry) introduced by
Hrushovski and the third author.

This improvement in the notion led to a desired Classification Theorem
(Hrushovski, Zilber 1993, see [12]):

The class of Zariski geometries satisfies the Trichotomy Principle and
therefore Zariski geometries are reducible to13 classical structures such as
the field of complex numbers and vector spaces.

13Here “reducible to” can be taken in a first reading as a technical nuisance not requiring
much explanation. The typical example of Zariski geometry is a (complex) algebraic
variety (glued from affine charts) with possibly a vector bundle over it, a description of
which can require quite a lot of technical detail. Such a description eventually reduces
to the structure of the complex field itself. However, the constructions described by the
theorem can go beyond the technicalities of this example, so beyond algebraic and complex
geometry. Ten years after the classification theorem, a closer analysis of what “reducible
to” could mean led to the discovery that a huge source of new Zariski structures is non-
commutative (or quantum) algebraic geometry, see [13].
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It is hard to describe what exactly the subject of geometry as practised by
mathematicians is, but non-commutative geometry is a much bigger mystery.
It is best identified as the study of algebraic structures, non-commutative co-
ordinate rings, that supposedly correspond to hypothetical geometric spaces
which are not necessarily visualisable. Historically, these were physicists who,
starting from the famous “magic paper” of Heisenberg of 1925 [3], have given
up to the attempts to describe the physics of micro-world in classical terms
and instead used a purely formal algebraic calculus (algebraic quantum me-
chanics) to successfully explain the behaviour of elementary particles. One
can say that the physics of the micro-world lives in an unusual, previously
unknown, geometric space which requires a non-commutative algebra to de-
scribe. Paralleling this the very centre of the logical universe is occupied by
structures which mathematically stem from the same source.

The fusion of geometry with other branches of mathematics, for instance,
number theory and representation theory, was one of the biggest programs
in the mathematics of the 20th century14. We would like to believe that the
fusion of logic (model theory) with other branches of mathematics is one of
the biggest and ambitious programs of the mathematical research for the 21st
century. In particular, the “new geometry” arising from model theoretical
considerations has the potential to become an important area of research in
mathematics and beyond. And the study of logically perfect structures gives
a crucial insight.

Summarizing, the search of logically perfect structures leads to consider
geometric/topological ingredients in logic which has as a consequence that a
refinement of the idea of logical perfection is obtained. During this process
the idea of Zariski structures arises from purely logical considerations but
with a geometrical flavor and motivation. So far, our discussion has not left
the realm of mathematics but as our previous discussions (and the title of the
essay suggests) we want to go beyond mathematics, entering the “real world”.
A question arises: Are logically perfect structures helpful for understanding
the “real world”? We answer this question in the positive and now provide
some insights for exploring that possibility.

14The figure of Grothendieck was essential in formulating and developing this program
in the broadest generality.
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4 Logical perfection and physics

We now focus on a different kind of problem: programs for new foundations of
quantum gravity, and the issue of tackling an appropriate notion of geometric
space for physics. On the face of it, this problem would seem quite remote
from our notion of logical perfection. There is however a deep link, as we
will describe.

Let us quote again Roger Penrose (his ICM address [8]):

“Even at the most elementary level, there are still severe
conceptual problems in providing a satisfactory interpretation of
quantum mechanical observations in a way compatible with the
tenets of special relativity. And quantum field theory, which rep-
resents the fully special-relativistic version of quantum theory,
though it has had some very remarkable and significant successes,
remains beset with inconsistencies and divergent integrals whose
illeffects have been only partially circumvented. Moreover, the
present status of the unification of general relativity with quan-
tum mechanics remains merely a collection of hopes, ingenious
ideas and massive but inconclusive calculations.
In view of this situation it is perhaps not unreasonable to search
for a different viewpoint concerning the role of geometry in ba-
sic physics. Broadly speaking, ”geometry”, after all, means any
branch of mathematics in which pictorial representations pro-
vide powerful aids to one’s mathematical intuition. It is by no
means necessary that these ”pictures” should refer just to a spatio-
temporal ordering of physical events in the familiar way...”

Penrose continues to discuss structures of complex geometry as new geo-
metric tools in quantum physics. However, today this seems to be far from
enough. From a similar reasoning the physicist C. Isham and the philosopher
of physics J. Butterfield reached a bold program for building a new founda-
tion of quantum gravity physics, based on Grothendieck toposes as the most
general form of geometric space (see [5]).

Naturally, Isham-Butterfield is not the only program to tackle the prob-
lem (see e,g, the non-commutative geometry approach [2] by A. Connes and
M. Marcolli, which however does not reveal a geometric space as such) but
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it seems to be the most ambitious and general15.
A project, which may be seen as similar in spirit is suggested and started

in [15] and in shorter form in [1]. Like other such programs the key is the
respective notion of the geometric space for physics. Our suggestion is based
on the philosophy of logical perfection; after all it is reasonable to expect
that the geometric structure of the universe should be as perfect as it goes.
Correspondingly, the geometric space of quantum mechanics as suggested in
[15] emerges from a Zariski structure (see page 9) or rather, from a sheaf of
Zariski structures16.

It is equally important to note that the logical analysis inherent in our
method clarifies the correspondence between (possibly noncommutative) al-
gebras as they emerge in physics and geometry and the respective geometric
spaces. In essence the algebras present us with the syntactic tools allow-
ing to check in calculations what can be seen graphically and dealt with
geometrically. The geometric space is thus a semantic interpretation of the
syntactically given data. In classical cases, such as commutative finitely
generated algebras, this corresponds to the well-known duality at the foun-
dation of algebraic geometry. For commutative C∗-algebras we have the
Gel’fand-Naimark duality linking those to locally compact Hausdorff spaces.
In non-commutative cases the situation becomes much more complex but
model theory is in the best position to deal with the challenge.

Another, different, line of collusion between categoricity and physics has
been explored by D. Howard and I. Toader in the past two decades (see [4, 9]).
Their take on categoricity is more akin to the original Veblen formulation
than to the role categoricity has acquired in contemporary model theory.

15Maybe too general as to the best of our knowledge there is no interesting calculation
produced out of it.

16The following three facts clarify the connection between Zariski structures and the
Isham-Butterfield topos:

1. The sheaf of Zariski structures, the model of quantum mechanics, can be interpreted
as a concrete realisation of an Isham-Butterfield topos.

2. The construction essentially generalises [13] building a Zariski structure correspond-
ing to the non-commutative algebra represented by the canonical commutation re-
lation QP− PQ = i~.

3. The analysis of the language and definability issues in the structure draws a clear
line between notions which are observable (in the sense of physics) and which are
not.
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We finish this section with the conclusion that the principle of logical
perfection, as unconventional as it may sound to some, does not disagree
with other modern approaches to the mathematical foundations of physics.

5 Concluding remarks

Our concept of logically perfect structures emerges as the result of a fifty
year classification project in logic. The theory is deep and technical but the
concept can be expressed in simple intuitive terms.

The defining property of logical perfection is uniqueness, or technically
uncountable categoricity. This property implies certain internal harmony:
homogeneity and the presence of a notion of dimension. This harmony is a
manifestation of a certain kind of geometricity, which itself is a consequence of
the infusion of geometric/topological ingredients in logic that brings forth the
flexibility and generality of logically perfect structures. Finally, since logical
structures are at the top of the classification hierarchy, they are suitable as
background structures for physics and represent a good idea of geometric
space in a very broad sense.

An additional feature to support our notion of logically perfect struc-
tures is the “filtration” of perfection provided by classification theory. As
mentioned above, classification theory not only places all first order theories
in a sort of map with respect to categorical theories but provides a kind of
measure of going away from perfection. It provides technical ways to mea-
sure, for arbitrary theories, what features of perfection might have been lost
and which ones remain. The second author’s forthcoming interview with Sa-
haron Shelah explores further several peculiarities of this connection[10].

The features described above (uniqueness, geometricity, representability)
have concrete mathematical formulations, as we have briefly mentioned. In
addition, they help us to understand the role of those structures in the wider
program of studying the syntax/semantics duality. As we have tried to show,
logically perfect structures can be seen as located in the geometric/semantical
side of the mentioned duality, giving a new approach to the notion of noncom-
mutative (or quantum) geometric space, which traditionally has been treated
by means of syntactic/algebraic tools. Pursuing this program of interpreting
the duality between algebraic and geometric objects as an extension of the
duality between syntax and semantics appears to us as one of the most in-
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teresting lines of research for the future, not only in mathematics. The idea
of representing one object by another (in this case its dual) can certainly be
extrapolated beyond mathematics. This idea deserves more investigation.
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