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Abstract

We investigate the perturbative renormalisation of deformed conformal field
theories from the Hamiltonian perspective. We discuss the relation with conformal
perturbation theory, to which we provide an explicit match up to third order in the
coupling, and show how second-order anomalous dimensions in the Wilson-Fisher
fixed points are straightforwardly computed in the Hamiltonian framework. The
second part of the paper focuses on the cutoff employed in the truncated conformal
space approach of Yurov and Zamolodchikov [1]. We discuss the appearance of
non-covariant and non-local counterterms to second order in the cutoff, which we
concretise in the φ4 theories, and find a smooth cutoff to deal with subleading
oscillations.
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1 Introduction

In this work, we address several questions about perturbative renormalisation from the
Hamiltonian perspective. Our main interest in this method is its importance for the
truncated conformal space approach (TCSA) of Yurov and Zamolodchikov [1]. We will
illustrate our general results with the φ4 theory in d dimensions.

The TCSA is the Rayleigh-Ritz method adapted to quantum field theory. The main
idea is to truncate the discrete Hilbert space of a field theory on a compact spatial
manifold to a certain finite-dimensional vector space. This in particular truncates the
Hamiltonian to a finite-dimensional matrix, which one then proceeds to diagonalize nu-
merically to obtain an estimate of the field theory spectrum. In practical computations
one is confronted with an exponential growth in the number of states which necessitates
improvements to this ‘bare’ procedure in order to obtain meaningful results. One such
an improvement is to add counterterms to the Hamiltonian in order to approximately
take into account the effect of states above the cutoff. This idea was introduced first
in [2] and implemented and refined in several other works: see [3, 4, 5, 6, 7] and more
recently [8] (which includes a review of earlier works) and [9, 10, 11, 12, 13]; a recent
review is [14].

Our first question concerns the connection between the anomalous dimensions of
composite operators in the plane, and the eigenvalues of the Hamiltonian on the cylinder.
For conformal field theories (CFTs), the state-operator correspondence dictates that
these ought to be completely equivalent, and whilst this is easily verified at first order
in perturbation theory (see e.g. [15, Chapter 5]), it becomes less straightforward at the
next order. Here, we find the explicit relation up to third order using an argument which
is easily extendable to higher orders. In Section 2, we explain that the precise connection
is provided by using conformal perturbation theory on the plane, rather than the usual
Feynman diagrams. In Section 4, we will use these newfound equations to compute the
anomalous dimensions at the Wilson-Fisher fixed points to second order in the epsilon
expansion. This computation is remarkably straightforward and avoids the evaluation
of (two-loop) Feynman diagrams. It would be interesting to investigate if this relative
simplicity persists at higher orders and/or for other classes of theories.

Our second question is ‘precisely what is allowed in the counterterm action?’. As
usual, this is intricately related to the nature of the cutoff and the symmetries that it
preserves. Implementing a TCSA cutoff is a non-local operation, and correspondingly
the counterterm action could feature non-local terms as well [8]. Clearly, an arbitrarily
non-local counterterm action could be disastrous for the viability of the Hamiltonian
truncation method, but fortunately the non-localities are suppressed by powers of the
cutoff. In Section 3, we use crossing symmetry to analyse the structure of the leading-
order divergence. At subleading orders we cannot use any general theorems, but for the
φ4 theory we can make progress by analysing a particular summand; this we do in detail
in Section 4. This allows us to demonstrate the necessity of non-local counterterms at
second order, as well as tensorial counterterms that in principle could break Lorentz
invariance.

Lastly, with an eye towards numerical work we consider the perturbative determi-
nation of the coefficients of the counterterm action for the φ4 theory at second order.
When a counterterm is marginally relevant, this may be of limited relevance for practical
numerical computations because in such cases the counterterms receive corrections at
all orders in perturbation theory and numerical tuning will be required to obtain finite
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answers in the large cutoff limit. However, when the counterterms are strictly relevant,
they receive only a finite number of pertubative contributions and the determination of
these coefficients is directly useful for numerical studies. We provide precise expressions
in Section 4.2.3, including non-divergent subleading terms which can be used to improve
the Hamiltonian in numerical studies.

2 Anomalous Dimensions from Infinite Matrix Di-

agonalisation

In this section we explain how the perturbative computation of the anomalous dimensions
of composite operators is related to the diagonalisation of the infinite, tree-level matrix
of operator product expansion (OPE) coefficients. We start with a CFT in d dimensions
and deform it by a relevant operator that we call σ(x), with dimension ∆σ. We work
perturbatively in the corresponding coupling constant g.

2.1 The Hamiltonian Perspective

The Hamiltonian procedure starts by putting the d-dimensional UV CFT on the cylinder
R×Sd−1

R where, by virtue of the state-operator correspondence, the Hamiltonian is simply
the dilatation operator:

HCFT|Oi〉 =
∆i

R
|Oi〉 . (2.1)

where R is the cylinder radius and we label states by their corresponding local operator
Oi(x). A relevant deformation of the CFT by an operator σ with coupling g modifies
the Hamiltonian to

H = HCFT +Rd−1

∫
Sd−1

dn g σ(τ,n) +Hct, (2.2)

where n is a unit vector in Rd which parametrises Sd−1. We will be consistent in writing
operators in the cylinder picture with two arguments (a ‘time’ component and a unit
vector in Rd) whereas flat space operators will be given one argument (a vector in Rd).
Hct is the counterterm Hamiltonian, which we assume starts at order g2.

We can compute the matrix elements of the Hamiltonian in the UV basis by trans-
forming to flat space and using the standard CFT OPE, which takes the form

σ(x)Oj(0) =
∑
k

C k
σj

|x|∆σ+∆jk
Ok(0) + . . . (2.3)

with the dots here representing non-scalar operators (and so k may or may not be
primary). Also, we define ∆ij := ∆i −∆j. Then, in terms of

V j
i := SdR

d−∆σgC j
σi (2.4)

we find that

H|Oi〉 =
1

R

(
∆iδ

j
i + V j

i +W j
i

)
|Oj〉 (2.5)

where R−1W j
i are the matrix elements of Hct in the CFT basis. Here, Sd := 2πd/2/Γ(d/2)

is the volume of the unit radius sphere embedded in d dimensions.
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In order to find the spectum of the deformed theory, we need to diagonalise the
Hamiltonian matrix. To second order in the coupling g, we find the eigenvalues

Ei =
1

R

(
∆i + V i

i +
∑
j 6=i

V j
i V

i
j

∆ij

+W i
i + . . .

)
(2.6)

where the index i is not summed over and we only keep the second-order term in W i
i . For

this equation to be valid we need to request that V j
i is diagonal in the finite-dimensional

subspace of operators with the same ∆i, and that any degeneracies are broken by the
second-order correction. If these conditions are not met, we need to resort to the usual
methods of degenerate perturbation theory to find the correct eigenvalues.

Since the energies are supposed to be finite, the role of the counterterms at second
order is to make finite the expression

∑
k 6=i

V k
i V

j
k

∆ik

+W j
i (2.7)

for i = j. Notice that it is not necessary for the counterterms to also make this expression
finite when i 6= j – we will comment further on this below. For later reference, we note
that the third-order corrections also take a well-known form and are given by

1

R

(∑
k 6=i

∑
j 6=i

V j
i V

k
j V i

k

∆ij∆ik

−
∑
j 6=i

V i
i V

j
i V

i
j

∆2
ij

+
∑
k 6=i

W k
i V

i
k

∆ik

+
∑
j 6=i

V j
i W

i
j

∆ij

+W i
i

)
(2.8)

where each instance of the counterterm Hamiltonian W is taken at the appropriate order.

2.2 The Lagrangian Perspective

In the Lagrangian approach, or more precisely in conformal perturbation theory, we
compute the perturbative renormalisation ofOi by introducing the renormalised operator

[O]i(x) := Z j
i Oj(x) (2.9)

and perturbatively evaluating correlation functions of the form

Gi := 〈. . . [O]i(0)〉g := 〈. . . exp

(
−
∫
ddx (g σ(x) + Lct(x))

)
Z j
i Oj(0)〉 (2.10)

now evaluated on flatRd. Here the ellipses signify a string of operators inserted away from
the origin and the expectation values on the right-hand side are those of the undeformed
theory. Our aim is to compute the matrix of anomalous dimensions

Γ j
i := − µ ∂

∂µ
logZ j

i

∣∣∣∣
gB

(2.11)

where the partial derivative is taken with the bare (dimensionful) coupling gB held fixed.
We assume that the counterterms start at O(g2) and we work to second order in g. We
shall also assume that the dimension ∆σ of the perturbing operator is nearly marginal,

∆σ = d− ε (2.12)
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and that ε is small, which essentially amounts to working in dimensional regularisation.
As usual, we will ignore power law divergences and focus on the poles in ε.

The expansions

Z j
i = δji + gZ

(1)j
i + g2Z

(2)j
i + . . .

Gi = G(0)
i + g G(1)

i + g2 G(2)
i + . . .

Lct = g2L
(2)
ct + . . .

(2.13)

then give

G(0)
i = 〈. . .Oi(0)〉

G(1)
i = 〈. . .

(
−
∫
ddx σ(x)δji + Z

(1)j
i

)
Oj(0)〉

G(2)
i = 〈. . .

(1

2

∫
ddx

∫
ddy σ(x)σ(y)δji −

∫
ddxL

(2)
ct (x)δji

−
∫
ddx σ(x)Z

(1)j
i + Z

(2)j
i

)
Oj(0)〉

(2.14)

In calculating Z j
i we may focus on some on some neighbourhood of Oi, where the

pertinent divergences appear. Therefore we limit all spatial integrals to a spherical
region of radius R, away from the other operator insertions. For definiteness, one may
think of this procedure as the perturbative computation of one-point functions on the
ball given by |x| < R, but in practice such a physical picture is not important for the
computations of the renormalisation constants.

Upon substitution of the OPE (Eq. (2.3) into Eq. (2.14)), we find divergences which
we can make finite using dimensional regularisation. Collecting the first-order terms, we
find that

Z
(1)j
i −

∫
|x|<R

ddx
C j
σi

|x|∆σ+∆ij
=

Z
(1)j
i − SdC

j
σi R

ε−∆ij

ε−∆ij

(2.15)

should be finite. We see that there are divergences only when ∆ij = O(ε). What’s more,
since R is a scale which is set far away from the operator insertion, locality dictates
that Z j

i cannot depend on R. We therefore need to introduce a renormalisation scale µ.
Altogether, we therefore set

Z
(1)j
i =


SdC

j
σi µ

−ε+∆ij

ε−∆ij

if ∆ij = O(ε)

0 otherwise

(2.16)

Now we need a little discussion about C j
σi . As observed in [8], there is a clear problem

if ∆ij = ε, since in that case the integral would not be rendered finite by dimensional
regularisation. Therefore C j

σi must vanish precisely for these cases, at least for every
theory that is made finite by dimensional regularisation. (This was also explicitly shown
to be the case in the φ4 theories in [8].) In fact, if ∆ij = κijε with κij finite as d → 4,
then C j

σi = 0 unless κij = 0. Furthermore, since operators are orthogonal unless ∆ij = 0
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for all d,1 it follows that we can pick an orthogonal basis in the space of operators where
both the tree-level scaling dimensions are diagonalised for all d and also C j

σi is diagonal
on every finite-dimensional subspace of operators whose scaling dimensions coincide for
d→ 4. (Of course, outside of this subspace it can have all kinds of off-diagonal terms.)
In this basis, we find the simpler structure

Z
(1)j
i =


SdC

i
σi µ

−ε

ε
if Oi = Oj

0 otherwise
(2.17)

and, again in this basis, the leading order anomalous dimensions are then simply

Γ i
i = gµ−εSdC

i
σi +O(g2) (2.18)

where we used that gB = g+O(g2). This expression agrees precisely with the Hamiltonian
picture discussed previously, which is Eq. (2.6) to first order in the coupling. This first-
order computation can also be found in the textbook [15].

At second order, we find some new structures. For now, we will assume that the
counterterm Lagrangian is given by a simple renormalisation of the coupling,

g2L
(2)
ct = g2µ−εSdX

σσ(x) (2.19)

with the dimensionless coefficient Xσ tuned to make the second-order results finite. (In
subsequent sections, we will allow for other operators to appear in the counterterm
action.) For future reference, we mention that with this counterterm the bare coupling
is

gB(g, µ) = g + g2µ−εSdX
σ +O(g3) . (2.20)

Using then that 1
2

∫
ddx

∫
ddy σ(x)σ(y) =

∫
ddx

∫
|y|<|x| d

dy σ(x)σ(y) to make sure the

OPE expansion is valid, we find

G(2)
i =

(C k
σi C

j
σk S

2
dR

2ε−∆ij

(ε−∆ik)(2ε−∆ij)
− Z

(1)k
i C j

σk SdR
ε−∆kj

ε−∆kj

+ Z
(2)j
i − XσC j

σi S
2
dµ
−εRε−∆ij

(ε−∆ij)

)
〈. . .Oj(0)〉

(2.21)

and therefore the term in parentheses should be finite. We see that possible divergences
can arise through the sum over intermediate operators k, but also through small denom-
inators, for example when ∆ij = O(ε). The latter divergences are cancelled by setting

Z
(2)j
i ={
−C k

σi C
j

σk S2
dµ
−2ε+∆ij

(ε−∆ik)(2ε−∆ij)
+

Z
(1)k
i C j

σk Sdµ
−ε+∆kj

ε−∆kj
+

XσC j
σi S

2
dµ
−2ε+∆ij

(ε−∆ij)
if ∆ij = O(ε)

0 otherwise

(2.22)

This cancellation is not entirely obvious since there are double poles, but upon substi-
tuting the lower-order result from Eq. (2.16), one finds that all of the divergences are

1To clarify: here we use the fact that we can track operators Oi in the free theory whilst varying d,
so their dimensions ∆i then become simple functions of d. The claimed orthogonality then follows from
the φ-type selection rule in [16].
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indeed removed. Let us now choose the aforementioned basis of operators, where we find
the simpler expression:

Z
(2)j
i ={
S2
dµ
−2ε

ε

(
−C k

σi C
i

σk

2(ε−∆ik)
+

C i
σi C

i
σi

ε
+XσC i

σi

)
if Oi = Oj

0 otherwise

(2.23)

Using this expression to compute the matrix of anomalous dimensions, we find that the
double poles cancel precisely and that

Γ i
i = V i

i +
∑
k 6=i

V k
i V

i
k

∆ik − ε
+W i

i +O(g3) (2.24)

where now
V j
i = Sdµ

−εgC j
σi , W i

i = S2
dµ
−2εXσC i

σi . (2.25)

At an IR fixed point the Γ i
i will be the anomalous dimensions of the composite operators,

so the coefficient Xσ should be chosen such that these are finite for all i. That this can
be done at all is of course a consequence of perturbative renormalisability.

The third-order correction can be found in the same manner. We will not spell out
the details of the tedious but straightforward computation and instead quote the result:( ∑

k 6=i,m 6=i

V k
i V

m
k V i

m

(∆ik − ε)(∆im − 2ε)
− V i

i

∑
k 6=i

V k
i V

i
k

(∆ik − ε)(∆ik − 2ε)
+
∑
k 6=i

(W k
i V

i
k + V k

i W
i

k )

∆ik − ε
+W i

i

)
(2.26)

where we work in the basis discussed above and the third-order counterterm action is
assumed to take the form

g2L
(3)
ct = g3µ−2εS2

dY
σσ(x) (2.27)

for some (divergent) c-number Y σ.

From the renormalisation of composite operators, we can work out the beta function
to one higher order using a familiar trick. Consider

〈. . . exp

(
−gB(g, µ)

∫
ddx σ(x)

)
〉 (2.28)

away from any operator insertions, and with the bare coupling gB(g, µ) = g+g2µ−εSdX
σ+

g3µ−2εS2
dY

σ + O(g4), which ensures that the result is finite. Taking a derivative with
respect to g, we find an extra insertion of σ. This is still finite, so we conclude that

〈. . . exp

(
−gB(g)

∫
ddx σ(x)

)
∂gB
∂g

σ(0)〉 (2.29)

is also finite. But then we can choose

Z σ
σ =

∂gB
∂g

. (2.30)

for the renormalisation of the operator σ(x). Using that

β(g) := µ
∂g

∂µ

∣∣∣∣
gB

(2.31)
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and doing a little rewriting, we find the familiar relation between the anomalous dimen-
sion and the derivative of the beta function:

∂β

∂g
= Γ σ

σ (2.32)

Below, we will use this to find the beta function at order g3 from the renormalisation
factor Z σ

σ at order g2.

2.3 Comparing the Hamiltonian and Lagrangian Approaches

We have now an abstract way to compute two sets of observables to third order in the
deforming operator g: the spectrum of the theory on the cylinder expressed in Eq. (2.6)
and Eq. (2.8), and the matrix of anomalous dimensions in Eq. (2.24) and Eq. (2.26).
Both expressions are similar and become equivalent if we ignore the additional ε in the
denominators and identify R and µ−1.2

Altogether, we can view the perturbative computation of anomalous dimensions in
a new light: not as the diagonalisation of the finite-dimensional matrices Γ j

i whose
elements we need to compute order by order in perturbation theory, but rather as the
perturbative diagonalisation of the infinite-dimensional matrix V j

i whose elements are
just those of the unperturbed theory.

We should stress that the two pictures do not always have to agree. In fact, they
agree if two conditions are met. First of all, the perturbing operator should be marginal
or marginally (ir)relevant. Indeed, if this condition is not met there are (generically) no
logarithmic divergences, there is no renormalisation scale µ, and the matrix of anomalous
dimensions vanishes. In our computations, this shows up because we need poles in ε in
the Lagrangian computation but not in the Hamiltonian one. Secondly, the theory should
remain conformal or flow to a nearby IR (or UV) fixed point. Only in this case can we
use the Callan-Symanzik equation to relate Γ j

i to scheme-independent observables like
the anomalous dimensions of local operators, and of course the state-operator map to
relate these scaling dimension to the spectrum of the theory on the cylinder.

Both of the conditions discussed above are met in Wilson-Fisher type fixed points,
to which we will turn our attention in Section 4. This will also allow us to investigate
the counterterm action W j

i in more detail. To do so we however first need to improve
our understanding of the generally infinite sum in Eq. (2.6), which we will discuss in the
next section.

3 Divergences with the TCSA cutoff

In a nutshell, the TCSA procedure of Yurov and Zamolodchikov [1] amounts to truncating
the Hamiltonian matrix by ignoring all states (in the UV basis) with dimensions larger
than a cutoff value ∆max. The resulting matrix can then be diagonalised numerically,
which for sufficiently small couplings (made dimensionless by using powers of R) ought
to give an accurate representation of the spectrum of the deformed theory.

2Ignoring the ε factors in the denominators is not obviously allowed, since the whole sum is divergent
and, after defining it through analytic continuation, has a pole at ε = 0. Nevertheless, we find in the
next subsection that the finite part is unmodified by the presence of the additional ε in the denominator.
Similar cancellations are presumably required for the Hamiltonian and Lagrangian perspectives to agree
also at higher orders, but we have not investigated this in detail.
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Oi

σ(y)

σ(x)
P =

∑
∆n≤∆max

|On〉〈On|

Figure 1: A Hilbert space projector P is placed between the two σ operators, removing
intermediate states of weight greater than ∆max and regulating contact divergences.

On the cylinder R×Sd−1 this truncation procedure preserves the rotations SO(d) and
time translations R, so in principle the regularisation prescription does not break more
symmetries than the background geometry, which itself serves as an infrared regulator.
The counterterms that we find will therefore preserve these symmetries, but a priori
one may not recover a full Lorentz symmetry as we send the sphere radius to infinity.
Another issue is that the truncation of the Hilbert space breaks locality on the sphere, so
locality of the counterterm action is no longer guaranteed. The two issues of non-Lorentz
invariant counterterms and non-local counterterms were raised before in [8].

In the radial quantisation picture, we can mimic the cutoff in the TCSA by sand-
wiching the insertions of the perturbing operator between a Hilbert space projector

P :=
∑

∆n≤∆max

|On〉〈On| (3.1)

which removes intermediate states of weight greater than ∆max. Notice that this amounts
to a cutoff in energies with associated scale Λ = ∆max/R, with R the radius of the sphere
where we insert P . This cutoff breaks locality on these spatial spheres (but not in the
radial ‘time’ direction), as well as covariance under translations on the plane.

To take the new cutoff into account we need to modify the analysis in the preceding
section as follows. First of all, we need to more carefully keep track of power law
divergences and not just the poles as ε → 0 in dimensional regularisation. This implies
that, compared to Section 2, we need to modify the counterterm action to

g2L
(2)
ct (x) = g2µ−εSdX

kOk(x) + g2µ−εSdX
σσ(x) (3.2)

with some operators Ok(x) and coefficients Xk and Xσ. We expect Lct to include ∆max

divergent counterterms defined to cancel divergences arising from the hard truncation of
the Hilbert space, as well as 1/ε divergent counterterms associated with the same coupling
renormalisation. In terms of the double limit, we should technically take ∆max → ∞
with ε finite prior to taking ε→ 0. We will however only analyse the ∆max divergences,
which suffices to get a finite answer at fixed ε, so e.g. at ε = 1 for the φ4 theory in d = 3.3

The coefficients Xk and Xσ are non-trivial functions of the cutoff, and are fixed by
the requirement that physical observables are finite. In the Hamiltonian perspective (to

3Notice that we should also be able to renormalize the second-order divergences for ε < 0 – there is
a suitable counterterm action for the φ4 theory for any d to any finite order in perturbation theory.
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second order) this concretely means that there should be no divergences in

∑
k 6=i

∆k≤∆max

C k
i C

i
k

∆ik

+XkC i
ki +XσC i

σi (3.3)

as we send ∆max →∞. Clearly, in order to determine the counterterms, we need to have
some amount of control over the asymptotics of the sum. We will focus on the behaviour
of the summand as a function of the dimension of the intermediate operator, that is we
will consider the object: ∑

k:∆k=∆

C k
σi C

j
σk (3.4)

as a function of ∆ (and i and j).
In this section, we will review the analysis in [8], which uses crossing symmetry and

a Tauberian theorem to constrain the large ∆ behavior in full generality. In Section 4.2,
we will then apply the results to the free scalar theory, and show that there we can
obtain better results than those rigorously proven by the Tauberian theorem.

3.1 The Tauberian Theorem

In an attempt to estimate the divergences in Eq. (3.3), we introduce the four-point
function studied in [8]

Fji(τ) := eτ(∆σ+∆ij/2)〈Oj(∞)

∫
Sd−1

dn

∫
Sd−1

dn′ σ(eτ/2n)σ(e−τ/2n′)Oi(0)〉 (3.5)

where τ > 0 and O(∞) := lim|x|→∞ |x|2∆OO(x). The exponential pre-factor is pulled
out for later convenience. Evaluating this gives

Fji(τ) = S2
de
τ(d−ε+∆i)

∑
k

e−τ∆kC k
σi Cσkj (3.6)

with Cσkj =
∑

l C
l

σk Glj, where Glj is the Gram matrix (which will drop out from all
our relevant results below). As in Section 2, the sum is over intermediate scalars only,
because of the spherical integrals. We can try to get an idea of the asymptotic behavior
of the sum by using an inverse Laplace transform. For example, if the behaviour near
τ = 0 is of the form

Fji(τ) = cατ
−α(1 +O(τ)) (3.7)

with α > 0, then we would roughly speaking expect that∑
k : ∆k=∆

C k
σi C

∼
σkj

cα∆α−1

Γ(α)
as ∆→∞, (3.8)

simply because ∫ ∞
0

∆α−1e−∆τd∆ = Γ(α)τ−α (3.9)

and the non-analytic behavior in τ originates from the large ∆ part of the integral.
Of course, the preceding claim cannot be exactly true, for the simple reason that the

left-hand side of Eq. (3.8) is not a smooth function of ∆. The precise statement follows
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Oi Oj

σ σ

=

Oi Oj

σ σ

Figure 2: Crossing symmetry allows us to equate fusion channels. This is integral in the
arguments of Section 3 and Section 4 which explain why counterterms are made up from
the local operators in the σ × σ OPE, dressed with dilatation operators.

from the Hardy-Littlewood Tauberian theorem, which states that this holds only in an
aggregrate sense. The version that we will need is the one explained in [17] and proven,

for example, in [18]: take a (positive) measure dµ(∆) such that
∫ b
a
dµ(∆) is finite for

every finite a and b. Now if

F (τ) =

∫ ∞
0

e−τ∆dµ(∆) (3.10)

behaves for small τ as
F (τ) ∼ τ−ρ (3.11)

with ρ > 0, then ∫ ∆max

dµ(∆) ∼ ∆ρ
max

Γ(ρ+ 1)
(3.12)

for large ∆max. Here a ∼ b means that a/b→ 1 in the relevant limit.
Unfortunately, without further assumptions we can say little useful about the sub-

leading terms. For example, if we try to subtract the leading term from dµ(∆), then it
is generally no longer positive and the theorem ceases to apply.

3.2 Using Crossing Symmetry

To estimate the small τ behaviour of Eq. (3.5), we expand in the crossed channel by first
fusing the two σ operators, as indicated in Fig. 2. We then obtain

Fji(τ) =

∫
Sd−1

dn

∫
Sd−1

dn′
∑
k̂

C k̂
σσ Ck̂ij

(n− e−τn′)2∆σ
G

(`k̂)

∆k̂
(∆ij;u, v) (3.13)

= SdSd−1

∑
k̂

∫ π

0

dθ
sin(θ)d−2C k̂

σσ Ck̂ij
(1 + e−2τ − 2e−τ cos θ)d−ε

G
(`k̂)

∆k̂
(∆ij;u, v) (3.14)

with cos(θ) = n · n′ and with

u = (n− e−τn′)2 = 1 + e−2τ − 2e−τ cos θ v = e−2τ . (3.15)

This time, the sum is over all of the primaries in the theory, which we have indicated
with a hatted index k̂. The conformal blocks are fixed by conformal symmetry and
encode the contribution of the descendants. For the decomposition, we set x1 = eτ/2n,
x2 = e−τ/2n′, x3 = 0 and x4 =∞ and we followed the familiar conventions of Dolan and
Osborn [19, 20]. This OPE expansion is not strictly valid across the whole integration
domain because the operator at the origin sits midway between the two σ operators when

12



they are at antipodal points. However, we will only be interested in the non-analytic
part as τ → 0, which comes from the σ OPE region where cos(θ) is close to 1, and in
this region the sum converges.

A conformal block can be expanded [21] as a sum of Gegenbauer polynomials:

G
(l)
∆ (∆ij; z, z̄) = |z|∆

∞∑
n,m=0

cn,m|z|n
m!

(d− 2)m
Cd/2−1
m (cos(arg(z))) (3.16)

The coefficients cn,m depend on ∆ij, l, d and ∆. In Appendix A, we review how to
determine cn,m recursively from the Casimir equation.

The complex cross-ratio in our conventions is given by

z = 1− e−τ+iθ (3.17)

and therefore

|z|2 = u, cos(arg z) =
1 + u− v

2
√
u

=
1− e−τ cos θ√

1 + e−2τ − 2e−τ cos θ
(3.18)

This leads us to define the integrals:

I(m)
α (τ) := SdSd−1

∫ π

0

dθ
sin(θ)d−2

(1 + e−2τ − 2e−τ cos θ)d−ε−α/2
Cd/2−1
m (cos arg z) (3.19)

which have small τ behaviour of the form, for example,

I(0)
α (τ) = τ−(d+1−α−2ε)S2

d (ξ(α) +O(τ))

I(1)
α (τ) = τ−(d+1−α−2ε)S2

d (−(d− 2)ξ(α− 1) +O(τ)) (3.20)

I(2)
α (τ) = τ−(d+1−α−2ε)S2

d

(
(d− 2)(d− α− 2ε)

1 + d− α− 2ε
ξ(α− 2) +O(τ)

)
where we have introduced

ξ(α) :=
Γ(d

2
)Γ(d+1−α

2
− ε)

2
√
πΓ(d− α

2
− ε)

(3.21)

The integral of a conformal block is then an infinite sum of these integrals:4

I(`)
∆ (∆ij; τ) :=

∞∑
n,m=0

cn,m
m!

(d− 2)m
I

(m)
∆+n(τ) (3.22)

and now we can efficiently write

Fji(τ) =
∑
k̂

C k̂
σσ Ck̂ijI

(`k̂)

∆k̂
(∆ij; τ) (3.23)

For concreteness, an integrated scalar block looks like

I(0)
∆ (∆ij; τ) = I

(0)
∆ (τ) +

∆ij + ∆

2(d− 2)
I

(1)
∆+1(τ)

+
(2 + ∆)(∆ij + ∆)(2 + ∆ij + ∆)

4d(d− 2)(1 + ∆)
I

(2)
∆+2(τ)

− (d− 2−∆)(d− 2−∆−∆ij)(∆ij + ∆)

4d(d− 2(1 + ∆))
I

(0)
∆+2(τ) + . . . (3.24)

4In practice we will expand this expression around τ = 0, which means we restrict ourselves to only
the leading terms in this sum. We are therefore not worried about convergence of the sum.
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which we can subsequently expand for small τ using the previous expressions.
The leading term in the σ self-OPE corresponds to the identity operator. Its entire

contribution to Fji(τ) is

Fji(τ) ⊃ C 1
σσ GijI(0)

0 (∆ij; τ) = C 1
σσ GijI

(0)
0 (τ)

= C 1
σσ Gijτ

−(d+1−2ε)S2
dξ(0) (1 +O(τ)) (3.25)

If we set j = i to ensure positivity, we find that the Hardy-Littlewood Tauberian theorem
rigorously applies and therefore (with no sum over i)

∑
k : ∆k≤∆max+d−ε+∆i

C k
σi C

i
σk ∼

C 1
σσ ∆d+1−2ε

max

Γ(d+ 2− 2ε)
(ξ(0) + . . .) (3.26)

where the offset in the sum on the left-hand side (which is actually subleading here)
originates from the shift in the exponent in Eq. (3.6).

Eq. (3.26) is as far as rigorous results can carry us [17]. In Section 4.2 we will however
show that we can do much better by following [8] and inverse Laplace transforming the
subleading terms in τ to estimate the subleading terms in the ∆max expansion. Below,
we use the closed-form OPE coefficients for the φk operators in the free scalar theory to
illustrate this procedure in detail.

4 The Scalar Theory

In this section, we will exemplify the abstract computations of Section 2 and Section 3 by
considering the second-order corrections in a theory of an interacting scalar field φ(x) in
d dimensions. We perturb the free massless theory by the operator φk(x) and investigate
the anomalous dimensions of the subset of operators φl(x) with l ∈ {1, 2, 3, . . .}. The
scalar is normalised such that

〈φ(x)φ(0)〉 =
1

|x|2∆φ
(4.1)

in the unperturbed theory. Here ∆φ = (d− 2)/2.
We now compute, using Wick contractions5, the following OPE:∫

Sd−1

dnφk(x)φl(0) =
∑
p

p!

(
k

p

)(
l

p

)∫
Sd−1

dn |x|−2p∆φ : φk−p(x)φl−p(0) :

= Sd
∑
p

p!

(
k

p

)(
l

p

) ∞∑
n=0

|x|2(n−p∆φ)

22nn!(d/2)n
φl−p�nφk−p(0)

(4.2)

where the integral serves to project onto scalar operators and (a)n := Γ(a + n)/Γ(a) is
the usual Pochhammer symbol. The OPE coefficients can then be read off:

C φl−p�nφk−p

φk φl
=

(
k

p

)(
l

p

)
p!

22nn!(d/2)n
(4.3)

5We use colons to explicitly mark normal ordered operators only when there is a potential ambiguity
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and a similar computation yields, for n ≥ 0 and r = k − p+ l−q
2
∈ Z,

C φq

φk φl−p�nφk−p =
∑
m

r!

(
k

r

)(
k − p
m

)(
l − p
r −m

)
22n(m∆φ)n((m− 1)∆φ)n (4.4)

Notice in particular that

C φl

φ4 φl
= 6l(l − 1), C φl

φ3 φl
= 0, (4.5)

which we will need below.
We can now compute the corrections to the cylinder energies by summing them as

in Eq. (2.6), and we therefore would like to compute:

Ξ q
k l :=

∞∑
n=0

min(k,l)∑
p=0

C φl−p�nφk−p

φk φl
C φq

φk φl−p�nφk−p

l∆φ − (l + k − 2p)∆φ − 2n
(4.6)

It is remarkable that we can find a simple closed-form expression for this sum where
every intermediate operator is clearly identifiable. As we will see below, this offers us a
unique playground to test the ideas introduced in the previous sections without having
to resort to any numerical approximations.

The sum in Eq. (4.6) is infinite and we will regularise it in three different ways. Our
first regularisation procedure is the familiar dimensional regularisation, which will allow
us to check our computations and recover the perturbative anomalous dimensions at the
Wilson-Fisher fixed points.

4.1 Dimensional Regularisation and the Wilson-Fisher Fixed
Points

For each p, the infinite sums in Eq. (4.6) turn out to be of a 3F2 hypergeometric nature,
and after using some hypergeometric identities we can perform the required analytic
continuation in ε. Collecting all the factors and the lower-order terms as in Eq. (2.6),
we find that the second-order energies on the cylinder are given by

REφl = l + 6l(l − 1)gR−εSd

+

(
−216

ε
l(l − 1)− 68l3 + 132l2 − 52l + 6Xσl(l − 1) +O(ε)

)
g2R−2εS2

d +O(g3).
(4.7)

In the Lagrangian perspective we are supposed to perform as in Eq. (2.24) which differs
from Eq. (4.6) by an additional ε in the denominator of the sum. This happens to make
the sum slightly easier since we get just 2F1 hypergeometric sums, and we find that the
resulting small ε expansion up to O(ε) is exactly the same, so

Γ φl

φl
= 6l(l − 1)gR−εSd

+

(
−216

ε
l(l − 1)− 68l3 + 132l2 − 52l + 6Xσl(l − 1) +O(ε)

)
g2R−2εS2

d +O(g3)
(4.8)

This result is in agreement with the above discussion: the Lagrangian and Hamiltonian

perspectives match for small ε. That is, REφl = l+ Γ φl

φl
+O(ε) up to second order in g.
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Finding the counterterm action is straightforward, as Xσ is the only counterterm
coefficient that we can tune. Notice that it should remove the divergences for every
l, but this works out perfectly and all anomalous dimensions (or cylinder energies in
Eq. (4.7)) are finite if we set

Xσ =
36

ε
. (4.9)

It is worthwhile to work out the details a bit further and get the two-loop anomalous
dimensions. For l = 4, we find

Γ φ4

φ4 = 72Sdgµ
−ε − 2448S2

dg
2µ−2ε (4.10)

and therefore

Z φ4

φ4 = 1 +
72

ε
Sdgµ

−ε + 72

(
36

ε2
− 17

ε

)
S2
dg

2µ−2ε +O
(
g3
)

(4.11)

which we can integrate once more with respect to g to see that

gB(g, µ) = g +
36

ε
Sdg

2µ−ε + 24

(
36

ε2
− 17

ε

)
S2
dg

3µ−2ε +O
(
g4
)

(4.12)

The leading term already agrees with the counterterm we found above, but we now also
have the next-order counterterm at our disposal. Similarly, the quantum beta function
for the dimensionful coupling is β(g) = 36Sdg

2µ−ε−816S2
dg

3µ−2ε+O(g4) from integrating

Γ φ4

φ4 and so the dimensionless coupling g̃ := gµ−ε has a beta function of the form

β̃(g̃) = −εg̃ + 36Sdg̃
2 − 816S2

d g̃
3 +O(g̃4) (4.13)

The fixed point is located at

g̃∗ =

(
ε

36
+

17ε2

972

)
/Sd (4.14)

resulting in the fixed-point anomalous dimensions:

Γ∗φ
l

φl
=
εl(l − 1)

6
− ε2l(47 + l(17l − 67))

324
. (4.15)

Plugging in l = 1, 2, 3, 4 then gives the familiar results

Γ∗φ = ε2/108 Γ∗φ2 = ε/3 + 19ε2/162

Γ∗φ3 = ε+ ε2/108 Γ∗φ4 = β′(g∗) = ε− 17ε2/27 (4.16)

The similarity between Γ∗φ and Γ∗φ3 arises due to the fact that the conformal multiplets

of φ3 and φ recombine at the Wilson-Fisher fixed point, according to the equation of
motion.

In exactly the same manner we find the following results for the φ3 theory in d = 6−2ε:

Γ φl

φl
= 3l(6− 5l)g2S2

dµ
−2ε (4.17)

Notice that C φl

φ3 φl
= 0 and therefore the operators do not ‘see’ the φ3 counterterm.

This implies that the sums in Γ φl

φl
have to come out finite, as indeed they do. We

deduce:
β̃(g̃) = −εg̃ − 27S2

dg
3 (4.18)
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and find a (non-unitary) fixed point at g∗Sd =
√
−ε/27, leading to the anomalous

dimensions

Γ∗φ = −ε/9 Γ∗φ2 = 8ε/9 Γ∗φ3 = 3ε Γ∗φ4 = β′(g∗) = 56ε/9 (4.19)

and this time the first two are related precisely such that ∆�φ = ∆φ2 , as expected by
the equation of motion. Notice that we did not use the wave function renormalisation
counterterm here.

4.2 The TCSA cutoff

We have seen that the sum in Eq. (4.6) can be regulated by dimensional regularisa-
tion, which allowed us to find a somewhat novel way to extract the correct second-order
anomalous dimensions. Our main focus in this paper is however the TCSA cutoff intro-
duced in Section 3. In this section we will therefore use this cutoff to regularise the sum
in Eq. (4.6).

4.2.1 Determination of the Counterterm Action

Section 3.1 instructs us to consider the four-point function Fji(τ), which is schematically
〈j|
∫
σ
∫
σ|i〉. In our case σ(x) = φ4(x) and we will take Oj to be φk and Oi to be φl.

Terms in the self-OPE of the φ4 operator like

φ4(x)φ4(0) ⊃ 24

|x|8∆φ
1 +

96

|x|6∆φ

(
φ2(0) + desc.

)
+

72

|x|4∆φ

(
φ4(0) + desc.

)
+ . . . (4.20)

and similarly for the stress tensor T , lead to small τ behavior dictated by the expansion

F ji(τ) ⊃ 24δjiI
(0)
0 (τ)+96C j

φ2 i I
(0)
2∆φ

(τ)+72C j
φ4 i I

(0)
4∆φ

(τ)+C T
φ4φ4 C j

T i I
(2)
d (τ)+. . . (4.21)

which concretely leads to small τ behaviour of the form

S−2
d F

j
i(τ) = 24δji τ

3ε−5ξ(0)

 1︸︷︷︸
#1

+ (4− 2ε)τ︸ ︷︷ ︸
#2

+
1

6
(2− ε)(23− 12ε)τ 2 + . . .


+ 96C j

φ2 i τ
2ε−3ξ(2− ε)

 1︸︷︷︸
#2

+

(
4− 2ε+

∆ij

2

)
τ + horrid τ 2 + . . .


+ 72C j

φ4 i τ
ε−1ξ(4− 2ε)

(
1 +

(
4− 2ε+

∆ij

2

)
τ + . . .

)
+C T

φ4φ4 C j
T i τ

2ε−1ξ(4− ε)
(
− 2ε

4− 3ε
+ . . .

)
(4.22)

where

horrid =
3∆2

ijε− 12∆ij(ε− 2)(2ε− 1) + 2(ε− 2)(ε(24ε− 59) + 24)

12(2ε− 1)
(4.23)

and also
C T
φ4φ4 C φk

T φl
= 24l(2− ε)2δlk . (4.24)
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Figure 3: Tests of the approximation in Eq. (4.25) with l = k = 2 and ε = 1 so d = 3.
As a function of ∆max, we plot on the left the ratio r between the left-hand side and
the right-hand side (solid line) as well as an improved estimate obtained by including
on the right-hand side also the two terms labelled #2 (dashed line). On the right, we
log-plotted (from top to bottom) first the value of the left-hand side and then the values
obtained by subtracting the terms #1 and the terms #1 and #2, respectively.

In which sense does this predict the leading behavior of the squared OPE coefficients?
If we inverse Laplace transform the very leading coefficient, which is the term labelled
#1, then we find that ∑

m:∆m≤∆max+d−ε+l∆φ

C m
φ4 φl

C φk

φ4m ∼ 48δkl
∆5−3ε

max

Γ(6− 3ε)
ξ(0) (4.25)

For k = l this estimate should be correct by the Tauberian theorem quoted above. This
is confirmed for ε = 1 and l = k = 2 by the top line in Fig. 3, where we plot the ratio r
between the left-hand side and just the leading term on the right-hand side – the ratio
converges to one as expected.

Let us now investigate the subleading terms. At ε = 1, the first subleading terms
arise from the terms labelled #2 above. If we add the inverse Laplace transform of these
terms on the right-hand side of Eq. (4.25), we find the improved convergence behaviour
shown by the dashed line on the left in Fig. 3. Although this might look encouraging,
the applicability of this result is limited. After all, we are actually not interested in
the ratio between the two terms but in rather in their difference since we are trying to
estimate the correct counterterm action. On the right in Fig. 3 we see that the leading
term #1 subtracts a nice chunk of the value of the sum. We do even better by including
#2. However, at the next order we would run into trouble: there are visible subleading
oscillations which do not decrease in size. Our approximations are based on keeping
only a few terms in a power series in τ , which (inverse) Laplace transform to a smooth
function of ∆. It is therefore simply not possible to reproduce such oscillating behaviour
within our framework. We will address this issue below, but in the remainder of this
subsection we will simply sidestep it by considering the summand itself.

To do so, let us first discuss how the summand

C m
φ4 φk

C φl

φ4 m |∆m=∆ (4.26)

admits a natural analytical continuation in ∆. The OPE coefficients in Eqs. (4.3)
and (4.4) are smooth functions of n, for fixed k and p . For each p, we thus obtain
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a smooth function of n, which we can trade for ∆m (and hence ∆) by simply set-
ting ∆m = (l + 4 − 2p)∆φ + 2n. We then perform the finite sum over p to obtain
the desired continuation. We will evaluate this function (for now) at the shifted value
∆ → ∆ + d − ε + k∆φ to take into account the extra τ dependence in the prefactor in
Eq. (3.6), just as we did in Eq. (3.26).

The analytic continuation admits a simple asymptotic power series expansion. We
find

C m
φ4 φl

C φk

φ4 m |∆m=∆+d−ε+l∆φ

= 48δkl ∆4−3εξ(0)

(
1

Γ(5− 3ε)
+

4− 2ε

Γ(4− 3ε)
∆−1 +

(2− ε)(23− 12ε)

6Γ(3− 3ε)
∆−2 + . . .

)
+192C φk

φ2φl
∆2−2εξ(2− ε)

(
1

Γ(3− 2ε)
+

4− 2ε+ (l−k)(2−ε)
4

Γ(2− 2ε)
∆−1 +

horrid

Γ(1− 2ε)
∆−2 + . . .

)

+2C T
φ4φ4 C φk

T φl
∆−2εξ(4− ε)

(
2ε

(3ε− 4)Γ(1− 2ε)
+ . . .

)
+144C φk

φ4φl
ξ(4− 2ε)∆−ε

(
1

Γ(1− ε)
+ . . .

)
(4.27)

As far as we checked, both the powers and coefficients in this expansion precisely match

those predicted by the inverse Laplace transform of the leading terms in Fφ
k

φl
(τ), with

an extra factor 2 arising only because the ∆’s that contribute to the sum are spaced in
units of two (since the Laplacian operator has dimension 2). In equations, we can say
that to every order in the small τ and large ∆ expansion:

L−1
[
S−2
d F

φk

φl
(τ); τ → ∆

]
=

1

2
C m
φ4 φl

C φk

φ4 m |∆m=∆+d−ε+l∆φ
(4.28)

with the inverse Laplace transform obeying

L−1
[
τ−ρ; τ → ∆

]
=

∆ρ−1

Γ(ρ)
(4.29)

and the right-hand side considered as an analytic function in ∆. We have checked this
claim for the identity operator (which reproduces the ∆4−3ε terms) to second subleading
order, for the φ2 operator and the stress tensor (the ∆2−2ε and ∆−2ε terms) together
also to second subleading order, and finally to leading order for the φ4 operator (the
∆−ε terms). Altogether, this shows that the subleading terms in the large ∆ expansion
would be captured perfectly by the subleading terms in Fji(τ), were it not for the fact
that we sum rather than integrate over the intermediate operators.

Ignoring (still) the issue of the oscillations, we can use the subleading terms in Fji(τ)
to compute the counterterms to high subleading orders. The counterterm Hamiltonian
will then look like this:

Hct = g2SdR
2(d−∆σ)−1

∫
Sd−1

dn
(
1X1 +R∆2

φφ2Xφ2 +RdTττXT +R∆4
φφ4Xφ4

)
(4.30)

with dimensionless XO coefficients which are roughly speaking determined by the inverse
Laplace transform of Fji(τ) given in Eq. (4.27). If we set Λ = ∆max/R, then it follows
from a dimensional analysis argument that XO ∼ ∆2∆σ−d−∆O

max to leading order. There
are however several subtleties that we need to address before we can use Eq. (4.27) to
obtain the explicit form of the XO. Let us discuss them one at a time.
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The Offset in ∆max Our first subtlety is the extra prefactor exp (τ(d− ε+ ∆i)) in
Eq. (3.6) which leads to a small imperfection in the relation between the inverse Laplace
transform of Fji(τ) and the sum of squared OPE coefficients. This is reflected in the
offset on the left-hand side of Eq. (4.27). This will have to be taken into account by
non-local counterterms of the form6 already written down in [8]:

W ⊃ g2R2ε

(
∆max

R

)d−∆k

(∫
Sd−1
R

dnOk

)(
RHCFT

∆max

)n
(4.31)

which leads to matrix elements of the form:

RW j
i ⊃ g2R2εSd∆

d−∆k−n
max ∆n

i C
j

ki (4.32)

Since HCFT is the integral of a local density but not a local operator itself, it follows that
the counterterm is not local (unless Ok = 1 and n = 1). In practice, we get finitely many
non-local counterterms because we keep only finitely many terms in the ∆max expansion.

The Denominator and the Integral In our analysis we have seen that Fji(τ) pro-
vides a good approximation of the sum of squared OPE coefficients C k

σi Cσkj but we
need to still add the denominator (∆i −∆) in Eq. (2.6) and integrate over ∆. The ∆i

dependence in the denominator translates into yet another non-locality of the same type
as dicussed in our previous point. Altogether, we can take into account both the offset
and the denominator by the following replacement rule: any ∆α in the inverse Laplace
transform of Fji(τ) – so in Eq. (4.27) – needs to be replaced by

∆α → ∆̂α
max :=

∫ ∆max

d∆
(∆− d+ ε−RHCFT)α

RHCFT −∆

= ∆α
max

(
− 1

α
+ ∆−1

max

(
RHCFT +

α(d− ε)
α− 1

)
+O(∆−2

max)

) (4.33)

If we keep only finitely many terms in the ∆-expansion, then the counterterm will be
polynomial in RHCFT.

∆ij Dependence in the Blocks For non-identical operators, the conformal blocks
depend on the difference ∆ij in operator dimensions. This is a generic property, and in
our case this shows up in the subleading terms in the expansion of Fji(τ) given above in
Eq. (4.22). By their very nature, these terms only show up in the off-diagonal elements
in sums like Eq. (2.6), so in the terms with i 6= j. These terms are unimportant for the
computation of second-order energies, and therefore we can set to zero the ∆ij terms in
the inverse Laplace transform of the blocks. (See below for a more elaborate discussion.)

6These operators can be made Hermitian by instead considering anti-commutators, for example
{Ok, HCFT}. The commutators that this introduces are discussed further on.

20



With this notation in place our counterterms take the form:

X1 = −24 ξ(0)

(
∆̂4−3ε

max

Γ(5− 3ε)
+

(4− 2ε)∆̂3−3ε
max

Γ(4− 3ε)
+

(2− ε)(23− 12ε)∆̂2−3ε
max

6Γ(3− 3ε)
+ . . .

)

Xφ2 = −96 ξ(2− ε)

(
∆̂2−2ε

max

Γ(3− 2ε)
+

(4− 2ε)∆̂1−2ε
max

Γ(2− 2ε)
+

horrid ∆̂−2ε
max

Γ(1− 2ε)
+ . . .

)

XT = −C T
φ4φ4 ξ(4− ε)

(
2ε∆̂−2ε

max

(3ε− 4)Γ(1− 2ε)
+ . . .

)

Xφ4 = −72 ξ(4− 2ε)

(
∆̂−εmax

Γ(1− ε)
+ . . .

)
(4.34)

with all-important minus signs because they are supposed to cancel divergences, and
with ∆ij → 0 also in ‘horrid’ as given in Eq. (4.23). The preceding equation is the main
result of this section, and few more comments are in order.

First of all, as noticed already in [8], the counterterm action has certain non-localities.
Of course, a completely arbitrary non-local counterterm action would be worrying. How-
ever in this case, the non-locality enters in a mild and prescribed way, namely only
through the substitution in Eq. (4.33). Unfortunately, at higher orders things appear less
benign, for example in [12] a counterterm :

∫
φ2
∫
φ4 : was introduced. The restoration

of locality in the continuuum limit therefore hinges on the irrelevance (in the technical
sense) of these non-local counterterms. For the examples considered in the literature
this seems to work well, but for less relevant (in the technical sense) perturbations this
may become an issue.

Secondly, the conformal block decomposition of the four-point function organises the
counterterms also in conformal multiplets. More precisely, we only need to add the
conformal primary Ok(x) as an explicit operator in the counterterm Hamiltonian, and
can then can take into account descendants (i.e. subleading terms in the block expansion)
by improving its coefficient Xk. Notice that if we want finite energies at second order
then we can extract the necessary counterterms from only those four-point functions
Fji(τ) with j = i, so the ∆ij terms that appear in a general conformal block can be
ignored.7

Thirdly, manifestly Lorentz-violating counterterms can only arise from other Lorentz-
violating primary operators in the OPE expansion. Such counterterms are clearly allowed
as long as the vectorial indices point in the τ direction to preserve rotational invariance
on the spacelike sphere, and then they are also expected since they do not break more
symmetries than our regulator.8 Of course the integral of Tττ is special since it is just
the Hamiltonian again and despite appearances, it does not break Lorentz invariance.
We believe that the corresponding counterterm can be interpreted as wave function
renormalisation, which would be absent with a local Lorentz-invariant cutoff but does
show up here. Notice also that it has the same matrix element as the subleading term
proportional to HCFT in the expansion of the identity counterterm. However they appear
with very different powers of ∆max, so they are certainly different counterterms, and our
analysis rigorously establishes the appearance of both.

7We are again supposing here that all degeneracies have been resolved and therefore that C j
σi has

been diagonalised within small blocks as explained above.
8The need for tensorial counterterms had been noticed in [8], but in the examples considered in that

paper they were subleading and not worked out in detail.
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Our fourth and last comment concerns the off-diagonal elements in Eq. (2.6). These
terms are equally divergent and we would like to ask whether the counterterm action is
expected to make the terms with i 6= j finite as well. As we have discussed, this is not
necessary to have renormalised energies at second order. In fact, because of the ∆i in
the denominator the sum in Eq. (2.6) is not even Hermitian (real symmetric in this case)
so there is no Hermitian counterterm that can make that expression finite to arbitrary
subleading order. One may of course try to modify the expression to e.g.

V k
i V

j
k

1
2
(∆i + ∆j)−∆k

(4.35)

but the question then arises what the motivation would be for these ad hoc replacements.
An issue that is very much related to the issue of off-diagonal elements is the existence

of counterterms that arise from commutator operators like

[HCFT, . . . [HCFT,O]] ∼ ∂t . . . ∂tO (4.36)

whose matrix elements between states 〈j| and |i〉 are proportional to ∆ij, to an arbitrary
power. These counterterms are compatible with the residual symmetries of the cylinder
and so can in principle be added; one might in fact be tempted to do so at subleading
orders when there is ∆ij dependence in the blocks. However, to maintain a real symmetric
Hamiltonian one can only add terms with even powers of ∆ij, and we have already seen
that the blocks contain terms linear in ∆ij above.

We believe the question of the off-diagonal term could be addressed by going one
order higher and looking at the third-order correction. This is because, for a local cutoff
at least, we may expect the third-order counterterm to be completely local. If we look at
Eq. (2.8), this for example implies that divergences arising in the limit9 j →∞ for fixed
but finite k ought to be cancelled automatically by the counterterms in the latter two
sums rather than by the third-order counterterm which is the last term in Eq. (2.8). One
could for example speculate that W j

i for a local cutoff instead makes finite an expression
of the form

U j
i := W i

i +
V k
i V

i
k

∆ik

when i = j

U j
i := W j

i +
V k
i V

j
k

2

(
1

∆ik

+
1

∆jk

− ∆i + ∆j

∆ik∆jk

)
when i 6= j (4.37)

Indeed, in terms of these new matrices, Eq. (2.8) becomes

1

R

(
U j
i V

i
j + V j

i U
i
j

∆ij

+W i
i

)
(4.38)

and, provided the divergences take a local form, the diagonal elements of W i
i may now

also be fixed to a local expression.
Unfortunately, the TCSA cutoff is not local, so the reasoning of the previous para-

graph does not obviously apply and it remains an interesting question to which extent we
can use locality of third-order counterterms to gain insight in the off-diagonal terms at
second order. For example, in [13] non-local counterterms of the schematic form

∫
φ2
∫
φ4

were introduced at third order, and it would be interesting to work out how second-order
off-diagonal counterterms like those in Eq. (4.36) would modify the coefficient of that
counterterm.

9More precisely, the analogue limit in the case of a local cutoff.
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4.2.2 Oscillations and a Smoothly Varying Projector

Eq. (4.27) relates the summand in Eq. (4.6) order-by-order to a simple asymptotic power
series. The oscillations in Fig. 3 exemplify how the full sum can only be replicated
on average by an integral of the series. Up to now, we have flagrantly ignored these
subleading oscillations, which arise inevitably from the discreteness of spectrum. One
may wonder if there exists a more sophisticated counterterm action that takes into
account these oscillations. For example, we can make the coefficients XO in Eq. (4.34)
more complicated functions of ∆max which also oscillate and then precisely cancel the
oscillating sum. This is not a straightforward task and may drastically increase the non-
locality of the counterterm action. In this section we therefore suggest how the issue
can be mitigated by using a smoothed-out cutoff, centered around ∆max. Concretely we
will replace the TCSA projector P introduced above with a projector that smooths out
the hard truncation at ∆max. This leads to a new version of the replacement rule in
Eq. (4.33), but otherwise the counterterms are unchanged.

Concretely, we will consider a smoothly varying projector which flips from 1 to 0
around ∆max with a transition width growing slower than ∆max. For example,

P → Pf :=
∑

∆

|∆〉f(∆,∆max)〈∆| (4.39)

with

f(∆,∆max) :=
1

2

(
1− tanh

(
∆−∆max√

∆max

))
(4.40)

Asymptotically, we have that (for α > 0)∫ ∞
d∆ f(∆,∆max)∆α−1 ∼ fα(∆max) ∆α

max

α
(4.41)

where

fα(∆max) :=

bαc∑
k=0

2(−1)k(1− 22k−1)
(π

8

)k B2k

(2k)!

∆−kmax

(1 + α)−2k

(4.42)

and Bn is the nth Bernoulli number. This implies that the reincarnation of Eq. (4.33)
with the smoothed cutoff should be

∆α → ̂̂
∆α

max :=

∫ ∞
d∆

(∆− d+ ε−RHCFT)α

RHCFT −∆
f(∆,∆max) (4.43)

= ∆α
max

(
−fα(∆max)

α
+
fα−1(∆max)

∆max

(
RHCFT +

α(d− ε)
α− 1

)
+ ...

)
Each singly hatted ∆max in Eq. (4.34) can be replaced with a doubly hatted one, and
this gives the counterterms within the smoothly truncated theory.

Fig. 4 provides evidence that these smooth counterterms work in the φ4 theory. The
oscillations that arose due to the discreteness of the spectrum get trampled and we end
up with a convergent sum.

4.2.3 Example: Three Dimensions

As an explicit example in an integer dimension, Eq. (4.34) with ε = 1 becomes

X1 = −6∆̂max − 12∆̂0
max

Xφ2 = −48∆̂0
max

(4.44)
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Figure 4: The negative of Eq. (3.3) in φ4 theory is plotted as a function of ∆max for
Oi = Oj = φ2 and ε = 1/5, so that d = 3.8. The blue line is the raw data and the orange
line incorporates the naive counterterms in Eq. (4.34). The red line displays the same
sum but with the smooth projector in Eq. (4.39), and it includes the leading correction.
Finally, the green line utilises all smooth counterterms. The dashed lines are discussed
in Section 4.2.4.

where each singly hatted ∆max is replaced with a doubly hatted one in the smooth theory.
Some care must be taken at this stage, since the replacement rules have to be extended

to include logarithmic divergences:

∆̂max = −∆max + 2 log ∆max + . . .

∆̂0
max = − log ∆max + . . .

(4.45)

To this order,
̂̂
∆max = ∆̂max and

̂̂
∆0

max = ∆̂0
max.

Fig. 5 shows how these counterterms nicely regularise the d = 3 variant of Eq. (3.3).

4.2.4 Decaying Counterterms

The counterterms in Section 4.2.3 can be extended to include some decaying contribu-
tions, in an attempt to improve convergence. Taking the first decaying term,

X1 = −6∆̂max − 12∆̂0
max

Xφ2 = −48∆̂0
max

Xφ4 = −36∆̂−1
max

(4.46)

where

∆̂max = −∆max + 2 log ∆max − 2RHCFT ∆−1
max + ...

∆̂0
max = − log ∆max +RHCFT ∆−1

max + ...

∆̂−1
max = ∆−1

max + ...

(4.47)
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Figure 5: Eq. (3.3) in φ4 theory is plotted as a function of ∆max for Oi = Oj = φ2 (l = 2)
and ε = 1, so that d = 3. The blue line is the raw data, whereas the orange line includes
the addition of the naive counterterms and the green line is the regularised smoothed
data. The oscillation amplitude appears to stay finite for this special case. The dashed
lines are discussed in Section 4.2.4.

To this order, we have some discrepancy between singly and doubly hatted counterterms:

∆̂max =
̂̂
∆max +

π2

12 ∆max

∆̂0
max =

̂̂
∆0

max −
π2

24 ∆max

(4.48)

The dashed lines in Fig. 5 show how including these decaying counterterms can signifi-
cantly improve convergence. Also note that the analogous dashed lines in Fig. 4, which
indicate a massive improvement in convergence that arises because the first correction
is increasingly large as ε→ 0, that is, as φ4 becomes marginal.

4.3 TCSA-Inspired Cutoffs for the Scalar Theory

The TCSA offers a natural and universally implementable cutoff. For the scalar theory we
can however consider more customised cutoffs which would be suitable for perturbative
computations.

A particularly natural perturbative cutoff to consider would be a spatial momentum-
space cutoff on the cylinder. In terms of canonical quantisation, this amounts to setting
to zero all the creation operators with large momentum on the sphere. This would be
a local cutoff in the sense that any momentum-space cutoff is local: it morally corre-
sponds to discretising space to a lattice.10 The state-operator correspondence maps these
high-momentum modes to operators with many derivatives, and therefore it amounts to
setting to zero operators with more than, say, nmax derivatives per φ. This cutoff is

10This cutoff would exactly correspond to a spatial lattice if the spatial manifold was a torus. For the
sphere, we are not aware of an explicit lattice that would truncate the spherical harmonic expansion,
but see [22] for an attempt at a lattice formulation of radial quantisation.
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however not easily implemented for our sum Ξ q
k l in Eq. (4.6), because we would then

have to work out the Laplacians in the intermediate operator φl−p�nφk−p and keep only
those operators with less than nmax derivatives per φ.

A somewhat related perturbative cutoff would be to limit the total spatial momentum
on the cylinder. Again through the state-operator correspondence, this cutoff amounts
to a bound on the total number of derivatives in a give composite operator. For our sum
Ξ q
k l given in Eq. (4.6), this truncation is simply:

n ≤ Nmax (4.49)

and the UV cutoff scale is Λ = 2Nmax/R. This cutoff does not appear to be local: for
example, for a two-particle states the momentum of one particle is constrained in terms
of the momentum of the other.

It is important to realise that the energy of a state (or the scaling dimension of an
operator) can grow very large not only by taking large momentum (or many derivatives
in the operator) but also by taking many particles (or many fundamental fields in the
operator). Since we did not truncate the latter, any possible divergences arising from
arbitrarily-many-particle states are not regulated by these cutoffs. Although this implies
that these cutoffs are problematic non-perturbatively, such divergences are absent at any
finite order in perturbation theory, since at every order a φk interaction adds only up
to k (i.e. finitely many) extra fields. This is why the momentum-cutoffs work only in
perturbation theory.

Let us consider the φ4 theory again, now with the cutoff in total spatial momentum
of Eq. (4.49). Analysing the large n behaviour of the summand is simple, both at the
level of the integrand and using some simple modifications of the results in the previous
section. The dimension of the intermediate operator in Ξ q

4 l is given by

∆ = (l + k − 2p)∆φ + 2n (4.50)

and so to leading order the cutoff in n essentially agrees with a cutoff in ∆. We therefore
propose the same leading-order counterterms. At subleading orders, there are small
modifications. These are not interesting enough to write down explicitly, except that
structurally we observe that with the cutoff of Eq. (4.49):

Ξ q
k l = N4−3ε

max (#δql +O(1/Nmax))

+N2−2ε
max (#C φq

φ2φl
+ #(l − q + 6− 12ε)N−1

maxC
φq

φ2φl
+O(1/N2

max))

+N−εmax(#C φq

φ4φl
+ #(l − q − 4− 4ε)N−1

maxC
φq

φ4φl
+O(1/N2

max))

(4.51)

where the coefficients # are unimportant functions of ε only.
We can offer two interesting observations about this cutoff. The first pertains to

the oscillations discussed in the previous subsection. We observe that for the diagonal
elements with l = q the dependence on l in Eq. (4.51) is fully captured by the OPE coef-
ficients. This means that there exists non-trivial counterterm coefficients XO, functions
of ∆max and ε only, which can get rid of the oscillations in Ξ q

k l completely. The question
that arises now is whether this holds for arbitrary external operators – in that case we
could claim that this cutoff allows us to get rid of the oscillations without introducing
drastic new non-localities.

Our second observation concerns the off-diagonal matrix elements. In Eq. (4.51), we
observe subleading off-diagonal terms, only one power down in the Nmax expansion, with
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non-trivial dependence on l and q, so the naive counterterms do not make the full matrix
Ξ q

4 l finite. In fact, as we pointed out before, the divergences are not Hermitian and so
no reasonable counterterm action can cancel them.

Things marginally improve once we symmetrise the denominator as in Eq. (4.35): in
that case we find that Eq. (4.51) gets modified so that only even powers of (l−q) appear,
with the leading appearance one power further down. Remarkably, this is precisely
the kind of subleading divergence that can in principle be addressed with Hermitian
counterterms of the form ∂2

t φ
2 and ∂2

t φ
4. However, without a third-order analysis along

the lines sketched in Section 4.2.2 we cannot be sure whether we need to add them.
Finally, passing to the more sophisticated Eq. (4.37) we observe that, with the Nmax

cutoff, there is an additional non-trivial l-dependence in the analogue of Eq. (4.51), and
we need to either include non-local counterterms or new operators to cancel these terms.
It follows that (with this cutoff) the naive counterterm action does not make Eq. (4.37)
finite. The subleading terms again have even powers of (l − q) beginning at one power
further down than in Eq. (4.51).

5 Conclusions

The TCSA has proven to be a very useful numerical method for a wide variety of field
theories. One of its main virtues is its simplicity, relying only on a simple Hamiltonian
perspective that is familiar from quantum mechanics. In this work, we studied the TCSA
cutoff in the framework of perturbative renormalisation and discussed some of its less
attractive features like non-localities, non-covariant counterterms, and oscillations that
are not easily cancelled. Fortunately, these effects are all suppressed by powers of the
cutoff, and the suppression becomes stronger for more strongly relevant deformations.
Morally speaking then, our results support the usual lore that the TCSA is at its most
useful for strongly relevant deformations.

There are several possible future directions that naturally arise from this work.
Firstly, we have seen that the conformal perturbation theory framework replaces the
usual Feynman integrals with sums over computable free-field OPE coefficients. This of-
fered us a remarkably simple way to compute second-order anomalous dimensions at the
Wilson-Fisher fixed points. It would be interesting to see how this approach compares in
difficulty to the Feynman diagram expansion in more general theories and/or at higher
orders. How would the computational cost compare with the Feynman diagram expan-
sion? Also, we have seen how the Hamiltonian viewpoint leads to an unconventional
picture where anomalous dimensions arise from the diagonalisation of a single infinite
matrix. We would be interested in learning the analogous picture for gauge theories and
in particular integrable theories like planar N = 4 SYM.

In numerical work, the focus has been on finding a counterterm action that approxi-
mates well the full matrix in Eq. (2.6) (for reasons that are explained in [8]). In pertur-
bation theory we only care about diagonal elements in these kind of sums and there are
subleading divergences in the off-diagonal terms that are not obviously cancelled by the
counterterm action. In the future it would be interesting to understand these differences
further. To do so one could for example work out the third-order correction for a local
cutoff, which we expect to give us more information about the off-diagonal divergences at
second order. Related to this, one could analyse the dependence of non-local divergences
at third order (with the TCSA cutoff) on the details of the second-order counterterm
action.
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Finally, our work can provide a stepping stone for the numerical TCSA, in particular
for the φ4 theories in three dimensions. We have provided the explicit second-order
counterterm action in Section 4.2.3 above. This counterterm action should suffice to
get finite numerical results. However, to get accurate results one may need to add
further improvement terms, similar to those obtained in two dimensions in [13, 12], and
perhaps a smoother cutoff like the one introduced above may be necessary to deal with
any remaining oscillations. It would be very interesting to see if this will suffice to get
accurate predictions from the TCSA in three spacetime dimensions.
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A Conformal Block Recursion Relations

Conformal blocks obey a quadratic Casimir equation [23]:

DG(l)
∆ = C(l)

∆ G
(l)
∆ (A.1)

with the eigenvalue equal to

C(l)
∆ = ∆(∆− d) + l(l + d− 2) (A.2)

The differential operator is given by

1

2
D = Dz +Dz̄ + (d− 2)

zz̄

z − z̄

(
(1− z)∂z − (1− z̄)∂z̄

)
(A.3)

where
Dz = z2(1− z)∂2

z − (a+ b+ 1)z2∂z − abz (A.4)

and

a = −1

2
∆12 b =

1

2
∆34 (A.5)

We can expand the conformal block as a sum of Gegenbauer polynomials [21]:

G
(l)
∆ =

∞∑
n,m=0

cn,mG(l)
∆ (n,m) = |z|∆

∞∑
n,m=0

cn,m|z|n
m!

(2ν)m
Cν
m(cos(arg(z))) (A.6)

where we have defined ν = d/2− 1 and, in general, cn,m depends on a, b, l, d and ∆.
Defining

x = |z| y = cos(arg(z)) =
z + z̄

2|z|
(A.7)

we have that

D = D0 +D1 +Dext (A.8)

D0 = x2∂2
x − (1− y2)∂2

y − (2ν + 1)(x∂x − y∂y)
D1 = x

(
−x2y∂2

x + y(1− y2)∂2
y + 2x(1− y2)∂x∂y − xy∂x − (2ν + y2)∂y

)
Dext = −2x(a+ b)(xy∂x − (1− y2)∂y)− 4xyab
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Using some Gegenbauer identities, we see that these operators act nicely on our
summand:

D0G(l)
∆ (n,m) = C(m)

∆+nG
(l)
∆ (n,m) (A.9)

D1G(l)
∆ (n,m) = −γ(+)

n,mG
(l)
∆ (n+ 1,m+ 1)− γ(−)

n,mG
(l)
∆ (n+ 1,m− 1)

DextG(l)
∆ (n,m) = −η(+)

n,mG
(l)
∆ (n+ 1,m+ 1)− η(−)

n,mG
(l)
∆ (n+ 1,m− 1)

where

γ(+)
n,m =

(m+ 2ν)(∆ + n+m)2

2(m+ ν)
γ(−)
n,m =

m(∆ + n−m− 2ν)2

2(m+ ν)
(A.10)

and

η(+)
n,m =

(m+ 2ν) ((a+ b)(∆ + n+m) + 2ab)

m+ ν
(A.11)

η(−)
n,m =

m ((a+ b)(∆ + n−m− 2ν) + 2ab)

m+ ν

whence we find the following recursion relation:

cn,m

(
C(m)

∆+n − C
(l)
∆

)
= cn−1,m−1ξ

(+)
n−1,m−1 + cn−1,m+1ξ

(−)
n−1,m+1 (A.12)

where ξ
(+/−)
n,m = γ

(+/−)
n,m + η

(+/−)
n,m . With the initial condition c0,m = δm,l, at the first level

we have

c1,l+1 =
l + 2ν

l + ν

(
∆ + l

4
+
a+ b

2
+

ab

∆ + l

)
(A.13)

c1,l−1 =
l

l + ν

(
∆− l − 2ν

4
+
a+ b

2
+

ab

∆− l − 2ν

)
Higher levels can then be found recursively. We note that the only non-zero coeffi-

cients at the second level are c2,l, c2,l+2 and c2,l−2.
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