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Abstract: We apply the BPS Lagrangian method [16] to derive BPS equations of monopole
and dyon in the SU(2) Yang-Mills-Higgs model, Nakamula-Shiraishi models, and their Gen-
eralized versions. We argue that by identifying the effective fields of scalar field, f , and of
time-component gauge field, j, explicitly by j = βf with β is a real constant, the usual BPS
equations for dyon can be obtained naturally. We validate this identification by showing
that both Euler-Lagrange equations for f and j are identical in the BPS limit. The value
of β is bounded to |β| < 1 due to reality condition on the resulting BPS equations. In
the Born-Infeld type of actions, namely Nakamula-Shiraishi models and their Generalized
versions, we find a new feature that adding the energy density by a constant 4b2, with b is
the Born-Infeld parameter, will turn monopole(dyon) to anti-monopole(anti-dyon) and vice
versa. In all Generalized versions there are additional constraint equations that relate the
scalar-dependent couplings of scalar and of gauge kinectic terms; or G and w respectively.
For monopole the constraint equation is G = w−1, while for dyon is w(G− β2w) = 1− β2

which further gives lower bound to G as such G ≥ |2β
√

1− β2|. We also write down the
complete square-forms of all effective Lagrangians.

1Corresponding author.
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1 Introduction

Monopole has been known to exist in non-abelian gauge theory. One of the main devel-
opments was given by ’t Hooft in [1], and in parallel with a work by Polyakov in [2], in
which he showed that monopole could arise as soliton in a Yang-Mills-Higgs theory, with-
out introducing Dirac’s string [3], by spontaneously breaking the symmetry of SO(3) gauge
group into U(1) gauge group. Later on, Julia and Zee showed that a more general configu-
ration of soliton called dyon may exist as well within the same model [4]. Futhermore, the
exact solutions were given by Prasad and Sommerfiled in [5] by taking some limit where
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V → 0. These solutions were proved by Bogomolnyi in [6] to be solutions of the first-order
differential equations which turn out to be closely related with the study of supersymmetric
system [7]1.

At high energy the Yang-Mills theory may receive contributions from higher derivative
terms. This can be realized in string theory in which the effective action of open string
theory may be described by the Born-Infeld type of actions [8]. However, there are several
ways in writing the Born-Infeld action for non-abelian gauge theory because of the ordering
of matrix-valued field strength [8–13]. Further complications appear when we add Higgs
field into the action. One of examples has been given by Nakamula and Shiraishi in which
the action exhibits the usual BPS monopole and dyon [14]. Unfortunately, the resulting
BPS equations obviously do not capture essensial feature of the Born-Infeld action namely
there is no dependency over the Born-Infeld parameter. Other example such as in [15], the
monopole’s profile depends on the Born-Infeld parameter, but the BPS equations are not
known so far.

In this article, we would like to derive the well-known BPS equations of monopole and
dyon in the SU(2) Yang-Mills-Higgs model and their Born-Infeld type extensions, which
we shall call them Nakamula-Shiraishi models, using a procedure called BPS Lagrangian
method developed in [16]. We then extend those models to their Generalized versions by
adding scalar-dependent couplings to each of the kinetic terms and derive the BPS equations
for monopole and dyon. In section 2, we will first discuss in detail about the BPS Lagrangian
method. The next section 3, we describe how to get the BPS equations for monopole(dyon)
from energy density of the SU(2) Yang-Mills-Higgs model using Bogomolny’s trick. We
write explicitly its effective action and effective actions of the Nakamula-Shiraishi models
by taking the ’t Hooft-Polyakov(Julia-Zee) ansatz for monopole(dyon). In section 4, we
use the BPS Lagrangian approach to reproduce the BPS equations for monopole and dyon
in the SU(2) Yang-Mills-Higgs model and Nakamula-Shiraishi models. Later, in section 5,
we generalize the SU(2) Yang-Mills-Higgs model by adding scalar-dependent couplings to
scalar and gauge kinetic terms and derive the corresponding BPS equations. We also gener-
alize Nakamula-Shiraishi models in section 6 and derive their corresponding BPS equations.
We end with discussion in section 7.

2 BPS Langrangian Method

In deriving BPS equations of a model, we normally use so called Bogomolnyi’s trick by
writing the energy density into a complete square form [6]. However, there are several
rigorous methods have been developed in doing so. The first one is based on the Bogomol-
nyi’s trick by assuming the existance of a homotopy invariant term in the energy density
that does not contribute to Euler-Lagrange equations [17]. The second method called first-
order formalism works by solving a first integral of the model, together with stressless
condition, [18–20]. The third method called On-Shell method works by adding and solving

1In this article, we shall call the limit V → 0 as BPS limit and the first-order differential equations as
BPS equations.
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auxiliary fields into the Euler-Lagrange equations and assuming the existance of BPS equa-
tions within the Euler-Lagrange equations [16, 21]. The forth method called First-Order
Euler-Lagrange(FOEL) formalism, which is generalization of Bogomolnyi decomposition us-
ing a concept of strong necessary condition developed in [22], works by adding and solving
a total derivative term into the Lagrangian [23]2. The last method, which we shall call BPS
Lagrangian method, works by identifying the (effective)Lagrangian with a BPS Lagrangian
such that its solutions of the first-derivative fields give out the desired BPS equations [16].
This method was developed based on the On-Shell method by one of the author of this
article and it is much easier to execute compared to the On-Shell method. We chose to use
the BPS Lagrangian method to find BPS equations of all models considered in this article.
The method is explained in the following paragraphs.

In general the total static energy of N-fields system, ~φ = (φ1, . . . , φN ), with Lagrangian
density L is defined by Estatic = −

∫
ddx L. The Bogomolnyi’s trick explains that the static

energy can be rewritten as

Estatic =

(∫
ddx

N∑
i=1

Φi(~φ, ∂~φ)

)
+ EBPS, (2.1)

with {Φi} is a set of positive-semidefinite functions and EBPS is the boundary contributions
defined by EBPS = −

∫
ddx LBPS. Neglecting the contribution from boundary terms in

LBPS, as they do not affect the Euler-Lagrange equations, configurations that minize the
static energy are also solutions of the Euler-Lagrange equations and they are given by
{Φi = 0} known as BPS equations. Rewriting the static energy to be in the form of equation
(2.1) is not always an easy task. However it was argued in [16] that one does not need to
know the explicit form of equation (2.1) in order to obtain the BPS equations. By realizing
that in the BPS limit, where the BPS equations are assumed to be exist, remaining terms
in the total static energy are in the form of boundary terms, Estatic = EBPS. Therefore we
may conclude that BPS equations are solutions of L − LBPS =

∑N
i=1 Φi(~φ, ∂~φ) = 0.

Now let us see in detail what is inside LBPS. Suppose that in spherical coordinates the
system effectively depends on only radial coordinate r. As shown by the On-Shell method
on models of vortices [21], the total static energy in the BPS limit can be defined as

EBPS = Q(r →∞)−Q(r → 0) =

∫ r→∞

r→0
dQ, (2.2)

where Q is called BPS energy function. The BPS energy function Q does not depend on the
coordinate r explicitly however in general it can also depend on r explicitly in accordance
with the choosen ansatz. In most of the cases if we choose the ansatz that does not depend
explicitly on coordinate r then we would have Q 6= Q(r). Hence, with a suitable ansatz,
we could write Q = Q(φ̃1, . . . , φ̃N ) in which φ̃i is the effective field of φi as a function of

2In our opinion the procedure looks similar to the On-Shell method by means that adding total derivative
terms into the Lagrangian is equivalent to introducing auxiliary fields in the Euler-Lagrange equations.
However, we admit that the procedure is written in a more covariant way.
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coordinate r only. Assume that Q can be treated with separation of variables

Q ≡
N∏
i=1

Qi(φ̃i), (2.3)

this give us a pretty simple expression of EBPS, i.e.

EBPS =

∫ N∑
i=1

∂Q

∂φ̃i

dφ̃i
dr

dr, (2.4)

and we could obtain LBPS in terms of the effective fields and their first-derivative.
Now we proceed to find the Φis from L − LBPS =

∑N
i=1 Φi(~φ, ∂~φ). As we mentioned

Φi must be positive-semidefinite function and we restric it has to be a function of ~̃φ and
∂rφ̃i for each i = 1, . . . , N . The BPS equation Φi = 0 gives solutions to ∂rφ̃i as follows

∂rφ̃i =
{
F

(1)
i , F

(2)
i , ..., F

(m)
i

}
, (2.5)

with F (k)
i = F

(k)
i (

~̃
φ; r) (k = 1, ...,m). Positive-semidefinite condition fixes m to be an even

number and further there must be even number of equals solutions in {F (k)
i }. As an example

ifm = 2 for all i then Φi = 0 is a quadratic equation in ∂rφ̃i and so we will have F (1)
i = F

(2)
i .

The restriction on Φi ≡ Φi(∂rφ̃i) forces us to rewrite the function L−LBPS into partitions∑N
i=1 Φi explicitly. This is difficult to apply on more general forms of Lagrangian, since

there exists a possibility that there are terms with ∂φ̃i∂φ̃j where i 6= j. Another problem
is ambiguity in choosing which terms contain non-derivative of fields that should belong to
which partitions Φi.

For more general situations, the BPS equations can be obtained by procedures explained
in [16] which we describe below. On a closer look, we can consider L − LBPS = 0 as a
polynomial equation of first-derivative fields. Seeing it as the polynomial equation of ∂rφ̃1,
whose maximal power is m1, its roots are

∂rφ̃1 =
{
G

(1)
1 , G

(2)
1 , . . . , G

(m1)
1

}
, (2.6)

with G(k)
1 = G

(k)
1 (

~̃
φ, ∂rφ̃2, . . . , ∂rφ̃N ; r) and k = 1, ...,m1. Then we have

Φ1 ∝
(
∂rφ̃1 −G(1)

1

)(
∂rφ̃1 −G(2)

1

)
. . .
(
∂rφ̃1 −G(m1)

1

)
. (2.7)

As we mentioned before herem1 must be an even number and to ensure positive-definiteness
at least two or more even number of roots must be equal. This will result in some con-
straint equations that are polynomial equations of the remaining first-derivative fields
(∂rφ̃2, . . . , ∂rφ̃N ). Repeating the previous procedures for ∂rφ̃2 until ∂rφ̃N whose ΦN is

ΦN ∝
(
∂rφ̃N −G(1)

N

)(
∂rφ̃N −G(2)

N

)
...
(
∂rφ̃N −G(mN )

N

)
, (2.8)

with mN is also an even number. Now all G(k)
N are only functions of ~̃φ and equating some

of the roots will become constraint equations that we can solve order by order for each
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power series of r. As an example let take N = 2 and m1,m2 = 2. Then the constraint
G

(1)
1 −G

(2)
1 = 0 can be seen as a quadratic equation of ∂rφ̃2. This give us the last constraint

G
(1)
2 − G

(2)
2 = 0. Since the model is valid for all r, we could write the constraint as

G
(1)
2 −G

(2)
2 =

∑
n anr

n, where all ans are independent of ∂rφ̃1 and ∂rφ̃2. Then all ans need
to be zero and from them we can find each Qi(φ̃i). Then the BPS equations for ∂rφ̃i can
be found.

We can see that this more general method is straightforward for any Lagrangian. This
will be used throughout this paper, since we will later use some DBI-type Lagrangian that
contains terms inside square root which is not easy to write the partitions explicitly. In
[16], with particular ansatz for the fields, writing Q = 2πF (f)A(a) is shown to be adequate
for some models of vortices. Here, we show that the method is also able to do the job, at
least for some known models of magnetic monopoles and dyons, using the well-known ’t
Hooft-Polyakov ansatz.

3 The ’t Hooft-Polyakov Monopole and Julia-Zee Dyon

The model is described in a flat (1 + 3)-dimensional space-time whose Minkowskian metric
is ηµν = diag(1,−1,−1,−1). The standard Lagrangian for BPS monopole, or the SU(2)

Yang-Mills-Higgs model, has the following form [1, 2]

Ls =
1

2
DµφaDµφa −

1

4
F aµνF aµν − V (|φ|), (3.1)

with SU(2) gauge group symmetry and φa, a = 1, 2, 3, is a triplet real scalar field in
adjoint representation of SU(2). The potensial V is a function of |φ| = φaφa which is
invariant under SU(2) gauge transformations. Here we use Einstein summation convention
for repeated index. The definitions of covariant derivative and field strength tensor of the
SU(2) Yang-Mills gauge field are as follows

Dµφa =∂µφ
a + e εabcAbµφ

c, (3.2a)

F aµν =∂µA
a
ν − ∂νAaµ + e εabcAbµA

c
ν , (3.2b)

with e is the gauge coupling and εabc is the Levi-Civita symbol. The latin indices (a, b, c)

denote the “vector components” in the vector space of SU(2) algebra with generators Ta =
1
2σa, where σa is the Pauli’s matrix. The generators satisfy commutation relation [Ta, Tb] =

iεabcTc and their trace is tr(TaTb) = 1
2δab. With these generators, the scalar field, gauge

field, adjoint covariant derivative and field strength tensor can then be re-written in a
compact form, respectively, as φ = φaTa, Aµ = AaµTa,

Dµφ =DµφaTa = ∂µφ− ie[Aµ, φ], (3.3a)

Fµν =F aµνTa = ∂µAν − ∂νAµ − ie[Aµ, Aν ]. (3.3b)

These lead to the Lagrangian

Ls = tr

(
DµφDµφ−

1

2
FµνFµν

)
− V (|φ|). (3.4)
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Variying (3.1) with respect to the scalar field and the gauge field yields

Dµ
(
Dµφb

)
=− ∂V

∂φb
, (3.5a)

DνF bµν =eεbcaφcDµφa, (3.5b)

with additional Bianchi identity
DµF̃ aµν = 0, (3.6)

where F̃ aµν = 1
2ε
µνκλF aκλ. Through out this paper, we will consider only static configu-

rations. The difference between monopole and dyon is whether Aa0 is zero or non-zero,
respectively. For monopole, the Bianchi identity becomes

DiBa
i = 0. (3.7)

Here Ba
i = 1

2εijkFjk and i, j, k = 1, 2, 3 are the spatial indices. For dyon, Aa0 6= 0, there are
additional equations of motion for “electric” part since the Gauss law is non-trivial,

DiEbi = −e εbcaφcD0φ
a, (3.8)

where Eai = F a0i.
We could write the energy-momentum tensor Tµν by varying the action with respect

to the space-time metric. The energy density is then given by T00 component,

T00 =
1

2
(D0φ

aD0φ
a +DiφaDiφa + Eai E

a
i +Ba

i B
a
i ) + V (|φ|). (3.9)

In [5], it is possible to obtain the exact solutions of the Euler-Lagrange equations in the
BPS limit, i.e. V = 0 but still maintaining the asymptotic boundary conditions of φ, and
we define a new parameter α such that

T00 =
1

2

(
D0φ

aD0φ
a +DiφaDiφa sin2 α+ Eai E

a
i +DiφaDiφa cos2 α+Ba

i B
a
i

)
=

1

2

(
(D0φ

a)2 + (Diφa sinα∓ Eai )2 + (Diφa cosα∓Ba
i )2
)
± Eai Diφa sinα±Ba

i Diφa cosα.

(3.10)

The last two terms can be converted to total derivative

Eai Diφa = ∂i(E
a
i φ

a)− (DiEai )φa = ∂i(E
a
i φ

a), (3.11a)

Ba
i Diφa = ∂i(B

a
i φ

a)− (DiBa
i )φa = ∂i(B

a
i φ

a), (3.11b)

after employing the Gauss law (3.8) and Bianchi identity (3.7). They are related to the
“Abelian” electric and magnetic fields identified in [1], respectively. Since the total energy
is E =

∫
d3x T00, the total derivative terms can be identified as the electric and magnetic

charges accordingly

QE =

∫
dSiEai φ

a, (3.12a)

QB =

∫
dSiBa

i φ
a, (3.12b)
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with dSi denoting integration over the surface of a 2-sphere at r →∞. Therefore the total
energy is E ≥ ± (QE sinα+QB cosα) since the other terms are positive semi-definite. The
total energy is saturated if the BPS equations are satisfied as folows [24]

D0φ
a = 0, (3.13a)

Diφa sinα =Eai , (3.13b)

Diφa cosα =Ba
i . (3.13c)

Solutions to these equations are called BPS dyons; they are particullary called BPS monopoles
for α = 0. The energy of this BPS configuration is simply given by

EBPS = ± (QE sinα+QB cosα) . (3.13d)

Adding the constant α contained in sinα and cosα is somehow a bit tricky. We will show
later using BPS Lagrangian method that this constant comes naturally as a consequence
of idenfitiying two of the effective fields.

Employing the ’t Hooft-Polyakov, together with Julia-Zee, ansatz [1, 2, 4]

φa = f(r)
xa

r
, (3.14a)

Aa0 =
j(r)

e

xa

r
, (3.14b)

Aai =
1− a(r)

e
εaij

xj

r2
, (3.14c)

where xa ≡ (x, y, z), and xi ≡ (x, y, z) as well, denotes the Cartesian coordinate. Notice
that the Levi-Civita symbol εaij in (3.14) mixes the space-index and the group-index. Sub-
stituting the ansatz (3.14) into Lagrangian (3.1) we can arrive at the following effective
Lagrangian

Ls =− f ′2

2
−
(
af

r

)2

+
j′2

2e2
+

(
aj

er

)2

−
(
a′

er

)2

− 1

2

(
a2 − 1

er2

)2

− V (f), (3.15)

where ′ ≡ ∂
∂r otherwise it means taking derivative over the argument. As shown in the

effective Lagrangian above there is no dependency over angles coordinates φ and θ despite
the fact that the ansatz (3.14) depends on φ and θ. Thus we may derive the Euler-Lagrange
equations from the effective Lagrangian (3.15) which are given by

− 1

r2
(r2f ′)′ +

2a2f

r2
=− V ′(f), (3.16a)

−(r2j′)′

er2
+

2a2j

er2
=0, (3.16b)

a(a2 − 1)

r2
+ a(e2f2 − j2)− a′′ =0. (3.16c)

Later we will also consider the case for generalize Lagrangian of (3.1) by adding scalar-
dependent couplings to the kinetic terms as follows [25]

LG = −1

4
w(|φ|)F aµνF aµν +

1

2
G(|φ|)DµφaDµφa − V (|φ|). (3.17)
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The equations of motions are now given by

Dµ
(
G Dµφb

)
=− ∂V

∂φb
+

1

2

∂G

∂φb
DµφaDµφa −

1

4

∂w

∂φb
F aµνF

aµν , (3.18a)

Dν
(
w F bµν

)
=eεbcaφcG Dµφa. (3.18b)

In [25, 26], they found BPS monopole equations and a constraint equation G = w−1. Using
our method in the following sections, we obtain the similar BPS monopole equations and
constraint equation. Furthermore, we generalize it to BPS dyon equations with a more
general constraint equation.

There are other forms of Lagrangian for BPS monopole and dyon which were presented
in the Born-Infeld type of action by Nakamula and Shiraishi in [14]. The Lagrangian for
BPS monopole is different from the BPS dyon. The Lagrangians are defined such that the
BPS equations (3.13) satisfy the Euler-Lagrange equations in the usual BPS limit. The
Lagrangian for monopole and dyon are given respectively by[14]

LNSm = −b2 tr

(√
1− 2

b2
DµφDµφ

√
1 +

1

b2
FµνFµν − 1

)
− V (|φ|), (3.19)

LNSd = −b2 tr

({
1− 2

b2
DµφDµφ+

1

b2
FµνF

µν − 1

4b4

(
FµνF̃

µν
)2

+
4

b4
F̃ ν
µ F̃µλDνφDλφ

}1/2

− 1

)
− V (|φ|), (3.20)

with b2 is the Born-Infeld parameter and the potential V is taken to be the same as in
(3.1). It is apparent that, even though Eai = 0, LNSd 6= LNSm. Using the ansatz (3.14),
both Lagrangians can be effectively writen as

LNSm = −2b2

(√
1 +

1

2b2

(
f ′2 +

2a2f2

r2

)√
1 +

1

2b2

(
2a′2

e2r2
+

(a2 − 1)2

e2r4

)
− 1

)
− V (f), (3.21)

LNSd = −2b2
({

1 +
1

2b2

(
f ′2 +

2a2f2

r2
+

2a′2

e2r2
+

(a2 − 1)2

e2r4
− j′2

e2
− 2a2j2

e2r2

)

+
1

4b4

(
−
(
−(a2 − 1)j′

e2r2
− 2aja′

e2r2

)2

+

(
(a2 − 1)f ′

er2
+

2afa′

er2

)2
)}1/2

−1)− V (f). (3.22)

We can see immeditely that LNSd(j = 0) 6= LNSm. However, by assuming the BPS equations
Ba
i = ±Diφa is valid beforehand we would get LNSd = LNSm. Hence from both Lagrangians,

we could obtain the same BPS equations when we turn off the “electric” part for monopole.

4 BPS Equations in SU(2) Yang-Mills-Higgs and Nakamula-Shiraishi Mod-
els

Here we will show that the BPS Lagrangian method [16] can also be used to obtain the
known BPS equations for monopole and dyon in the SU(2) Yang-Mills model (3.1), and
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the Nakamula-Shiraishi models, (3.19) and (3.20). To simplify our calculations, from here
on we will set the gauge coupling to unity, e = 1.

4.1 BPS monopole and dyon in SU(2) Yang-Mills-Higgs model

Writing the ansatz (3.14) in spherical coordinates,

φa ≡ f(cosϕ sin θ, sinϕ sin θ, cos θ), (4.1a)

Aa0 ≡ j(cosϕ sin θ, sinϕ sin θ, cos θ), (4.1b)

Aar ≡ (0, 0, 0), (4.1c)

Aaθ ≡ (1− a)(sinϕ,− cosϕ, 0), (4.1d)

Aaϕ ≡ (1− a) sin θ(cosϕ cos θ, sinϕ cos θ,− sin θ), (4.1e)

we find that there is no explicit r dependent in all fields above. Therefore we propose that
the BPS energy function for the case of monopole, where j = 0, should take the following
form

Q(a, f) = 4πF (f)A(a). (4.2)

Since
∫
d3x LBPS = −

∫
dQ, we have the BPS Lagrangian

LBPS = −FA
′(a)

r2
a′ − F ′(f)A

r2
f ′. (4.3)

Before showing our results, for convenience we define through all calculations in this article
x = f ′, y = a′, Qa = F A′(a), and Qf = F ′(f)A.

Employing Ls − LBPS = 0, where Ls is (3.15) and LBPS is (4.3), we can consider it as
a quadratic equation of either a′ or f ′. Here we show the roots of f ′ (or x) first which are

f ′± =
Qf ±

√
Q2
f − a4 − 2a2 (f2r2 − 1)− 2r2y(y −Qa)− 2r4V − 1

r2
. (4.4)

The two roots will be equal, f+ = f−, if the terms inside the square-root is zero, which
later can be considered as a quadratic equation for a′ (or y) with roots

a′± =
1

2
Qa ±

1

2r

√
−2a4 + a2 (4− 4f2r2) +Q2

ar
2 + 2Q2

f − 4r4V − 2. (4.5)

Again, we need the terms inside the square-root to be zero for two roots to be equal,
a+ = a−. The last equation can be written in power series of r,(

2Q2
f − 2

(
a2 − 1

)2)
+
(
Q2
a − 4a2f2

)
r2 − 4V r4 = 0, (4.6)

Demanding it is valid for all values of r, we may take V = 0, which is just the same BPS
limit in [5]. From the terms with quadratic and zero power of r, we obtain

FA′(a) =± 2af, (4.7)

F ′(f)A =± (a2 − 1), (4.8)
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which implies
FA = ±(a2 − 1)f. (4.9)

Inserting this into equations (4.4) and (4.5), we reproduce the known BPS equations for
monopole,

f ′ =± a2 − 1

r2
, (4.10a)

a′ =± af. (4.10b)

Now let us take j(r) 6= 0 and consider the BPS limit, V → 0. In this BPS limit, we can
easly see from the effective Lagrangian (3.15), the Euler-Lagrange equations for both fields
f and j are equal. Therefore it is tempted to identify j ∝ f . Let us write it explicitly as

j(r) = βf(r), (4.11)

where β is a real valued constant. With this identification, we can again use (4.2) as the
BPS energy function for dyon and hece give the same BPS Lagrangian (4.3). Now the only
difference, from the previous monopole case, is the effective Lagrangian (3.15) which takes
a simpler form

Ls = −
(
1− β2

)(f ′2
2

+

(
af

r

)2
)
−
(
a′

r

)2

− 1

2

(
a2 − 1

r2

)2

− V. (4.12)

Here we still keep the potential V and we will show later that V must be equal to zero in
order to get the BPS equations using the BPS Lagrangian method.

Applying (4.11) and solving Ls −LBPS = 0 as quadratic equation for f ′ (or x) give us
two roots

f ′± =
Qf ±

√
DD

(1− β2) r2
, (4.13)

with

DD =
(
β2 − 1

) (
a4 − 2a2

((
β2 − 1

)
f2r2 + 1

)
+ 2r2y(y −Qa) + 2r4V + 1

)
+Q2

f . (4.14)

Next, requiring f ′+ = f ′−, we obtain

a′± =
1

2

(
Qa ±

√
DDD

(β2 − 1) r2

)
, (4.15)

where we arrange DDD in power series of r, i.e.

DDD = 2
((

1− a2
)2 (

1− β2
)
−Q2

f

)
+
(
1− β2

) (
4a2

(
1− β2

)
f2 −Q2

a

)
r2 + 4V

(
1− β2

)
r4.

(4.16)

Again, a′− = a′+, we get DDD = 0. Solving the last equation, which must be valid for
all values of r, we conclude V = 0 from r4-terms, for non-trivial solution, and from the
remaining terms we have

FA′(a) =± 2af
√

1− β2, (4.17a)

F ′(f)A =±
(
a2 − 1

)√
1− β2, (4.17b)
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which give us
FA = ±

(
a2 − 1

)
f
√

1− β2. (4.18)

The BPS equations are then

f ′
√

1− β2 =± a2 − 1

r2
, (4.19a)

a′ =± af
√

1− β2. (4.19b)

Since f ′ and a′ are real-valued, β should take values |β| < 1. They become the BPS
equations for monopole (4.10) when we set β = 0. We can see that this constant is analogous
to the constant α, or precisely β = − sinα, in (3.10), see [27] for detail. Substituting
β = − sinα into equations (4.19), we get the same BPS equations as in [5, 24]. Here we
can see the constant β is naturally bounded as required by the BPS equations (4.19).

4.2 BPS monopole and dyon in Nakamula-Shiraishi model

In this subsection we will show that the Lagrangians (3.19) and (3.20) of Nakamula-Shiraishi
model do indeed posses the BPS equations (4.10) (and (4.19)) respectively after employing
the BPS Lagrangian method. Substituting (3.21) and (4.2) into LNSm − LBPS = 0 and
following the same procedures as the previous subsection give us the roots of a′,

a′± =
Qar

4
(
2b2 − V

)
+QaQfr

2x±
√
r2 (2a2f2 + r2 (2b2 + x2))DD

r2 (4a2f2 + 2r2 (2b2 + x2)−Q2
a)

, (4.20)

where

DD =− 4a6f2 + a4
(
−2r2

(
2b2 + x2

)
+ 8f2 +Q2

a

)
− 2a2

(
f2
(
4b2r4 + 2

)
− 2r2

(
2b2 + x2

)
+Q2

a

)
+ 2b2r4

(
Q2
a + 4Qfx− 2r2

(
2V + x2

))
− 4b2r2 +Q2

a

+ 2r2
(
−Qfx+ r2V + x

) (
r2V − (Qf + 1)x

)
. (4.21)

Solving DD = 0 give us

f ′± =

2Qfr
4
(
2b2 − V

)
±
√
−2r2

(
(a2 − 1)2 + 2b2r4

)
DDD

2r2
(
a4 − 2a2 + 2b2r4 −Q2

f + 1
) , (4.22)

where

DDD =2b2r4
(
4a2f2 −Q2

a

)
+ 4b2r2

((
a2 − 1

)2 −Q2
f

)
+
((
a2 − 1

)2 −Q2
f

) (
4a2f2 −Q2

a

)
+ 2r6V

(
4b2 − V

)
. (4.23)

Then the last equation DDD = 0 give us V = 0, or V = 4b2,

FA′(a) =± 2af, (4.24a)

F ′(f)A =± (a2 − 1), (4.24b)
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which again give us

FA = ±(a2 − 1)f, (4.25)

and thus we have a′ and f ′, with V = 0,

f ′ =± a2 − 1

r2
, (4.26a)

a′ =± af. (4.26b)

the same BPS equations (4.10) for monopole. The other choice of potential V = 4b2 will
result the same BPS equations with opposite sign relative to the BPS equations of V = 0,

f ′ =∓ a2 − 1

r2
, (4.27a)

a′ =∓ af. (4.27b)

For dyon, using the same identification (4.11), we have the effective Lagrangian (3.22)
shortened to

LNSd = −2b2
({

1 +
1− β2

2b2

(
f ′2 +

2a2f2

r2

)
+

1

2b2

(
2a′2

r2
+

(a2 − 1)2

r4

)

+
1− β2

4b4

(
(a2 − 1)f ′

r2
+

2afa′

r2

)2
}1/2

− 1

− V. (4.28)

Equating the above effective Lagrangian with LBPS, using the same BPS energy density
(4.2), and solving this for a′ give us

a′± =
−2a3β2fx+ 2a3fx+ 2aβ2fx− 2afx− 2b2Qar

2 −QaQfx+Qar
2V ±

√
DD

4a2 (β2 − 1) f2 − 4b2r2 +Q2
a

,

(4.29)

where

DD =
(
2a
(
a2 − 1

) (
β2 − 1

)
fx+ 2b2Qar

2 +Qa
(
Qfx− r2V

))2
+
(
4a2

(
β2 − 1

)
f2 − 4b2r2 +Q2

a

)
×[

2b2
(
a4 − 2a2

((
β2 − 1

)
f2r2 + 1

)
− 2Qfr

2x+ r4
(
2V − β2x2 + x2

)
+ 1
)

−x2
(
a4
(
β2 − 1

)
− 2a2

(
β2 − 1

)
+ β2 +Q2

f − 1
)

+ 2Qfr
2V x− r4V 2

]
. (4.30)

Solving DD = 0 for f ′ give us

f ′± =
K±
√

2
√
M DDD

L
(4.31)
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where

K =2a3
(
β2 − 1

)
fQar

2
(
2b2 − V

)
− 4a2

(
β2 − 1

)
f2Qfr

2
(
2b2 − V

)
− 2a

(
β2 − 1

)
fQar

2
(
2b2 − V

)
+ 8b4Qfr

4 − 4b2Qfr
4V, (4.32)

L =− 4a
(
a2 − 1

) (
β2 − 1

)
fQaQf

− 4
[
a4b2

(
β2 − 1

)
r2 − a2

(
β2 − 1

) (
f2
(
2b2
(
β2 − 1

)
r4 +Q2

f

)
+ 2b2r2

)
+b2r2

((
β2 − 1

) (
2b2r4 + 1

)
+Q2

f

)]
+
(
β2 − 1

)
Q2
a

(
a4 − 2a2 + 2b2r4 + 1

)
, (4.33)

M =− b2
(
a4 − 2a2

((
β2 − 1

)
f2r2 + 1

)
+ 2b2r4 + 1

) (
4a2

(
β2 − 1

)
f2 − 4b2r2 +Q2

a

)
,

(4.34)

DDD =− 2r4
(
b2
(
β2 − 1

) (
4a2

(
β2 − 1

)
f2 +Q2

a

))
−
(
β2 − 1

) ((
a2 − 1

)
Qa − 2afQf

)2
+ 4b2r2

(
a4
(
β2 − 1

)
− 2a2

(
β2 − 1

)
+ β2 +Q2

f − 1
)

+ 2
(
β2 − 1

)
r6V

(
4b2 − V

)
.

(4.35)

We may set M = 0, but this will imply b2 = 0 which is not what we want. Requiring
DDD = 0 valid for all values of r, the terms with r6 give us V = 0 or V = 4b2. The terms
with r0 imply

FA′(a) =
2afF ′(f)A

a2 − 1
. (4.36)

This is indeed solved by the remaining terms which imply

FA′(a) =± 2af
√

1− β2, (4.37)

F ′(f)A =±
(
a2 − 1

)√
1− β2. (4.38)

This again give us

FA = ±
(
a2 − 1

)
f
√

1− β2, (4.39)

hence, for V = 0,

f ′ =± a2 − 1√
1− β2r2

, (4.40a)

a′ =± af
√

1− β2, (4.40b)

the same BPS equations (4.19) for dyon. Similar to the monopole case choosing V = 4b2

will switch the sign in the BPS equations. It is apparent that it the limit of β → 0, the
BPS equations for dyon becomes the ones for monopole. This indicates that in the BPS
limit and β → 0, LNSd → LNSm, since in general, even though in the limit of β → 0,
LNSd /→LNSm.

Now we know that the method works. In the next sections, we use it in some generalized
Lagrangian whose BPS equations, for monopole or dyon, may or may not be known.

– 13 –



5 BPS Equations in Generalized SU(2) Yang-Mills-Higgs Model

In this section, we use the Lagrangian (3.17) whose its effective Lagrangian is given by

LG = −G
(
f ′2

2
+
a2f2

r2

)
+ w

(
j′2

2
+
a2j2

r2

)
− w

(
a′2

r2
+

(
a2 − 1

)2
2r4

)
− V. (5.1)

We will see later it turns out that G and w are related to each other by some constraint
equations.

5.1 BPS monopole case

In this case, the BPS equations are already known [25, 26]. Setting j = 0 and employing
LG − LBPS = 0 we get

f ′± =

Qfr
2 ±

√
−r4

(
G (a4w + 2a2 (f2Gr2 − w) + 2r2y(wy −Qa) + 2r4V + w)−Q2

f

)
Gr4

,

(5.2)
and from f ′+ = f ′− we have the roots of a′ (or y)

a′± =

GQar
2 −

√
Gr2

{
G
(
Q2
ar

2 − 2w
(

2r2 (a2f2G+ r2V ) + (a2 − 1)2w
))

+ 2Q2
fw
}

2Gr2w
.

(5.3)

The terms inside the curly bracket in the square root must be zero in which after rearranging
in power series of r

2w
(
Q2
f −

(
a2 − 1

)2
Gw
)

+Gr2
(
Q2
a − 4a2f2Gw

)
− 4r4(GV w) = 0, (5.4)

we obtain V = 0,

FA′(a) =± 2af
√
Gw, (5.5)

F ′(f)A =±
(
a2 − 1

)√
Gw. (5.6)

These imply
∂

∂f

(
f
√
Gw
)

=
√
Gw (5.7)

, and hence
w =

c

G
, (5.8)

where c is a positive constant. The BPS equations are given by

f ′ =±
(
a2 − 1

)
r2

√
w

G
, (5.9a)

a′ =± af
√
G

w
, (5.9b)

with a constraint equation w G = c, where c is a positive constant. This constant can be
fixed to one, c = 1, by recalling that in the corresponding non-generalized version, in which
G = w = 1, we should get back the same BPS equations of (4.10).
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5.2 BPS dyon case

As previously setting j = βf and employing LG − LBPS = 0 we get

f ′± =
Qfr

2 ±
√
r4DD

r4 (G− β2w)
, (5.10)

with

DD = Q2
f −

(
G− β2w

) (
a4w + 2a2

(
f2r2

(
G− β2w

)
− w

)
+ 2r2y(wy −Qa) + 2r4V + w

)
,

(5.11)
and from DD = 0 we have the roots of a′

a′± =
Qa ±

√
DDD

r2(G−β2w)

2w
, (5.12)

where

DDD =r2
(
G− β2w

) (
4a2f2w

(
β2w −G

)
+Q2

a

)
+ 2w

((
a2 − 1

)2
w
(
β2w −G

)
+Q2

f

)
+ 4r4V w

(
β2w −G

)
. (5.13)

Requiring DDD = 0 we obtain V = 0,

FA′(a) =± 2af
√
w (G− β2w), (5.14)

F ′(f)A =±
(
a2 − 1

)√
w (G− β2w). (5.15)

Similar to the monopole case these imply

w(G− β2w) = c, (5.16)

where c is a positive constant and it can also be fixed to c = 1 − β2 demanding that at
G = w = 1 we should get the same BPS equations (4.19). At β → 0, we get back the
constraint equation (5.8) for monopole case. These give us the BPS equations

f ′ =±
(
a2 − 1

)
r2

√
w

G− β2w
, (5.17a)

a′ =± af
√
G− β2w

w
, (5.17b)

in which at β → 0 we again get back the BPS equations for monopole case (5.9).

6 BPS Equations in Generalized Nakamula-Shiraishi Model

Here we present the generalized version of the Nakamula-Shiraishi models (3.19) and (3.20)
for both monopole and dyon respectively.
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6.1 BPS monopole case

For a generalized version of (3.19) is defined by

LNSmG =− b2tr

(√
1− 2

b2
G(|φ|)DµφDµφ

√
1 +

1

b2
w(|φ|)FµνFµν − 1

)
− V (|φ|), (6.1)

where after inserting the ansatz, we write its effective Lagrangian as

LNSmG =− 2b2

(√
1 +

G

2b2

(
f ′2 +

2a2f2

r2

)√
1 +

w

2b2

(
2a′2

r2
+

(a2 − 1)2

r4

)
− 1

)
− V.

(6.2)

Using the similar BPS Lagrangian (4.3), we solve LNSmG−LBPS = 0 as a quadratic equation
of a′ (or y) first as such the roots are given by

a′ =
Qar

4
(
2b2 − V

)
+QaQfr

2x±
√
r2 (2a2f2G+ r2 (2b2 +Gx2))DD

r2 (2w (2a2f2G+ r2 (2b2 +Gx2))−Q2
a)

, (6.3)

with

DD =w
((
a2 − 1

)2 (
Q2
a − 2Gw

(
2a2f2 + r2x2

))
+ 2

(
r3V −Qfrx

)2)
+ 2b2r2

(
Q2
ar

2 − 2w
(
a4w + 2a2

(
f2Gr2 − w

)
+ r4

(
Gx2 + 2V

)
− 2Qfr

2x+ w
))
.

(6.4)

Taking DD = 0, we obtain the roots for f ′,

f ′ =

2Qfr
4w
(
2b2 − V

)
±
√

2r2w
(

(a2 − 1)2w + 2b2r4
)
DDD

2r2w
(

(a2 − 1)2Gw + 2b2Gr4 −Q2
f

) , (6.5)

with

DDD =2b2Gr4
(
Q2
a − 4a2f2Gw

)
+ 4b2r2w

(
Q2
f −

(
a2 − 1

)2
Gw
)

+
(
Q2
f −

(
a2 − 1

)2
Gw
) (

4a2f2Gw −Q2
a

)
+ 2Gr6V w

(
V − 4b2

)
. (6.6)

Requiring DDD = 0, we obtain from the terms with r6 that V = 0 or V = 4b2. The
remaining terms are also zero if Qa = ±2af

√
Gw and Qf = ±

(
a2 − 1

)√
Gw. These again

imply

G =
1

w
, (6.7)

which is equal to the constraint equation (5.8) for monopole in Generalized SU(2) Yang-
Mills-Higgs model. Then the BPS equations, with V = 0, are

f ′ =±
(
a2 − 1

)
r2

√
w

G
, (6.8a)

a′ =± af
√
G

w
, (6.8b)

which are equal to BPS equations (5.9) for monopole in the Generalized SU(2) Yang-Mills-
Higgs model.
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6.2 BPS dyon case

The generalization of Lagrangian (3.20) is defined as

LNSdG = −b2tr
({

1− 2

b2
G(|φ|)DµφDµφ+

1

b2
w(|φ|)FµνFµν −

1

4b4
G1(|φ|)

(
FµνF̃µν

)2
+

4

b4
G2(|φ|)F̃ ν

µ F̃µλDνφDλφ
}1/2

− 1

)
− V (|φ|). (6.9)

Employing the relation j(f) = βf , its effective Lagrangian is

LNSdG = −2b2
({

1 +
G− wβ2

2b2

(
f ′2 +

2a2f2

r2

)
+

w

2b2

(
2a′2

r2
+

(a2 − 1)2

r4

)

+
G2 −G1β

2

4b4

(
(a2 − 1)f ′

r2
+

2afa′

r2

)2
}1/2

− 1

− V. (6.10)

Employing LNSdG − LBPS = 0, with the same BPS Lagrangian (4.3), and solving it as a
quadratic equation of a′ first we get

a′ =
2a3β2fG1x− 2a3fG2x− 2aβ2fG1x+ 2afG2x+ 2b2Qar

2 +QaQfx−Qar2V ± 1
2

√
DD

4a2f2 (G2 − β2G1) + 4b2wr2 −Q2
a

,

(6.11)

where

DD =
(
−4a

(
a2 − 1

)
fx
(
G2 − β2G1

)
+ 4b2Qar

2 +Qa
(
2Qfx− 2r2V

))2
− 4

(
−4a2f2

(
G2 − β2G1

)
− 4b2wr2 +Q2

a

)
H, (6.12)

H =x2
((
a2 − 1

)2
β2G1 −

(
a2 − 1

)2
G2 +Q2

f

)
− 2b2J− 2Qfr

2V x+ r4V 2, (6.13)

J =r2
(
2a2f2G− 2Qfx+ r2

(
2V +Gx2

))
+ w

(
a4 − 2a2

(
β2f2r2 + 1

)
− β2r4x2 + 1

)
.

(6.14)

Then from DD = 0 we have a quadratic equation of f ′ whose roots are

f ′ =
K± 1

2

√
DDD

L
, (6.15)

where

K =− 4a3b2β2fG1Qar
2 + 4a3b2fG2Qar

2 + 2a3β2fG1Qar
2V − 2a3fG2Qar

2V

+ 8a2b2β2f2G1Qfr
2 − 8a2b2f2G2Qfr

2 − 4a2β2f2G1Qfr
2V + 4a2f2G2Qfr

2V

+ 4ab2β2fG1Qar
2 − 4ab2fG2Qar

2 − 2aβ2fG1Qar
2V + 2afG2Qar

2V

− 8b4wQfr
4 + 4b2wQfr

4V, (6.16)

L =− β2G1

(
a2(−Qa) + 2afQf +Qa

)2
+ 2b2r2M +G2 N + 8b4wr6

(
β2w −G

)
, (6.17)
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where in L we define M and N as

M =r2G
(
4a2β2f2G1 +Q2

a

)
+ w

(
2Q2

f − β2
(
Q2
ar

2 − 2G1

(
a4 − 2a2

(
β2f2r2 + 1

)
+ 1
)))

,

(6.18)

N =− 4a4b2wr2 + 4a2
(
f2
(
Q2
f − 2b2r4

(
G− β2w

))
+ 2b2wr2

)
− 4

(
a2 − 1

)
afQaQf

+
(
a2 − 1

)2
Q2
a − 4b2wr2, (6.19)

and

DDD = T0 − 8T2r
2 + 8T4r

4 + 16b2T6r
6 + T8r

8 − 32T10r
10 + T12r

12, (6.20a)

where

T0 =8
(
a2 − 1

)2
b2w

(
G2 − β2G1

) ((
a2 − 1

)
Qa − 2afQf

)2 (
4a2f2

(
G2 − β2G1

)
−Q2

a

)
,

(6.20b)

T2 =− 4
(
a2 − 1

)2
b4w2

((
a2 − 1

)2
β2G1 −

(
a2 − 1

)2
G2 +Q2

f

) (
4a2f2

(
G2 − β2G1

)
−Q2

a

)
− b2

(
G2 − β2G1

) ((
a2 − 1

)
Qa − 2afQf

)2×(
4
(
a2 − 1

)2
b2w2 − 2a2f2

(
G− β2w

) (
Q2
a − 4a2f2

(
G2 − β2G1

)))
, (6.20c)

T4 =2
(
a2 − 1

)2
b4w

(
β2w −G

) (
Q2
a − 4a2f2

(
G2 − β2G1

))2
+ 2a2f2

(
V − 2b2

)2 (
G2 − β2G1

)2 ((
a2 − 1

)
Qa − 2afQf

)2
+ 4b4w

((
a2 − 1

)2
β2G1 −

(
a2 − 1

)2
G2 +Q2

f

)
×(

4
(
a2 − 1

)2
b2w2 − 2a2f2

(
G− β2w

) (
Q2
a − 4a2f2

(
G2 − β2G1

)))
− 2

(
G2 − β2G1

) ((
a2 − 1

)
Qa − 2afQf

)2×(
b4
(
4a2f2w

(
β2w −G

)
+Q2

a

)
− 4a2b2f2V

(
G2 − β2G1

)
+ a2f2V 2

(
G2 − β2G1

))
,

(6.20d)

T6 =− 4
(
a2 − 1

)2
b4w2

(
G− β2w

) (
4a2f2

(
G2 − β2G1

)
−Q2

a

)
+ b2

(
G− β2w

) (
Q2
a − 4a2f2

(
G2 − β2G1

))
×(

4
(
a2 − 1

)2
b2w2 − 2a2f2

(
G− β2w

) (
Q2
a − 4a2f2

(
G2 − β2G1

)))
− 4afwQf

(
V − 2b2

)2 (
G2 − β2G1

) ((
a2 − 1

)
Qa − 2afQf

)
+ wV

(
4b2 − V

) (
G2 − β2G1

) ((
a2 − 1

)
Qa − 2afQf

)2
+ 4w

((
a2 − 1

)2
β2(−G1) +

(
a2 − 1

)2
G2 −Q2

f

)
×(

b4
(
4a2f2w

(
β2w −G

)
+Q2

a

)
− 4a2b2f2V

(
G2 − β2G1

)
+ a2f2V 2

(
G2 − β2G1

))
,

(6.20e)
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T8 =64b4w2Q2
f

(
V − 2b2

)2 − 8
(

8b6w
(
G− β2w

) (
4
(
a2 − 1

)2
b2w2

−2a2f2
(
G− β2w

) (
Q2
a − 4a2f2

(
G2 − β2G1

)))
+4b2

(
G− β2w

) (
Q2
a − 4a2f2

(
G2 − β2G1

)) (
b4
(
4a2f2w

(
β2w −G

)
+Q2

a

)
−4a2b2f2V

(
G2 − β2G1

)
+ a2f2V 2

(
G2 − β2G1

))
+8b4w2V

(
4b2 − V

) ((
a2 − 1

)2
β2(−G1) +

(
a2 − 1

)2
G2 −Q2

f

))
, (6.20f)

T10 =b4w
(
β2w −G

) (
4b4
(
4a2f2w

(
β2w −G

)
+Q2

a

)
+ 4b2V

(
Q2
a − 8a2f2

(
G2 − β2G1

))
+V 2

(
8a2f2

(
G2 − β2G1

)
−Q2

a

))
, (6.20g)

T12 = 128b6w2V
(
4b2 − V

) (
β2w −G

)
. (6.20h)

in order to find V,Qf , Qa, G1 and G2, we have to solve equation DDD = 0. Since the model
is valid for all r, then each T0 until T12 must be equal to zero. From T12 = 0 we need either
V = 0 or V = 4b2. This verify that the BPS limit is indeed needed to obtain the BPS
equations. Putting V = 0 into DDD we simplify a little the equations (6.20) above. From
T0 = 0 we have

Qf =

(
a2 − 1

)
Qa

2af
, (6.21)

which we input into DDD again. From T2 = 0 we obtain Qa = ±2af
√
G2 − β2G1. Now

we will input each into twos separate cases.

1. Setting Qa = −2af
√
G2 − β2G1, only T8 and T10 are not vanished. Both can vanish

if β2(w2 −G1) + (G2 − wG) = 0 hence we have G2 − β2G1 = wG− w2β2.

2. Setting Qa = 2af
√
G2 − β2G1, we also arrive at the same destination.

From these steps, we obtain that

FA′(a) =± 2af
√
w (G− β2w), (6.22)

F ′(f)A =± (a2 − 1)
√
w (G− β2w), (6.23)

which again imply that
w
(
G− β2w

)
= 1− β2, (6.24)

which is equal to the constraint equation (5.16) for dyon in the Generalized SU(2) Yang-
Mills-Higgs model. Substituting everything, we obtain the BPS equations, with V = 0,

f ′ = ±
(
a2 − 1

)
r2

√
w

G− β2w
, (6.25)

a′ = ±af
√
G− β2w

w
, (6.26)

which is again equal to the BPS equations (5.17) for dyon in the Generalized SU(2) Yang-
Mills-Higgs model.
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7 Discussion

We have shown that the BPS Lagrangian method, which was used before in [16] for BPS
vortex, can also be applied to the case of BPS monopole and dyon in SU(2) Yang-Mills-
Higgs model (3.1). One main reason is because the effective Lagrangian (3.15) only depends
on radial coordinate similar to the case of BPS vortex. We also took similar ansatz for the
BPS Lagrangian (4.3) in which the BPS energy function Q (4.2) does not depend on the
radial coordinate explicitly and it is a separable function of f and a. This due to no explicit
dependent over radial coodinate on the ansatz for the fields written in spherical coordinates
as in (4.1).

The BPS dyon could be obtained by identifiying the effective field of the time-component
gauge fields j to be propotional with the effective field of the scalars f by a constant β,
j = βf . This identification seems natural by realizing that both effective fields give the
same Euler-Lagrange equation in the BPS limit. Fortunately we found that the BPS La-
grangian method forced us to take this limit when solving the last equation with explicit
power of radial coodinate order by order, which are also the case for all other models con-
sidered in this article. In this article we used this simple identification which gives us the
known result of BPS dyon [5]. It turns out that the constant β takes values |β| < 1 and it
will be equal to BPS dyon in [5, 24] if we set β = − sinα, with α is a constant. There is also
a possibility where the both effective fields are independent, or having no simple relation,
but this will be discussed elsewhere.

Appliying the BPS Lagrangian method to Born-Infeld extensions of the SU(2) Yang-
Mills-Higgs model, which is called Nakumula-Shiraishi models, we obtained the same BPS
equations as shown in [14]. Those BPS equations switch the sign if we shift the potential
to a non-zero constant 4b2, V → V + 4b2 in which the BPS limit now becomes V → 4b2,
as shown below the equation (4.23). Therefore adding the energy density to a constant 4b2

seems to be related to a transition from monopole(dyon) to anti-monopole(anti-dyon) and
vice versa. Since this transition is between BPS monopoles, or dyons, it would be interesting
to study continuous transitions by adding the energy density slowly from 0 to 4b2, which we
would guest to be transition from BPS monopole(dyon) to Non-BPS monopole and then
to the corresponding BPS anti-monopole(anti-dyon) with higher energy. This transition
also appears in all Born-Infeld type of action discussed in this article and we wonder if this
transition is generic in all other type of Born-Infeld actions at least with the ones posses
BPS monopole(dyon) in the BPS limit. However, this kind of transition does not appear
in SU(2) Yang-Mills-Higgs model and its Generalized version since it would correspond to
taking b→∞ in the Nakamula-Shiraishi models, which means adding an infinite potential
energy to the Lagrangians.

In particular case of monopole Lagrangian (3.19), we might try to use the identification
j = βf , as previuosly, into the Lagrangian (3.19) and look for the BPS equations for dyon
from it. However, there is no justification for this identification because the Euler-Lagrange
equations for f and j are not identical even after substituting j = βf into both Euler-
Lagrange equations in the BPS limit. We might also try to consider f and j independently
by adding a term that is proportional to j′ in the BPS Lagrangian (4.3), but it will turn
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out that this term must be equal to zero and thus forces us to set j = 0. Suprisingly, for the
case of dyon Lagrangian (3.20), the effective action (3.22) gives the identical Euler-Lagrange
equations for f and j upon substituting j = βf in the BPS limit. Therefore it is valid to
use this identification for particular Born-Infeld type action of (3.20) for dyon.

We also applied the BPS Lagrangian method to the Generalized version of SU(2) Yang-
Mills-Higgs model (3.17) in which the effective action is given by (5.1). For monopole case,
we found there is a constraint between the scalar-dependent couplings of gauge kinetic term
w and of scalar kinetic term G, which is G = 1/w, similar to the one obtained in [25]. The
BPS equations are also modified and depend explicitly on these scalar-dependent couplings.
For dyon case, the constraint is generalized to w(G − β2w) = 1 − β2, with β < |1|, and
the BPS equations are modified as well. This is relatively new result compared to [25,
26] in which they did not discussed about dyon. As previously assumed w,G > 0, the
constraint leads to w± = 1

2β2

(
G±

√
G2 − 4β2 (1− β2)

)
. Reality condition on w± gives

lower bound to G as such G ≥ |2β
√

1− β2| in all values of radius r. The Generalized
version of Nakamula-Shiraishi model for monopole, with Lagrangian (6.1) and effective
Lagrangian (6.2), has also been computed. The results are similar to the Generalized
version of SU(2) Yang-Mills-Higgs model for monopole in the BPS limit. In the case
for Generalized version of Nakamula-Shiraishi model for dyon, with Lagrangian (6.9) and
effective Lagrangian (6.10), the results are similar to the Generalized version of SU(2)

Yang-Mills-Higgs model for dyon, eventhough there are two additional scalar-dependent
couplings G1 and G2. These additional couplings are related to the kinetic terms’s couplings
by G2−β2G1 = w(G−β2w). In the appendix, based on our results, we write down explicitly
the complete square-forms of all effective Lagragians (3.21), (3.22), (6.2), and (6.10).
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A Complete Square-Forms for Monopoles in Nakamula-Shiraishi Model

For V = 0, the effective Lagrangian (3.21) can be rewritten in complete square-forms as
the following:

LNSm = − b2√(
1 + 1

2b2

(
2a′2

r2
+ (a2−1)2

r4

))(
1 + 1

2b2

(
f ′2 + 2a2f2

r2

)) ×

×

(2b2 + f ′2
)

2b4r2

(
a′ − af

(
a2 − 1

)
f ′ ± 2b2r2

r2 (2b2 + f ′2)

)2

+

(
2a2f2 + r2

(
2b2 + f ′2

))
2b2r2 (2b2 + f ′2)

(
f ′ ∓ a2 − 1

r2

)2

+


√√√√(1 +

1

2b2

(
2a′2

r2
+

(a2 − 1)2

r4

))(
1 +

1

2b2

(
f ′2 +

2a2f2

r2

))
− 1

∓
(
a2 − 1

2b2r2
f ′ +

af

b2r2
a′
))2

)

∓
(

2af

r2
a′ +

a2 − 1

r2
f ′
)
. (A.1)

The above expression is different from the one presented in [14].

For V = 4b2, it becomes

LNSm = − b2√(
1 + 1

2b2

(
2a′2

r2
+ (a2−1)2

r4

))(
1 + 1

2b2

(
f ′2 + 2a2f2

r2

)) ×

×

(2b2 + f ′2
)

2b4r2

(
a′ − af

(
a2 − 1

)
f ′ ∓ 2b2r2

r2 (2b2 + f ′2)

)2

+

(
2a2f2 + r2

(
2b2 + f ′2

))
2b2r2 (2b2 + f ′2)

(
f ′ ± a2 − 1

r2

)2

+


√√√√(1 +

1

2b2

(
2a′2

r2
+

(a2 − 1)2

r4

))(
1 +

1

2b2

(
f ′2 +

2a2f2

r2

))
− 1

±
(
a2 − 1

2b2r2
f ′ +

af

b2r2
a′
))2

)

±
(

2af

r2
a′ +

a2 − 1

r2
f ′
)
. (A.2)
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Its general expression can be written as

LNSm = −
2b2
((

V
2b2
− 1
)2

+ 1
)−1

√(
1 + 1

2b2

(
2a′2

r2
+ (a2−1)2

r4

))(
1 + 1

2b2

(
f ′2 + 2a2f2

r2

)) ×

×

(2b2 + f ′2
)

2b4r2

(
a′ − af

(
a2 − 1

)
f ′ ±

(
2b2 − V

)
r2

r2 (2b2 + f ′2)

)2

+

(
2a2f2 + r2

(
2b2 + f ′2

))
2b2r2 (2b2 + f ′2)

(
f ′ ∓ a2 − 1

2b2r2
(
2b2 − V

))2

+

( V

2b2
− 1

)
√√√√(1 +

1

2b2

(
2a′2

r2
+

(a2 − 1)2

r4

))(
1 +

1

2b2

(
f ′2 +

2a2f2

r2

))
− 1


±
(
a2 − 1

2b2r2
f ′ +

af

b2r2
a′
))2

+
V

4b4
(
4b2 − V

)((a2 − 1
)2

2b2r4
+ 1

)(
2a2f2

r2 (2b2 + f ′2)
+ 1

))

±
2
(
V
2b2
− 1
)(

V
2b2
− 1
)2

+ 1

(
2af

r2
a′ +

a2 − 1

r2
f ′
)
−

V 2
(
V − 2b2

)
8b4 − 4b2V + V 2

, (A.3)

which is valid only if V = 0 or V = 4b2.
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B Complete Square-Forms for Dyons in Nakamula-Shiraishi Model

General expression for the complete square-forms of effective Lagrangian (3.22) is given by

LNSd = −

(
2b2
) ((

1− V
2b2

)2
+ 1
)−1

√
1 +

(1−β2)
(
f ′2+ 2a2f2

r2

)
2b2

+

(
(a2−1)2

r4
+ 2a′2

r2

)
2b2

+
(1−β2)

(
(a2−1)f ′

r2
+ 2aa′f

r2

)2

4b4

×

×

(1− β2)
2b2

(
f ′ ±

(
a2 − 1

)
r2
(
V − 2b2

)
2b2
√

1− β2r4

)2

+
1

b2r2

(
a′ ± af

(
V

2b2
− 1

)√
1− β2

)2

+
V
(
4b2 − V

)
8b6r4

(
2r2
(
a2
(
1− β2

)
f2
)

+
(
a2 − 1

)2
+ 2b2r4

)

+


(
V

2b2
− 1

)√√√√√1 +

(
f ′2 + 2a2f2

r2

)
2b2 (1− β2)−1

+

(
(a2−1)2
r4

+ 2a′2

r2

)
2b2

+

(
(a2−1)f ′

r2
+ 2aa′f

r2

)2
4b4 (1− β2)−1

+1− V

2b2
±
√

1− β2
(
af

b2r2
a′ +

(
a2 − 1

)
2b2r2

f ′

))2


∓
2
(
1− V

2b2

)√
1− β2(

1− V
2b2

)2
+ 1

(
2af

r2
a′ +

(
a2 − 1

)
r2

f ′

)
+

V 2
(
2b2 − V

)
8b4 − 4b2V + V 2

, (B.1)

which is valid only if V = 0 or V = 4b2.
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C Complete Square-Forms for Monopoles in Generalized Nakamula-Shiraishi
Model

General expression for the complete square-forms of effective Lagrangian (6.2) is given by

LNSmG = −
2b2
((

1− V
2b2

)2
+ 1
)−1

√(
1 + w

2b2

(
(a2−1)2
r4

+ 2a′2

r2

))(
1 + G

2b2

(
2a2f2

r2
+ f ′2

)) ×

×

G (a′2w + b2r2
)

2b4r2

(
f ′ −

2a
(
a2 − 1

)
a′fGw ±

(
a2 − 1

)√
Gwr2

(
2b2 − V

)
2Gr2 (a′2w + b2r2)

)2

+
w
(
w
((
a2 − 1

)2
+ 2a′2r2

)
+ 2b2r4

)
2b2r4 (a′2w + b2r2)

(
a′ ∓

2af
√
Gw

(
2b2 − V

)
4b2w

)2

+V
(
4b2 − V

) (w ((a2 − 1
)2

+ 2a′2r2
)

+ 2b2r4
) (
a2f2G+ b2r2

)
8b6r4 (a′2w + b2r2)

+

( V

2b2
− 1

)
√√√√√
1 +

w
(
(a2−1)2
r4

+ 2a′2

r2

)
2b2

1 +
G
(
2a2f2

r2
+ f ′2

)
2b2

− 1


±

(
af
√
Gw

b2r2
a′ +

(
a2 − 1

)√
Gw

2b2r2
f ′

))2


∓
2
(
1− V

2b2

)(
1− V

2b2

)2
+ 1

(
2af
√
Gw

r2
a′ +

(
a2 − 1

)√
Gw

r2
f ′

)
+

V 2
(
2b2 − V

)
8b4 − 4b2V + V 2

, (C.1)

which is valid only if V = 0 or V = 4b2.
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D Complete Square-Forms for Dyons in Generalized Nakamula-Shiraishi
Model

General expression for the complete square-forms of effective Lagrangian (6.10) is given by

LNSdG = −
2b2
((

1− V
2b2

)2
+ 1
)−1

√
1 +

(G−β2w)
(
f ′2+ 2a2f2

r2

)
2b2

+
w

(
2a′2
r2

+
(a2−1)2

r4

)
2b2

+
(G2−β2G1)

(
(a2−1)f ′

r2
+ 2aa′f

r2

)2

4b4

×

×

(G− β2w)

2b2

(
f ′ ∓

(
a2 − 1

)√
G2 − β2G1

(
2b2 − V

)
2b2r2 (G− β2w)

)2

+
w

b2r2

(
a′ ∓

(
2b2 − V

)
(4af)

√
G2 − β2G1

8b2w

)2

+
(
β2
(
G1 − w2

)
− (G2 −Gw)

) (2a2f2r2
(
G− β2w

)
+
(
a2 − 1

)2
w
)

8b6r4w (G− β2w) (V − 2b2)−2

+V
(
4b2 − V

) (2a2f2r2
(
G− β2w

)
+
(
a2 − 1

)2
w
)

8b6r4

+


(
V

2b2
− 1

)√√√√√1 +

(
f ′2 + 2a2f2

r2

)
2b2 (G− β2w)−1

+

(
2a′2

r2
+ (a2−1)2

r4

)
2b2w−1

+

(
(a2−1)f ′

r2
+ 2aa′f

r2

)2
4b4 (G2 − β2G1)

−1

+1− V

2b2
±

(
af
√
G2 − β2G1

b2r2
a′ +

(
a2 − 1

)√
G2 − β2G1

2b2r2
f ′

))2


∓
2
(
1− V

2b2

)√
G2 − β2G1(

1− V
2b2

)2
+ 1

(
2af

r2
a′ +

(
a2 − 1

)
r2

f ′

)
+

V 2
(
2b2 − V

)
8b4 − 4b2V + V 2

, (D.1)

which is valid only if V = 0 or V = 4b2, and β2
(
G1 − w2

)
= G2 −Gw.

References

[1] G. ’t Hooft, “Magnetic Monopoles in Unified Gauge Theories,” Nucl. Phys. B 79, 276 (1974).
doi:10.1016/0550-3213(74)90486-6

[2] A. M. Polyakov, “Particle Spectrum in the Quantum Field Theory,” JETP Lett. 20, 194
(1974) [Pisma Zh. Eksp. Teor. Fiz. 20, 430 (1974)].

[3] P. A. M. Dirac, “Quantized Singularities in the Electromagnetic Field,” Proc. Roy. Soc.
Lond. A 133, 60 (1931). doi:10.1098/rspa.1931.0130

[4] B. Julia and A. Zee, “Poles with Both Magnetic and Electric Charges in Nonabelian Gauge
Theory,” Phys. Rev. D 11, 2227 (1975). doi:10.1103/PhysRevD.11.2227

[5] M. K. Prasad and C. M. Sommerfield, “An Exact Classical Solution for the ’t Hooft Monopole
and the Julia-Zee Dyon,” Phys. Rev. Lett. 35, 760 (1975). doi:10.1103/PhysRevLett.35.760

– 26 –



[6] E. B. Bogomolny, “Stability of Classical Solutions,” Sov. J. Nucl. Phys. 24, 449 (1976) [Yad.
Fiz. 24, 861 (1976)].

[7] E. Witten and D. I. Olive, “Supersymmetry Algebras That Include Topological Charges,”
Phys. Lett. 78B, 97 (1978). doi:10.1016/0370-2693(78)90357-X

[8] A. Abouelsaood, C. G. Callan, Jr., C. R. Nappi and S. A. Yost, “Open Strings in Background
Gauge Fields,” Nucl. Phys. B 280, 599 (1987). doi:10.1016/0550-3213(87)90164-7

[9] A. A. Tseytlin, “On nonAbelian generalization of Born-Infeld action in string theory,” Nucl.
Phys. B 501, 41 (1997) doi:10.1016/S0550-3213(97)00354-4 [hep-th/9701125].

[10] A. Hashimoto and W. Taylor, “Fluctuation spectra of tilted and intersecting D-branes from
the Born-Infeld action,” Nucl. Phys. B 503, 193 (1997) doi:10.1016/S0550-3213(97)00399-4
[hep-th/9703217].

[11] D. J. Gross, A. Hashimoto and I. R. Klebanov, “The Spectrum of a large N gauge theory
near transition from confinement to screening,” Phys. Rev. D 57, 6420 (1998)
doi:10.1103/PhysRevD.57.6420 [hep-th/9710240].

[12] D. Brecher, “BPS states of the nonAbelian Born-Infeld action,” Phys. Lett. B 442, 117
(1998) doi:10.1016/S0370-2693(98)01277-5 [hep-th/9804180].

[13] S. Gonorazky, F. A. Schaposnik and G. A. Silva, “Supersymmetric nonAbelian Born-Infeld
theory,” Phys. Lett. B 449, 187 (1999) doi:10.1016/S0370-2693(99)00080-5 [hep-th/9812094].

[14] A. Nakamula and K. Shiraishi, “Born-Infeld Monopoles and Instantons,” Hadronic J. 14, 369
(1991).

[15] N. E. Grandi, E. F. Moreno and F. A. Schaposnik, “Monopoles in nonAbelian
Dirac-Born-Infeld theory,” Phys. Rev. D 59, 125014 (1999) doi:10.1103/PhysRevD.59.125014
[hep-th/9901073].

[16] A. N. Atmaja, “A Method for BPS Equations of Vortices,” Phys. Lett. B 768, 351 (2017)
doi:10.1016/j.physletb.2017.03.007 [arXiv:1511.01620 [hep-th]].

[17] C. Adam, L. A. Ferreira, E. da Hora, A. Wereszczynski and W. J. Zakrzewski, “Some aspects
of self-duality and generalised BPS theories,” JHEP 1308, 062 (2013)
doi:10.1007/JHEP08(2013)062 [arXiv:1305.7239 [hep-th]].

[18] D. Bazeia, C. B. Gomes, L. Losano and R. Menezes, “First-order formalism and dark energy,”
Phys. Lett. B 633, 415 (2006) doi:10.1016/j.physletb.2005.12.031 [astro-ph/0512197].

[19] D. Bazeia, L. Losano, R. Menezes and J. C. R. E. Oliveira, “Generalized Global Defect
Solutions,” Eur. Phys. J. C 51, 953 (2007) doi:10.1140/epjc/s10052-007-0329-0
[hep-th/0702052].

[20] D. Bazeia, L. Losano, J. J. Rodrigues and R. Rosenfeld, “First-order formalism for dark
energy and dust,” Eur. Phys. J. C 55, 113 (2008) doi:10.1140/epjc/s10052-008-0566-x
[astro-ph/0611770].

[21] A. N. Atmaja and H. S. Ramadhan, Bogomol’nyi equations of classical solutions, Phys. Rev.
D 90 no. 10 (2014) 105009 [arXiv:1406.6180 [hep-th]].

[22] K. Sokalski, T. Wietecha and Z. Lisowski, “A concept of strong necessary condition in
nonlinear field theory,” Acta Phys. Polon. B 32, 2771 (2001).

[23] C. Adam and F. Santamaria, “The First-Order Euler-Lagrange equations and some of their
uses,” JHEP 1612, 047 (2016) doi:10.1007/JHEP12(2016)047 [arXiv:1609.02154 [hep-th]].

– 27 –



[24] S. R. Coleman, S. J. Parke, A. Neveu and C. M. Sommerfield, “Can One Dent a Dyon?,”
Phys. Rev. D 15, 544 (1977). doi:10.1103/PhysRevD.15.544

[25] R. Casana, M. M. Ferreira, Jr and E. da Hora, Generalized BPS magnetic monopoles, Phys.
Rev. D 86 (2012) 085034 [arXiv:1210.3382 [hep-th]].

[26] R. Casana, M. M. Ferreira, E. da Hora and C. dos Santos, Analytical self-dual solutions in a
nonstandard Yang-Mills-Higgs scenario, Phys. Lett. B 722 (2013) 193 [arXiv:1304.3382
[hep-th]].

[27] E. J. Weinberg, Classical solutions in quantum field theory: Solitons and Instantons in High
Energy Physics, Cambridge: Cambridge University Press (2012).

– 28 –


	1 Introduction
	2 BPS Langrangian Method
	3 The 't Hooft-Polyakov Monopole and Julia-Zee Dyon
	4 BPS Equations in SU(2) Yang-Mills-Higgs and Nakamula-Shiraishi Models
	4.1 BPS monopole and dyon in SU(2) Yang-Mills-Higgs model
	4.2 BPS monopole and dyon in Nakamula-Shiraishi model

	5 BPS Equations in Generalized SU(2) Yang-Mills-Higgs Model
	5.1 BPS monopole case
	5.2 BPS dyon case

	6 BPS Equations in Generalized Nakamula-Shiraishi Model
	6.1 BPS monopole case
	6.2 BPS dyon case

	7 Discussion
	A Complete Square-Forms for Monopoles in Nakamula-Shiraishi Model
	B Complete Square-Forms for Dyons in Nakamula-Shiraishi Model
	C Complete Square-Forms for Monopoles in Generalized Nakamula-Shiraishi Model
	D Complete Square-Forms for Dyons in Generalized Nakamula-Shiraishi Model

